

131 metres at 2.5 g/t AuEq² in new zone at Hualilan

Highlights

- Intercept of 130.8 metres at 2.5 g/t AuEq² following complete results for GNDD-157, confirms the discovery of a significant new high-grade gold zone in intrusives south of the Magnata Fault at the Hualilan Gold Project.
- GNDD-157 intersected over 200 metres of mineralisation with results including (Refer Table 1):
 - 66.0m at 0.6 g/t AuEq² 0.5 g/t Au, 1.1 g/t Ag, 0.1% Zn from 20m and
 - 10.0m at 0.5 g/t AuEq² 0.2 g/t Au, 6.6 g/t Ag, 0.5% Zn from 132.9 and
 - 130.8m at 2.5 g/t AuEq² 2.3g/t Au, 1.6 g/t Ag, 0.5% Zn from 237.2m including 12.0m at 20.9 g/t AuEq² - 20.4 g/t Au, 4.8 g/t Ag, 1.0% Zn from 289m (previously announced) including; 4.1m at 56.8 g/t AuEq² - 55.7 g/t Au, 12.9 g/t Ag, 2.1% Zn, from 291m (previously announced) and;
 2.0m at 1.3 g/t AuEq² - 1.3 g/t Au, 0.6 g/t Ag, from 291m and;
 6.0m at 2.8 g/t AuEq² - 2.5 g/t Au, 1.9 g/t Ag, 0.6% Zn, from 331m and;
 9.0m at 1.7 g/t AuEq² - 1.7 g/t Au, 0.6 g/t Ag, 0.1% Zn, from 343m.
- Discovery of gossanous outcrop with skarn alteration and visible gold at surface up-dip from this intercept of 130.8 metres at 2.5 g/t AuEq, suggesting mineralisation extends to surface.
- This new zone correlates with earlier intercepts in GNDD-079 (61m at 1.2 g/t AuEq), GNDD-032 (116m at 1.2 g/t AuEq) and GNDD-089 (102m at 0.6 g/t AuEq) north of the Magnata Fault.
- Defines a new block of mineralised intrusives covering 500 metres of strike, a vertical extent of 400 metres from surface, and true width of 50 to 100 metres which is open in all directions.
- Drill plan adjusted with two rigs to focus on infilling and extending this significant new zone of mineralisation in intrusives and the high-grade mineralisation in the Magnata Fault.
- Amended drill plan will incorporate a number of holes to extend the recent high grade discovery in GNDD-142 which returned 40.5m at 6.2 g/t AuEq below the Sentazon Manto.

Commenting on the results, CEL Managing Director, Mr Kris Knauer, said

"This is yet another transformational result from our flagship Hualilan Gold project. This intercept of 131 metres at 2.5 g/t gold equivalent has confirmed that a known zone of 100 metres length covers at least 500 metres of strike, 400 metres of vertical extent, and remains open in all directions. Additionally, this result demonstrates the potential for some serious grade, particularly when coupled with the discovery of visible gold at surface 300 metres up-dip.

We are waiting on assays for six more drill holes which were designed to expand this new discovery. Further, we are currently drilling two more holes designed to test the limits of this new zone with a number of follow up holes programmed. Our Hualilan Gold Project continues to deliver new and exciting results."

Challenger Exploration Limited ACN 123 591 382 ASX: CEL **Issued Capital** 653.1m shares 86.6m options 120m perf shares 16m perf rights

Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors** Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

Challenger Exploration (ASX: CEL) ("CEL" the "**Company**") is pleased to announce that is has received complete results for drill hole GNDD-157, delivering an intercept of **130.8 metres at 2.5 g/t AuEq**, confirming the discovery of a significant new high-grade gold zone in intrusives south of the Magnata Fault. Hole GNDD-157 is part of the Company's high-impact 45,000 metre drill program, which is ongoing with 5 drill rigs on site, drilling approximately 6,500 metres per month at its flagship Hualilan Gold Project located in San Juan Province, Argentina.

The hole had a dual objective targeting the high-grade Magnata Fault mineralisation and to test the potential for mineralised intrusives south of the Magnata Fault following the results of drill hole GNDD-134. The Company has previously reported results for 200 to 303 metres downhole for which assays were fast tracked, with this previously announced section returning 12.0m at 20.9 g/t AuEq including 4.10m at 56.8 g/t AuEq.

The results for the remainder of the hole were significant with an additional 76 metres of mineralisation near the top of the hole and 65 metres of continuous mineralisation immediately below the zone previously assayed. Additionally, mineralisation in intrusives continued to 408 metres downhole.

DISCUSSION OF RESULTS

GNDD-157 was drilled from the same drill pad as GNDD-134 at an azimuth of 170 degrees compared to 154 degrees azimuth in GNDD-134. The hole was designed to have a bottom hole location 150 metres east of GNDD-134. GNDD-157 had a dual objective; to test the Magnata Fault 50 metres east of GNDD-134; and to further test the potential for mineralised intrusives south of the Magnata Fault after GNDD-134 returned a broad intersection of 117 metres at 0.7 g/t AuEq in intrusives in this area.

Discovery of new high-grade zone of gold mineralisation in intrusives south of the Magnata Fault

GND-157 confirmed the discovery of a significant new zone of high grade mineralisation in intrusives south of the Magnata fault. The hole returned **130.8m at 2.5 g/t AuEq (2.3g/t gold, 1.6 g/t silver, 0.5% zinc)** from 237.2m including previously announced **12.0m at 20.9 g/t AuEq (20.4 g/t gold, 4.8 g/t silver, 1.0% zinc)** from 289m. The hole also intersected additional lower grade mineralisation in the same intrusives in the 60 metres below this intercept. Using a 0.1 g/t AuEq cut-off this broader zone returned **171 metres at 1.9 g/t AuEq** demonstrating the significant scale of this new zone of mineralisation in intrusives.

This new zone of mineralisation is shown in cross section in Figure 1 on Page 3 of this release. The mineralised intrusives outcrop at surface and dip steeply to the west and have a true width of 50 to 100 metres. Width is interpreted to be increasing at depth. Mineralisation has been intersected down to 350 and 400 metres respectively in drill holes GNDD-157 and GNDD-134 and remains open at depth.

The mineralisation starts from surface in CEL holes drilled north of the Magnata Fault with GNDD-157 and GNDD-134 collared to intersect the mineralised intrusives 200 to 300 metres down dip. At surface

Challenger Exploration Limited ACN 123 591 382 ASX: CEL **Issued Capital** 653.1m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors** Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

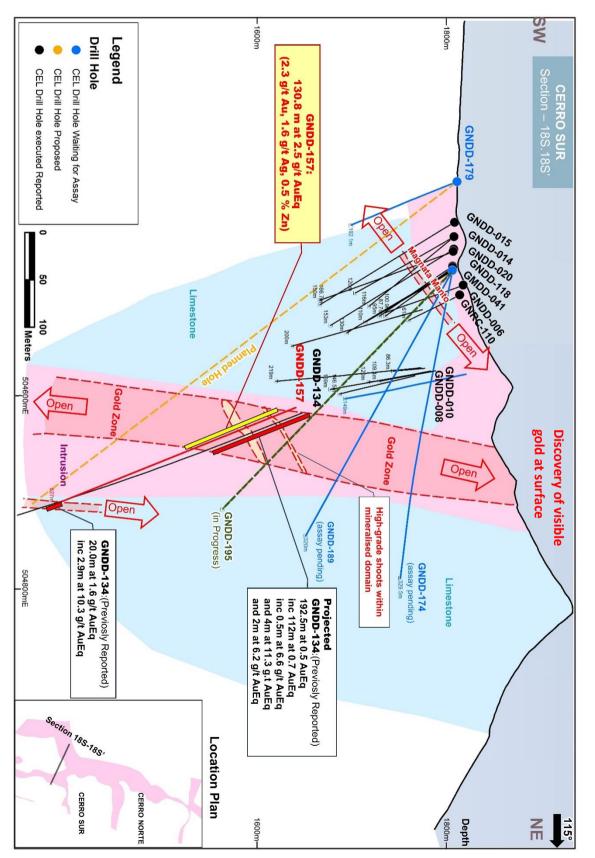


Figure 1 - Cross Section showing new gold zone and follow up drilling.

Challenger Exploration Limited ACN 123 591 382 ASX: CEL **Issued Capital** 653.1m shares 86.6m options 120m perf shares 16m perf rights

Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors** Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

(in the up-dip location of the intercept of 130.8m at 2.5 g/t AuEq in GNDD-157) gossanous outcrop of massive pyroxene skarn alteration containing visible gold has been observed (Figure 4). This suggests the mineralisation extends to surface as well as remaining open at depth.

The higher grade zones encountered in drill holes GNDD-157 and GNDD-134 are consistent in cross section and are interpreted as high-grade shoots which are stacked within the intrusives. These high grade shoots have a similar orientation to the high-grade skarn mineralisation. The Company now believes that GNDD-088A, which intersected 39.0 metres at 5.7 g/t AuEq, including 14.4 metres at 14.8 g/t AuEq, intersected one of these high grade shoots. Follow up drilling will now be orientated to target the high-grade shoots, given the Company's view that it has determined the orientation of the high-grade shoots within the broader mineralisation in the intrusives.

Consistent Mineralisation in intrusives over 500 metres of strike extent

Prior to GNDD-134 and GNDD-157, mineralised intrusives had not been intersected south of the Magnata fault. North of the Magnata Fault, the mineralised zone in the intrusives covers 100 metres of strike, and is 50 to 100 metres true width, dipping at 60-70 degrees to the west and striking north-south.

The Company now interprets these zones of mineralised intrusives north and south of the Magnata Fault as one large zone, which extends north-south over 500 metres of strike and remains open in both directions along strike. Mineralisation has been defined over 400 metres vertical extent from surface and remains open at depth. This larger zone of mineralisation hosted in intrusives is shown in plan in Figure 2.

The intercepts at the top of GNDD-157; **66.0m at 0.6 g/t AuEq (0.5 g/t Au, 1.1 g/t Ag, 0.1% Zn)** from 20m and **10.0m at 0.5 g/t AuEq (0.2 g/t Au, 6.6 g/t Ag, 0.5% Zn)** from 132.9m are in the same mineralised intrusive zone intersected in drilling north of the Magnata Fault. The intercepts confirm the mineralisation intersected in previous drill holes and extends the overall zone approximately 20 metres further to the west with the mineralisation remaining open to the west and north along strike.

CHANGES TO DRILL PROGRAM

Following the discovery of new zones of mineralisation in drill holes GNDD-134 and GNDD-157 (this release), and GNDD-142 (**40.5m at 6.2 g/t AuEq**) in addition to the number of holes recently completed (assays pending) a series of new holes and extensions to existing holes have been planned.

The Company is waiting on assays for drillholes GNDD-174, and GNDD-189 with GNDD-195 currently being drilled (Figures 1 and 2). These three holes have been designed to extend the mineralisation in GNDD-157 (**130.8m at 2.5 g/t AuEq)** up-dip and 100 metres further south along strike. Additionally, deeper holes to test downdip of GNDD-157 are planned which may involve new holes or extending GNDD-020 and GMDD-041.

Challenger Exploration Limited ACN 123 591 382 ASX: CEL **Issued Capital** 653.1m shares 86.6m options 120m perf shares 16m perf rights

Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors** Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

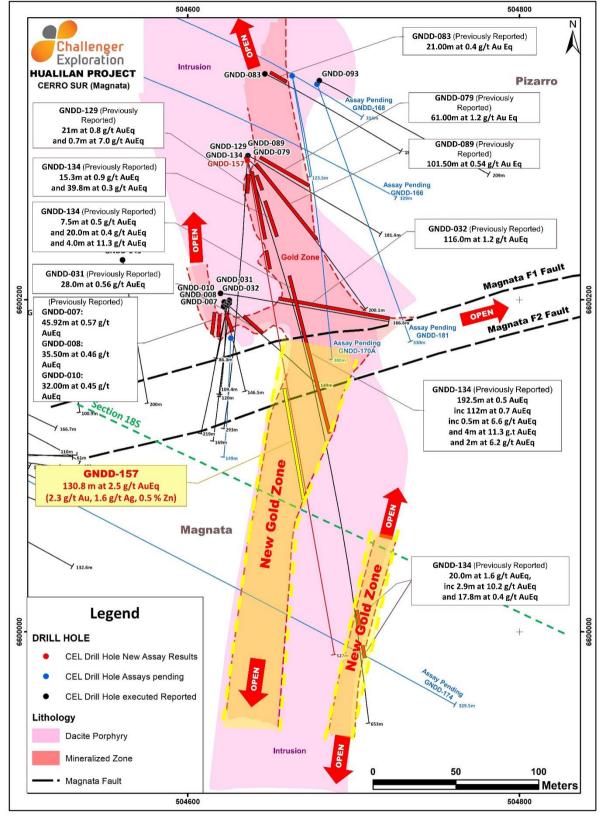


Figure 2 - Plan view showing the Magnata Fault and new zones of mineralisation

Issued Capital 653.1m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

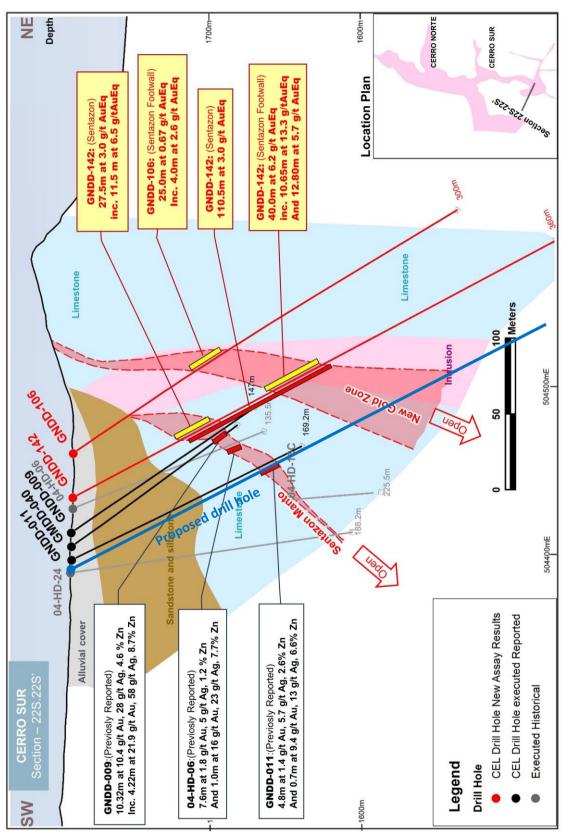


Figure 3 - Plan View Showing proposed drilling to test new discovery below the Sentazon Manto.

Issued Capital 653.1m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors** Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

Drillholes GNDD-170A (assays pending) and GNDD-181 (currently being drilled) have dual objectives; to extend the high-grade Magnata Fault mineralisation further east; and to test for extensions to the mineralisation in intrusives further east. GNDD-166 and GNDD-168 (assays pending) have been drilled to extend the mineralised intrusives north along strike and to the west with additional drilling programmed to test further north and west.

GNDD-142 discovered a broad zone of high-grade mineralisation 50 metres below the Sentazon Manto returning **40.5m at 6.2 g/t AuEq**. This new zone is highly significant as no drilling, with the exception of CEL drill hole GNDD-106 (25 metres of mineralisation) has been drilled deep enough to test this new zone. The scale created by this this new zone below the Sentazon Manto is indicated by the broader intercept of **110.5m at 3.0 g/t AuEq** in GNDD-142. The Company has programmed a drill hole to test down-dip of GNDD-142 and holes to test the north and south along strike commencing February 2021 (Figure 3).

Figure 4 - Oxidised pyroxene skarn with visible gold from surface in the Muchilera area above GNDD157

Ends

This ASX announcement was approved and authorised by the Board.

For further information contact:

Kris Knauer Managing Director +61 411 885 979 kris.knauer@challengerex.com

Scott Funston Chief Financial Officer +61 413 867 600 scott.funston@challengerex.com Media Enquiries Jane Morgan + 61 405 555 618 jm@janemorganmanagement.com.au

Challenger Exploration Limited ACN 123 591 382 ASX: CEL **Issued Capital** 653.1m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors** Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

Drill Hole	From	То	Interval	Gold	Ag	Zn	Au Equiv	Comments
(#)	(m)	(m)	(m)	(g/t)	(g/t)	(%)	(g/t)	
GNDD-157	20.0	86.0	66.0	0.5	1.1	0.1	0.6 g/t AuEq	0.2 g/t AuEq cut
inc	54.0	64.0	10.0	2.2	1.8	0.1	2.3 g/t AuEq	1.0 g/t AuEq cut
and	132.9	142.9	10.0	0.2	6.6	0.5	0.5 g/t AuEq	0.2 g/t AuEq cut
inc	132.9	133.4	0.5	0.9	13.1	1.4	1.7 g/t AuEq	1.0 g/t AuEq cut
inc	142.3	142.9	0.6	1.0	29.1	6.6	4.4 g/t AuEq	1.0 g/t AuEq cut
and	237.2	368.0	130.8	2.3	1.6	0.4	2.5 g/t AuEq	0.2 g/t AuEq cut
inc	237.2	238.0	0.8	1.7	59.1	5.6	5.0 g/t AuEq	previously announced
inc	255.8	257.0	1.2	0.6	5.3	9.4	5.1 g/t AuEq	previously announced
inc	289.0	301.0	12.0	20.4	4.8	1.0	20.9 g/t AuEq	previously announced
inc	290.5	294.6	4.1	55.7	12.9	2.1	56.8 g/t AuEq	previously announced
inc	321.0	323.0	2.0	1.3	0.6	0.0	1.3 g/t AuEq	1.0 g/t AuEq cut
inc	331.0	337.0	6.0	2.5	1.9	0.6	2.8 g/t AuEq	1.0 g/t AuEq cut
inc	343.0	352.0	9.0	1.7	0.6	0.1	1.7 g/t AuEq	1.0 g/t AuEq cut
and	407.5	408.0	0.5	2.2	1.2	0.4	2.4 g/t AuEq	1.0/g/t AuEq cut

Table 1: New intercepts reported in this report.

See below for information regarding AuEq's reported under the JORC Code.

