

ASX ANNOUNCEMENT

29 January 2021

DECEMBER 2020 QUARTERLY REPORT

HIGHLIGHTS

PRODUCTION

- Gold production at Jaurdi in the December Quarter was 7,870 ounces, approximately 12% above the high-end guidance for the quarter
- Gold sales for the quarter were 8,212 ounces at an average sale price of \$2,518/oz for sale receipts of \$20.68 million (2,000 ozs delivered into the hedge book at an average price of \$2,526/oz)
- Cash costs (excluding royalties) of A\$929/oz
- Beacon had cash of \$15.31 million and 948 ozs of gold on hand as at 31 December 2020
- Ore stockpiles at 31 December 2020 contained 24,000 ounces of gold

FINANCIAL AND CORPORATE

- Debt of \$18.0 million (in the form of debentures) was repaid on 12 October 2020, one year ahead of the repayment due date
- The Company is now debt free
- Cash at the end of the Quarter was A\$15.31 million (A\$16.17 million on hand and 932 ozs of gold on hand at 28 January 2021)
- Capital expenditure for the quarter totalled A\$1.8 million which included the capital works, plant and equipment purchases and TSF construction and planning

EXPLORATION

- Initial aircore drilling south of Black Cat intercepted significant gold in primary weathered rock under the palaeochannel (now named Big Cat). Over 500 metres of potential strike and potential source of primary mineralisation identified for the Lost Dog palaeochannel deposit. In-situ intercepts include:
 - BCW032 11 metres @ 1.56 g/t Au from 50 metres
 - BCW063 5 metres @ 2.22 g/t Au from 47 metres
 - BCW033 2 metres @ 2.30 g/t Au from 49 metres
 - BCW058 2 metres @ 2.29 g/t Au from 73 meters
 - BCW063 5 metres @ 2.22 g/t Au from 47 metres

Intercepts from within the palaeochannel include:

- BCW048 5 metres @ 9.87 g/t Au from 52 metres
 - o Including 1 metre @ 43.20 g/t Au from 56 metres
- BCW063 1 metre @ 8.24 g/t Au from 46 metres
- 13,446m of AC drilling and 920m of RC drilling completed during the quarter

- 15,000m of AC drilling planned from January 2021 to infill priority targets including, Big Cat, Lost Dog, Lost Dog East, Lynx and Trans-line PGE
- Aeromag survey to be completed (March 2021) over the Jaurdi Project to confirm and generate targets

Figure 1: Jaurdi Gold Project employees holding the gold bar poured for Beacon's first tonne of gold

Beacon Minerals Limited (ASX:BCN) (Beacon or the Company) is pleased to present its Quarterly Activities Report for the period ended 31 December 2020.

Beacon's performance during the December quarter reflects the consistent performance of the Jaurdi Gold Project.

Production Update for the December 2020 Quarter

- Bullion on hand and in transit of 948 ounces as at 31 December 2020
- Debt \$18.0 million (in the form of debentures) repaid on 12 October 2020, one year ahead of the repayment due date. On repayment of the debentures the Company is now debt free
- Strong balance sheet with A\$16.17 million on hand and 932 ozs of gold on hand at 28 January 2021
- Ore stockpiles contained 24,000 ozs at 31 December 2020
- Jaurdi Gold Project poured its first Tonne of Gold in December 2020

Beacon is pleased to provide the production numbers for the last four quarters at Jaurdi.

Quarter Ended	Gold Production Ounces (oz)
31 December 2020	7,870
30 September 2020	7,453
30 June 2020	6,711*
31 March 2020	6,905

^{*}Restated from the 16 July 2020 June Production. Previously reported 6,642 ozs for the gold produced for the quarter and 1,825 ozs for the month of June 2020.

Quarter Ended	BCM's
31 December 2020	368,000
30 September 2020	365,000
30 June 2020	418,000
31 March 2020	406,000

Mining in Lost Dog Panel 2 was temporarily suspended in mid-November when the mining fleet moved to the Panther Pit.

The cutback at the Panther pit is scheduled to be completed in early March 2021 when it will transition to a TSF.

Infrastructure works included installation of 5 new process water bores and associated pipe lines.

Mined Ore Stocks

At 31 December 2020 ore stockpiles were surveyed and estimated to contain approximately 24,000 ounces of gold. The mining cost attributable to the ore stockpiles is \$3.35 million and have been included in the cash costs.

A summary of Beacon's key performance measures compared to the previous quarters are set out below:

Operation	Unit	December 2020 Qtr	September 2020 Qtr	9 Months to June 2020
Ore Mined	ВСМ	109,000	219,000	543,000
Waste Mined	BCM	259,000	146,000	636,000
Ore milled	DMT	139,530	129,784	383,886
Head grade	gpt	1.95	2.00	1.70
Tails grade	gpt	0.20	0.22	0.22
Recovered grade	gpt	1.75	1.78	1.48
Gold Produced	OZ	7,870	7,453	18,265
Cost Summary				
Cash cost	\$/oz	929	953	1,202
Royalties	\$/oz	144	126	126
Total cash cost	\$/oz	1,073	1,079	1,328

Sales	Unit	December 2020 Qtr	September 2020 Qtr	9 Months to June 2020
Gold Sold	OZ	8,212	6,930	16,357
Average Gold Sales Price	A\$/oz	2,518	\$2,570	\$2,365

Capital Expenditure for December 2020 Quarter	A\$'000
Capital works	448
Critical spares	570
Plant and Equipment	501
TSF Facility	335
Total	1,854

Gravity circuit components (Knelson concentrator and Acacia Leach Reactor) have been ordered from Consep and installation and commissioning has been planned for late April 2021 to coincide with ore availability from Panther.

Beacon has now purchased all long lead critical spares.

Tailings Dam Update

During the quarter Beacon advanced the design and approval process for:

- a new circular Integrated Waste Landform (IWL) Tailings Store Facility (TFS) facility 700 metres north of the Jaurdi Treatment Plant
- utilisation of the Panther pit when mining is complete

Final future tailings storage facilities will comprise:

- New IWL TFS circular tailings dam 700 metres north west of the treatment plant
- Lost Dog In-Pit TSF Panels 2, 3 and 4 when mining is complete
- Panther In-Pit TSF when mining is completed in March 2021

In combination, the above facilities will provide tailings storage for approximately 10 years at current processing rates. Combined with the extension of our borefield we are future proofing the operations.

Figure 2: Panther Pit on the 18 December 2020

COVID-19

There have been no COVID-19 related issues during the quarter.

The Company continues to maintain a local isolation residence in Coolgardie for any potential COVID-19 related issues arising at the Jaurdi mine site.

EXPLORATION UPDATE

During the quarter, Beacon continued to explore its near mill tenements, with a focus on testing conceptual targets and previously defined soil anomalies, including analogies to the Lost Dog deposit and soil anomalies adjacent to the Black Cat deposit.

Exciting results from maiden aircore drilling programmes at Black Cat have identified anomalous gold mineralisation at Big Cat and Lynx prospects as well as further mineralisation along the Palaeochannel system that hosts the Lost Dog deposit.

Assay results have been returned for 329 Aircore holes drilled across several targets for a total of 13,446m. A further 16 RC holes for 920m have been drilled at Golden Cat prospect. Ongoing exploration will continue into the March quarter starting with aircore drilling at the Trans-line PGE prospect 35km east of Kalgoorlie.

Managing Director/Chairman Graham McGarry said:

"Aircore drilling along with the upcoming Aeromag survey is expected to generate potential exploration targets for the future"

Lost Dog

A total of 76 vertical aircore drill holes were drilled for 2,992 metres on three north-south orientated traverses located 150 metres apart (Figure 3) to the East of Lost Dog. Results confirm that the Lost Dog gold mineralised system continues to the east for approximately 700 metres. Grades above 1 g/t Au are present as two parallel palaeochannel horizons at depths between 15 and 25 metres below surface (Figure 4). Significant intersections include:

JD20E010 12 metres @ 1.01 g/t Au from 16 metres Including 4 metres @ 2.28 g/t Au from 17 metres
 JD20E034 3 metres @ 1.10 g/t Au from 12 metres
 JD20E037 3 metres @ 1.41 g/t Au from 20 metres
 JD20E045 1 metre @ 11.75 g/t Au from 41 metres
 JD20E048 1 metre @ 2.13 g/t Au from 22 metres

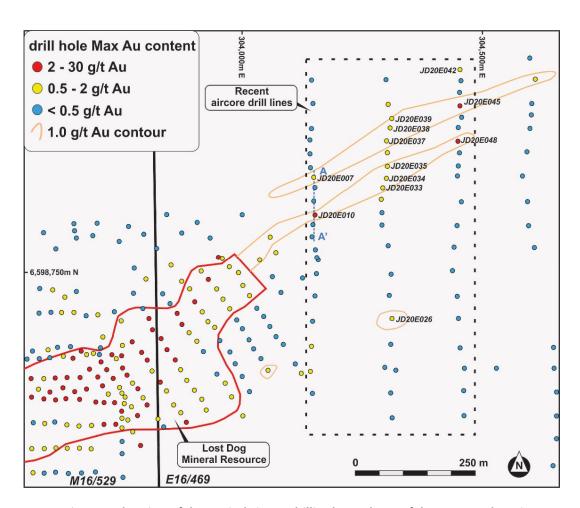


Figure 3: Plan view of the vertical aircore drilling located east of the Lost Dog deposit

Registered Address 144 Vivian Street, Boulder, WA 6432 Website www.beaconminerals.com Phone 08 9093 2477

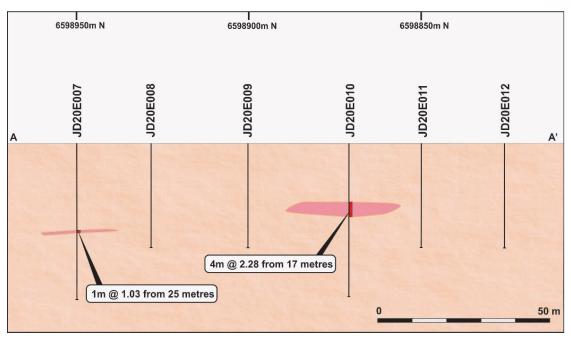


Figure 4: Cross section A – A' (see Figure 3) of the most westerly drill line of the recent drill programme east of the Lost Dog system

Along with the Eastern exploration drilling, 24 aircore holes were drilled to the north of the panel 3 pit design. This drilling confirmed the current northern boundary of mineralisation in this area.