² Gold Equivalent (AuEq) values - Requirements under the JORC Code

- Assumed commodity prices for the calculation of AuEq is Au US\$1450 Oz, Ag US\$16 Oz, Zn US\$2,200 /t
- Metallurgical recoveries for Au, Ag and Zn are assumed to be the same (see *JORC Table 1 Section 3 Metallurgical assumptions*) based on metallurgical test work hence no weighting on recovery is required.
- The formula used: AuEq (g/t) = Au (g/t) + Ag (g/t)x 0.011034 + Zn (%) x 0.471862
- CEL confirms that it is the company's opinion that all the elements included in the metal equivalents calculation have a reasonable potential to be recovered and sold.

Previous announcements referred to in this release include:

27 July 2020 - CEL BUILDS ON NEW GOLD DISCOVERY AT HUALILAN WITH A SECOND SIGNIFICANT INTERSECTION 1KM ALONG STRIKE 30 oct 2020 - DRILLING CONFIRMS MAJOR INTRUSION-HOSTED GOLD SYSTEM UNDERLYING THE HIGH-GRADE MINERALISATION 23 Nov 2020 - MULTIPLE HIGH-GRADE INTERCEPTS IN EXPLORATION DRILLING AT HUALILAN

29 JAN 2021 - DRILLING CONTINUES TO EXTEND THE BOUNDARIES OF THE HIGH-GRADE MINERALISATION AT HUALILAN GOLD PROJECT

Challenger Exploration Limited ACN 123 591 382 ASX: CEL **Issued Capital** 653.1m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors** Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

About Challenger Exploration

Challenger Exploration Limited's(ASX: CEL) aspiration is to become a globally significant gold producer. The Company is developing two complementary gold/copper projects in South America. The strategy for the Hualilan Gold project is for it to provide a high-grade low capex operation in the near term. This underpins CEL with a low risk, high margin source of cashflow while it prepares for a much larger bulk gold operation in Ecuador.

- 1. **Hualilan Gold Project**, located in San Juan Province Argentina, is a near term development opportunity. It has extensive historical drilling with over 150 drill-holes and a non-JORC historical resource ⁽¹⁾ of 627,000 Oz @ 13.7 g/t gold which remains open in most directions. The project was locked up in a dispute for the past 15 years and as a consequence had seen no modern exploration until CEL acquired the project in 2019. Results from CEL's first drilling program included 6.1m @ 34.6 g/t Au, 21.9 g/t Ag, 2.9% Zn, 6.7m @ 14.3 g/t Au, 140 g/t Ag, 7.3% Zn and 10.3m @ 10.4 g/t Au, 28 g/t Ag, 4.6% Zn. This drilling intersected high-grade gold over almost 2 kilometres of strike and extended the known mineralisation along strike and at depth in multiple locations. Recent drilling has demonstrated this high-grade skarn mineralisation is underlain by a significant intrusion-hosted gold system with intercepts including 116m at 1.0 g/t Au, 4.0 g/t Ag, 0.2% Zn and 39.0m at 5.5 g/t Au, 2.0 g/t Ag, 0.3% Zn in porphyry dacites. CEL's current program includes 45,000 metres of drilling, metallurgical test work of key ore types, and an initial JORC Compliant Resource and PFS.
- 2. El Guayabo Gold/Copper Project covers 35 sqkms in southern Ecuador and was last drilled by Newmont Mining in 1995 and 1997 targeting gold in hydrothermal breccias. Historical drilling has demonstrated potential to host significant gold and associated copper and silver mineralisation. Historical drilling has returned a number of intersections including 156m @ 2.6 g/t Au, 9.7 g/t Ag, 0.2% Cu and 112m @ 0.6 % Cu, 0.7 g/t Au, 14.7 g/t which have never been followed up. The Project has multiple targets including breccia hosted mineralisation, an extensive flat lying late stage vein system and an underlying porphyry system target neither of which has been drill tested. CEL's first results confirm the discovery of large-scale gold system with over 250 metres of bulk gold mineralisation encountered in drill hole ZK-02 which contains a significant high-grade core of 134m at 1.0 g/t gold and 4.1 g/t silver including 63m at 1.6 g/t gold and 5.1 g/t silver.

Challenger Exploration Limited ACN 123 591 382 ASX: CEL **Issued Capital** 653.1m shares 86.6m options 120m perf shares 16m perf rights

Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

La Mancha Resources 2003 foreign	resource estimate for th	e Hualilan Project ^	
Category	Tonnes	Gold Grade	Contained Gold
Category	(kt)	(g/t)	(koz)
Measured	218	14.2	100
Indicated	226	14.6	106
Total of Measured & Indicated	445	14.4	206
Inferred	977	13.4	421
Measured, Indicated & Inferred	1,421	13.7	627

Foreign Resource Estimate Hualilan Project

^A Source: La Mancha Resources Toronto Stock Exchange Release dated 14 May 2003 -Independent Report on Gold Resource Estimate. Rounding errors may be present. Troy ounces (oz) tabled here

^{#1} For details of the foreign non-JORC compliant resource and to ensure compliance with LR 5.12 please refer to the Company's ASX Release dated 25 February 2019. These estimates are foreign estimates and not reported in accordance with the JORC Code. A competent person has not done sufficient work to clarify the foreign estimates as a mineral resource in accordance with the JORC Code. It is uncertain that following evaluation and/or further exploration work that the foreign estimate will be able to be reported as a mineral resource. The company is not in possession of any new information or data relating to the foreign estimates or CEL's ability to verify the foreign estimates estimate as minimal resources in accordance with Appendix 5A (JORC Code). The company confirms that the supporting information provided in the initial market announcement on February 25, 2019 continues to apply and is not materially changed.

Competent Person Statement – Exploration results

The information that relates to sampling techniques and data, exploration results and geological interpretation has been compiled Dr Stuart Munroe, BSc (Hons), PhD (Structural Geology), GDip (AppFin&Inv) who is a full-time employee of the Company. Dr Munroe is a Member of the AusIMM. Dr Munroe has over 20 years' experience in the mining and metals industry and qualifies as a Competent Person as defined in the JORC Code (2012).

Dr Munroe has sufficient experience of relevance to the styles of mineralisation and the types of deposits under consideration, and to the activities undertaken, to qualify as a Competent Person as defined in the 2012 Edition of the Joint Ore Reserves Committee (JORC) Australasian Code for Reporting of Exploration Results. Dr Munroe consents to the inclusion in this report of the matters based on information in the form and context in which it appears. The Australian Securities Exchange has not reviewed and does not accept responsibility for the accuracy or adequacy of this release.

Competent Person Statement – Foreign Resource Estimate

The information in this release provided under ASX Listing Rules 5.12.2 to 5.12.7 is an accurate representation of the available data and studies for the material mining project. The information that relates to Mineral Resources has been compiled by Dr Stuart Munroe, BSc (Hons), PhD (Structural Geology), GDip (AppFin&Inv) who is a full-time employee of the Company. Dr Munroe is a Member of the AusIMM. Dr Munroe has over 20 years' experience in the mining and metals industry and qualifies as a Competent Person as defined in the JORC Code (2012).

Dr Munroe and has sufficient experience which is relevant to the style of mineralisation and type of deposits under consideration to qualify as Competent Person as defined in the 2012 Edition of the JORC Code for Reporting of, Mineral Resources and Ore Reserves. Dr Munroe consents to the inclusion in this report of the matters based on information in the form and context in which it appears. The Australian Securities Exchange has not reviewed and does not accept responsibility for the accuracy or adequacy of this release.

Challenger Exploration Limited ACN 123 591 382 ASX: CEL **Issued Capital** 653.1m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors** Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

JORC Code, 2012 Edition – Table 1 report template

Section 1 Sampling Techniques and Data -Hualilan Project

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary					
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or 	For historic exploration data, there is little information provided by previous explorers to detail sampling techniques. Drill core was cut with a diamond saw longitudinally and one half submitted for assay. Assay was generally done for Au. In some drill campaigns, Ag and Zn were also analysed. There is limited multielement data available. No information is available for RC drill techniques and sampling.					
	 handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample 	For CEL drilling, diamond core (HQ3) was cut longitudinally on site using a diamond saw. Samples lengths are from 0.5m to 2.0m in length (average 1m), taken according to lithology, alteration, and mineralization contacts.					
	representivity and the appropriate calibration of any measurement tools or systems used. - Aspects of the determination of mineralisation that are	For CEL reverse circulation (RC) drilling, 2-4 kg sub-samples from each 1m drilled are collected from a face sample recovery cyclone mounted on the drill machine.					
	 Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg 	Core samples were crushed to approximately 85% passing 2mm. A 500g or a 1 kg sub-sample was taken and pulverized to 85% passing 75 μ m. A 50g charge was analysed for Au by fire assay with AA determination. Where the fire assay grade is > 10 g/t gold, a 50g charge was analysed for Au by Fire assay with gravimetric determination.					
	was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.	A 10g charge was analysed for 48 elements by 4-acid digest and ICP-MS determination. Elements determined were Ag, As, Ba, Be, Bi, Ca, Ce, Co, Cr, Cs, Cu, Fe, Ga, Ge, Hf, In, K, La, Li, Mg, Mn, Mo, Na, N Ni, P, Pb, Rb, Re, S, Sb Sc, Se, Sn, Sr, Ta, Te, Th, Ti, Tl, U, V, W, Y, Zn and Zr. Ag > 100 g/t, Zn, Pb and Cu > 10,000 ppm and S > 10% were re-analysed by the same method using a different calibration.					
		Sample intervals were selected according to geological boundaries. There was no coarse gold observed in any of the core.					
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	Collar details for diamond core drilling (DD) and reverse circulation (RC) historic drilling campaigns is provided below from archival data cross checked with drill logs and available plans and sections where available. Collars shown below are in WGS84, zone 19s which is the standard projection used by CEL for the Project. Collar locations have been check surveyed using differential GPS (DGPS) by CEL to verify if the site coincides with a marked collar or tagged drill site. In most cases the drill collars coincide with historic drill site, some of which (but not all) are tagged. The collar check surveys were reported in POSGAR (2007) projection and converted to WGS84.					
		Hole_id Type East North Elevation Azimuth Dip Depth Date (m) (m ASL) (°) (°) (m)					

Challenger Exploration Limited ACN 123 591 382 ASX: CEL

Issued Capital 653.1m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commenta	ry							
		AG01	DD	2504908.0	6602132.3	1807.6	000	-90	84.5	Jan-84
		AG02	DD	2504846.5	6602041.1	1803.4	112	-70	60.0	Jan-84
		AG03	DD	2504794.5	6601925.6	1803.1	080	-55	110.0	Jan-84
		AG04	DD	2504797.1	6602065.5	1806.6	000	-90	168.0	Jan-84
		AG05	DD	2504843.5	6601820.3	1798.1	000	-90	121.8	Jan-84
		AG06	DD	2504781.9	6601922.8	1803.8	000	-90	182.2	Jan-84
		AG07	DD	2504826.3	6601731.0	1796.9	000	-90	111.5	Jan-84
		AG08	DD	2504469.8	6600673.7	1779.7	090	-57	80.2	Jan-84
		AG09	DD	2504455.7	6600458.5	1772.6	000	-90	139.7	Jan-84
		AG10	DD	2504415.5	6600263.9	1767.7	000	-90	200.8	Jan-84
		AG11	DD	2504464.8	6600566.5	1775.9	000	-90	141.0	Jan-84
		AG12	DD	2504847.6	6602161.7	1808.8	000	-90	171.4	Jan-84
		AG13	DD	2504773.6	6601731.3	1798.7	000	-90	159.5	Jan-84
		AG14	DD	2504774.7	6601818.8	1801.2	000	-90	150.2	Jan-84
		AG15	DD	2504770.7	6601631.4	1796.7	000	-90	91.3	Jan-84
		AG16	DD	2504429.5	6600665.8	1779.8	000	-90	68.8	Jan-84
			-	East	North	Elevation	Azimuth	Dip	Depth	_ .
		Hole_id	Туре	(m)	(m)	(m ASL)	(°)	-	(m)	Date
		MG01	RC	2504825.5	6602755.4	1800.0	100	-60	51.0	Jan-95
		MG01A	RC	2504810.5	6602755.4	1800.0	100	-60	116.0	Jan-95
		MG02	RC	2504835.5	6602805.4	1800.0	100	-60	90.0	Jan-95
		MG03	RC	2504853.5	6602880.4	1795.0	100	-60	102.0	Jan-95
		MG04	RC	2504843.5	6602975.4	1800.0	100	-60	120.0	Jan-95
		MG05	RC	2506130.5	6605055.4	1750.0	85	-60	96.0	Jan-95
		MG06	RC	2506005.5	6605115.4	1750.0	100	-60	90.0	Jan-95
		MG07	RC	2506100.5	6605015.4	1750.0	100	-60	96.0	Jan-95
		MG08	RC	2505300.5	6603070.4	1740.0	95	-70	66.0	Jan-95
		MG09	RC	2505285.5	6603015.4	1740.0	0	-90	102.0	Jan-95
		MG10	RC	2505025.5	6600225.4	1724.0	100	-60	120.0	Jan-95
		MG11	RC	2503380.5	6598560.5	1740.0	100	-60	78.0	Jan-95
		MG12	RC	2503270.5	6597820.5	1740.0	100	-60	66.0	Jan-95
			_	East	North	Elevation	Azimuth	Dip	Depth	- .
		Hole_id	Туре	(m)	(m)	(m ASL)	(°)	(°)	(m)	Date
		Hua01	RC	2504845.3	6602041.2	1809.7	117	-50	60.0	1999
		HUdUI	ΝC	2304043.3	00020.2.2	20001/		50	00.0	1000

Issued Capital 653.1m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman **Contact** T: +61 8 6380 9235 E: admin@challengerex.com

Criteria	JORC Code explanation	Commenta	ary							
		Hua03	RC	2505003.3	6602158.6	1810.7	000	-90	100.0	1999
		Hua04	RC	2504873.3	6602169.1	1809.7	000	-90	100.0	1999
		Hua05	RC	2505003.2	6602152.6	1810.7	180	-60	100.0	1999
		Hua06	RC	2505003.3	6602161.6	1810.7	360	-60	100.0	1999
		Hua07	RC	2504967.7	6602153.2	1810.2	000	-90	100.0	1999
		Hua08	RC	2504973.2	6602153.7	1810.2	000	-90	13.0	1999
		Hua09	RC	2504940.7	6602150.3	1809.7	180	-60	100.0	1999
		Hua10	RC	2504941.8	6602156.8	1809.7	360	-60	100.0	1999
		Hua11	RC	2504913.3	6602167.4	1809.7	360	-60	88.0	1999
		Hua12	RC	2504912.8	6602165.9	1809.7	000	-90	100.0	1999
		Hua13	RC	2504912.3	6602156.9	1809.7	180	-60	90.0	1999
		Hua14	RC	2504854.3	6602168.2	1809.7	360	-60	100.0	1999
		Hua15	RC	2504854.8	6602166.2	1809.7	117	-60	100.0	1999
		Hua16	RC	2504834.2	6601877.8	1800.7	000	-90	100.0	1999
		Hua17	RC	2504865.9	6602449.8	1814.1	90	-50	42.0	1999
		Hua20	RC	2504004.1	6600846.4	1792.7	000	-90	106.0	1999
		Hua21	RC	2504552.9	6600795.0	1793.9	000	-90	54.0	1999
			-	East	North	Elevation	Azimuth	Dip	Depth	
		Hole_id	Туре	(m)	(m)	(m ASL)	(°)	(°)	(m)	Date
		DDH20	DD	(m) 2504977.3	(m) 6602133.3	(m ASL) 1804.8	(°) 116	(°) -54	(m) 49.1	Date 1999-00
		DDH20	DD	2504977.3	6602133.3	1804.8	116	-54	49.1	1999-00
		DDH20 DDH21	DD DD	2504977.3 2504978.3	6602133.3 6602118.3	1804.8 1804.8	116 000	-54 -90	49.1 88.6	1999-00 1999-00
		DDH20 DDH21 DDH22	DD DD DD	2504977.3 2504978.3 2504762.9	6602133.3 6602118.3 6601587.1	1804.8 1804.8 1769.8	116 000 116	-54 -90 -65	49.1 88.6 66.0	1999-00 1999-00 1999-00 1999-00 1999-00
		DDH20 DDH21 DDH22 DDH23	DD DD DD DD	2504977.3 2504978.3 2504762.9 2504920.4	6602133.3 6602118.3 6601587.1 6601994.3	1804.8 1804.8 1769.8 1767.9	116 000 116 000	-54 -90 -65 -90	49.1 88.6 66.0 58.8 100.3 49.2	1999-00 1999-00 1999-00 1999-00 1999-00 1999-00
		DDH20 DDH21 DDH22 DDH23 DDH24 DDH25 DDH26	DD DD DD DD DD DD DD DD DD	2504977.3 2504978.3 2504762.9 2504920.4 2504821.0 2504862.6 2504920.4	6602133.3 6602118.3 6601587.1 6601994.3 6601938.8 6601964.5 6601975.3	1804.8 1804.8 1769.8 1767.9 1802.0 1803.7 1795.0	116 000 116 000 116 116 312	-54 -90 -65 -90 -80 -74 -60	49.1 88.6 66.0 58.8 100.3 49.2 80.3	1999-00 1999-00 1999-00 1999-00 1999-00 1999-00 1999-00
		DDH20 DDH21 DDH22 DDH23 DDH24 DDH25 DDH26 DDH27	DD DD DD DD DD DD DD	2504977.3 2504978.3 2504762.9 2504920.4 2504821.0 2504862.6	6602133.3 6602118.3 6601587.1 6601994.3 6601938.8 6601964.5 6601975.3 6601565.1	1804.8 1804.8 1769.8 1767.9 1802.0 1803.7	116 000 116 000 116 116	-54 -90 -65 -90 -80 -74 -60 -60	49.1 88.6 66.0 58.8 100.3 49.2	1999-00 1999-00 1999-00 1999-00 1999-00 1999-00 1999-00 1999-00
		DDH20 DDH21 DDH22 DDH23 DDH24 DDH25 DDH26	DD DD DD DD DD DD DD DD DD	2504977.3 2504978.3 2504762.9 2504920.4 2504821.0 2504862.6 2504920.4	6602133.3 6602118.3 6601587.1 6601994.3 6601938.8 6601964.5 6601975.3	1804.8 1804.8 1769.8 1767.9 1802.0 1803.7 1795.0	116 000 116 000 116 116 312	-54 -90 -65 -90 -80 -74 -60	49.1 88.6 66.0 58.8 100.3 49.2 80.3	1999-00 1999-00 1999-00 1999-00 1999-00 1999-00 1999-00 1999-00
		DDH20 DDH21 DDH22 DDH23 DDH24 DDH25 DDH26 DDH27 DDH28 DDH29	DD DD DD DD DD DD DD DD DD DD DD	2504977.3 2504978.3 2504762.9 2504920.4 2504821.0 2504862.6 2504920.4 2504920.4 2504752.7 2505003.6 2504964.1	6602133.3 6602118.3 6601587.1 6601994.3 6601994.3 6601964.5 6601964.5 6601975.3 6601565.1 6602174.3 6602136.6	1804.8 1804.8 1769.8 1767.9 1802.0 1803.7 1795.0 1806.6	116 000 116 000 116 116 312 116 116 350	-54 -90 -65 -90 -80 -74 -60 -50 -52	49.1 88.6 66.0 58.8 100.3 49.2 80.3 43.2 41.7 113.5	1999-00 1999-00 1999-00 1999-00 1999-00 1999-00 1999-00 1999-00 1999-00
		DDH20 DDH21 DDH22 DDH23 DDH24 DDH25 DDH26 DDH27 DDH28 DDH29 DDH30	DD DD DD DD DD DD DD DD DD DD DD DD	2504977.3 2504978.3 2504762.9 2504920.4 2504821.0 2504862.6 2504920.4 2504920.4 2504752.7 2505003.6 2504964.1 2505004.1	6602133.3 6602118.3 6601587.1 6601994.3 6601938.8 6601964.5 6601975.3 6601565.1 6602174.3 6602136.6 6602156.3	1804.8 1804.8 1769.8 1767.9 1802.0 1803.7 1795.0 1806.6 1806.6 1810.0 1809.3	116 000 116 000 116 116 312 116 116 350 059	-54 -90 -65 -90 -80 -74 -60 -60 -50 -52 -85	49.1 88.6 66.0 58.8 100.3 49.2 80.3 43.2 41.7 113.5 62.1	1999-00 1999-00 1999-00 1999-00 1999-00 1999-00 1999-00 1999-00 1999-00 1999-00
		DDH20 DDH21 DDH22 DDH23 DDH24 DDH25 DDH25 DDH26 DDH27 DDH28 DDH29 DDH30 DDH31	DD DD DD DD DD DD DD DD DD DD DD DD DD	2504977.3 2504978.3 2504762.9 2504920.4 2504821.0 2504862.6 2504920.4 2504752.7 2505003.6 2504964.1 2505004.1 2505004.1	6602133.3 6602118.3 6601587.1 6601994.3 6601938.8 6601964.5 6601975.3 6601565.1 6602174.3 6602136.6 6602156.3 6602112.7	1804.8 1804.8 1769.8 1767.9 1802.0 1803.7 1795.0 1806.6 1806.6 1810.0 1809.3 1808.1	116 000 116 000 116 116 312 116 116 350 059 116	-54 -90 -65 -90 -80 -74 -60 -50 -50 -52 -85 -75	49.1 88.6 66.0 58.8 100.3 49.2 80.3 43.2 41.7 113.5 62.1 41.4	1999-00 1999-00 1999-00 1999-00 1999-00 1999-00 1999-00 1999-00 1999-00 1999-00 1999-00
		DDH20 DDH21 DDH22 DDH23 DDH24 DDH25 DDH26 DDH27 DDH28 DDH29 DDH30 DDH31 DDH32	DD DD DD DD DD DD DD DD DD DD DD DD DD	2504977.3 2504978.3 2504920.4 2504821.0 2504821.0 2504862.6 2504920.4 2504752.7 2505003.6 2504964.1 2505004.1 2505004.1 2504897.6 2504939.4	6602133.3 6602118.3 6601587.1 6601994.3 6601938.8 6601964.5 6601975.3 6601565.1 6602174.3 6602136.6 6602156.3 6602112.7 6602139.2	1804.8 1804.8 1769.8 1767.9 1802.0 1803.7 1795.0 1806.6 1806.6 1810.0 1809.3 1808.1 1809.1	116 000 116 000 116 116 312 116 116 350 059 116 350	-54 -90 -65 -90 -80 -74 -60 -50 -50 -52 -85 -75 -51	49.1 88.6 66.0 58.8 100.3 49.2 80.3 43.2 41.7 113.5 62.1 41.4 100.7	1999-00 1999-00 1999-00 1999-00 1999-00 1999-00 1999-00 1999-00 1999-00 1999-00 1999-00 1999-00
		DDH20 DDH21 DDH22 DDH23 DDH24 DDH25 DDH26 DDH27 DDH28 DDH29 DDH29 DDH30 DDH31 DDH32 DDH33	DD DD DD DD DD DD DD DD DD DD DD DD DD	2504977.3 2504978.3 2504920.4 2504920.4 2504821.0 2504862.6 2504920.4 2504752.7 2505003.6 2504964.1 2505004.1 2505004.1 2504997.6 2504939.4	6602133.3 6602118.3 6601587.1 6601994.3 6601938.8 6601964.5 6601964.5 6601975.3 6601565.1 6602174.3 6602136.6 6602156.3 6602112.7 6602139.2 6602139.2	1804.8 1804.8 1769.8 1767.9 1802.0 1803.7 1795.0 1806.6 1810.0 1809.3 1808.1 1809.1	116 000 116 000 116 116 312 116 116 350 059 116 350 350	-54 -90 -65 -90 -80 -74 -60 -50 -50 -52 -85 -75 -51 -65	49.1 88.6 66.0 58.8 100.3 49.2 80.3 43.2 41.7 113.5 62.1 41.4 100.7 62.9	1999-00 1999-00 1999-00 1999-00 1999-00 1999-00 1999-00 1999-00 1999-00 1999-00 1999-00 1999-00 1999-00
		DDH20 DDH21 DDH22 DDH23 DDH24 DDH25 DDH26 DDH27 DDH28 DDH29 DDH30 DDH30 DDH31 DDH32 DDH33 DDH33 DDH34	DD DD DD DD DD DD DD DD DD DD DD DD DD	2504977.3 2504978.3 2504978.3 2504920.4 2504821.0 250482.6 2504920.4 2504920.4 2504752.7 2505003.6 2504964.1 2505004.1 2504964.1 2504997.6 2504939.4 2504939.4 2504826.5	6602133.3 6602118.3 6601587.1 6601994.3 6601938.8 6601964.5 6601975.3 6601565.1 6602174.3 6602136.6 6602156.3 6602112.7 6602139.2 6602139.2 6601920.2	1804.8 1804.8 1769.8 1767.9 1802.0 1803.7 1795.0 1806.6 1810.0 1809.3 1808.1 1809.1 1809.1 1809.1 1801.3	116 000 116 000 116 312 116 116 350 059 116 350 350 116	-54 -90 -65 -90 -80 -74 -60 -50 -50 -52 -85 -75 -51 -65 -70	49.1 88.6 66.0 58.8 100.3 49.2 80.3 43.2 41.7 113.5 62.1 41.4 100.7 62.9 69.4	1999-00 1999-00 1999-00 1999-00 1999-00 1999-00 1999-00 1999-00 1999-00 1999-00 1999-00 1999-00 1999-00 1999-00
		DDH20 DDH21 DDH22 DDH23 DDH24 DDH25 DDH26 DDH27 DDH28 DDH29 DDH30 DDH30 DDH31 DDH32 DDH33 DDH33 DDH34 DDH35	DD DD DD DD DD DD DD DD DD DD DD DD DD	2504977.3 2504978.3 2504978.3 2504920.4 2504821.0 2504821.0 2504920.4 2504920.4 2504752.7 2505003.6 2504964.1 2505004.1 2504897.6 2504939.4 2504939.4 2504939.4 2504826.5 2505003.9	6602133.3 6602118.3 6601987.1 6601994.3 6601938.8 6601964.5 6601964.5 6601975.3 6601565.1 6602174.3 6602136.6 6602156.3 6602112.7 6602139.2 6602139.2 6601920.2 6601920.2 6602156.7	1804.8 1804.8 1769.8 1767.9 1802.0 1803.7 1795.0 1806.6 1810.0 1809.3 1808.1 1809.1 1809.1 1801.3 1808.8	116 000 116 000 116 116 312 116 116 350 059 116 350 350 116 310	-54 -90 -65 -90 -74 -60 -50 -50 -52 -85 -75 -51 -65 -70 -85	49.1 88.6 66.0 58.8 100.3 49.2 80.3 43.2 41.7 113.5 62.1 41.4 100.7 62.9 69.4 174.6	1999-00 1999-00 1999-00 1999-00 1999-00 1999-00 1999-00 1999-00 1999-00 1999-00 1999-00 1999-00 1999-00 1999-00 1999-00
		DDH20 DDH21 DDH22 DDH23 DDH24 DDH25 DDH26 DDH27 DDH28 DDH29 DDH30 DDH30 DDH31 DDH32 DDH33 DDH33 DDH34	DD DD DD DD DD DD DD DD DD DD DD DD DD	2504977.3 2504978.3 2504978.3 2504920.4 2504821.0 250482.6 2504920.4 2504920.4 2504752.7 2505003.6 2504964.1 2505004.1 2504964.1 2504997.6 2504939.4 2504939.4 2504826.5	6602133.3 6602118.3 6601587.1 6601994.3 6601938.8 6601964.5 6601975.3 6601565.1 6602174.3 6602136.6 6602156.3 6602112.7 6602139.2 6602139.2 6601920.2	1804.8 1804.8 1769.8 1767.9 1802.0 1803.7 1795.0 1806.6 1810.0 1809.3 1808.1 1809.1 1809.1 1809.1 1801.3	116 000 116 000 116 312 116 116 350 059 116 350 350 116	-54 -90 -65 -90 -80 -74 -60 -50 -50 -52 -85 -75 -51 -65 -70	49.1 88.6 66.0 58.8 100.3 49.2 80.3 43.2 41.7 113.5 62.1 41.4 100.7 62.9 69.4	1999-00 1999-00 1999-00 1999-00 1999-00 1999-00 1999-00 1999-00 1999-00 1999-00 1999-00 1999-00 1999-00 1999-00

Issued Capital 653.1m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors** Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

DDH38								
DDII30	DD	2504820.8	6601912.2	1801.1	116	-75	67.7	1999-00
DDH39	DD	2504820.8	6601912.2	1801.1	116	-81	90.7	1999-00
DDH40	DD	2504832.3	6601928.1	1801.7	116	-70	85.7	1999-00
DDH41	DD	2504837.8	6601937.5	1801.6	116	-70	64.2	1999-00
DDH42	DD	2504829.2	6601952.5	1801.8	116	-60	65.1	1999-00
DDH43	DD	2504829.2	6601952.5	1801.8	116	-70	70.8	1999-00
DDH44	DD	2504811.3	6601895.1	1802.0	116	-60	102.2	1999-00
DDH45	DD	2504811.3	6601895.1	1802.0	116	-83	95.3	1999-00
	DD					-45	71.6	1999-00
	DD			1805.9	116	-65		1999-00
	DD			1803.1	116	-47		1999-00
DDH49	DD	2504866.9	6601962.7	1803.1	116		41.9	1999-00
	DD				116			1999-00
								1999-00
								1999-00
								1999-00
								1999-00
								1999-00
								1999-00
								1999-00
								1999-00
								1999-00
								1999-00
								1999-00 1999-00
								1999-00 1999-00
								1999-00 1999-00
								1999-00 1999-00
								1999-00
								1999-00
								1999-00
								1999-00
								1999-00
								1999-00
								1999-00
								1999-00
								1999-00
								1999-00
	DDH43 DDH44 DDH45 DDH46 DDH47 DDH48	DDH43 DD DDH45 DD DDH46 DD DDH47 DD DDH48 DD DDH49 DD DDH49 DD DDH49 DD DDH50 DD DDH51 DD DDH52 DD DDH53 DD DDH54 DD DDH55 DD DDH56 DD DDH57 DD DDH58 DD DDH59 DD DDH59 DD DDH60 DD DDH61 DD DDH62 DD DDH63 DD DDH64 DD DDH65 DD DDH61 DD DDH62 DD DDH63 DD DDH64 DD DDH65 DD DDH64 DD DDH65 DD DDH64 DD DDH65 DD DDH66 DD	DDH43 DD 2504829.2 DDH44 DD 2504811.3 DDH45 DD 2504811.3 DDH46 DD 2504884.4 DDH47 DD 2504866.9 DDH30 DD 2504866.9 DDH51 DD 2504821.4 DDH52 DD 2504821.4 DDH52 DD 2504821.4 DDH53 DD 2504821.4 DDH52 DD 2504821.4 DDH53 DD 2504821.4 DDH52 DD 2504821.4 DDH53 DD 2504821.4 DDH53 DD 250497.9 DDH54 DD 250497.1 DDH55 DD 250497.3 DDH56 DD 250497.3 DDH56 DD 250497.3 DDH60 DD 250497.3 DDH61 DD 250497.3 DDH62 DD 250477.4 DDH63 DD 2504751.4 DDH64 DD 2504751.4 DDH65 DD	DDH43 DD 2504829.2 6601952.5 DDH44 DD 250481.3 6601895.1 DDH46 DD 250481.4 6601976.3 DDH47 DD 250486.4 6601962.7 DDH48 DD 250486.9 6601962.7 DDH47 DD 250486.4 6601962.7 DDH50 DD 250482.4 6601913.9 DDH51 DD 250482.5 660191.1 DDH52 DD 250482.4 660191.3 DDH53 DD 250482.1 660191.1 DDH53 DD 250482.1 6600714.0 DDH53 DD 250493.1 660217.3 DDH54 DD 250493.1 660217.3 DDH55 DD 250493.1 660217.3 DDH57 DD 250493.1 6602162.5 DDH58 DD 250497.3 6602162.5 DDH59 DD 250497.3 6602162.5 DDH50 DD 250497.3 6602162.5 DDH60 DD 250497.4 6601602.6 <t< td=""><td>DDH43 DD 2504829.2 6601952.5 1801.8 DDH44 DD 2504811.3 6601950.1 1802.0 DDH45 DD 2504811.3 6601895.1 1802.0 DDH46 DD 250481.4 6601976.3 1805.9 DDH47 DD 250486.9 6601962.7 1803.1 DDH47 DD 250486.9 660191.3 1805.9 DDH47 DD 250486.9 660191.3 1801.1 DDH50 DD 250482.5 660191.1 1800.9 DDH51 DD 250482.5 660191.1 1800.9 DDH53 DD 250482.1 660171.0 1788.7 DDH54 DD 250450.1 6602171.3 1810.5 DDH55 DD 250497.3 6602171.3 1810.5 DDH56 DD 250497.3 6602153.3 1809.1 DDH56 DD 250497.3 6602153.3 1809.1 DDH57 DD 250497.3 6602153.3<</td><td>DDH43 DD 2504829.2 6601952.5 1801.8 116 DDH44 DD 2504811.3 6601895.1 1802.0 116 DDH45 DD 2504884.4 6601976.3 1805.9 116 DDH47 DD 2504884.4 6601976.3 1805.9 116 DDH47 DD 2504866.9 6601962.7 1803.1 116 DDH40 DD 2504821.4 6601913.9 1801.1 116 DDH50 DD 2504821.4 6601913.9 1801.1 116 DDH52 DD 2504821.4 6601913.9 1801.1 116 DDH53 DD 2504821.4 6601913.9 1801.1 116 DDH53 DD 250450.1 6600714.0 1788.7 090 DDH55 DD 250497.3 6602171.3 1810.5 360 DH55 DD 250497.3 6602173.3 1809.1 360 DH55 DD 250497.3 6602173.3 1809.1 360 DH55 DD 250497.3 6602173.3 <</td><td>DDH43 DD 2504829.2 6601952.5 1801.8 116 -70 DDH44 DD 2504811.3 6601895.1 1802.0 116 -83 DDH46 DD 2504814.4 6601976.3 1805.9 116 -47 DDH47 DD 2504884.4 6601917.3 1805.9 116 -72 DDH48 DD 250486.9 660196.7 1803.1 116 -72 DDH50 DD 250486.9 660191.3.9 1801.1 116 -72 DDH50 DD 250482.1.4 660191.3.9 1801.1 116 -83 DDH51 DD 250482.5 660190.1.1 180.9 116 -83 DDH52 DD 250482.5 660174.0 1788.7 090 -45 DDH54 DD 250497.9 660214.3 180.1 116 -83 DDH55 DD 250497.1 6600714.0 1788.7 090 -56 DDH55 DD 250497.3 660215.3 1809.1 600 -71 DDH56</td></t<> <td>DDH43 DD 250482.9.2 6601895.1 180.8 116 -70 70.8 DDH44 DD 250481.3 6601895.1 1802.0 116 -83 95.3 DDH46 DD 250481.3 6601895.1 1802.0 116 -83 95.3 DDH46 DD 2504884.4 6601976.3 1805.9 116 -45 71.6 DDH48 DD 250486.9 6601962.7 1803.1 116 -77 87.5 DDH50 DD 2504821.4 6601913.9 1801.1 116 -78 87.5 DDH51 DD 2504821.4 6601913.9 1801.1 116 -83 87.5 DDH53 DD 2504821.4 660191.1 180.9 16 -83 63.1 DDH54 DD 250492.5 660192.1.1 180.4 116 -73 85.5 DDH54 DD 250492.1 660071.4.0 178.7 090 -62 85.7 DDH55 DD 250497.3 660217.3 180.5 360 -75 <</td>	DDH43 DD 2504829.2 6601952.5 1801.8 DDH44 DD 2504811.3 6601950.1 1802.0 DDH45 DD 2504811.3 6601895.1 1802.0 DDH46 DD 250481.4 6601976.3 1805.9 DDH47 DD 250486.9 6601962.7 1803.1 DDH47 DD 250486.9 660191.3 1805.9 DDH47 DD 250486.9 660191.3 1801.1 DDH50 DD 250482.5 660191.1 1800.9 DDH51 DD 250482.5 660191.1 1800.9 DDH53 DD 250482.1 660171.0 1788.7 DDH54 DD 250450.1 6602171.3 1810.5 DDH55 DD 250497.3 6602171.3 1810.5 DDH56 DD 250497.3 6602153.3 1809.1 DDH56 DD 250497.3 6602153.3 1809.1 DDH57 DD 250497.3 6602153.3<	DDH43 DD 2504829.2 6601952.5 1801.8 116 DDH44 DD 2504811.3 6601895.1 1802.0 116 DDH45 DD 2504884.4 6601976.3 1805.9 116 DDH47 DD 2504884.4 6601976.3 1805.9 116 DDH47 DD 2504866.9 6601962.7 1803.1 116 DDH40 DD 2504821.4 6601913.9 1801.1 116 DDH50 DD 2504821.4 6601913.9 1801.1 116 DDH52 DD 2504821.4 6601913.9 1801.1 116 DDH53 DD 2504821.4 6601913.9 1801.1 116 DDH53 DD 250450.1 6600714.0 1788.7 090 DDH55 DD 250497.3 6602171.3 1810.5 360 DH55 DD 250497.3 6602173.3 1809.1 360 DH55 DD 250497.3 6602173.3 1809.1 360 DH55 DD 250497.3 6602173.3 <	DDH43 DD 2504829.2 6601952.5 1801.8 116 -70 DDH44 DD 2504811.3 6601895.1 1802.0 116 -83 DDH46 DD 2504814.4 6601976.3 1805.9 116 -47 DDH47 DD 2504884.4 6601917.3 1805.9 116 -72 DDH48 DD 250486.9 660196.7 1803.1 116 -72 DDH50 DD 250486.9 660191.3.9 1801.1 116 -72 DDH50 DD 250482.1.4 660191.3.9 1801.1 116 -83 DDH51 DD 250482.5 660190.1.1 180.9 116 -83 DDH52 DD 250482.5 660174.0 1788.7 090 -45 DDH54 DD 250497.9 660214.3 180.1 116 -83 DDH55 DD 250497.1 6600714.0 1788.7 090 -56 DDH55 DD 250497.3 660215.3 1809.1 600 -71 DDH56	DDH43 DD 250482.9.2 6601895.1 180.8 116 -70 70.8 DDH44 DD 250481.3 6601895.1 1802.0 116 -83 95.3 DDH46 DD 250481.3 6601895.1 1802.0 116 -83 95.3 DDH46 DD 2504884.4 6601976.3 1805.9 116 -45 71.6 DDH48 DD 250486.9 6601962.7 1803.1 116 -77 87.5 DDH50 DD 2504821.4 6601913.9 1801.1 116 -78 87.5 DDH51 DD 2504821.4 6601913.9 1801.1 116 -83 87.5 DDH53 DD 2504821.4 660191.1 180.9 16 -83 63.1 DDH54 DD 250492.5 660192.1.1 180.4 116 -73 85.5 DDH54 DD 250492.1 660071.4.0 178.7 090 -62 85.7 DDH55 DD 250497.3 660217.3 180.5 360 -75 <