Details of the drill holes completed at Lost Dog are contained in Appendix 1.

Big Cat Prospect

During October-November 2020, the Black Cat palaeochannel was again targeted for water and gold exploration (Area now described as the Big Cat prospect). This drilling followed on from initial aircore drilling completed in late 2017, which identified water resources within the palaeochannel along with several highly anomalous gold intercepts from both the transported (palaeochannel) and in situ (saprolite/saprock) parts of the regolith profile.

The recent aircore drilling programme added to the coverage provided by the 2017 campaign. The drilling continued to generate many highly anomalous gold intercepts from both the transported and in situ parts of the regolith profile, with the highlights being a number of highly encouraging gold intercepts from the in-situ ultramafic saprolite. Mineralisation within the ultramafic indicates the potential for a primary ore source below the palaeochannel. These intercepts occur within broader zones of >0.1g/t Au and are located on broad spaced traverses, up to 500m apart, providing a large previously unexplored area for further exploration assessment in respect to finding the primary source for Lost Dog's secondary mineralisation. (see figures 5-8). Further drill testing is currently being planned and is scheduled for February 2021. Follow up drilling is being planned for February 2021.

Some of the best In-situ intercepts include (details of the drill holes completed at Big Cat is contained in Appendix 1):

•	BCW032	11 metres @ 1.56 g/t Au from 50 metres
•	BCW063	5 metres @ 2.22 g/t Au from 47 metres
•	BCW033	2 metres @ 2.30 g/t Au from 49 metres
•	BCW058	2 metres @ 2.29 g/t Au from 73 meters
•	BCW063	5 metres @ 2.22 g/t Au from 47 metres

Intercepts from within the palaeochannel include:

BCW048 5 metres @ 9.87 g/t Au from 52 metres
 Including 1 metre @ 43.20 g/t Au from 56 metres
 BCW063 1 metre @ 8.24 g/t Au from 46 metres

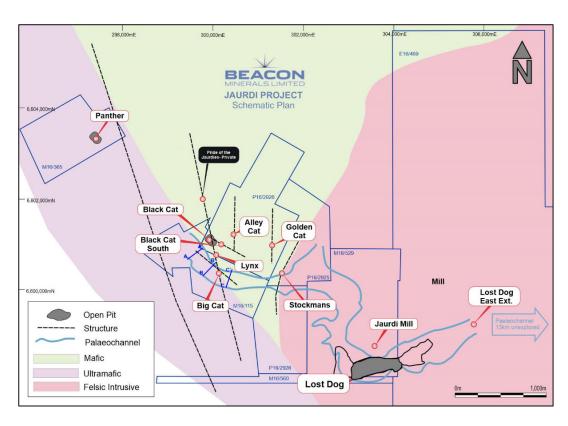


Figure 5: Schematic plan view of the Jaurdi Gold Project. See drill lines A-C in blue

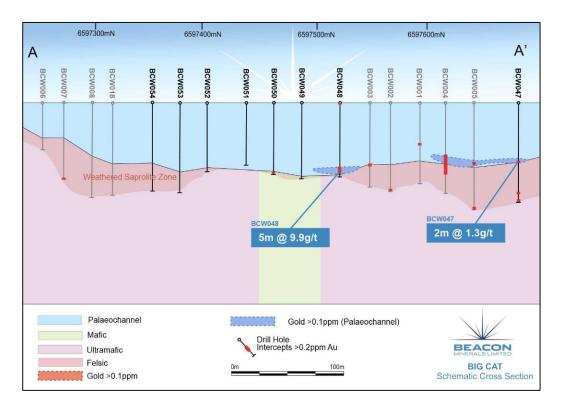


Figure 6: Cross section A – A' (see figure 3) of the Northern drill line of the recent drill programme at Big Cat prospect

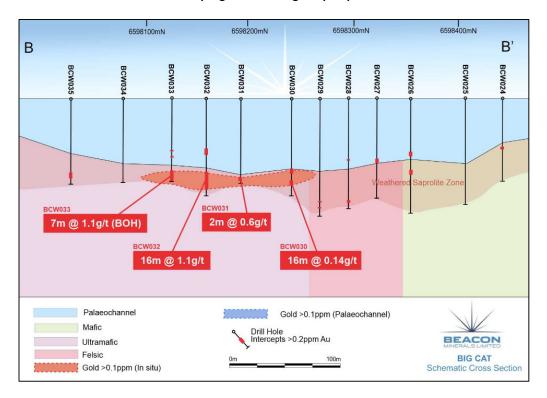


Figure 7: Cross section B – B' (see figure 3) of the 'central' drill line of the recent drill programme at Big Cat prospect

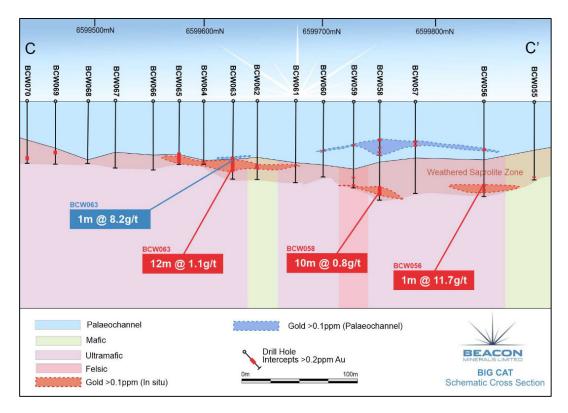


Figure 8: Cross section C – C' (see figure 5) of the most southerly drill line of the recent drill programme at Big Cat prospect.

Lynx Prospect

During October 2020, drilling at the Lynx prospect auger soil anomaly was extended with a further 25 holes added to the program. Drilling has defined two gold-in-regolith (saprolite) anomalies, both require further aircore drilling to define their strike extent and tenor prior to deeper drill testing with RC. All holes have now had the one metre samples returned.

Best intercepts include:

•	JD20L032	8 metres @ 1.31 g/t Au from 32 metres.
	Including	4 metres @ 2.43 g/t Au from 36 metres.
•	JD20L039	6 metres @ 2.88 g/t Au from 31 metres (BOH).
	Including	1 metre @ 15.3 g/t Au from 36 metres (BOH).

Follow-up aircore drilling has been planned and is scheduled for February 2021. Details of the drill holes completed at the Lynx Prospect is contained in Appendix 1.

Golden Cat

First pass RC drilling was completed over the Golden Cat prospect during September 2020 with 16 angled RC holes being drilled for 920 metres. Assay results were delayed and only processed during the report period.

Results were not encouraging with just a few >0.1 ppm Au intercepts returned from the central parts of the auger soil anomaly.

Details of the drill holes completed at Golden Cat is contained in Appendix 1.

Alley Cat Prospect

A first pass aircore drilling program was completed over the Alley Cat trend auger soil anomalies which included 56 angled aircore holes for 1,138 metres. Six lines of aircore drilling were completed. Numerous anomalous intercepts above 0.1g/t Au were returned indicating that further aircore testing is warranted to better define the gold anomalous trends and corridors identified by this 6 line programme.

Best intercepts include:

- JD20AC052 1m @ 1.17 g/t Au from 2 metres
- JD20AC054 1m @ 4.0 g/t Au from 20 metres (BOH)

Details of the drill holes completed at Alley Cat are contained in Appendix 1.

Stockman's Prospect

During October and November 2020, tenements P16/2925 and P16/2926 were the focus of a reconnaissance aircore programme that had the primary objective of testing the lithological contact between the greenstone sequence to the west and the Bali Monzogranite to the east. Target generation activities completed during 2019-2020 highlighted the greenstone — Bali Monzogranite geological contact as being a target for primary gold mineralisation that might be the source of the palaeochannel-hosted gold, currently being mined at the Lost Dog gold mine.

There were very few results of interest, other than the intercepts from JD20AL050, which intersected anomalous gold mineralisation within ultramafic saprolite.

• JD20AL050 5m @ 0.23 g/t Au from 44 metres

Details of the drill holes completed at Stockman's are contained in Appendix 1.

Exploration Expenditure

Expenditure on exploration activities during the quarter was \$206,000.

Program for the March 2021 quarter

The next phase of aircore drilling will concentrate on infilling between the best gold intercepts from Phase 1. Along with these targets, first pass aircore drilling has already commenced at the Trans-line PGE project 35km east of Kalgoorlie. Drilling at Trans-line targets three surface PGE soils anomalies with peak values up to 287ppb Pd and 329ppb Pt.

The rig will then return to the Jaurdi Gold Project to complete infill drilling at Big Cat, Lost Dog, Lost Dog East and Lynx during February and March. Planned metres include:

•	Trans-line PGE	4,400m
•	Lost Dog	1,300m
•	Lost Dog East	1,500m
•	Lynx	2,700m
•	Big Cat	8,000m

Following analysis of these results, and in conjunction with Aeromag survey data to be completed in March, the company anticipates reverse circulation drilling programs at the most prospective areas to commence in the June quarter.

CORPORATE UPDATE

Ordinary Shares on issue	2,873,232,777
Listed Options on issue	897,883,486
Unlisted Options on issue	70,000,000
Market capitalisation	\$106.211 million (0.037 share price)
Cash on hand (31 December)	\$15.31 million
Bullion on hand (31 December)	948 ozs
Debt (31 December)	Nil

Debentures

In October 2018 the Company issued \$18.0 million in debentures. Under the terms of the debentures the Company, may at any time after 24 months from the date of issue, repay some or all of the principal sum outstanding.