Issued Capital 653.1m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commenta	ry _						
		DDH76	DD	2504731.2	6600784.7	1821.4	180	-60	138.7 1999-0
		DDH77	DD	2504734.1	6600785.0	1821.6	000	-90	85.6 1999-0
		DDH78	DD	2504731.2	6600784.7	1821.4	180	-75	132.9 1999-0
		DDH79	DD	2504721.6	6600790.1	1820.4	060	-70	38.6 1999-0
		Hole_id	Тур е	East (m)	North (m)	Elevation (m ASL)	Azimuth (°)	Dip (°)	Depth (m)
		03HD01A		2504627.8	6600800.1	1798.4	180	-60	130.2
		03HD01A 03HD02	DD	2504027.8	6600747.8	1782.9	180	-60	130.5
		03HD02	DD	2504457.9	6600747.8	1782.9	360	-60 -45	100.2
		04HD04	DD	2504480.1	6600439.3	1773.4	360	-45 -60	104.6
		04HD04 04HD05	DD	2504430.0	6600256.8	1769.5	110	-68	122.6
		04HD05	DD	2504428.6	6600236.6	1768.1	110	-68	136.0
		04HD07	DD	2504428.0	6600230.0	1769.0	100	-63	108.2
		04HD08	DD	2504415.7	6601920.2	1801.3	116	-70	70.0
		04HD09	DD	2504832.3	6601928.1	1801.7	116	-70	75.9
		04HD10	DD	2504648.5	6600788.9	1801.5	205	-60	120.0
		04HD11	DD	2504462.0	6600428.3	1773.6	075	-62	95.1
		04HD12	DD	2504449.3	6600648.9	1779.6	360	-60	77.4
		04HD13	DD	2504434.5	6600646.6	1779.7	360	-60	74.0
		04HD14	DD	2504461.1	6600748.4	1783.1	180	-70	130.6
		04HD15	DD	2504449.9	6600646.2	1779.6	360	-64	160.0
		04HD16C	DD	2504457.1	6600311.7	1770.3	195	-65	225.5
		04HD17	DD	2504417.5	6600256.6	1769.5	110	-72	213.2
		04HD18	DD	2504528.5	6600792.0	1791.9	170	-50	140.7
		04HD19	DD	2504648.5	6600788.9	1801.5	205	-77	120.0
		04HD20	DD	2504648.5	6600788.9	1801.5	205	-80	120.0
		04HD21	DD	2504648.5	6600788.9	1801.5	205	-60	120.0
		04HD23	DD	2504441.0	6600456.0	1772.5	075	-82	499.7
		04HD24	DD	2504389.0	6600252.0	1766.5	090	-81	188.2
		04HD25	DD	2504456.0	6600294.0	1768.5	155	-84	500.8
		04HD26	DD	2504424.0	6600409.0	1771.5	180	-69	464.9
		04HD27	DD	2504461.0	6600428.0	1773.0	100	-45	60.0
		04HD28	DD	2504461.0	6600428.0	1773.0	100	-60	63.7
		04HD29	DD	2504438.0	6600087.0	1764.5	108	-45	265.0
		04HD30	DD	2504421.0	6600044.0	1764.0	108	-45	128.2
		04HD31	DD	2504687.0	6601326.0	1794.0	045	-60	242.9
		04HD32	DD	2504828.0	6601916.0	1801.3	116	-70	68.4

Issued Capital 653.1m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman **Contact** T: +61 8 6380 9235 E: admin@challengerex.com

JORC Code explanation	Commentary								
	05HD33 D	D	2505410.0	6601983.0	1765.0	000	-6	0	81.4
	05HD34 DI	D	2505451.0	6602079.0	1763.0	273	-6	0 2	69.0
	05HD35 D	D	2504905.0	6601689.0	1794.0	140	-6	5 3	50.0
	05HD36 D	D	2504880.0	6601860.0	1802.0	295	-7	0 1	30.0
	05HD37 D	D	2504866.0	6601888.0	1797.0	295	-7	0 1	30.0
	05HD38 D	D	2504838.0	6601937.0	1796.0	115	-7	0	70.0
	05HD39 DI	D	2504964.0	6602128.0	1814.0	030	-7	0 2	17.5
	05HD40 D		2504964.0	6602128.0	1814.0	030	-5		50.0
	05HD41 D		2504931.0	6602125.0	1812.0	022	-6		42.5
	05HD42 D		2504552.7	6600791.5	1797.0	194	-5		20.0
	05HD43 D	D	2504552.7	6600791.5	1797.0	194	-4		95.5
	05HD44 DI		2504603.0	6600799.0	1798.0	190			30.5
	05HD45 D		2504362.0	6600710.0	1767.0	088	-6		21.5
	05HD46 DI		2504405.0	6600282.0	1766.0	090	-7	-	30.7
	05HD47 D		2504212.0	6599177.0	1729.0	065	-4		81.5
	05HD48 D	D	2504160.0	6599164.0	1728.0	065	-6	0 1	00.7
	CEL drilling of HQ are operated by v not been oriented CEL drilling of rev drill rig set up for	variou d. erse reve	us Argentinian circulation (R(erse circulation	drilling company C) drill holes is to drilling. Drillin	nies based being done og is being o	in Mendo using a tr done usin	oza and Sa rack-mou g a 5.25 i	an Juan. Th nted LM650 nch hamme	e core has) universal er bit.
	Collar details for projection. Collar GNDD060 and ho	r loca	ations for drill	holes to GNDD	105 are sur	veyed usi	ng DGPS.	Collar loca	tion for
			0	,				•	itil DGF3.
	Hole_id		East (m)	North (m)	Elev	ation m)		Azimuth (°)	Depth (m)
					Elev (1	ation	Dip	Azimuth	Depth
	Hole_id		East (m)	North (m)	Elev (1 67 18	ation m)	Dip (°)	Azimuth (°)	Depth (m)

GNDD002A

GNDD003

GNDD004

GNDD005

GNDD006

Challenger	Exploration	Limited
ACN 123 59	1 382	
ASX: CEL		

Issued Capital 653.1m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director

Mr Fletcher Quinn, Chairman

Contact T: +61 8 6380 9235 E: admin@challengerex.com

504795.405

504824.427

504994.416

504473.042

504527.975

6601311.104

6601313.623

6601546.302

6600105.922

6600187.234

1829.286

1827.768

1835.345

1806.448

1817.856

-60

-70

-60

-55

-55

84.5

90.2

100.0

110.0

100.9

115

115

115

090

170

Criteria	JORC Code explanation	Commentary						
		GNDD007	504623.738	6600196.677	1823.447	-68	190	86.3
		GNDD007A	504624.021	6600198.394	1823.379	-68	190	219.0
		GNDD008	504625.047	6600198.059	1823.457	-60	184	109.4
		GNDD008A	504625.080	6600199.718	1823.264	-60	184	169.0
		GNDD009	504412.848	6599638.914	1794.22	-55	115	147.0
		GNDD010	504621.652	6600196.048	1823.452	-68	165	146.5
		GNDD011	504395.352	6599644.012	1794.025	-64	115	169.2
		GNDD012	504450.864	6599816.527	1798.321	-55	115	120.0
		GNDD013	504406.840	6599613.052	1792.378	-58	112	141.0
		GNDD014	504404.991	6599659.831	1793.728	-59	114	140.0
		GNDD015	504442.039	6600159.812	1808.700	-62	115	166.7
		GNDD016	504402.958	6599683.437	1794.007	-60	115	172.0
		GNDD017	504460.948	6600075.899	1806.143	-55	115	132.6
		GNDD018	504473.781	6600109.152	1806.458	-60	115	130.0
		GNDD019	504934.605	6601534.429	1834.720	-70	115	80.0
		GNDD020	504463.598	6600139.107	1807.789	-58	115	153.0
		GNDD021	504935.804	6601567.863	1835.631	-60	115	120.0
		GNDD022	504835.215	6601331.069	1828.015	-60	113	100.0
		GNDD023	504814.193	6601336.790	1828.535	-55	117	100.0
		GNDD024	504458.922	6600123.135	1807.237	-70	115	150.0
		GNDD025	504786.126	6601137.698	1823.876	-60	115	141.0
		GNDD026	504813.588	6601444.189	1831.810	-55	115	100.0
		GNDD027	504416.311	6599703.996	1794.702	-55	115	139.2
		GNDD028	504824.752	6601321.020	1827.837	-57	115	100.0
		GNDD029	504791.830	6601316.140	1829.344	-71	115	120.2
		GNDD030	504454.538	6599860.757	1799.266	-60	115	148.0
		GNDD031	504622.013	6600198.726	1823.191	-60	130	149.0
		GNDD032	504619.803	6600203.906	1822.790	-55	097	166.6
		GNDD033	504830.792	6601385.842	1829.315	-55	115	62.0
		GNDD034	504862.613	6601524.893	1834.263	-60	115	60.0

Issued Capital 653.1m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman **Contact** T: +61 8 6380 9235 E: admin@challengerex.com

Criteria	JORC Code explanation	Commentary						
		GNDD035	504782.969	6601234.234	1827.709	-78	115	119.5
		GNDD036	504303.325	6599128.637	1779.458	-55	115	131.0
		GNDD037	504462.875	6599831.674	1798.456	-55	115	83.5
		GNDD038	504465.362	6600097.111	1806.580	-55	115	87.7
		GMDD039	504815.800	6601318.000	1829.100	-70	115	80.0
		GMDD040	504402.100	6599641.500	1794.800	-55	115	135.5
		GMDD041	504473.000	6600104.000	1806.400	-55	095	95.0
		GNDD042	504392.551	6599574.224	1790.603	-60	115	140.0
		GMDD043	504815.800	6601320.000	1829.100	-67	115	80.0
		GNDD044	504380.090	6599622.578	1791.934	-65	115	185.0
		GNDD045	504366.823	6599679.058	1793.712	-57	115	242.0
		GNDD046	504364.309	6599702.621	1794.533	-60	115	191.0
		GNDD047	504459.642	6599644.133	1793.422	-60	115	101.0
		GNDD048	504792.642	6601286.638	1828.497	-74	115	95.0
		GNDD049	504807.030	6601419.483	1831.588	-60	115	90.0
		GNDD050	504826.614	6601509.677	1833.357	-60	115	80.0
		GNDD051	504766.792	6601032.571	1823.273	-60	115	120.0
		GNDD060	504803.0	6601065.0	1822.0	-60	115	200.0
		GNDD073	504367.546	6599724.992	1795.493	-57	115	150.2
		GNDD074	504366.299	6599725.496	1795.450	-73	115	152.0
		GNDD077	504821.005	6601145.026	1823.951	-60	115	222.0
		GNDD079	504636.330	6600286.824	1823.053	-60	115	181.4
		GNDD082	504769.532	6601169.127	1825.621	-60	115	266.0
		GNDD083	504646.604	6600336.172	1823.893	-60	115	181.0
		GNDD085	504456.068	6599888.509	1799.895	-60	115	90.0
		GNDD088	504815.0	6601194	1825.2	-60	115	237.0
		GNDD088A	504815.621	6601193.811	1825.210	-60	115	265.0
		GNDD089	504635.811	6600285.352	1823.032	-55	133	200.1
		GNDD092	504839.792	6601208.375	1824.849	-60	115	300.0
		GNDD093	504679.396	6600332.075	1827.365	-55	115	209.0

Issued Capital 653.1m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman **Contact** T: +61 8 6380 9235 E: admin@challengerex.com

Criteria	JORC Code explanation	Commentary						
		GNDD095	504804.597	6601219.844	1826.834	-67	115	203.0
		GNDD096	504666.622	6600602.793	1820.371	-60	115	215.0
		GNDD099	504384.933	6599759.693	1796.525	-60	115	150.0
		GNDD100	504424.250	6599784.711	1796.728	-60	115	120.0
		GNDD101	504781.691	6600986.509	1821.679	-60	115	220.0
		GNDD102	504787.340	6601285.049	1828.549	-57	115	260.0
		GNDD103	504432.004	6599482.162	1788.500	-55	115	299.0
		GNDD105	504701.392	6601025.961	1824.818	-60	115	300.0
		GNDD106	504459.3	6599614.7	1792.9	-55	115	300.0
		GNDD108	504895.0	6601154.9	1824.0	-60	115	200.0
		GNDD109	504792.0	6601026.4	1822.0	-60	115	209.0
		GNDD112	504898.2	6601197.6	1825.8	-60	115	188.0
		GNDD113	504704.7	6601067.1	1826.3	-60	115	230.0
		GNDD114	504436.0	6600111.0	1808.0	-50	115	116.0
		GNDD115	504862.0	6601285.0	1824.4	-60	115	251.0
		GNDD116	504443.7	6599555.8	1789.5	-65	115	269.0
		GNDD117	504436.0	6600111.0	1808.0	-60	115	120.0
		GNDD118	505086.0	6601110.0	1811.2	-60	295	300.0
		GNDD119	504827.0	6601540.0	1837.6	-66	115	115.0
		GNDD120	504408.2	6600102.0	1808.3	-60	110	164.0
		GNDD121	504867.0	6601137.0	1822.1	-57	115	181.0
		GNDD122	504658.0	6600647.6	1816.8	-60	115	250.0
		GNDD123	504822.0	6601512.0	1835.6	-63	130	130.0
		GNDD124	504408.2	6600102.0	1808.3	-70	115	160.0
		GNDD125	505138.0	6601130.0	1808.4	-60	295	300.0
		GNDD126	504719.2	6601148.6	1828.0	-60	115	196.0
		GNDD127	504892.0	6601505.0	1837.0	-55	115	300.0
		GNDD128	504712.3	6601108.0	1827.1	-60	115	230.0
		GNDD129	504636.0	6600284.0	1820.0	-55	185	291.0
		GNDD130	504839.0	6601092.8	1821.4	-60	115	227.0

Issued Capital 653.1m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman **Contact** T: +61 8 6380 9235 E: admin@challengerex.com

Criteria	JORC Code explanation	Commentary						
		GNDD131	504655.5	6600737.1	1818.4	-60	115	280.0
		GNDD132	504822.0	6601358.0	1830.5	-55	115	300.0
		GNDD133	504870.3	6601640.9	1838.5	-60	170	182.0
		GNDD134	504636.0	6600284.0	1820.0	-55	154	290.0
		GNDD135	504846.0	6601548.7	1834.8	-64	350	135.0
		GNDD136	504844.5	6601443.3	1829.3	-55	115	310.0
		GNDD137	504650.0	6600695.0	1818.2	-60	115	370.0
		GNDD138	504888.0	6601538.0	1837.5	-65	350	237.0
		GNDD139	504759.7	6601085.5	1825.3	-60	115	200.0
		GNDD140	504994.4	6601546.3	1835.3	-60	60	230.0
		GNDD141	504788.4	6601251.8	1827.9	-70	115	270.0
		GNDD142	504432.8	6599627.0	1793.2	-62	115	360.0
		GNDD143	504898.2	6601197.6	1825.8	-20	115	120.0
		GNDD144	504964.6	6601519.7	1837.3	-70	40	410.0
		GNDD145	504560.7	6600224.1	1816.1	-64	170	200.0
		GNDD146	504776.1	6601210.3	1827.9	-70	115	350.0
		GNDD147	504964.6	6601519.7	1837.3	-60	355	240.0
		GNDD148	504844.5	6601443.3	1829.3	-24	115	85.5
		GNDD149	504844.5	6601443.3	1829.3	-5	115	88.1
		GNDD150	504850.2	6601523.3	1836.8	-65	350	251.0
		GNDD151	504672.6	6601214.5	1833.6	-60	115	430.0
		GNDD152	504893.0	6601470.0	1835.0	-15	115	165.0
		GNDD153	504693.0	6600984.0	1824.2	-70	115	326.0
		GNDD154	504894.3	6601504.8	1836.3	-65	350	212.0
		GNDD155	504780.1	6601120.2	1824.0	-60	115	420.0
		GNDD156	504839.1	6601401.6	1829.4	-37	115	59.0
		GNDD157	504636.0	6600284.0	1820.0	-55	170	527.0
		GNDD158	504807.6	6601535.3	1837.0	-60	350	170.0
		GNDD159	504907.7	6601149.3	1825.0	-40	115	202.0
		GNDD160	504968.0	6601543.0	1835.4	-55	350	170.0

Issued Capital 653.1m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commentary						
		GNDD161	504667.0	6600820.0	1819.0	-60	115	251.00
		GNDD162	504723.0	6601279.3	1832.1	-60	115	180.00
		GNDD163	504750.3	6601575.5	1840.3	-60	115	180.00
		GNDD164	504673.4	6601523.0	1840.2	-60	115	311.00
		GNDD165	504488.0	6599861.0	1805.4	-10	115	253.80
		GNDD166	504565.3	6600337.7	1819.6	-60	115	327.00
		GNDD167	504730.0	6600879.0	1818.0	-60	115	251.00
		GNDD168	504559.6	6600384.5	1815.5	-60	115	314.00
		GNDD169	504683.8	6601562.4	1841.0	-60	115	416.00
		GNDD170	504663.0	6600335.0	1822.9	-60	170	123.50
		GNDD170A	504663.0	6600335.0	1822.9	-60	170	380.00
		GNDD171	504679.0	6600903.0	1821.0	-70	115	350.00
		GNDD172	504488.0	6599861.0	1805.4	-45	115	119.70
		GNDD173	504694.5	6601336.6	1835.6	-60	115	191.00
		GNDD174	504473.0	6600105.9	1806.4	-11	115	329.50
		GNDD175	504650.3	6601092.5	1829.4	-60	115	353.00
		GNDD176	504734.7	6600655.9	1813.5	-60	115	350.00
		GNDD177	504761.8	6601481.8	1836.2	-60	115	160.00
		GNDD178	504626.0	6600177.0	1823.3	-60	185	145.20
		GNDD179	504405.5	6600183.0	1811.3	-55	170	192.10
		GNDD180	504653.1	6600782.2	1819.1	-60	115	341.00
		GNDD181	504678.0	6600330.0	1824.0	-60	160	400.00
		GNDD182	504666.9	6601128.9	1828.8	-60	115	337.00
		GNDD183	504777.0	6601519.0	1837.3	-65	115	146.00
		GNDD184	504672.7	6601170.3	1830.3	-60	115	321.50
		GNDD185	504730.7	6601408.1	1834.9	-60	115	180.00
		GNDD186	504738.8	6600742.2	1814.0	-60	115	208.00
		GNDD187	504620.9	6601547.6	1843.4	-67	115	320.00
		GNDD188	504658.0	6601044.8	1827.4	-60	115	280.00
		GNDD189	504473.0	6600105.9	1806.4	-29	115	320.00

Issued Capital 653.1m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors** Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman **Contact** T: +61 8 6380 9235 E: admin@challengerex.com

Criteria	JORC Code explanation	Commentary						
		GNDD191	504600.0	6601422.7	1841.1	-70	115	260.00
		GNDD192	504618.4	6600577.7	1818.6	-60	115	260.00
		GNDD193	504689.4	6601427.3	1837.5	-60	115	293.00
		GNRC052	504443.927	6599554.145	1790.676	-60	115	90
		GNRC053	504452.888	6599589.416	1791.660	-60	115	96
		GNRC054	504458.908	6599679.484	1794.408	-60	115	90
		GNRC055	504461.566	6599726.253	1795.888	-60	115	102
		GNRC056	504463.187	6599763.817	1796.276	-60	115	102
		GNRC057	504453.440	6599901.106	1800.270	-60	115	96
		GNRC058	504716.992	6600488.640	1825.624	-60	115	102
		GNRC059	504785.101	6600721.845	1817.042	-60	115	84
		GNRC061	504963.888	6601521.567	1835.635	-60	115	30
		GNRC062	504943.260	6601531.855	1834.917	-60	115	30
		GNRC063	504914.884	6601499.583	1833.781	-60	115	36
		GNRC064	504895.067	6601472.101	1833.039	-60	115	36
		GNRC065	504865.673	6601481.570	1831.536	-60	115	60
		GNRC066	504896.480	6601506.894	1834.226	-60	115	48
		GNRC067	504911.268	6601541.124	1836.127	-60	115	50
		GNRC068	504990.546	6601552.694	1835.287	-60	030	114
		GNRC069	504934.855	6601579.782	1836.179	-60	115	120
		GNRC070	504925.545	6601566.505	1835.127	-60	350	84
		GNRC071	504878.397	6601572.030	1833.873	-60	350	54
		GNRC072	504877.872	6601568.814	1833.843	-70	350	72
		GNRC075	504842.742	6601573.984	1835.428	-60	350	60
		GNRC076	504828.279	6601539.638	1835.244	-60	115	76
		GNRC078	504842.744	6601450.106	1830.180	-60	115	70
		GNRC080	504864.734	6601560.758	1834.333	-60	115	86
		GNRC081	504815.835	6601460.850	1832.033	-73	115	86
		GNRC084	504965.730	6601530.280	1836.056	-55	030	145
		GNRC086	504838.724	6601402.481	1829.645	-60	115	60

Issued Capital 653.1m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman **Contact** T: +61 8 6380 9235 E: admin@challengerex.com

Criteria	JORC Code explanation	Commentary							
		GNRC087	504858.585	6601345.400	1828.417	-60	115	30	
		GNRC090	504821.284	6601359.986	1829.379	-60	115	60	
		GNRC091	504789.111	6601376.410	1830.448	-60	115	80	
		GNRC094	504852.454	6601307.187	1827.304	-60	115	60	
		GNRC097	504831.396	6601289.723	1827.153	-60	115	70	
		GNRC098	504784.865	6601253.409	1827.869	-76	115	96	
		GNRC104	504780.186	6601228.313	1827.663	-64	115	150	
		GNRC107	504623.1	6600197.1	1823.3	-60	185	120	
		GNRC110	504502.0	6600107.0	1814.0	-62	90	60	
		GNRC111	504427.8	6599739.8	1796.4	-60	115	120	
Drill sample recovery	- Method of recording and assessing core and chip sample recoveries and results assessed.		ed into wooden boxe run. These depths a	•	•				
	 Measures taken to maximise sample recovery and ensure representative nature of the samples. 	Triple tube drilling has been being done by CEL to maximise core recovery.							
-	- Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	RC sub-samples are collected from a rotary splitter mounted to the face sample recovery cyclone. A 2-4 kg sub-samples is collected for each metre of RC drilling. Duplicate samples are taken at the rate of I every 25-30 samples using a riffle splitter to split out a 2-4 kg sub-sample. The whole sample recovered weighed to measure sample recovery and consistency in sampling.							
		A possible relationship has been observed between historic sample recovery and Au Ag or Zn grade whereby low recoveries have resulted in underreporting of grade. Insufficient information is not yet available to more accurately quantify this. Core recovery is influenced by the intensity of natural fracturing in the rock. A positive correlation between recovery and RQD has been observed. The fracturing is generally post mineral and not directly associated with the mineralisation.							
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation mining studies 	Detailed logs are available for most of the historical drilling. Some logs have not been recovered. No core photographs from the historic drilling have been found. No drill core has survived due to poor storage and neglect. No RC sample chips have been found.							
	 and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean channel etc) photography. The total length and percentage of the relevant intersections logged. 	For CEL drilling, all the core is logged for recovery RQD weathering lithology alteration mineralization and structure to a level that is suitable for geological modelling resource estimation and metallurgical test work. RC drill chips are logged for geology, alteration and mineralisation. Where possible logging is quantitative. Geological logging is done in MS Excel in a format that can readily be transferred to a database which holds all drilling logging sample and assay data.							

Challenger Exploration Limited
ACN 123 591 382
ASX: CEL

Issued Capital 653.1m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office

Level 1 1205 Hay Street West Perth WA 6005 Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Contact T: +61 8 6380 9235 E: admin@challengerex.com

Criteria	JORC Code explanation	Commentar	y _							
Sub-sampling techniques and sample preparation	 all core taken. If non-core whether riffled tube sampled rotary split etc and whether sampled wet or dry. For all sample types the nature quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is 		wide bl where vals are age 1.3 been re NDD07	ade chisel o the saw cu e selected k 8m. No seo etained in t 3, duplicate	or a manua ut is to be n based on lit cond-half c he core tra e diamond o es are ¼ co	l core split p hade to ensu hology altera ore samples ys for future core samples. re samples.	ress. The g re half-core ation and m have been reference. s have been	r sampling of eologist loggin e sample repro- nineralization submitted. The collected for ore sample re	ng the core i esentivity. boundaries. he second ha every 25-30	ndicates on Sample alf of the cor m drilled. T
	representative of the in-situ material collected including for instance results for field duplicate/second-half samplina.		n	RSQ	mean		median		variance	
	- Whether sample sizes are appropriate to the grain size of		250	0.004	original	duplicate	original	duplicate	original	duplicate
	the material being sampled.	Au (ppm)	259	0.984	0.315	0.344	0.011	0.008	7.724	10.092
		Ag (ppm)	259	0.984	0.90	0.87	0.21	0.19	14.68	17.64
		Cd (ppm)	259	0.989	4.83	4.29	0.21	0.19	989.15	764.54
		Cu (ppm)	259	0.265	31.08	20.33	3.40	3.30	3.9E+04	1.2E+04
		Fe (%)	259	0.991	1.427	1.407	1.490	1.460	3.2	3.1
		Pb (ppm)	259	0.990	182.9	180.7	15.4	15.4	1.8E+06	2.5E+06
		S (%)	259	0.994	0.411	0.405	0.080	0.080	2.030	1.834
		Zn (ppm) n=count RSQ = R squa	on for	•		689 1 pair, where	85 e Cu results	80 vary significa	2.4.E+07 ntly. Remov	1.8.E+0

Issued Capital 653.1m shares 86.6m options 120m perf shares 16m perf rights

www.challengerex.com

Australian Registered Office

Level 1 1205 Hay Street West Perth WA 6005

Directors

Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commentary								
		2020 Huaillan DD -	Duplicate		• • • • • • • • • • • • • • • • • • •	0 Hualilan DD - Duplica	ate Samples - Ag (pp	m) 2020 / 100000 10000 200	Hualilan DD - Duplicat	
		duplicate RC sa	RC sub-samples over 1m intervals are collected at the drill site from a duplicate RC sample is collected for every 25-30m drilled. The duplicate RC sample results and correlation plots (log scale for Au,							-
			n	RSQ	mean original	duplicate	median original	duplicate	variance original	duplicate
		Au (ppm)	85	0.799	0.101	0.140	0.017	0.016	0.041	0.115
		Ag (ppm)	85	0.691	1.74	2.43	0.59	0.58	13.59	64.29
		Cd (ppm)	85	0.989	15.51	16.34	0.41	0.44	4189	4737
		Cu (ppm)	85	0.975	47.74	53.86	5.80	5.70	2.4E+04	3.1E+04
		Fe (%)	85	0.997	1.470	1.503	0.450	0.410	7.6	7.6
		Pb (ppm)	85	0.887	296.0	350.6	26.3	32.4	6.0E+05	7.4E+05
		S (%)	85	0.972	0.113	0.126	0.020	0.020	0.046	0.062
		Zn (ppm) n=count RSQ = R square	85 ed	0.977	3399	3234	158	177	2.5.E+08	2.1.E+08

Issued Capital 653.1m shares 86.6m options 120m perf shares

16m perf rights

Australian Registered Office

Level 1 1205 Hay Street West Perth WA 6005 **Directors** Mr Kris Knauer, MD and CEO

Mr Scott Funston, Finance Director

Mr Fletcher Quinn, Chairman

Contact T: +61 8 6380 9235 E: admin@challengerex.com

Criteria	JORC Code explanation	Commentary
		2020 Huallian RC - Duplicate Samples - Au (ppm)2020 Huallian RC - Duplicate Samples - Ag (ppm)101
Quality of assay data and laboratory tests	 The nature quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools spectrometers handheld XRF instruments etc the parameters used in determining the analysis including instrument make and model reading times calibrations factors applied and their derivation etc. Nature of quality control procedures adopted (eg standards blanks duplicates external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established. 	The MSA laboratory used for sample preparation in San Juan has been inspected by Stuart Munroe (Exploration Manager) and Sergio Rotondo (COO) prior to any samples being submitted. The laboratory procedures are consistent with international best practice and are suitable for samples from the Project. The ALS laboratory in Mendoza has not yet been inspected by CEL representatives. Internal laboratory standards were used for each job to ensure correct calibration of elements. CEL submit blank samples (cobble and gravel material from a quarry nearby to Las Flores San Yuan) to both the MSA laboratory and the ALS laboratory which were strategically placed in the sample sequence immediately after samples that were suspected of containing high grade Au Ag Zn or Cu to test the lab preparation contamination procedures. The values received from the blank samples suggest rare cross contamination of samples during sample preparation.


Issued Capital 653.1m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office

Level 1 1205 Hay Street West Perth WA 6005 **Directors** Mr Kris Knauer, MD and CEO

Mr Scott Funston, Finance Director

Mr Fletcher Quinn, Chairman

Contact T: +61 8 6380 9235 E: admin@challengerex.com

Issued Capital 653.1m shares 86.6m options 120m perf shares

16m perf rights

Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

e Directors

Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman **Contact** T: +61 8 6380 9235 E: admin@challengerex.com

Criteria JORC Code explanation	Commentary
	For GNDD001 – GNDD010 samples analysed by MSA in 2019, three different Certified Standard Reference pulp samples (CRM) with known values for Au Ag Pb Cu and Zh have been submitted with samples of drill core to test the precision and accuracy of the analytic procedures and the third. 26 reference analyses were analysed in the standards were only used 4 times each and the third. 26 reference analyses were analysed in the standards were only used 4 times each and the third. 26 reference analyses were analysed in the samples submitted in 2019. For CRM 2 one sample returned an Au value > 25 D below the certified value. All other analyses are within 250 of the expected value. The standards demonstrate suitable precision and accuracy of the analytic proceed. No systematic bias is observed.

Issued Capital 653.1m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office

Level 1 1205 Hay Street West Perth WA 6005 **Directors** Mr Kris Knauer, MD and CEO