The Company was pleased to advise on 12 October 2020 that it had finalised the repayment of the \$18.0 million debentures, one year ahead of the repayment due date.

The Company has no debentures on issue and is now debt free.

Authorised for release by the Board of Beacon Minerals Limited.

For more information contact:

Graham McGarry Geoffrey Greenhill
Managing Director/Chairman Non-Executive Director

Beacon Minerals Ltd
M: 0459 240 379 Beacon Minerals Ltd
M: 0419 991 713

Competent Persons Statement

The information in this report that relates to the Jaurdi Gold Project has been compiled by Mr Zane Padman, a full-time employee of Beacon Minerals. Mr Padman is a Member of the Australian Institute of Mining and Metallurgy. Mr Padman has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Padman consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

Disclaimer

This ASX announcement (Announcement) has been prepared by Beacon Minerals Limited ("Beacon" or "the Company"). It should not be considered as an offer or invitation to subscribe for or purchase any securities in the Company or as an inducement to make an offer or invitation with respect to those securities. No agreement to subscribe for securities in the Company will be entered into on the basis of this Announcement.

This Announcement contains summary information about Beacon, its subsidiaries and their activities which is current as at the date of this Announcement. The information in this Announcement is of a general nature and does not purport to be complete nor does it contain all the information which a prospective investor may require in evaluating a possible investment in Beacon.

By its very nature exploration for minerals is a high risk business and is not suitable for certain investors. Beacon's securities are speculative. Potential investors should consult their stockbroker or financial advisor. There are a number of risks, both specific to Beacon and of a general nature which may affect the future operating and financial performance of Beacon and the value of an investment in Beacon including but not limited to economic conditions, stock market fluctuations, gold price movements, regional infrastructure constraints, timing of approvals from relevant authorities, regulatory risks, operational risks and reliance on key personnel.

Certain statements contained in this announcement, including information as to the future financial or operating performance of Beacon and its projects, are forward-looking statements that:

- may include, among other things, statements regarding targets, estimates and assumptions in respect
 of mineral reserves and mineral resources and anticipated grades and recovery rates, production and
 prices, recovery costs and results, capital expenditures, and are or may be based on assumptions and
 estimates related to future technical, economic, market, political, social and other conditions;
- are necessarily based upon a number of estimates and assumptions that, while considered reasonable by Beacon, are inherently subject to significant technical, business, economic, competitive, political and social uncertainties and contingencies; and,
- involve known and unknown risks and uncertainties that could cause actual events or results to differ materially from estimated or anticipated events or results reflected in such forward-looking statements.

Beacon disclaims any intent or obligation to update publicly any forward-looking statements, whether as a result of new information, future events or results or otherwise. The words 'believe', 'expect', 'anticipate', 'indicate', 'contemplate', 'target', 'plan', 'intends', 'continue', 'budget', 'estimate', 'may', 'will', 'schedule' and similar expressions identify forward-looking statements.

All forward looking statements made in this announcement are qualified by the foregoing cautionary statements. Investors are cautioned that forward-looking statements are not guarantees of future performance and accordingly investors are cautioned not to put undue reliance on forward-looking statements due to the inherent uncertainty therein.

No verification: Although all reasonable care has been undertaken to ensure that the facts and opinions given in this Announcement are accurate, the information provided in this Announcement has not been independently verified.

SCHEDULE OF MINERAL TENEMENT INTERESTS

Beacon Minerals Limited provides the following schedule of mineral tenement interests held by the Company for the quarter ended 31 December 2020 as required by ASX Listing Rule 5.3.

Beacon Minerals Limited Mineral Tenement interest as at 31 December 2020;

TENEMENT	PROJECT/LOCATION	INTEREST AT THE BEGINNING OF THE QUARTER	INTEREST AT THE END OF THE QUARTER
	Jaurdi Gold Project	30	Q 01111211
M16/0529	Jaurdi, Coolgardie	100%	100%
M16/0034	Jaurdi, Coolgardie	100%	100%
M16/0115	Jaurdi, Coolgardie	100%	100%
M16/0365	Jaurdi, Coolgardie	100%	100%
M16/0560	Jaurdi, Coolgardie	100%	100%
P16/2925	Jaurdi, Coolgardie	100%	100%
P16/2926	Jaurdi, Coolgardie	100%	100%
L16/0120	Jaurdi, Coolgardie	100%	100%
L16/0122	Jaurdi, Coolgardie	100%	100%
L16/0131	Jaurdi, Coolgardie	100%	100%
E16/0469 ⁽¹⁾	Jaurdi, Coolgardie	100%	100%
E15/1582	Jaurdi, Coolgardie	100%	100%
P25/2555 ⁽²⁾	Transline	100%	100%
P25/2556 ⁽²⁾	Transline	100%	100%
P25/2557 ⁽²⁾	Transline	100%	100%
P25/2558 ⁽²⁾	Transline	100%	100%

^{1.} Beacon has executed an Option to Purchase Agreement with Mr Steven Argus and Zephyr Mining Pty Ltd, the holders of licence E16/469.

Website www.beaconminerals.com Phone 08 9093 2477

^{2.} Beacon has executed an Option to Purchase Agreement with Roger and Michael Lindsay, the holders of the 4 Prospecting Licences.

Appendix 1: Drilling details and significant intercepts

Prospect	Hole ID	Hole Type	Easting (m)	Northing (m)	RL (m)	Dip	Azi	Max Depth	From (m)	To (m)	Interval (m)	Au (ppm)	Intercept (Downhole Width)
Lost Dog	LDRD059	AC	303586	6598834	383	-90	90	30					NSI
	LDRD060	AC	303611	6598800	382	-90	90	30					NSI
	LDRD061	AC	303543	6598807	382	-90	90	34					NSI
	LDRD062	AC	303651	6598838	383	-90	90	30					NSI
	LDRD063	AC	303689	6598828	382	-90	90	30					NSI
	LDRD064	AC	303743	6598816	382	-90	90	30					NSI
	LDRD065	AC	303795	6598831	382	-90	90	33					NSI
	LDRD066	AC	303775	6598760	382	-90	90	30					NSI
	LDRD067	AC	303773	6598707	382	-90	90	30					NSI
	LDRD068	AC	303821	6598801	383	-90	90	36					NSI
	LDRD069	AC	303842	6598872	383	-90	90	30					NSI
	LDRD070	AC	303874	6598833	383	-90	90	30					NSI
	LDRD071	AC	303906	6598855	384	-90	90	30					NSI
	LDRD072	AC	303933	6598824	383	-90	90	30					NSI
	LDRD073	AC	303950	6598782	383	-90	90	58	25	26	1.00	3.86	1m @ 3.86g/t
	LDRD074	AC	303851	6598766	383	-90	90	30					NSI
	LDRD075	AC	304080	6598709	382	-90	90	30					NSI
	LDRD076	AC	304063	6598742	382	-90	90	30					NSI
	LDRD077	AC	304036	6598777	383	-90	90	30	15	19	4.00	0.66	4m @ 0.66g/t
	LDRD078	AC	304070	6598792	383	-90	90	30					NSI
	LDRD079	AC	304058	6598825	383	-90	90	30					NSI
	LDRD080	AC	303999	6598872	383	-90	90	30					NSI
	LDRD081	AC	304157	6598778	383	-90	90	30					NSI
	LDRD082	AC	304126	6598739	382	-90	90	30					NSI
Lost Dog East	JD20E001	AC	304144	6599151	385	-90	0	70					NSI
	JD20E002	AC	304147	6599102	385	-90	0	30					NSI

Prospect	Hole ID	Hole Type	Easting (m)	Northing (m)	RL (m)	Dip	Azi	Max Depth	From (m)	To (m)	Interval (m)	Au (ppm)	Intercept (Downhole Width)
	JD20E003	AC	304144	6599051	385	-90	0	30					NSI
	JD20E004	AC	304141	6599027	385	-90	0	31					NSI
	JD20E005	AC	304141	6598998	385	-90	0	49					NSI
	JD20E006	AC	304142	6598969	385	-90	0	30					NSI
	JD20E007	AC	304149	6598949	385	-90	0	45	25	26	1.00	1.03	1m @ 1.03g/t
	JD20E008	AC	304151	6598928	385	-90	0	30					NSI
	JD20E009	AC	304149	6598900	385	-90	0	30					NSI
	JD20E010	AC	304151	6598871	385	-90	0	44	16	28	12.00	1.01	12m @ 1.01g/t
	Including								17	21	4.00	2.28	4m @ 2.28g/t
	JD20E011	AC	304147	6598850	385	-90	0	30					NSI
	JD20E012	AC	304145	6598826	385	-90	0	30					NSI
	JD20E013	AC	304152	6598799	385	-90	0	30					NSI
	JD20E014	AC	304155	6598781	385	-90	0	48					NSI
	JD20E015	AC	304154	6598748	385	-90	0	30					NSI
	JD20E016	AC	304151	6598702	385	-90	0	45					NSI
	JD20E017	AC	304146	6598649	385	-90	0	30					NSI
	JD20E018	AC	304144	6598597	385	-90	0	44					NSI
	JD20E019	AC	304142	6598545	385	-90	0	30					NSI
	JD20E020	AC	304146	6598499	385	-90	0	58					NSI
	JD20E021	AC	304148	6598451	385	-90	0	51					NSI
	JD20E022	AC	304312	6598448	385	-90	0	44					NSI
	JD20E023	AC	304309	6598500	385	-90	0	48					NSI
	JD20E024	AC	304297	6598553	385	-90	0	30					NSI
	JD20E025	AC	304309	6598601	385	-90	0	47					NSI
	JD20E026	AC	304312	6598655	385	-90	0	30	17	18	1.00	1.02	1m @ 1.02g/t
	JD20E027	AC	304306	6598703	385	-90	0	55					NSI

Prospect	Hole ID	Hole Type	Easting (m)	Northing (m)	RL (m)	Dip	Azi	Max Depth	From (m)	To (m)	Interval (m)	Au (ppm)	Intercept (Downhole Width)
	JD20E028	AC	304310	6598747	385	-90	0	30					NSI
	JD20E029	AC	304304	6598807	385	-90	0	46					NSI
	JD20E030	AC	304291	6598850	385	-90	0	30					NSI
	JD20E031	AC	304291	6598876	385	-90	0	30					NSI
	JD20E032	AC	304289	6598904	385	-90	0	43					NSI
	JD20E033	AC	304292	6598927	385	-90	0	30	18	19	1.00	1.12	1m @ 1.12g/t
	JD20E034	AC	304300	6598947	385	-90	0	30	12	15	3.00	1.10	3m @ 1.1g/t
	JD20E035	AC	304302	6598972	385	-90	0	42	33	34	1.00	1.47	1m @ 1.47g/t
	JD20E036	AC	304302	6599001	385	-90	0	30					NSI
	JD20E037	AC	304300	6599025	385	-90	0	30	20	23	3.00	1.41	3m @ 1.41g/t
	JD20E038	AC	304308	6599052	385	-90	0	49	23	24	1.00	1.32	1m @ 1.32g/t
	JD20E039	AC	304311	6599071	385	-90	0	30	16	18	2.00	1.09	2m @ 1.09g/t
	JD20E040	AC	304304	6599101	385	-90	0	30					NSI
	JD20E041	AC	304299	6599152	385	-90	0	30					NSI
	JD20E042	AC	304453	6599173	385	-90	0	50	25	26	1.00	1.43	1m @ 1.43g/t
	JD20E043	AC	304455	6599150	385	-90	0	30					NSI
	JD20E044	AC	304452	6599126	385	-90	0	30					NSI
	JD20E045	AC	304453	6599098	385	-90	0	48	41	42	1.00	11.75	1m @ 11.75g/t
	JD20E046	AC	304457	6599074	385	-90	0	30					NSI
	JD20E047	AC	304450	6599053	385	-90	0	30					NSI
	JD20E048	AC	304449	6599024	385	-90	0	46	22	23	1.00	2.13	1m @ 2.13g/t
	JD20E049	AC	304452	6599000	385	-90	0	30					NSI
	JD20E050	AC	304450	6598973	385	-90	0	30					NSI
	JD20E051	AC	304448	6598952	385	-90	0	46					NSI
	JD20E052	AC	304456	6598899	385	-90	0	30					NSI
	JD20E053	AC	304447	6598849	385	-90	0	48					NSI

Prospect	Hole ID	Hole Type	Easting (m)	Northing (m)	RL (m)	Dip	Azi	Max Depth	From (m)	To (m)	Interval (m)	Au (ppm)	Intercept (Downhole Width)
	JD20E054	AC	304441	6598804	385	-90	0	30					NSI
	JD20E055	AC	304438	6598754	385	-90	0	44					NSI
	JD20E056	AC	304448	6598701	385	-90	0	30					NSI
	JD20E057	AC	304450	6598655	385	-90	0	47					NSI
	JD20E058	AC	304454	6598594	385	-90	0	30					NSI
	JD20E059	AC	304463	6598551	385	-90	0	54					NSI
	JD20E060	AC	304461	6598505	385	-90	0	30					NSI
	JD20E061	AC	304462	6598453	385	-90	0	51					NSI
	JD20E062	AC	304649	6598595	385	-90	0	40					NSI
	JD20E063	AC	304651	6598551	385	-90	0	36					NSI
	JD20E064	AC	304656	6598502	385	-90	0	49					NSI
	JD20E065	AC	304657	6598452	385	-90	0	56					NSI
	JD20E066	AC	304655	6598405	385	-90	0	54					NSI
	JD20E067	AC	304648	6598349	385	-90	0	52					NSI
	JD20E068	AC	304658	6598299	385	-90	0	51					NSI
	JD20E069	AC	304652	6598247	385	-90	0	42					NSI
	JD20E070	AC	304760	6598601	385	-90	0	37					NSI
	JD20E071	AC	304757	6598554	385	-90	0	29					NSI
	JD20E072	AC	304747	6598495	385	-90	0	45					NSI
	JD20E073	AC	304753	6598440	385	-90	0	45					NSI
	JD20E074	AC	304756	6598401	385	-90	0	44					NSI
	JD20E075	AC	304758	6598350	385	-90	0	49					NSI
	JD20E076	AC	304751	6598302	385	-90	0	50					NSI
Panther GC	PNGC01	RC	297404	6602999	418	-64	77	30					NSI
	PNGC02	RC	297409	6603006	418	-74	83	27					NSI
	PNGC02A	RC	297411	6603006	415	-65	73	24					NSI

Prospect	Hole ID	Hole Type	Easting (m)	Northing (m)	RL (m)	Dip	Azi	Max Depth	From (m)	To (m)	Interval (m)	Au (ppm)	Intercept (Downhole Width)
	PNGC03	RC	297415	6603007	418	-63	82	21					NSI
	PNGC04	RC	297413	6603012	418	-75	72	27					NSI
	PNGC05	RC	297421	6603019	418	-89	350	21					NSI
	PNGC06	RC	297413	6603017	418	-90	310	30	23	25	2.00	2.79	2m @ 2.79g/t
	PNGC07	RC	297421	6603024	418	-89	86	21	6	13	7.00	0.98	7m @ 0.98g/t
	PNGC08	RC	297414	6603023	418	-89	52	30	17	22	5.00	1.69	5m @ 1.69g/t
	PNGC09	RC	297418	6603029	418	-89	46	21	9	16	7.00	1.46	7m @ 1.46g/t
	PNGC10	RC	297439	6603039	418	-89	97	21					NSI
	PNGC11	RC	297426	6603036	418	-90	17	21	16	20	4.00	1.46	4m @ 1.46g/t
	PNGC12	RC	297438	6603044	418	-89	228	24	2	5	3.00	3.70	3m @ 3.7g/t
	PNGC13	RC	297433	6603042	418	-89	265	24	6	7	1.00	2.81	1m @ 2.81g/t
	PNGC13	RC	297433	6603042	418	-89	265	24	12	14	2.00	12.43	2m @ 12.43g/t
	PNGC14	RC	297429	6603041	418	-90	245	24	20	23	3.00	1.96	3m @ 1.96g/t
	PNGC15	RC	297424	6603040	418	-89	291	30	4	9	5.00	2.94	5m @ 2.94g/t
	PNGC16	RC	297437	6603048	418	-90	14	27	7	9	2.00	2.33	2m @ 2.33g/t
	PNGC17	RC	297432	6603047	418	-90	269	27	0	3	3.00	2.69	3m @ 2.69g/t
									17	19	2.00	2.16	2m @ 2.16g/t
	PNGC18	RC	297427	6603046	418	-90	303	27					NSI
	PNGC19	RC	297423	6603045	418	-90	348	33	9	16	7.00	2.13	7m @ 2.13g/t
									19	28	9.00	1.35	9m @ 1.35g/t
	PNGC20	RC	297418	6603043	418	-90	290	33	5	10	5.00	0.68	5m @ 0.68g/t
									14	27	13.00	6.29	13m @ 6.29g/t
	PNGC22	RC	297434	6603053	418	-85	351	27					NSI
	PNGC23	RC	297430	6603052	418	-84	335	27	0	8	8.00	2.37	8m @ 2.37g/t
									12	23	11.00	2.25	11m @ 2.25g/t
	PNGC24	RC	297425	6603051	418	-89	309	30	2	8	6.00	0.99	6m @ 0.99g/t

Website www.beaconminerals.com Phone 08 9093 2477

Prospect	Hole ID	Hole Type	Easting (m)	Northing (m)	RL (m)	Dip	Azi	Max Depth	From (m)	To (m)	Interval (m)	Au (ppm)	Intercept (Downhole Width)
									10	12	2.00	1.98	2m @ 1.98g/t
									16	24	8.00	6.01	8m @ 6.01g/t
	PNGC25	RC	297420	6603049	418	-90	50	21	8	14	6.00	1.67	6m @ 1.67g/t
									16	21	5.00	4.62	5m @ 4.62g/t
	PNGC26	RC	297415	6603054	418	-49	89	32	11	13	2.00	1.06	2m @ 1.06g/t
									15	17	2.00	6.42	2m @ 6.42g/t
									23	26	3.00	6.72	3m @ 6.72g/t
	PNGC27	RC	297408	6603052	418	-50	74	36	20	23	3.00	2.86	3m @ 2.86g/t
									31	33	2.00	12.09	2m @ 12.09g/t
	PNGC28	RC	297405	6603056	418	-50	73	41	20	23	3.00	4.90	3m @ 4.9g/t
	PNGC29	RC	297399	6603055	418	-50	77	43					NSI
	PNGC30	RC	297395	6603059	418	-52	80	48	28	33	5.00	0.85	5m @ 0.85g/t
Lynx	JD20L026	AC	300169	6600789	420	-60	45	40					NSI
	JD20L027	AC	300162	6600777	420	-60	45	47					NSI
	JD20L028	AC	300149	6600759	420	-60	45	35					NSI
	JD20L029	AC	300140	6600745	420	-60	45	30					NSI
	JD20L030	AC	300130	6600733	420	-60	45	35					NSI
	JD20L031	AC	300117	6600721	420	-60	45	35	29	32	3.00	0.13	3m @ 0.13g/t
	JD20L032	AC	300102	6600704	420	-60	45	40	32	40	8.00	1.31	8m @ 1.31g/t
	Including								36	40	4.00	2.43	4m @ 2.43g/t
	JD20L033	AC	300086	6600689	420	-60	45	38	2	3	1.00	0.15	1m @ 0.15g/t
	JD20L034	AC	300063	6600670	420	-60	45	33					NSI
	JD20L035	AC	300126	6600819	420	-60	45	44					NSI
	JD20L036	AC	300110	6600801	420	-60	45	42	34	41	7.00	0.38	7m @ 0.38g/t
	JD20L037	AC	300091	6600777	420	-60	45	45	39	43	4.00	0.24	4m @ 0.24g/t
	JD20L038	AC	300068	6600752	420	-60	45	39	35	36	1.00	0.66	1m @ 0.66g/t