Mr Scott Funston, Finance Director

Mr Fletcher Quinn, Chairman

Contact T: +61 8 6380 9235 E: admin@challengerex.com

submitted with samples of drill core to test the precision and accuracy of the analytic p the MSA and ALS. In the results received to date there has been no observed bias in re The standards demonstrate suitable precision and accuracy of the analytic process. No observed. A summary of the standard deviations from the expected values for CRM's summarised below. Generally, an average of standard deviations close to zero indicate accuracy and a low range of standard deviations with a low fail count indicates a high A fail is defined as a value that is outside +/- 2 standard deviations from the expected values of the standard deviations from the expected values are precised of the standard deviations from the expected values for CRM's summarised below.	teria	JORC Code explanation	Commentary
For drill holes from GNDD11 and unsampled intervals from the 2019 drilling, six differ Standard Reference pulp samples of drill core to test the precision and accuracy of the analytic the MSA and ALS. In the results received to date there has been no observed bias in the samples of drillic ore to test the precisions from the expected values for CMSA and the results received to date there has been no observed bias in the samples of drillic ore to test the precisions from the expected values for CMSA and the results received to date there has been no observed bias in the samples of drillic ore to test the precisions from the expected values for CMSA and the value of the analytic parameter deviations with a low frail count indicates a high a fail is defined as a value that is outside +/- 2 standard deviations from the expected values for CMSA and a curvery of the analytic parameter deviations with a low fail count indicates a high a fail is defined as a value that is outside +/- 2 standard deviations from the expected values for CMSA and a curvery of the analytic parameter deviations with a low fail count indicates a high a fail is defined as a value that is outside +/- 2 standard deviations from the expected values for CMSA and a fail is defined as a value that is outside +/- 2 standard deviations from the expected values for CMSA and a curvery of the analytic parameter deviations with a low fail count indicates a high a fail is defined as a value that is outside +/- 2 standard deviations from the expected values for CMSA and a standard deviations from the expected values for CMSA and the standard deviations from the expected values for CMSA and the value fail count indicates a high a fail is defined as a value that is outside +/- 2 standard deviations from the expected values for CMSA and the value fail count indicates a high a fail is defined as a value that is outside +/- 2 standard deviations from the expected values for CMSA and the value fail count indicates a high a fail is defined as a value that is outsi			CRM3 - Au (ppm) - mean +/- 2SD
For drill holes from GNDD11 and unsampled intervals from the 2019 drilling, six differ Standard Reference pulp samples (CRM) with hown values from the 2019 drilling, six differ the MSA and ALS. In the results received to date there has been no observed bias in the submitted with samples of drill core to test the precision and accuracy of the analytic of the MSA and ALS. In the results received to date there has been no observed bias in the standard deviations from the expected values for CRMS submitted with samples of standard deviations from the expected values for CRMS submitted with samples of standard deviations from the expected values for CRMS submitted with samples of standard deviations from the expected values for CRMS submitted with samples of standard deviations from the expected values for CRMS submitted with samples of standard deviations from the expected values for CRMS submitted with a sample of standard deviations from the expected values for CRMS submitted with a sample of standard deviations from the expected values for CRMS submitted with a sample of standard deviations from the expected values for CRMS submarised below. Generally, an average of standard deviations from the expected values for CRMS submarised below. Generally, an average of standard deviations from the expected values for CRMS submarised below. Generally, an average of standard deviations from the expected values for CRMS submarised below. Generally, an average of standard deviations from the expected values for CRMS submarised below. Generally, an average of standard deviations from the expected values for CRMS submarised below. Generally, an average of standard deviations from the expected values for CRMS submarised below. Generally, an average of standard deviations from the expected values for CRMS submarised below. Generally, an average of standard deviations from the expected values for CRMS submarised below. Generally, an average of standard deviations from the expected values for CRMS submarise			
For drill holes from GNDDD11 and unsampled intervals from the 2D19 drilling, six differ Standard Gerence pulp samples (CRM) with known values for ALB of Standard deviations from the expected values for CRMS and ALS.			
CRM3 - Ag (pm) - mem +/- 250 (CM3 - 2n (pm) - mem +/- 201 - mm + 2n (pm) - mm +			1.100
CRM3 - 2n (ppm) - mean +/- 230 CRM3 - 2n (ppm) - mean +/- 23			1.050
For drill holes from GNDDD11 and unsampled intervals from the 2019 drilling, six differs Standard Reference pulp samples (RM) with hown values for Au Ag Fe S Pb Cu and Z submitted with samples of drill core to test the precision and accuracy of the analytic precision accuracy of the analytic precision and accuracy of the anal			1.000
CRM3 - Ag (ppm) - mean +/- 250			0.950
CRM3 - Ag (ppm) - mean +/- 25D CRM3 - Ag (ppm) - mean +/- 25D CRM3 - Ag (ppm) - mean +/- 25D CRM3 - Zn (ppm) - mean +/- 25D			
For drill holes from GNDDD11 and unsampled intervals from the 2019 drilling, six differs Standard Reference pulp samples (CRM) with known values for Au Ag Fe S Pb Cu and Z submitted with samples of drill core to test the precision and accuracy of the analytic process. M observed. A summary of the standard deviations from the expected values for CRMS summarised below. Generally, an average of standard deviations from the expected values for CRMS summarised below. Generally, an average of standard deviations from the expected values for CRMS summarised below. Generally, an average of standard deviations from the expected values for CRMS summarised below. Generally, an average of standard deviations from the expected values for CRMS summarised below. Generally, an average of standard deviations from the expected values for CRMS summarised below. Generally, an average of standard deviations from the expected values for CRMS summarised below. Generally, an average of standard deviations from the expected values for CRMS summarised below. Generally, an average of standard deviations from the expected values for CRMS summarised below. Generally, an average of standard deviations from the expected values for CRMS summarised below. Generally, an average of standard deviations from the expected values for CRMS summarised below. Generally, an average of standard deviations from the expected values for CRMS summarised below. Generally, an average of standard deviations form the expected values for CRMS summarised below. Generally, an average of standard deviations form the expected values for CRMS summarised below. Generally, an average of standard deviations form the expected values for CRMS summarised below. Generally, an average of standard deviations form the expected values for CRMS summarised below.			
CtM3 - Ag (ppm) - mean +/- 250			
For drill holes from GNDD011 and unsampled intervals from the 2019 drilling, six differ Standard Reference pulp samples (CRM) with known values for Au Ag Fe S Pb Cu and Z submitted with samples of drill core to test the precision and accuracy of the analytic process. No observed. A summary of the standard deviations from the expected values for CRMS a summarised below. Generally, an average of standard deviations from the expected values for CRMS a summarised below. Generally, an average of standard deviations from the expected values for CRMS a summarised below. Generally, an average of standard deviations with a low fail count indicates a high A fail is defined as a value that is outside +/-2 standard deviations from the expected values for CRMS a summarised below.			
For drill holes from GNDD011 and unsampled intervals from the 2019 drilling, six differs Standard Reference pulp samples (CRM) with known values for Au Ag Fe S Pb Cu and 2 submitted with samples of drill core to test the precision and accuracy of the analytic the MSA and ALS. In the results received to date there has been no observed bias in rot The standard deviations from the expected values for CRM's summarised below. Generally, an average of standard deviations from the expected values for CRM's summarised below. Generally, an average of standard deviations from the expected values for CRM's summarised below. Generally, an average of standard deviations from the expected values for CRM's summarised below. Generally, an average of standard deviations from the expected values for CRM's summarised below. Generally, an average of standard deviations from the expected values for CRM's summarised below. Generally, an average of standard deviations from the expected values for CRM's summarised below. Generally, an average of standard deviations from the expected values for CRM's summarised below. Generally, an average of standard deviations from the expected values for CRM's summarised below. Generally, an average of standard deviations from the expected values for CRM's summarised below. Generally, an average of standard deviations from the expected values for CRM's summarised below. Generally, an average of standard deviations from the expected values for CRM's summarised below. Generally, an average of standard deviations from the expected values for CRM's summarised below. Generally, an average of standard deviations from the expected values for CRM's summarised below. Generally, an average of standard deviations from the expected values for CRM's summarised below. Generally, an average of standard deviations from the expected values for CRM's summarised below. Generally, an average of standard deviations from the expected values for CRM's summarised below. Generally, anaverage of standard deviations from t			
For drill holes from GNDD011 and unsampled intervals from the 2019 drilling, six differ Standard Reference pulp samples (CRM) with known values for Au Ag Fe S Pb Cu and Z submitted with samples of drill core to test the precision and accuracy of the analytic process. No observed. A summary of the standard deviations from the expected values for CRM's summarised below. Generally, an average of standard deviations from the expected of a low range of standard deviations fro			
For drill holes from GNDD011 and unsampled intervals from the 2019 drilling, six differ Standard Reference pulp samples (CRM) with known values for Au Ag Fe S Pb Cu and Z submitted with samples of drill core to test the precision and accuracy of the analytic process. No observed. A summary of the standard deviations from the avoid the standard deviations strom the avoid the avoid the avoid the standard deviations with a low fail count indicates a high A fail is defined as a value that is outside +/- 2 standard deviations from the expected of the avoid the standard deviations from the expected of the avoid the standard deviations from the expected of the avoid the standard deviations from the expected of the standard deviations from the expected of the avoid the standard deviations from the expected of the standard deviations from the expected of the avoid the a			
For drill holes from GNDD011 and unsampled intervals from the 2019 drilling, six differ Standard Reference pulp samples (CRM) with known values for Au Ag Fe S Pb Cu and Z submitted with samples of drill core to test the precision and accuracy of the analytic process. No observed. A summary of the standard deviations close to zero indicate a high A fail is defined as a value that is outside +/- 2 standard deviations from the expected of A fail is defined as a value that is outside +/- 2 standard deviations from the expected of A fail is defined as a value that is outside +/- 2 standard deviations from the expected of A fail is defined as a value that is outside +/- 2 standard deviations from the expected of A fail is defined as a value that is outside +/- 2 standard deviations from the expected of A fail is defined as a value that is outside +/- 2 standard deviations from the expected of A fail is defined as a value that is outside +/- 2 standard deviations from the expected of A fail is defined as a value that is outside +/- 2 standard deviations from the expected of A fail is defined as a value that is outside +/- 2 standard deviations from the expected of A fail is defined as a value that is outside +/- 2 standard deviations from the expected of A fail is defined as a value that is outside +/- 2 standard deviations from the expected of A fail is defined as a value that is outside +/- 2 standard deviations from the expected of A fail is defined as a value that is outside +/- 2 standard deviations from the expected of A fail is defined as a value that is outside +/- 2 standard deviations from the expected of A fail is defined as a value that is outside +/- 2 standard deviations from the expected of A fail is defined as a value that is outside +/- 2 standard deviations from the expected of A fail is defined as a value that is outside +/- 2 standard deviations from the expected of A fail is defined as a value that is outside +/- 2 standard deviations from the expected of A fail is defined as a value that is ou			
The MSA and ALS. In the results received to date there has been no observed bias in re the MSA and ALS. In the results received to date there has been no observed bias in re the MSA and ALS. In the results received to date there has been no observed bias in re the MSA and ALS. In the results received to date there has been no observed bias in re the MSA and ALS. In the results received to date there has been no observed bias in re the MSA and ALS. In the results received to date there has been no observed bias in re the MSA and ALS. In the results received to date there has been no observed bias in re the MSA and ALS. In the results received to date there has been no observed bias in re the MSA and ALS. In the results received to date there has been no observed bias in re the data date deviations from the expected values for CRM's summarised below. Generally, an average of standard deviations from the expected values for CRM's summarised below. Generally, an average of standard deviations from the expected values for CRM's summarised below. Generally, an average of standard deviations from the expected values for CRM's summarised below. Generally, an average of standard deviations from the expected values for CRM's summarised below. Generally, an average of standard deviations from the expected values for CRM's summarised below. Generally, an average of standard deviations from the expected values for CRM's summarised below. Generally, an average of standard deviations from the expected values for CRM's summarised below. Generally, an average of standard deviations from the expected values for CRM's summarised below. Generally, an average of standard deviations from the expected values for CRM's summarised below. Generally, an average of standard deviations from the expected values for CRM's summarised below. Generally, an average of standard deviations from the expected values for CRM's summarised below. Generally, an average of standard deviations from the expected values for CRM's			
For drill holes from GNDD011 and unsampled intervals from the 2019 drilling, six differs the MSA and ALS. In the results received to date there has been no observed bias in the the MSA and ALS. In the results received to date there has been no observed bias in the the many of the standard deviations from the expected values for CRM's summarised below. Generally, an average of standard deviations from the expected values from the expected values for CRM's summarised below. Generally, an average of standard deviations from the expected values from the expected values for CRM's summarised below. Generally, an average of standard deviations from the expected values for CRM's summarised below. Generally, an average of standard deviations from the expected values for CRM's summarised below. Generally, an average of standard deviations from the expected values for CRM's summarised below. Generally, an average of standard deviations from the expected values for CRM's summarised below. Generally, an average of standard deviations from the expected values for CRM's summarised below. Generally, an average of standard deviations from the expected values for CRM's summarised below. Generally, an average of standard deviations from the expected values for CRM's summarised below. Generally, an average of standard deviations from the expected values for CRM's summarised below. Generally, an average of standard deviations from the expected values for CRM's summarised below. Generally, an average of standard deviations from the expected values for CRM's summarised below. Generally, an average of standard deviations from the expected values for CRM's summarised below. Generally, an average of standard deviations from the expected values for CRM's summarised below. Generally, an average of standard deviations from the expected values for CRM's summarised below. Generally, an average of standard deviations from the expected values for CRM's summarised below. Generally, an average of standard deviations from the expected values f			
For drill holes from GNDDD11 and unsampled intervals from the 2019 drilling, six differ Standard Reference pulp samples (CRM) with known values for Au Ag Fe S Pb Cu and Z submitted with samples of drill core to test the precision and accuracy of the analytic process. No observed. A summary of the standard deviations from the expected values for CRM's summarised below. Generally, an average of standard deviations with a low fail count indicates a high of A fail is defined as a value that is outside +/- 2 standard deviations from the expected of the expe			
For drill holes from GNDD011 and unsampled intervals from the 2019 drilling, six differ Standard Reference pulp samples (CRM) with known values for Au Ag Fe S Pb Cu and Z submitted with samples of drill core to test the precision and accuracy of the analytic p the MSA and ALS. In the results received to date there has been no observed bias in the MSA and ALS. In the results received to date there has been no observed bias in the MSA and ALS. In the results received to date there has been no observed bias. No observed. A summary of the standard deviations from the expected values for CRM's summarised below. Generally, an average of standard deviations close to zero indicate a high of A fail is defined as a value that is outside +/- 2 standard deviations from the expected of the expected values from the expected of the expected values of the context of the expected values for CRM's summarised below. Generally, an average of standard deviations from the expected of the expect			
CRM3 - Zn (ppm) - mean +/- 25D CRM3 - Zn (ppm)			9.00
For drill holes from GNDDD11 and unsampled intervals from the 2019 drilling, six differs Standard Reference pulp samples (CRM) with known values for Au Ag Fe S Pb Cu and Z submitted with samples of drill core to test the precision and accuracy of the analytic process. No observed. A summary of the standard deviations from the expected values for CRM's summarised below. Generally, an average of standard deviations close to zero indicate a high of A fail is defined as a value that is outside +/- 2 standard deviations from the expected of the expected values for CRM's summarised below. Generally, an average of standard deviations from the expected of the expecte			0 2 4 6 8 10 12 14 16 18 20
For drill holes from GNDD011 and unsampled intervals from the 2019 drilling, six difference pulp samples (CRM) with known values for Au Ag Fe S Pb Cu and Z submitted with samples of drill core to test the precision and accuracy of the analytic process. No observed. A summary of the standard deviations from the expected values for CRM's summarised below. Generally, an average of standard deviations close to zero indicat accuracy and a low range of standard deviations from the expected values for CRM's for the standard deviations with a low fail count indicates a high of A fail is defined as a value that is outside +/- 2 standard deviations from the expected values for CRM of the standard deviations from the expected values for CRM of the standard deviations from the expected values for CRM's summarised below.			
by the model of th			
bill bill bill bill bill bill bill bill			0.84
A construction of the standard deviations from the expected values for CRM's summarised below. Generally, an average of standard deviations from the expected values for CRM's summarised below. Generally, an average of standard deviations from the expected values of the construction of the standard deviations from the expected values of the construction of the standard deviations from the expected values of cRM's summarised below. Generally, an average of standard deviations from the expected values of the construction of standard deviations from the expected values of the construction of the standard deviations from the expected values of cRM's summarised below. Generally, an average of standard deviations from the expected values of the construction of the standard deviations from the expected values of the construction of the standard deviations from the expected values of the construction of standard deviations from the expected values of the construction of the standard deviations from the expected values of the construction of standard deviations from the expected values of the construction of standard deviations from the expected values of the construction of standard deviations from the expected values of the construction of the constru			
For drill holes from GNDD011 and unsampled intervals from the 2019 drilling, six difference pulp samples (CRM) with known values for Au Ag Fe S Pb Cu and Z submitted with samples of drill core to test the precision and accuracy of the analytic process. No observed. A summary of the standard deviations from the expected values for CRM's summarised below. Generally, an average of standard deviations close to zero indicate accuracy and a low range of standard deviations from the expected values and process. No observed and a low range of standard deviations from the expected values for CRM's summarised below. Generally, an average of standard deviations from the expected values for CRM's summarised below. Generally, an average of standard deviations from the expected values for deviations are avalue that is outside +/- 2 standard deviations from the expected values for the expected values from the expected values for the expected values from the expected values for CRM's summarised below. Generally, an average of standard deviations from the expected values for CRM's summarised below. Generally, an average of standard deviations from the expected values for CRM's summarised below. Generally, an average of standard deviations from the expected values for CRM's summarised below. Generally, an average of standard deviations from the expected values for CRM's summarised below. Generally, an average of standard deviations from the expected values for CRM's summarised below. Generally, an average of standard deviations from the expected values for CRM's summarised below. Generally, an average of standard deviations from the expected values for CRM's summarised below. Generally, an average of standard deviations from the expected values for CRM's summarised below.			
The standards demonstrate suitable precision and accuracy of the analytic process. No observed. A summarised below. Generally, an average of standard deviations from the expected values for CRM's and all so that a source of the analytic process. A fail is defined as a value that is outside +/- 2 standard deviations from the expected values of the expected values for CRM's summarised below.			
0.7402468101214161820For drill holes from GNDD011 and unsampled intervals from the 2019 drilling, six differ Standard Reference pulp samples (CRM) with known values for Au Ag Fe S Pb Cu and Z submitted with samples of drill core to test the precision and accuracy of the analytic process. No observed. A summary of the standard deviations from the expected values for CRM's summarised below. Generally, an average of standard deviations close to zero indicat accuracy and a low range of standard deviations with a low fail count indicates a high of A fail is defined as a value that is outside +/- 2 standard deviations from the expected of			0.78
0 2 4 6 8 10 12 14 16 18 20 For drill holes from GNDD011 and unsampled intervals from the 2019 drilling, six differ Standard Reference pulp samples (CRM) with known values for Au Ag Fe S Pb Cu and Z submitted with samples of drill core to test the precision and accuracy of the analytic p the MSA and ALS. In the results received to date there has been no observed bias in re The standards demonstrate suitable precision and accuracy of the analytic process. No observed. A summary of the standard deviations from the expected values for CRM's summarised below. Generally, an average of standard deviations close to zero indicat accuracy and a low range of standard deviations with a low fail count indicates a high of A fail is defined as a value that is outside +/- 2 standard deviations from the expected values for CRM's accuracy and a low range of standard deviations with a low fail count indicates a high of A fail is defined as a value that is outside +/- 2 standard deviations from the expected values for			0.76
For drill holes from GNDD011 and unsampled intervals from the 2019 drilling, six differ Standard Reference pulp samples (CRM) with known values for Au Ag Fe S Pb Cu and Z submitted with samples of drill core to test the precision and accuracy of the analytic p the MSA and ALS. In the results received to date there has been no observed bias in re The standards demonstrate suitable precision and accuracy of the analytic process. No observed. A summary of the standard deviations from the expected values for CRM's summarised below. Generally, an average of standard deviations close to zero indicate accuracy and a low range of standard deviations with a low fail count indicates a high o A fail is defined as a value that is outside +/- 2 standard deviations from the expected values for the standard deviations from the expected values for the standard deviations from the expected values for the standard deviations from the expected values and a low range of standard deviations from the expected values for the standard deviations with a low fail count indicates a high of the standard deviations from the expected values for the standard for the standard deviations from the expected values for the standard for the standard deviations from the expected values for the standard for the standard d			
Standard Reference pulp samples (CRM) with known values for Au Ag Fe S Pb Cu and Z submitted with samples of drill core to test the precision and accuracy of the analytic p the MSA and ALS. In the results received to date there has been no observed bias in re The standards demonstrate suitable precision and accuracy of the analytic process. No observed. A summary of the standard deviations from the expected values for CRM's summarised below. Generally, an average of standard deviations close to zero indicate accuracy and a low range of standard deviations with a low fail count indicates a high o A fail is defined as a value that is outside +/- 2 standard deviations from the expected values for			0 2 4 6 8 10 12 14 16 18 20
			Standard Reference pulp samples (CRM) with known values for Au Ag Fe S Pb Cu and Zn have submitted with samples of drill core to test the precision and accuracy of the analytic procedu the MSA and ALS. In the results received to date there has been no observed bias in results of The standards demonstrate suitable precision and accuracy of the analytic process. No system observed. A summary of the standard deviations from the expected values for CRM's used is summarised below. Generally, an average of standard deviations close to zero indicates a hig accuracy and a low range of standard deviations with a low fail count indicates a high degree
Standard deviations from the expected value			A fail is defined as a value that is outside +/- 2 standard deviations from the expected value
			Standard deviations from the expected value