Prospect	Hole ID	Hole Type	Easting (m)	Northing (m)	RL (m)	Dip	Azi	Max Depth	From (m)	To (m)	Interval (m)	Au (ppm)	Intercept (Downhole Width)
	JD20L039	AC	300040	6600722	420	-60	45	37	31	37	6.00	2.88	6m @ 2.88g/t
	Including								36	37	1.00	15.30	1m @ 15.3g/t
	JD20L040	AC	300078	6600843	420	-60	45	68	1	4	3.00	0.68	3m @ 0.68g/t
									18	19	1.00	0.27	1m @ 0.27g/t
									21	22	1.00	0.19	1m @ 0.19g/t
									24	25	1.00	0.18	1m @ 0.18g/t
									27	28	1.00	0.32	1m @ 0.32g/t
									30	31	1.00	0.21	1m @ 0.21g/t
									58	59	1.00	0.13	1m @ 0.13g/t
									62	66	4.00	0.27	4m @ 0.27g/t
	JD20L041	AC	300068	6600830	420	-60	45	64					NSI
	JD20L042	AC	300064	6600816	420	-60	45	35					NSI
	JD20L043	AC	300055	6600803	420	-60	45	32					NSI
	JD20L044	AC	300036	6600791	420	-60	45	36					NSI
	JD20L045	AC	300014	6600777	420	-60	45	33					NSI
	JD20L046	AC	300009	6600762	420	-60	45	34					NSI
	JD20L047	AC	300001	6600744	420	-60	45	33					NSI
	JD20L048	AC	299990	6600722	420	-60	45	24					NSI
	JD20L049	AC	300185	6600586	420	-60	45	42					NSI
	JD20L050	AC	300159	6600560	420	-60	45	56	26	27	1.00	0.13	1m @ 0.13g/t
									34	36	2.00	0.23	2m @ 0.23g/t
Big Cat	BCW024	AC	299870	6600550	415	-90	90	57	33	34	1.00	0.72	1m @ 0.72g/t
	BCW025	AC	299846	6600538	415	-90	90	72					NSI
	BCW026	AC	299831	6600500	415	-90	90	77	36	39	3.00	0.38	3m @ 0.38g/t
									49	51	2.00	0.57	2m @ 0.57g/t
	BCW027	AC	299813	6600485	415	-90	90	68	40	44	4.00	0.30	4m @ 0.3g/t

Prospect	Hole ID	Hole Type	Easting (m)	Northing (m)	RL (m)	Dip	Azi	Max Depth	From (m)	To (m)	Interval (m)	Au (ppm)	Intercept (Downhole Width)
	BCW028	AC	299797	6600474	415	-90	90	75	41	43	2.00	0.43	2m @ 0.43g/t
									69	71	2.00	0.22	2m @ 0.22g/t
	BCW029	AC	299784	6600459	415	-90	90	80	70	75	5.00	0.22	5m @ 0.22g/t
	BCW030	AC	299769	6600447	415	-90	90	66	48	64	16.00	0.14	16m @ 0.14g/t
	BCW031	AC	299739	6600427	415	-90	90	57	54	56	2.00	0.55	2m @ 0.55g/t
	BCW032	AC	299730	6600403	415	-90	90	66	28	40	12.00	0.25	12m @ 0.25g/t
									50	66	16.00	1.14	16m @ 1.14g/t
	including								50	61	11.00	1.56	11m @ 1.56g/t
	BCW033	AC	299720	6600380	415	-90	90	56	28	29	1.00	0.10	1m @ 0.1g/t
									35	40	5.00	0.29	5m @ 0.29g/t
									49	56	7.00	1.06	7m @ 1.06g/t
	Including								49	51	2.00	2.30	2m @ 2.3g/t
	BCW034	AC	299697	6600356	415	-90	90	57					NSI
	BCW035	AC	299670	6600332	415	-90	90	57	50	54	4.00	0.36	4m @ 0.36g/t
	BCW036	AC	299627	6600303	415	-90	90	38					NSI
	BCW037	AC	299588	6600258	415	-90	90	44					NSI
	BCW038	AC	299330	6601254	415	-90	90	56	35	38	3.00	0.16	3m @ 0.16g/t
	BCW039	AC	299313	6601242	415	-90	90	49	42	48	6.00	0.23	6m @ 0.23g/t
	BCW040	AC	299286	6601228	415	-90	90	48					NSI
	BCW041	AC	299267	6601218	415	-90	90	58	35	42	7.00	0.22	7m @ 0.22g/t
									57	58	1.00	0.58	1m @ 0.58g/t
	BCW042	AC	299133	6601139	415	-90	90	58					NSI
	BCW043	AC	299115	6601121	415	-90	90	58	54	58	4.00	4.00	4m @ 4g/t
	Including								55	56	1.00	1.16	1m @ 1.16g/t
	BCW044	AC	299103	6601112	415	-90	90	57	54	55	1.00	0.19	1m @ 0.19g/t
									55	57	2.00	0.29	2m @ 0.29g/t

Registered Address 144 Vivian Street, Boulder, WA 6432 **Website** <u>www.beaconminerals.com</u> **Phone** 08 9093 2477

Prospect	Hole ID	Hole Type	Easting (m)	Northing (m)	RL (m)	Dip	Azi	Max Depth	From (m)	To (m)	Interval (m)	Au (ppm)	Intercept (Downhole Width)
	BCW045	AC	299075	6601100	415	-90	90	57					NSI
	BCW046	AC	299054	6601085	415	-90	90	60	56	57	1.00	0.11	1m @ 0.11g/t
									58	60	2.00	1.13	2m @ 1.13g/t
	BCW047	AC	299573	6600887	415	-90	90	80	47	49	2.00	1.30	2m @ 1.3g/t
									72	80	8.00	0.34	8m @ 0.34g/t
	Including								78	79	1.00	1.38	1m @ 1.38g/t
	BCW048	AC	299459	6600801	415	-90	90	60	1	2	1.00	0.23	1m @ 0.23g/t
									52	57	5.00	9.87	5m @ 9.87g/t
	Including								52	53	1.00	43.20	1m @ 43.2g/t
	BCW049	AC	299437	6600780	415	-90	90	62	61	62	1.00	0.12	1m @ 0.12g/t
	BCW050	AC	299417	6600769	415	-90	90	58	56	58	2.00	0.32	2m @ 0.32g/t
	BCW051	AC	299399	6600757	415	-90	90	51					NSI
	BCW052	AC	299372	6600740	415	-90	90	56					NSI
	BCW053	AC	299354	6600728	415	-90	90	72					NSI
	BCW054	AC	299339	6600711	415	-90	90	71					NSI
	BCW055	AC	300296	6600459	415	-90	90	64	62	63	1.00	0.38	1m @ 0.38g/t
	BCW056	AC	300281	6600421	415	-90	90	78	34	44	10.00	0.20	10m @ 0.2g/t
									68	75	7.00	1.85	7m @ 1.85g/t
	Including								68	69	1.00	11.70	1m @ 11.7g/t
	BCW057	AC	300254	6600370	415	-90	90	75	32	39	7.00	0.27	7m @ 0.27g/t
	BCW058	AC	300246	6600342	415	-90	90	80	30	33	3.00	0.41	3m @ 0.41g/t
									35	44	9.00	0.32	9m @ 0.32g/t
									69	79	10.00	0.77	10m @ 0.77g/t
	Including								73	75	2.00	0.27	2m @ 0.27g/t
	BCW059	AC	300245	6600320	415	-90	90	70	35	38	3.00	0.20	3m @ 0.2g/t
									62	65	3.00	0.26	3m @ 0.26g/t

Registered Address 144 Vivian Street, Boulder, WA 6432 **Website** <u>www.beaconminerals.com</u> **Phone** 08 9093 2477

Prospect	Hole ID	Hole Type	Easting (m)	Northing (m)	RL (m)	Dip	Azi	Max Depth	From (m)	To (m)	Interval (m)	Au (ppm)	Intercept (Downhole Width)
									68	70	2.00	0.27	2m @ 0.27g/t
	BCW060	AC	300235	6600297	415	-90	90	62	40	41	1.00	0.20	1m @ 0.2g/t
	BCW061	AC	300229	6600275	415	-90	90	66	52	53	1.00	2.06	1m @ 2.06g/t
	BCW062	AC	300220	6600245	415	-90	90	63	52	55	3.00	0.22	3m @ 0.22g/t
	BCW063	AC	300214	6600226	415	-90	90	63	46	47	1.00	8.24	1m @ 8.24g/t
									47	59	12.00	1.12	12m @ 1.12g/t
	Including								47	52	5.00	2.22	5m @ 2.22g/t
	BCW064	AC	300208	6600203	415	-90	90	51	50	51	1.00	0.12	1m @ 0.12g/t
	BCW065	AC	300203	6600183	415	-90	90	51	42	43	1.00	0.29	1m @ 0.29g/t
									44	50	6.00	0.20	6m @ 0.20g/t
	BCW066	AC	300197	6600163	415	-90	90	56					NSI
	BCW067	AC	300188	6600133	415	-90	90	55					NSI
	BCW068	AC	300179	6600112	415	-90	90	52					NSI
	BCW069	AC	300172	6600087	415	-90	90	52	39	40	1.00	0.18	1m @ 0.18g/t
	BCW070	AC	300170	6600063	415	-90	90	51	45	46	1.00	0.58	1m @ 0.58g/t
	BCW071	AC	300142	6600015	415	-90	90	50					NSI
	BCW072	AC	300126	6599967	415	-90	90	36					NSI
Stockman's	JD20AL001	AC	302310	6601003	400	-60	90	54					NSI
	JD20AL002	AC	302247	6600996	400	-60	90	76					NSI
	JD20AL003	AC	302201	6601000	400	-60	90	87					NSI
	JD20AL004	AC	302158	6601003	400	-60	90	92					NSI
	JD20AL005	AC	302100	6601002	400	-60	90	93					NSI
	JD20AL006	AC	302044	6601000	400	-60	90	92					NSI
	JD20AL007	AC	301992	6601000	400	-60	90	90					NSI
	JD20AL008	AC	301948	6600998	400	-60	90	93					NSI
	JD20AL009	AC	301897	6600994	400	-60	90	54					NSI