Standard deviations from the expected value						
ALS_CRM_04	Count	Maximum	Minimum	Average	Fail Count	
Au_FA_ppm	57	2.78	-0.67	0.75	2	

Issued Capital 653.1m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Contact T: +61 8 6380 9235 E: admin@challengerex.com

Criteria	JORC Code explanation	Commentary					
		Ag_4acid_ppm	56	1.40	-1.40	-0.20	0
		Zn_4acid_ppm	57	2.40	-1.80	0.13	2
		ALS_CRM_05	Count	Maximum	Minimum	Average	Fail Count
		Au_FA_ppm	41	1.26	-2.64	-0.37	3
		Ag_4acid_ppm	50	1.73	-2.18	-0.29	2
		Zn_4acid_ppm	50	1.70	-1.54	0.19	0
		ALS_CRM_06	Count	Maximum	Minimum	Average	Fail Count
		Au_FA_ppm	49	0.87	-2.56	-0.35	2
		Ag_4acid_ppm	50	2.26	-1.84	-0.27	1
		Zn_4acid_ppm	49	0.67	-3.23	-0.99	6
		ALS_CRM_07	Count	Maximum	Minimum	Average	Fail Count
		Au_FA_ppm	29	2.67	-2.50	-0.04	4
		Ag_4acid_ppm	31	0.79	-2.57	-0.78	2
		Zn_4acid_ppm	31	6.04	-0.52	0.92	4
		ALS_CRM_08	Count	Maximum	Minimum	Average	Fail Count
		Au_FA_ppm	29	1.79	-4.36	-1.10	7
		Ag_4acid_ppm	31	3.17	-1.15	0.36	1
		Zn_4acid_ppm	31	2.67	-1.33	0.85	4
		ALS_CRM_09	Count	Maximum	Minimum	Average	Fail Count
		Au_FA_ppm	29	1.51	-4.68	-1.30	10
		Ag_4acid_ppm	31	0.87	-3.26	-0.89	5
		Zn_4acid_ppm	31	2.05	-1.53	0.32	1
			Standaı	rd deviations fro	om the expect	ed value	
		MSA_CRM_04	Count	Maximum	Minimum	Average	Fail Count
		Au_FA_ppm	34	1.57	-1.83	-0.05	0
		Ag_4acid_ppm	34	0.70	-1.00	-0.19	0
		Zn_4acid_ppm	34	2.50	-1.22	0.68	3
		MSA_CRM_05	Count	Maximum	Minimum	Average	Fail Count
		Au_FA_ppm	44	0.58	-2.63	-0.92	1

Issued Capital 653.1m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Contact T: +61 8 6380 9235 E: admin@challengerex.com

Criteria	JORC Code explanation	Commentary								
		Ag_4acid_ppm	44	1.0	3	-1.70	-0.	25	0	
		Zn_4acid_ppm	44	1.8	9	-0.62	0.	67	0	
		MSA_CRM_06	Count	Maximum	Mini	mum	Average	e Fail	Count	
		Au_FA_ppm	42	1.7	2	-1.87	-0.		0	
		Ag_4acid_ppm	42	0.7	3	-1.22	-0.	14	0	
		Zn_4acid_ppm	42	1.6	7	-1.60	0.	03	0	
		MSA_CRM_07	Count	Maximum	Mini	mum	Average	e Fail	Count	
		Au_FA_ppm	32	1.6	7	-1.83	-0.	13	0	
		Ag_4acid_ppm	32	0.5	3	-1.04	-0.	30	0	
		Zn_4acid_ppm	32	2.0	4	-1.57	0.	32	1	
		MSA_CRM_08	Count	Maximum	Mini	mum	Average	e Fail	Count	
		Au_FA_ppm	41	0.8	7	-1.82	-0.	67	0	
		Ag_4acid_ppm	41	1.5	0	-0.73	0.	14	0	
		Zn_4acid_ppm	41	2.4	2	-1.92	0.	00	1	
		MSA_CRM_09	Count	Maximum	Mini	mum	Average	e Fail	Count	
		Au_FA_ppm	36	1.6	1	-1.99	-0.	24	0	
		Ag_4acid_ppm	36	0.9	2	-1.25	-0.	31	0	
		Zn_4acid_ppm	36	2.2	6	-1.26	0.	54	2	
Verification of	- The verification of significant intersections by e	either Repeat sampling of 1	.86 coarse	reject sample	es from 2	019 dril	ling has b	een done	to verify s	ampling.
sampling and	independent or alternative company personne	Original samples wer	e from the	e 2019 DD dri	lling whic	h were	analysed	by MSA (San Juan p	reparation and
assaying	- The use of twinned holes.	Vancouver analysis).	Repeat sa	imples were a	analysed	by ALS (Mendoza	preparat	ion and Va	ancouver
, ,	 Documentation of primary data entry procedul 	res data analysis). The repea	t analysis to	echnique wa	s identica	l to the	original.	The repe	at analyse:	s correlate very
	verification data storage (physical and electror	(a)	analysis). The repeat analysis technique was identical to the original. The repeat analyses correlate very closely with the original analyses providing a high confidence in the sample preparation and analysis from							
	protocols. - Discuss any adjustment to assay data.				-	186 sample pairs for key elements is provided below:				
				Mean	r	Median		Std Devi	ation	
										Correlation
		Element		MSA A	LS M	MSA	ALS	MSA	ALS	coefficient
		Au (FA and GFA pp	m)	4.24	4.27	0.50	0.49	11.15	11.00	0.9972

Issued Capital 653.1m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1

Level 1 1205 Hay Street West Perth WA 6005

 Directors
 Co

 Mr Kris Knauer, MD and CEO
 T:

 Mr Scott Funston, Finance Director
 E:

 Mr Fletcher Quinn, Chairman
 Co

Criteria	JORC Code explanation	Commentary								
		Ag (ICP and ICF ppm)	30.1	31.1	5.8	6.2	72.4	73.9	0.9903	
		Zn ppm (ICP ppm and ICF %)	12312	12636	2574	2715	32648	33744	0.9997	
		Cu ppm (ICP ppm and ICF %)	464	474	74	80	1028	1050	0.9994	
		Pb ppm (ICP ppm and ICF %)	1944	1983	403	427	6626	6704	0.9997	
		S (ICP and ICF %)	2.05	1.95	0.05	0.06	5.53	5.10	0.9987	
		Cd (ICP ppm)	68.5	68.8	12.4	12.8	162.4	159.3	0.9988	
		As (ICP ppm))	76.0	79.5	45.8	47.6	88.1	90.6	0.9983	
		Fe (ICP %)	4.96	4.91	2.12	2.19	6.87	6.72	0.9994	
		REE (ICP ppm)	55.1	56.2	28.7	31.6	98.2	97.6	0.9954	
		Cd values >1000 are set at 1000 REE is the sum off Ce, La, Sc, Y.		is set at 5	00. Below	detectio	n is set at z	ero		
		CEL have sought to twin some of analysis of the twin holes has y GNDD003 – DDH34 and 04HD0 GNRC110 – DDH53 GNDD144 – 05HD39 GNRC107 – GNDD008/008A	et to be co				esults of pi	evious ex	oloration. A full	
		Final sample assay analyses are backed-up and the data copied						-	l files are	
		Assay results summarised in the figures. No assay data have be				een roui	nded appro	opriately to	o 2 significant	
Location of data points	 Accuracy and quality of surveys used to locate of (collar and down-hole surveys) trenches mine wand other locations used in Mineral Resource encodes Specification of the grid system used. 	orkings Argentinian SGM survey. The le	Following completion of drilling collars are surveyed using a differential GPS (DGPS) relative into the Argentinian SGM survey. The locations have been surveyed in POSGAR 2007 zone 2 and converted to WGS84 UTM zone 19s.							
	 Specification of the grid system used. Quality and adequacy of topographic control. 	The drill machine is set-up on the design.	The drill machine is set-up on the drill pad using hand-held equipment according to the proposed hole design.							
		Diamond core drill holes are su are surveyed down hole every :	•				-			

Issued Capital 653.1m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commentary
		rods.
		All current and previous drill collar sites Minas corner pegs and strategic surface points have been surveyed using DGPS to provide topographic control for the Project.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. 	No regular drill hole spacing has been applied across the Project, although a nominal 40m x 40m drill spacing is being applied to infill and extension drilling where appropriate. The current drilling is designed to check previous exploration, extend mineralisation along strike, and provide some information to establish controls on mineralization and exploration potential. No Mineral Resource Estimate to JORC 2012 reporting standards has been made at this time.
	- Whether sample compositing has been applied.	Samples have not been composited.
Orientation of data in relation to	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which 	As far as is currently understood the orientation of sampling achieves unbiased sampling of structures and geology controlling the mineralisation.
geological structure	 this is known considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias this should be assessed and reported if material. 	Drilling has been designed to provide an unbiased sample of the geology and mineralisation targeted.
Sample security	- The measures taken to ensure sample security.	Samples were under constant supervision by site security, senior personnel and courier contractors prior to delivery to the preparation laboratory in San Juan or Mendoza.
Audits or reviews	 The results of any audits or reviews of sampling techniques and data. 	There has not yet been any independent reviews of the sampling techniques and data.

Issued Capital 653.1m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office

Level 1 1205 Hay Street West Perth WA 6005 **Directors** Mr Kris Knauer, MD and CEO

Mr Scott Funston, Finance Director

Mr Fletcher Quinn, Chairman

Contact T: +61 8 6380 9235 E: admin@challengerex.com

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary					
Mineral tenement and land tenure status	 Type reference name/number location and ownership including agreements or material issues with third parties such as joint ventures partnerships overriding royalties native title interests historical sites wilderness or national park and environmental settings. 	extensions). This co There are no royalt Definitive Feasibilit	overs approximatel ies on the project. y Study (DFS).	es 15 Minas (equivalent of y 4 km of strike and inclu CEL is earning a 75% in das) at the Hualilan Proj	udes all of the terest in the P	currently defined	mineralization.
	- The security of the tenure held at the time of	Name	Number	Current Owner	Status	Grant Date	Area (ha)
	reporting along with any known impediments to obtaining a licence to operate in the area.	Cerro Sur					
		Divisadero	5448-M-1960	Golden Mining S.R.L.	Granted	30/04/2015	6
		Flor de Hualilan	5448-M-1960	Golden Mining S.R.L.	Granted	30/04/2015	6
		Pereyra y Aciar	5448-M-1960	Golden Mining S.R.L.	Granted	30/04/2015	6
		Bicolor	5448-M-1960	Golden Mining S.R.L.	Granted	30/04/2015	6
		Sentazon	5448-M-1960	Golden Mining S.R.L.	Granted	30/04/2015	6
		Muchilera	5448-M-1960	Golden Mining S.R.L.	Granted	30/04/2015	6
		Magnata	5448-M-1960	Golden Mining S.R.L.	Granted	30/04/2015	6
		Pizarro	5448-M-1960	Golden Mining S.R.L.	Granted	30/04/2015	6
		Cerro Norte					
		La Toro	5448-M-1960	CIA GPL S.R.L.	Granted	30/04/2015	6
		La Puntilla	5448-M-1960	CIA GPL S.R.L.	Granted	30/04/2015	6

Challenger Exploration Limited ACN 123 591 382 ASX: CEL

Issued Capital 653.1m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street

West Perth WA 6005

Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Contact T: +61 8 6380 9235 E: admin@challengerex.com

			Pique de Ortega Descrubidora Pardo Sanchez Andacollo <i>Mining Lease exter</i> Name Cerro Sur North of "Pizarro" Mine Cerro Norte South of "La Toro" Mine	5448-M-19 5448-M-19 5448-M-19 5448-M-19 5448-M-19	60 CIA 60 CIA 60 CIA 60 CIA 60 CIA 60 CIA 7 CA 1981 Go 5.R	Current Owner	Granted Granted Granted Granted Granted Status Granted Granted	30/04/2015 30/04/2015 30/04/2015 30/04/2015 30/04/2015 Grant date 05/12/2014	6 6 6 6 6 Area (ha) 1.9
			Pardo Sanchez Andacollo Mining Lease exter Name Cerro Sur North of "Pizarro" Mine Cerro Norte South of "La Toro" Mine	5448-M-19 5448-M-19 5448-M-19 nsions (Demas Numbe 195-152-C-	60 CI/ 60 CI/ 60 CI/ fas) at the l r Go 1981 Go S.R	A GPL S.R.L. A GPL S.R.L. A GPL S.R.L. Hualilan Project Current Owner	Granted Granted Granted Status Granted	30/04/2015 30/04/2015 30/04/2015 Grant date 05/12/2014	6 6 6 Area (ha)
			Sanchez Andacollo Mining Lease exter Name Cerro Sur North of "Pizarro" Mine Cerro Norte South of "La Toro" Mine	5448-M-19 5448-M-19 nsions (Demas Numbe 195-152-C-	60 CI <i>I</i> 60 CI <i>I</i> <i>ias) at the I</i> r 1981 Go S.R	A GPL S.R.L. A GPL S.R.L. Hualilan Project Current Owner Iden Mining	Granted Granted Status Granted	30/04/2015 30/04/2015 Grant date 05/12/2014	6 6 Area (ha) 1.9
			Andacollo Mining Lease exte Name Cerro Sur North of "Pizarro" Mine Cerro Norte South of "La Toro" Mine	5448-M-19 nsions (Demas Numbe 195-152-C-	60 CI <i>F</i> ias) at the f r 1981 Go S.R	A GPL S.R.L. Hualilan Project Current Owner Iden Mining	Granted Status Granted	30/04/2015 Grant date 05/12/2014	6 Area (ha)
			Mining Lease exter Name Cerro Sur North of "Pizarro" Mine Cerro Norte South of "La Toro" Mine	nsions (Demas Numbe 195-152-C-	r Go 1981 Go	Hualilan Project Current Owner Iden Mining	Status Granted	Grant date 05/12/2014	Area (ha)
			Name Cerro Sur North of "Pizarro" Mine Cerro Norte South of "La Toro" Mine	Numbe	r 1981 Go S.R	Current Owner	Granted	05/12/2014	1.9
			Cerro Sur North of "Pizarro" Mine Cerro Norte South of "La Toro" Mine	195-152-C-	1981 Go S.R	lden Mining .L.	Granted	05/12/2014	1.9
			North of "Pizarro" Mine Cerro Norte South of "La Toro" Mine		¹⁹⁸¹ S.R	L.			
			"Pizarro" Mine Cerro Norte South of "La Toro" Mine		¹⁹⁸¹ S.R	L.			
			South of "La Toro" Mine	195-152-C-	1981 CI <i>A</i>	A GPL S.R.L.	Granted	05/12/2014	1.9
			Toro" Mine	195-152-C-	1981 CIA	A GPL S.R.L.	Granted	05/12/2014	1.9
				1					
			Exploration licence	e application su	irrounding	the Minas and De	emasias at the l	Hualilan Project	
			Name	Number	State	us Grant Da	te Exp	oiry Date	Area (ha)
			Josefina	30.591.654	Pendin	ig -	5 year	application	2570
			There are no know	/ impediments	to obtainir	ng the exploration	license or ope	rating the Project	t.
Exploration done by other parties	 Acknowledgment and app other parties. 	opraisal of exploration by	Intermittent samp sampling geologic resource estimate exploration no wo	maps reports s plus property	renching d examinati	ata underground ons and detailed s	workings drill h	hole results geoph	hysical survey
			There is 6 km of u	nderground wo	orkings that	t pass through mii	neralised zones	3. Records of the	underground
allenger Exploration Limited N 123 591 382 K: CEL	Issued Capital 653.1m shares 86.6m options 120m perf shares 16m perf rights	Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005	Directors Mr Kris Knauer, MD an Mr Scott Funston, Fina Mr Fletcher Quinn, Ch	d CEO nce Director	Contact F: +61 8 6380 9 E: admin@chall				