Prospect	Hole ID	Hole Type	Easting (m)	Northing (m)	RL (m)	Dip	Azi	Max Depth	From (m)	To (m)	Interval (m)	Au (ppm)	Intercept (Downhole Width)
	JD20AL010	AC	301845	6601014	400	-60	90	56					NSI
	JD20AL011	AC	301789	6601006	400	-60	90	33					NSI
	JD20AL012	AC	301745	6601005	400	-60	90	39					NSI
	JD20AL013	AC	301697	6600997	400	-60	90	47					NSI
	JD20AL014	AC	301653	6600999	400	-60	90	50					NSI
	JD20AL015	AC	301601	6600998	400	-60	90	6					NSI
	JD20AL016	AC	301554	6601003	400	-60	90	19					NSI
	JD20AL017	AC	301503	6601000	400	-60	90	15					NSI
	JD20AL018	AC	302100	6600501	400	-60	90	75					NSI
	JD20AL019	AC	302044	6600502	400	-60	90	72	51	52	1.00	0.15	1m @ 0.15g/t
	JD20AL020	AC	302000	6600489	400	-60	90	75	48	49	1.00	0.10	1m @ 0.1g/t
									51	52	1.00	0.40	1m @ 0.4g/t
	JD20AL021	AC	301954	6600490	400	-60	90	72					NSI
	JD20AL022	AC	301901	6600504	400	-60	90	70					NSI
	JD20AL023	AC	301845	6600497	400	-60	90	58					NSI
	JD20AL024	AC	301801	6600491	400	-60	90	60	52	53	1.00	0.36	1m @ 0.36g/t
									56	57	1.00	1.01	1m @ 1.01g/t
	JD20AL025	AC	301750	6600495	400	-60	90	75					NSI
	JD20AL026	AC	301700	6600493	400	-60	90	55					NSI
	JD20AL027	AC	301651	6600495	400	-60	90	55	53	54	1.00	0.24	1m @ 0.24g/t
	JD20AL028	AC	301607	6600495	400	-60	90	57					NSI
	JD20AL029	AC	301557	6600496	400	-60	90	93	52	53	1.00	0.18	1m @ 0.18g/t
	JD20AL030	AC	301533	6600501	400	-60	90	72					NSI
	JD20AL031	AC	301495	6600502	400	-60	90	40					NSI
	JD20AL032	AC	301451	6600498	400	-60	90	36					NSI
	JD20AL033	AC	301405	6600501	400	-60	90	63					NSI

Prospect	Hole ID	Hole Type	Easting (m)	Northing (m)	RL (m)	Dip	Azi	Max Depth	From (m)	To (m)	Interval (m)	Au (ppm)	Intercept (Downhole Width)
	JD20AL034	AC	301351	6600510	400	-60	90	38					NSI
	JD20AL035	AC	301297	6600503	400	-60	90	29					NSI
	JD20AL036	AC	301803	6599993	400	-60	90	69					NSI
	JD20AL037	AC	301748	6600006	400	-60	90	75					NSI
	JD20AL038	AC	301697	6600001	400	-60	90	61					NSI
	JD20AL039	AC	301653	6599998	400	-60	90	61					NSI
	JD20AL040	AC	301602	6599999	400	-60	90	71					NSI
	JD20AL041	AC	301537	6600003	400	-60	90	81					NSI
	JD20AL042	AC	301497	6600003	400	-60	90	88					NSI
	JD20AL043	AC	301447	6600000	400	-60	90	92					NSI
	JD20AL044	AC	301399	6599998	400	-60	90	51					NSI
	JD20AL045	AC	301364	6600011	400	-60	90	43					NSI
	JD20AL046	AC	301300	6600006	400	-60	90	40					NSI
	JD20AL047	AC	301251	6600000	400	-60	90	48					NSI
	JD20AL048	AC	301198	6600000	400	-60	90	51					NSI
	JD20AL049	AC	301149	6600002	400	-60	90	69					NSI
	JD20AL050	AC	301106	6600002	400	-60	90	51	32	34	2.00	0.47	2m @ 0.47g/t
									44	49	5.00	0.23	5m @ 0.23g/t
	JD20AL051	AC	301802	6599450	400	-60	90	65					NSI
	JD20AL052	AC	301752	6599456	400	-60	90	63					NSI
	JD20AL053	AC	301701	6599445	400	-60	90	57					NSI
	JD20AL054	AC	301650	6599450	400	-60	90	50					NSI
	JD20AL055	AC	301601	6599456	400	-60	90	41					NSI
	JD20AL056	AC	301552	6599448	400	-60	90	36					NSI
	JD20AL057	AC	301503	6599444	400	-60	90	53					NSI
	JD20AL058	AC	301446	6599452	400	-60	90	53					NSI

Prospect	Hole ID	Hole Type	Easting (m)	Northing (m)	RL (m)	Dip	Azi	Max Depth	From (m)	To (m)	Interval (m)	Au (ppm)	Intercept (Downhole Width)
	JD20AL059	AC	301397	6599454	400	-60	90	60					NSI
	JD20AL060	AC	301364	6599454	400	-60	90	38					NSI
	JD20AL061	AC	301312	6599438	400	-60	90	25					NSI
	JD20AL062	AC	301248	6599457	400	-60	90	12					NSI
	JD20AL063	AC	301198	6599454	400	-60	90	7					NSI
	JD20AL064	AC	301146	6599438	400	-60	90	11					NSI
	JD20AL065	AC	301100	6599428	400	-60	90	8					NSI
	JD20AL066	AC	301052	6599428	400	-60	90	15					NSI
	JD20AL067	AC	301012	6599446	400	-60	90	6					NSI
	JD20AL068	AC	301802	6598992	400	-60	90	55					NSI
	JD20AL069	AC	301753	6598986	400	-60	90	47					NSI
	JD20AL070	AC	301702	6599002	400	-60	90	43					NSI
	JD20AL071	AC	301654	6599011	400	-60	90	45					NSI
	JD20AL072	AC	301603	6599010	400	-60	90	55					NSI
	JD20AL073	AC	301548	6599003	400	-60	90	57					NSI
	JD20AL074	AC	301500	6598972	400	-60	90	66					NSI
	JD20AL075	AC	301450	6599009	400	-60	90	44					NSI
	JD20AL076	AC	301396	6599020	400	-60	90	29					NSI
	JD20AL077	AC	301345	6599015	400	-60	90	3					NSI
	JD20AL078	AC	301299	6599016	400	-60	90	27					NSI
	JD20AL079	AC	301251	6599001	400	-60	90	12					NSI
	JD20AL080	AC	301196	6598995	400	-60	90	17					NSI
	JD20AL081	AC	301149	6599007	400	-60	90	11					NSI
	JD20AL082	AC	301104	6599022	400	-60	90	21					NSI
	JD20AL083	AC	301052	6598996	400	-60	90	5					NSI
	JD20AL084	AC	301006	6599005	400	-60	90	13					NSI

Prospect	Hole ID	Hole Type	Easting (m)	Northing (m)	RL (m)	Dip	Azi	Max Depth	From (m)	To (m)	Interval (m)	Au (ppm)	Intercept (Downhole Width)
	JD20AL085	AC	301803	6598504	400	-60	90	33					NSI
	JD20AL086	AC	301755	6598500	400	-60	90	41					NSI
	JD20AL087	AC	301700	6598492	400	-60	90	50					NSI
	JD20AL088	AC	301647	6598484	400	-60	90	63					NSI
	JD20AL089	AC	301602	6598495	400	-60	90	59					NSI
	JD20AL090	AC	301556	6598487	400	-60	90	57					NSI
	JD20AL091	AC	301493	6598491	400	-60	90	53					NSI
	JD20AL092	AC	301451	6598496	400	-60	90	11					NSI
	JD20AL093	AC	301395	6598501	400	-60	90	4					NSI
	JD20AL094	AC	301355	6598496	400	-60	90	4					NSI
	JD20AL095	AC	301302	6598503	400	-60	90	15					NSI
	JD20AL096	AC	301249	6598498	400	-60	90	3					NSI
	JD20AL097	AC	301200	6598495	400	-60	90	12					NSI
	JD20AL098	AC	301149	6598498	400	-60	90	2					NSI
	JD20AL099	AC	301103	6598507	400	-60	90	3					NSI
Golden Cat	JD20GC001	RC	301203	6600701	420	-60	90	60					NSI
	JD20GC002	RC	301151	6600702	420	-60	90	60					NSI
	JD20GC003	RC	301095	6600699	420	-60	90	60	13	14	1.00	0.14	1m @ 0.14g/t
									32	33	1.00	0.14	1m @ 0.14g/t
	JD20GC004	RC	301048	6600695	420	-60	90	60	17	19	2.00	0.17	2m @ 0.17g/t
									24	25	1.00	0.61	1m @ 0.61g/t
									29	32	3.00	0.26	3m @ 0.26g/t
									34	35	1.00	0.27	1m @ 0.27g/t
									41	42	1.00	0.14	1m @ 0.14g/t
									42	45	3.00	0.28	3m @ 0.28g/t
	JD20GC005	RC	300998	6600694	420	-60	90	60	33	34	1.00	0.12	1m @ 0.12g/t

Website www.beaconminerals.com Phone 08 9093 2477

Prospect	Hole ID	Hole Type	Easting (m)	Northing (m)	RL (m)	Dip	Azi	Max Depth	From (m)	To (m)	Interval (m)	Au (ppm)	Intercept (Downhole Width)
	JD20GC006	RC	300952	6600702	420	-60	90	60					NSI
	JD20GC007	RC	301227	6600801	420	-60	90	60					NSI
	JD20GC008	RC	301176	6600798	420	-60	90	60					NSI
	JD20GC009	RC	301127	6600795	420	-60	90	70					NSI
	JD20GC010	RC	301076	6600802	420	-60	90	60	21	22	1.00	0.10	1m @ 0.1g/t
									25	26	1.00	0.14	1m @ 0.14g/t
	JD20GC011	RC	301024	6600799	420	-60	90	60					NSI
	JD20GC012	RC	300976	6600789	420	-60	90	60					NSI
	JD20GC013	RC	301301	6600895	420	-60	90	60					NSI
	JD20GC014	RC	301252	6600903	420	-60	90	60					NSI
	JD20GC015	RC	301200	6600903	420	-60	90	60					NSI
	JD20GC016	RC	301150	6600904	420	-60	90	10					NSI
Alley Cat	JD20AC001	AC	300423	6602090	435	-60	90	14					NSI
	JD20AC002	AC	300399	6602095	435	-60	90	20					NSI
	JD20AC003	AC	300375	6602101	435	-60	90	9					NSI
	JD20AC004	AC	300349	6602098	435	-60	90	9					NSI
	JD20AC005	AC	300323	6602096	435	-60	90	15	13	14	1.00	0.13	1m @ 0.13g/t
	JD20AC006	AC	300301	6602101	435	-60	90	30	12	13	1.00	0.30	1m @ 0.3g/t
									18	21	3.00	0.12	3m @ 0.12g/t
									27	30	3.00	0.26	3m @ 0.26g/t
	JD20AC007	AC	300277	6602103	435	-60	90	19					NSI
	JD20AC008	AC	300251	6602097	435	-60	90	26	1	2	1.00	0.10	1m @ 0.1g/t
									4	5	1.00	0.13	1m @ 0.13g/t
									9	10	1.00	0.25	1m @ 0.25g/t
									23	24	1.00	0.17	1m @ 0.17g/t
	JD20AC009	AC	300229	6602098	435	-60	90	32					NSI

Prospect	Hole ID	Hole Type	Easting (m)	Northing (m)	RL (m)	Dip	Azi	Max Depth	From (m)	To (m)	Interval (m)	Au (ppm)	Intercept (Downhole Width)
	JD20AC010	AC	300208	6602098	435	-60	90	27	21	24	3.00	0.16	3m @ 0.16g/t
	JD20AC011	AC	300475	6602006	435	-60	90	8					NSI
	JD20AC012	AC	300453	6602005	435	-60	90	13					NSI
	JD20AC013	AC	300428	6601997	435	-60	90	24					NSI
	JD20AC014	AC	300401	6601993	435	-60	90	34					NSI
	JD20AC015	AC	300383	6601998	435	-60	90	43	22	25	3.00	0.16	3m @ 0.16g/t
	JD20AC016	AC	300355	6602001	435	-60	90	13					NSI
	JD20AC017	AC	300325	6601993	435	-60	90	6					NSI
	JD20AC018	AC	300302	6601995	435	-60	90	20					NSI
	JD20AC019	AC	300253	6601996	435	-60	90	26					NSI
	JD20AC020	AC	300233	6601996	435	-60	90	30	28	30	2.00	0.17	2m @ 0.17g/t
	JD20AC021	AC	300216	6601997	435	-60	90	48	25	31	6.00	0.16	6m @ 0.16g/t
	JD20AC022	AC	300476	6601895	435	-60	90	3					NSI
	JD20AC023	AC	300454	6601896	435	-60	90	6					NSI
	JD20AC024	AC	300426	6601898	435	-60	90	4					NSI
	JD20AC025	AC	300403	6601902	435	-60	90	11					NSI
	JD20AC026	AC	300375	6601897	435	-60	90	3					NSI
	JD20AC027	AC	300349	6601899	435	-60	90	12					NSI
	JD20AC028	AC	300326	6601898	435	-60	90	25					NSI
	JD20AC029	AC	300299	6601896	435	-60	90	32	21	22	1.00	0.40	1m @ 0.4g/t
	JD20AC030	AC	300276	6601896	435	-60	90	21	25	30	5.00	0.23	5m @ 0.23g/t
	JD20AC031	AC	300255	6601900	435	-60	90	13					NSI
	JD20AC032	AC	300275	6601996	435	-60	90	35	16	20	4.00	0.40	4m @ 0.4g/t
	JD20AC033	AC	300402	6601606	435	-60	90	15	30	35	5.00	0.22	5m @ 0.22g/t
	JD20AC034	AC	300376	6601596	435	-60	90	23	16	23	7.00	0.44	7m @ 0.44g/t
	JD20AC035	AC	300353	6601601	435	-60	90	52	50	51	1.00	0.11	1m @ 0.11g/t

Prospect	Hole ID	Hole Type	Easting (m)	Northing (m)	RL (m)	Dip	Azi	Max Depth	From (m)	To (m)	Interval (m)	Au (ppm)	Intercept (Downhole Width)
	JD20AC036	AC	300326	6601596	435	-60	90	33					NSI
	JD20AC037	AC	300306	6601601	435	-60	90	16					NSI
	JD20AC038	AC	300277	6601598	435	-60	90	16					NSI
	JD20AC039	AC	300254	6601602	435	-60	90	15					NSI
	JD20AC040	AC	300232	6601604	435	-60	90	6					NSI
	JD20AC041	AC	300424	6601505	435	-60	90	12					NSI
	JD20AC042	AC	300404	6601505	435	-60	90	15					NSI
	JD20AC043	AC	300374	6601501	435	-60	90	12					NSI
	JD20AC044	AC	300354	6601505	435	-60	90	21					NSI
	JD20AC045	AC	300326	6601509	435	-60	90	21					NSI
	JD20AC046	AC	300299	6601505	435	-60	90	23	16	17	1.00	0.18	1m @ 0.18g/t
	JD20AC047	AC	300270	6601503	435	-60	90	30	19	20	1.00	0.18	1m @ 0.18g/t
	JD20AC048	AC	300455	6601198	435	-60	90	3					NSI
	JD20AC049	AC	300429	6601199	435	-60	90	17					NSI
	JD20AC050	AC	300400	6601195	435	-60	90	19					NSI
	JD20AC051	AC	300378	6601195	435	-60	90	24					NSI
	JD20AC052	AC	300349	6601198	435	-60	90	30	0	3	3.00	0.53	3m @ 0.53g/t
	Including								2	3	1.00	1.17	1m @ 1.17g/t
	JD20AC053	AC	300325	6601198	435	-60	90	41	0	2	2.00	0.14	2m @ 0.14g/t
	JD20AC054	AC	300297	6601197	435	-60	90	21	20	21	1.00	4.00	1m @ 4g/t
	JD20AC055	AC	300278	6601202	435	-60	90	21					NSI
	JD20AC056	AC	300253	6601209	435	-60	90	21					NSI

Appendix 2: JORC Code, 2012 Edition – Table 1 Report – Air Core Drilling East of Lost Dog

Section 1 Sampling Techniques and Data

Criteria	JORC Code explanation	Commentary
Sampling	Nature and quality of sampling (eg cut channels, random chips, or	RC Drilling
techniques	specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.	Drill cuttings are extracted in one metre intervals from the RC return via cyclone, delivering approximately three kilograms of the recovered material into calico bags for analysis. The residual material is retained on the ground near the hole. Composite samples are obtained from the residue material for initial analysis, with the split samples remaining with the individual residual piles until required for re-split analysis or eventual disposal. Samples are collected to a nominal weight of 3-5kg and sent to the laboratory, split then pulverised to produce a 50-gram charge for analysis by fire assay.
		Aircore Drilling Residual material is collected in one metre intervals on the ground via bucket dumps Combined scoops from bucket dumps for composite samples. Split one metre samples taken from individual bucket dumps via scoop. Samples are collected to a nominal weight of 3-5kg and sent to the laboratory, split then pulverised to produce a 50-gram charge for analysis by fire assay. All geology input is logged and validated by geologists, incorporated into this is assessment of sample recovery. No defined relationship exists between sample recovery and grade. Nor has sample bias due to preferential loss or gain of fine or coarse material been noted.
	Include reference to measures taken to ensure sample representation and the appropriate calibration of any measurement tools or systems used.	For aircore, a single scoop sample is cut through the mound of sample collected on one metre intervals down hole to best represent the entire metre being sampled. Each one metre sample collected is placed in a calico bag. For RC, a cyclone cone splitter is used to split 1m regular cleaning of the cyclone to remove hung up clays
	Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may	The composited aircore samples were collected being 3 to 5 Kg in size. This sample was sent to the laboratory, split then pulverised to produce a 50-gram charge for analysis by fire assay.

Criteria	JORC Code explanation	Commentary
	be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.	
Drilling techniques	Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	Aircore drilling was completed using a 89mm face sampling bit was used.
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed.	Sample recoveries are recorded visually by the geologist. No significant sample recovery issues were encountered.
	Measures taken to maximise sample recovery and ensure representative nature of the samples.	When poor sample recovery is encountered, the geologist and driller endeavoured to rectify the problem to ensure maximum sample recovery.
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	None noted.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	Each one metre interval was logged. All end of hole chip samples was collected with the aim of developing a geological map of the base of oxidation geology.
	Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.	All logging is qualitative in nature.
	The total length and percentage of the relevant intersections logged	Each one metre sample interval was logged in detail for geology, veining, alteration, mineralisation for the entire hole.
Sub-sampling techniques	If core, whether cut or sawn and whether quarter, half or all core taken.	No core drilling has been completed.
and sample preparation	If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.	Each AC sample was scoop sampled. Each RC sample was collected via cyclone cone splitter. All sampling was dry in nature.
	For all sample types, the nature, quality, and appropriateness of the sample preparation technique.	Sample preparation follows industry best practice standards and is conducted by internationally recognised laboratories; i.e. ALS Global

Criteria	JORC Code explanation	Commentary
	Quality control procedures adopted for all sub-sampling stages to maximise representation of samples.	For composite and AC sampling, care is taken in the field to scoop a representative sample of the one metre sample which forms part of the composited sample. ALS Global have laboratory standard procedures for sub sampling of the composites sent for analysis.
	Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.	Duplicate sampling was taken in the field and results were deemed adequate.
	Whether sample sizes are appropriate to the grain size of the material being sampled.	Sample sizes are deemed appropriate for the grain size of the material being sampled.
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	ALS Laboratory (Kalgoorlie) was used for Au analysis carried out on the samples. The laboratory techniques below are for all samples submitted to ALS and are considered appropriate for the style of mineralisation. Au-AS26 – 50g fire assay The QA/QC data includes standards, duplicates, and laboratory checks. In-house QA/QC tests are conducted by the lab on each batch of samples.
	For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	No geophysical tools were used.
	Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.	Beacon Minerals submitted standards, duplicates and blanks as part of their QA/QC regime which has been deemed to demonstrate acceptable levels of accuracy and precision for the sample types employed.
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel.	All geological logging and sampling was completed in spreadsheets, which were then transferred to a database for validation and compilation. Electronic copies of all information are periodically backed up. BCN management have reviewed this data and are satisfied with the efficacy of the data collected by field geologists.
	The use of twinned holes.	No holes in this programme were twinned.
	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	Data is entered into Excel spreadsheets, validated and loaded into a Microsoft Access database. Data was exported from Microsoft Access for processing and visual verification in Surpac. All electronic data is routinely backed up.

Registered Address 144 Vivian Street, Boulder, WA 6432 Website www.beaconminerals.com Phone 08 9093 2477

Criteria	JORC Code explanation	Commentary
	Discuss any adjustment to assay data.	No adjustments of assay data were considered necessary.
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control.	A handheld Garmin GPS was used to define the location of exploration air core holes. Standard practice is for the GPS to be left at the collar for a period of 10 minutes to obtain a steady reading. Collars are subsequently picked up after using a RTK GPS. Grid system used is MGA94 (Zone 51). Elevation measurements were captured from the Garmin GPS. The accuracy of this measurement is well understood by BCN and is considered adequate for this early stage of exploration. Collars are subsequently picked up after using a RTK GPS.
Data spacing and distribution	Data spacing for reporting of Exploration Results.	Data spacing is variable dependent upon the individual orebody under consideration. A lengthy history of mining has shown that this approach is appropriate for the Mineral Resource.
	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	The data spacing for this early stage of exploration is considered appropriate to achieve total coverage across a defined drill line and adequate to determine the presence of gold mineralisation. The objective of this drilling is to ascertain the presence of mineralisation and there is no consideration for resource estimation at this early stage.
	Whether sample compositing has been applied.	Samples were composited typically on four metre intervals but may have been on three to five metre intervals depending on the end of hole depth.
Orientation of data in relation to	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	Sample orientation was appropriate for the early stage of exploration and the perceived strike of the structure which potentially hosts gold mineralisation.
geological structure	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	The exact nature of the gold mineralisation at this early stage is not yet understood. The relationship between drill orientation and the perceived mineralised structure will not introduce any bias.
Sample security	The measures taken to ensure sample security.	The chain of custody is managed by the project geologist who placed the calico sample bags in polyweave sacks. Up to 5 calico sample bags were placed in each sack. Each sack was clearly marked.
		Detailed records were kept of all samples dispatched including the chain of custody.

Criteria	JORC Code explanation	Commentary
Audits or	The results of any audits or reviews of sampling techniques and	Data is validated when loading into the database. BM Geological Services update all
reviews	data.	data into the Jaurdi database and there is nothing perceived to by erroneous with data
		capture.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral	Type, reference name/number, location and ownership	Several third-party royalties exist across various tenements JGP, over and above the
tenement and	including agreements or material issues with third parties such	state government royalty.
land tenure	as joint ventures, partnerships, overriding royalties, native title	JGP tenure is currently in good standing. There are no known issues regarding security
status	interests, historical sites, wilderness or national park and	of tenure. There are no known impediments to continued operation.
	environmental settings.	Beacon operates in accordance with all environmental conditions set down as conditions for grant of the leases.
	The accurate of the terrore held at the time of recenting alone	The ten expect is in read standing with the WA DNAIDS
	The security of the tenure held at the time of reporting along	The tenement is in good standing with the WA DMIRS.
	with any known impediments to obtaining a licence to operate in the area.	
Exploration	Acknowledgment and appraisal of exploration by other parties.	There have been several campaigns of drilling undertaken on the leases by third
done by other		parties;
parties		BHP – Utah Minerals International – (1989)
		Coolgardie Gold NL (1991-1997)
		Coronet Resources (2007) – Lost Dog
		Kinver Mining NL/Toro Mining Pty Ltd (1998-2013)
		A group of "prospectors" (2009)
		Fenton and Martin Mining Developments (2015).
		Beacon has completed multiple drilling programmes at Jaurdio Gold Project during its period of ownership.
Geology	Deposit type, geological setting and style of mineralisation.	The Jaurdi Gold Project is located in the Eastern Goldfields Superterrane of the Yilgarn
		Craton. It is located in the western-most parts of the regionally extensive Norseman-Wiluna greenstone belt and this portion of the belt forms part of the

Criteria	JORC Code explanation	Commentary
		Coolgardie Domain, itself the western-most part of the Kalgoorlie Terrane. The project tenure overlies parts of the Jaurdi Hills-Dunnsville greenstone sequence where it occurs to the immediate northwest of the Bali Monzogranite and to the immediate southwest of the Doyle Dam Granodiorite. The Jaurdi Gold Project also overlies a portion of the Bali Monzogranite. The Bali Monzogranite is poorly exposed. The greenstone-granite contact is foliated where exposed. Shear zones developed locally within the adjacent greenstones, may continue within the granite. Gold mineralised
		palaeochannel are known in the Jaurdi area The Bali Monzogranite and Dunnsville Granodiorite to the north, together occupy the core of the gently north plunging anticline. The tenements making up the project is located to the west of the anticlinal axis and immediately adjacent to the granite- greenstone contact.
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: - easting and northing of the drill hole collar - elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar - dip and azimuth of the hole - down hole length and interception depth - hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	All holes and significant assays are reported in Appendix 1.
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated.	Grades are reported as down-hole length-weighted averages of grades above approximately 0.1 g/t Au. No top cuts have been applied to the reporting of the assay results. Intercepts averaging values significantly less than 0.1 g/t Au were assigned the text "NSI" (No Significant Intercept).
	Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the	Higher grade intervals are included in the reported grade intervals.

Registered Address 144 Vivian Street, Boulder, WA 6432 Website www.beaconminerals.com Phone 08 9093 2477

Criteria	JORC Code explanation	Commentary
	procedure used for such aggregation should be stated and some	
	typical examples of such aggregations should be shown in detail.	
	The assumptions used for any reporting of metal equivalent	No metal equivalent values are used.
	values should be clearly stated.	
Relationship	These relationships are particularly important in the reporting	The geometry of the mineralisation within the palaeo system has been well established
between	of Exploration Results.	by the recent drilling and mining of the Lost Dog pit. There is no ambiguity with the
mineralisation	If the geometry of the mineralisation with respect to the drill	geometry of this relatively simple alluvial system.
widths and	hole angle is known, its nature should be reported.	If the geometry of mineralisation is known in respect to drill hole angles, then its
intercept	If it is not known and only the down hole lengths are reported,	nature has been reported. Mineralisation in early stage aircore drilling has been
lengths	there should be a clear statement to this effect (eg 'down hole	assumed to be supergene in nature.
	length, true width not known').	
Diagrams	Appropriate maps and sections (with scales) and tabulations of	Refer to Figures in the body of text.
	intercepts should be included for any significant discovery being	
	reported. These should include, but not be limited to a plan view	
	of drill hole collar locations and appropriate sectional views.	
Balanced	Where comprehensive reporting of all Exploration Results is not	No misleading results have been presented in this announcement. Complete results
reporting	practicable, representative reporting of both low and high	are contained in this announcement including holes with 'no significant intercepts.
	grades and/or widths should be practiced to avoid misleading	
	reporting of Exploration Results.	
Other	Other exploration data, if meaningful and material, should be	There is nothing to report relevant to this drilling.
substantive	reported including (but not limited to): geological observations;	
exploration data	geophysical survey results; geochemical survey results; bulk	
	samples – size and method of treatment; metallurgical test	
	results; bulk density, groundwater, geotechnical and rock	
	characteristics; potential deleterious or contaminating	
	substances.	
Further work	The nature and scale of planned further work (eg tests for lateral	Further exploration work is currently under consideration, the details of which are
	extensions or depth extensions or large-scale step-out drilling).	included in this release in brief. Further details will be released in due course.
	Diagrams clearly highlighting the areas of possible extensions,	
	including the main geological interpretations and future drilling	
	areas, provided this information is not commercially sensitive.	