Criteria	JORC Code explanation	Commentary
		geology and sampling are currently being compiled and digitised as are sample data geological mapping trench data adit exposures and drill hole results. Geophysical surveys exist but have largely yet to be check located and digitised.
		Drilling on the Hualilan Project (Cerro Sur and Cerro Norte combined) extends to over 150 drill holes. The key historical exploration drilling and sampling results are listed below.
		 1984 – Lixivia SA channel sampling & 16 RC holes (AG1-AG16) totalling 2040m 1995 - Plata Mining Limited (TSE: PMT) 33 RC holes (Hua- 1 to 33) + 1500 samples 1998 – Chilean consulting firm EPROM (on behalf of Plata Mining) systematic underground mapping and channel sampling 1999 – Compania Mineral El Colorado SA ("CMEC") 59 core holes (DDH-20 to 79) plus 1700m RC program 2003 – 2005 – La Mancha (TSE Listed) undertook 7447m of DDH core drilling (HD-01 to HD-48) Detailed resource estimation studies were undertaken by EPROM Ltda. (EPROM) in 1996 and CMEC (1999 revised 2000) both of which were written to professional standards and La Mancha 2003 and 2006. The collection of all exploration data by the various operators was of a high standard and had appropriate sampling techniques intervals and custody procedures were used.
Geology	 Deposit type geological setting and style of mineralisation. 	Mineralisation occurs in all rock types where it preferentially replaces limestone, shale and sandstone and occur in fault zones and in fracture networks within dacitic intrusions.
		The mineralisation has previously been classified as a Zn-Cu distal skarn (or manto-style skarn) with vein-hosted Au-Ag mineralisation. It has been divided into three phases – prograde skarn retrograde skarn and a late quartz- galena event the evolution of the hydrothermal system and mineral paragenesis is the subject of more detailed geometallurgical work.
		Gold occurs in native form and as inclusions with sulphide and pyroxene. The mineralisation also commonly contains pyrite, chalcopyrite sphalerite and galena with rare arsenopyrite, pyrrhotite and magnetite.
		Mineralisation is either parallel to bedding in bedding-parallel faults, in veins or breccia matric within fractured dacitic intrusions, at lithology contacts or in east-west striking steeply dipping siliceous faults that cross the bedding at a high angle. The faults have thicknesses of 1–4 m and contain abundant sulphides. The intersection between the bedding-parallel mineralisation and east-striking cross veins seems to be important in localising the mineralisation.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all 	The following significant intersections have been reported by previous explorers. A cut-off grade of 1 g/t Au equivalent (calculated using a price of US\$1,300/oz for Au, \$15/oz for Ag and \$2,500/t. for Zn) has been used with up to 2m of internal diltion or a cut-off grade of 0.2 g/t Au equivalent and up to 4m of internal diltion has

16m perf rights www.challengerex.com

653.1m shares

86.6m options

120m perf shares

Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors** Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commentary						
	Material drill holes:	been allowed. No meta	allurcial or reco	overy factors hav	ve been used.	Drill collar lo	cation is provided	in the
	- easting and northing of the drill hole collar	previous section.						
	- elevation or RL (Reduced Level – elevation above sea	Hole_id	From (m)	Interval (m)	Au (g/t)	Ag (g/t)	Zn (%)	
	level in metres) of the drill hole collar	AG16	38.6	1.2	0.1	28.6	1.7	
	- dip and azimuth of the hole	MG10	108.0	3.0	1.3	No assay	No assay	
	- down hole length and interception depth	DDH36	24.7	9.3	1.6	46.3	1.2	
	- hole length.	DDH53	17.3	1.4	1.0	1.7	0.00	
	- If the exclusion of this information is justified on the	DDH53	24.0	8.9	3.7	239.5	0.03	
	basis that the information is not Material and this	DDH53	35.7	3.9	3.9	87.8	0.06	
	exclusion does not detract from the understanding of	DDH53	41.0	3.0	2.6	7.6	0.20	
	the report the Competent Person should clearly	DDH54	20.0	1.1	1.2	0.7	0.00	
	explain why this is the case.	DDH54	31.1	8.3	3.9	32.1	0.80	
		DDH65	62.0	8.2	11.0	60.6	1.2	
		DDH65	82.0	1.0	1.8	33.4	0.30	
		DDH66	83.1	7.2	23.7	42.9	2.4	
		DDH66	87.9	2.4	69.9	114.4	2.2	
		DDH66	104.9	2.8	1.8	29.0	0.10	
		DDH67	98.7	1.3	0.2	7.8	1.3	
		DDH68	4.0	17.9	2.2	6.3	0.20	
		DDH68	73.7	0.5	0.8	9.0	1.2	
		DDH69	4.0	16.1	2.3	1.6	0.10	
		DDH69	76.9	0.3	0.1	7.0	28.0	
		DDH69	79.7	0.8	1.3	120.0	4.5	
		DDH70	84.0	7.0	5.2	13.5	0.70	
		DDH71	11.0	2.0	0.5	218.0	0.06	
		DDH71	39.9	1.0	1.3	6.0	0.03	
		DDH71	45.5	1.1	0.4	22.8	0.60	
		DDH71	104.0	10.0	33.5	126.7	7.9	
		DDH72	26.0	11.7	3.8	14.1	1.3	
		DDH72	52.7	6.3	1.5	30.4	0.04	
		DDH73	62.5	3.5	0.5	15.6	0.60	
		DDH74	119.9	0.5	7.3	98.5	2.6	
		DDH76	61.3	0.7	4.0	11.1	0.50	
		DDH76	74.4	4.0	0.8	8.8	0.30	
		DDH76	84.8	1.2	1.4	10.9	2.0	
		DDH78	109.1	0.7	1.1	13.4	1.9	
		03HD01A	90.1	1.7	2.1	37.4	2.4	

Issued Capital 653.1m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commentary						
		03HD03	55.0	2.4	2.5	25.6	2.3	
		04HD05	80.3	2.0	0.9	42.7	0.02	
		04HD05	97.5	1.8	1.9	35.0	0.04	
		04HD05	102.0	1.0	1.3	42.1	0.01	
		04HD05	106.0	1.0	0.7	28.0	0.05	
		04HD05	108.0	5.6	2.8	19.9	1.2	
		04HD06	65.4	1.2	46.6	846.0	0.50	
		04HD06	75.0	1.0	1.0	2.9	0.01	
		04HD06	104.5	7.6	1.8	5.0	1.2	
		04HD06	115.1	0.9	16.4	23.1	7.7	
		04HD07	98.3	2.2	1.4	32.5	0.90	
		04HD10	44.3	0.2	3.9	81.5	5.6	
		04HD10	55.5	0.5	1.3	11.5	0.46	
		04HD10	78.6	1.7	4.8	93.7	2.4	
		04HD11	28.0	1.0	0.1	9.3	1.4	
		04HD12	49.3	0.7	1.5	16.1	0.10	
		04HD13	61.5	1.0	0.8	7.9	0.20	
		04HD15	103.7	0.3	1.7	32.9	0.80	
		04HD16C	107.5	6.8	8.6	117.1	9.1	
		04HD16C	111.8	2.5	7.6	75.6	11.5	
		04HD16C	144.9	1.9	9.1	31.2	5.5	
		04HD16C	171.1	0.4	0.5	9.4	1.7	
		04HD17	134.9	0.7	2.5	14.3	4.1	
		04HD17	139.1	0.5	10.5	9.4	0.20	
		04HD17	199.6	0.2	0.8	3.5	5.9	
		04HD17	202.1	1.9	4.5	1.5	0.70	
		04HD20	43.2	1.8	0.9	83.9	0.20	
		04HD21	70.1	0.2	4.8	60.6	6.4	
		04HD21	141.1	0.6	12.9	105.0	4.8	
		04HD24	72.0	2.0	2.5	3.2	0.04	
		04HD24	83.0	2.0	3.1	25.3	0.04	
		04HD24	94.0	4.2	0.7	21.2	0.10	
		04HD25	92.0	1.7	2.4	51.5	6.3	
		04HD26	21.7	2.3	1.5	32.5	3.0	
		04HD28	42.8	0.4	1.9	4.5	0.10	
		04HD29	37.0	1.0	0.1	112.0	0.01	
		05HD42	90.5	1.0	1.9	6.1	0.03	

Issued Capital 653.1m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Contact T: +61 8 6380 9235 E: admin@challengerex.com

Criteria	JORC Code explanation	Commentary					
		05HD42	115.0	3.0	29.0	103.1	0.20
		05HD43	69.0	1.0	1.8	2.3	0.01
		05HD43	81.0	3.0	2.8	51.5	0.50
		05HD43	90.7	2.3	1.4	29.6	0.30
		05HD44	87.5	1.1	3.8	3.4	0.01
		05HD44	91.2	1.4	0.0	3.6	2.8

From GNDD001 the following significant assay results have been received reported to a cut-off of 1 g/t Au (equivalent) unless otherwise indicated. Drill collar location is provided in the previous section.

Drilling in 2019:

Hole_id	Interval (m)	From	Au (g/t)	Ag (g/t)	Zn (%)	AuEq (g/t)	
GNDD001	10.00	27.00	0.94	4.9	0.33	1.3	(2)
inc	3.00	32.00	2.3	5.8	0.50	2.6	
GNDD002A	5.00	31.00	0.74	2.7	0.67	1.1	
and	3.00	81.50	3.1	8.6	5.8	5.9	
GNDD003	6.10	55.00	34.6	22	2.9	36.2	(1)
GNDD004	20.50	5.50	1.1	5.3	0.45	1.4	(2)
inc	8.47	6.03	2.0	7.8	0.68	2.4	
and	3.43	18.67	1.2	3.2	0.26	1.3	
GNDD005	19.00	29.00	1.3	8.1	0.62	1.6	(2)
inc	2.00	29.00	0.79	18	3.3	2.6	
and	4.00	43.00	5.1	22	0.49	5.6	
and	7.00	59.00	7.8	72	1.4	9.3	
inc	3.00	61.00	16.5	135	1.6	18.8	(1)
and	10.00	75.00	0.75	38	0.27	1.3	(2)
inc	3.00	77.00	1.7	39	0.43	2.3	
inc	1.00	83.00	1.2	156	0.72	3.2	
GNDD006	6.50	78.50	4.2	21	0.29	4.6	
inc	3.80	78.50	6.8	34	0.41	7.4	
and	1.45	90.00	2.1	41	0.92	3.0	
GNDD007	45.92	13.00	0.43	7.8	0.12	0.57	(2)
inc	3.00	45.00	1.9	5.2	0.26	2.0	
inc	3.00	55.00	2.3	35	0.54	2.9	
GNDD007A	27.00	25.00	0.43	7.2	0.09	0.55	(2)
inc	1.80	46.00	2.4	3.1	0.12	2.5	

Challenger Exploration Limited ACN 123 591 382 ASX: CEL

Issued Capital 653.1m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

ria	JORC Code explanation	Commentary									
		and		0.70 6	50.30	().8	25	0.21	1	L.1
		and		6.70 14	49.00	14	1.3	140	7.3	19	9.3
		inc		3.06 15	50.60	27	7.5	260	12.9	36	5.5 (1)
		GNDD007A		0.60 17	76.40	1	L.9	6.7	0.99	2	2.4
		GNDD008	3	5.50	16.50	0.	33	8.1	0.10	0.	46 (2)
		inc		1.00 3	36.00	1	l.7	6.2	0.08	1	L.8
		inc		1.63 4	43.37	1	l.7	8.4	0.14	1	L.9
		inc		1.15 4	17.85	1	L.2	16	0.56	1	l.7
		and		5.70 9	91.00	12	2.3	182	0.67	14	4.7 (1)
		and		1.00 9	99.70	0.	93	43	0.52		L.6
		and		2.40 10	07.00	e	5.3	222	1.9	9	9.7
		GNDD008A	3	5.50	17.50	0.	24	13	0.08	0.	41 (2)
		and	2	0.00	95.00	3	3.3	45	0.55	2	1.1 (2)
		inc		2.64 9	96.60	22	2.8	218	0.68	25	5.5 (1)
		inc	1	0.00 10	05.00	().6	28.2	0.71	1	L.2
		GNDD009			72.00		2.3	102	0.08		3.5
		and		3.00 10	00.00		85	50	0.02		L.4
		and	1	0.32 10	09.10	10).4	28	4.6	12	2.9
		inc		4.22 12	15.20	21	L.9	58	8.7	26	6.7 (1)
		GNDD010	3	2.00	27.00	0.	29	8.6	0.13	0.	45 (2)
		inc		5.00 3	30.00	0.	65	21	0.09	0.	92
		and		1.30 5	55.00	1	L.1	30	0.80	1	L.8
		and		7.22 13	36.00	7	7.5	60	1.1	8	3.7 (2)
		inc		3.00 13	39.00	17	7.7	143	2.5	20).5
		(1) cut-off (2) cut-off Drilling in 2020: Hole_id		u equivaler Au equivale interval (m)		Ag (g/t)	Zn (%)	AuEq (g/t)	Cu (%)	Pb (%)	Note
		GNDD011	81.00	1.00	1.9	43	0.13	2.4	0.01	0.06	
		and	139.80	4.80	1.4	5.7	2.6	2.7	0.01	0.02	
		and	147.20	0.70	9.4	13	6.6	12.6	0.07	0.00	1
		and	151.40	0.50	1.2	5.5	0.25	1.4	0.00	0.00	-
		GNDD012	40.70	1.00	6.3	290	0.12	9.6	0.18	1.2	
		GNDD012	116.40	6.93	1.3	12	2.7	2.7	0.10	0.18	

Issued Capital 653.1m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors** Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commentary									
		inc	122.50	0.83	4.0	61	10.1	9.4	0.21	1.2	
		GNDD014	118.50	7.55	2.4	15	3.6	4.3	0.05	0.16	
		GNDD015	54.00	1.00	0.69	8.6	0.39	1.0	0.03	0.24	
		and	156.00	1.90	1.0	31	2.8	2.7	0.02	0.79	
		GNDD016	64.00	1.00	0.80	27	0	1.1	0.02	0.06	
		and	109.50	5.00	1.8	27	8.3	6.0	0.16	0.01	
		and	116.55	4.45	6.0	83	3.9	8.8	0.13	0.02	
		GNDD017	34.30	1.7	0.31	24	2.0	1.5	0.06	1.0	
		GNDD018	37.75	0.85	1.1	3.6	0.1	1.1	0.01	0.05	
		and	63.20	3.75	7.1	78	3.6	9.6	0.28	3.6	
		inc	64.40	2.55	10.3	114	4.9	13.9	0.41	5.2	1
		GNDD019	24.00	1.90	1.0	5.3	5.3	3.5	0.12	0.03	
		GNDD020	71.25	8.25	17.7	257	0.30	20.7	0.60	0.68	
		inc	74.00	5.50	26.0	355	0.42	30.1	0.05	0.21	1
		GNDD020	83.30	0.65	0.03	2.7	10.70	5.1	0.00	0.02	
		GNDD021	14.80	1.20	11.0	9.0	0.39	11.3	0.01	0.08	1
		and	31.50	0.35	28.1	104	5.8	32.0	0.35	0.12	1
		and	98.20	19.80	0.29	2.2	3.4	1.9	0.01	0.04	2
		inc	98.20	9.80	0.40	4.4	6.8	3.6	0.01	0.07	
		inc	104.20	0.80	0.88	13	22.7	11.7	0.02	0.30	1
		GNDD022	NSI								
		GNDD023	58.00	5.00	0.32	3.7	0.1	1.3	0.01	0.09	
		GNDD024	85.00	6.00	2.5	19	0.15	3.4	0.40	1.4	
		inc	88.00	1.00	14.9	107	0.46	16.3	2.4	8.3	1
		GNDD025	53.00	88.00	0.94	2.3	0.10	1.0	0.00	0.08	2
		inc	61.00	14.00	3.1	5.3	0.19	3.2	0.01	0.11	
		inc	79.00	11.00	1.3	4.1	0.16	1.4	0.00	0.25	
		inc	93.00	1.00	1.1	2.5	0.09	1.1	0.00	0.37	
		inc	113.00	2.00	1.2	4.4	0.02	1.2	0.00	0.01	
		inc	139.00	2.00	0.99	0.50	0.01	1.0	0.00	0.00	
		GNDD026	NSI								
		GNDD027	NSI								
		GNDD028	41.40	18.60	0.21	3.2	2.0	1.2	0.08	0.01	2
		inc	52.00	8.00	0.42	6.0	3.8	2.3	0.18	0.02	
		GNDD029	36.00	12.00	0.17	2.1	0.39	0.38	0.01	0.16	2
		GNDD030	33.00	3.00	0.95	53	0.05	1.6	0.01	0.05	
		GNDD031	32.00	28.00	0.43	5.7	0.15	0.56	0.01	0.04	2

Issued Capital 653.1m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Contact T: +61 8 6380 9235 E: admin@challengerex.com

Criteria	JORC Code explanation	Commentary									
		inc	48.00	1.10	3.3	17	0.34	3.7	0.02	0.33	
		inc	53.00	1.00	4.2	54	0.92	5.3	0.12	0.22	
		GNDD032	9.00	20.00	0.16	6.7	0.09	0.28	0.00	0.02	2
		and	49.00	116.00	1.05	4.0	0.20	1.2	0.01	0.07	2
		inc	77.00	3.00	0.93	33.7	2.1	2.3	0.09	0.02	
		and	101.00	10.00	6.1	18.1	0.11	6.4	0.04	0.47	
		inc	101.00	6.00	9.6	18.7	0.15	9.9	0.05	0.61	1
		and	136.00	4.00	9.8	18.5	1.5	10.7	0.06	0.27	
		GNDD033	NSI								
		GNDD034	47.60	0.30	0.03	1.4	24.4	11.6	0.34	0.04	
		GNDD035	88.75	5.75	9.5	28.7	3.5	11.5	0.10	0.44	
		inc	88.75	3.15	17.1	28.8	5.6	20.1	0.14	0.56	1
		GNDD036	NSI								
		GNDD037	NSI								
		GNDD038	71.50	2.85	0.53	15.6	2.8	2.0	0.06	0.13	
		GNDD042	NSI								
		GNDD044	NSI								
		GNDD045	85.90	2.10	1.4	28.8	0.1	1.7	0.01	0.02	
		GNDD046	82.90	0.45	4.1	27	0.06	4.5	0.01	0.03	
		GNDD046	124.15	2.85	29.5	522	10.8	40.3	0.41	0.25	1
		GNDD047	61.00	38.50	1.3	1.2	0.04	1.3	0.00	0.02	2
		inc	62.50	6.00	6.3	3.5	0.15	6.4	0.01	0.10	
		and	74.10	1.50	1.0	1.9	0.00	1.0	0.00	0.00	
		and	83.55	0.45	7.3	12.2	0.00	7.4	0.00	0.00	
		and	98.50	1.00	1.2	0.8	0.00	1.2	0.00	0.00	
		GNDD048	36.00	19.00	0.6	5.0	0.25	0.8	0.01	0.06	2
		inc	38.00	3.15	2.7	12.1	0.09	2.8	0.03	0.14	
		GNDD049	NSI								
		GNDD050	21.00	22.00	0.21	2.9	0.53	0.5	0.01	0.15	2
		inc	21.00	2.00	1.4	4.8	0.07	1.5	0.01	0.07	
		GNRC051	NSI								
		GNRC052	69	6	1.7	4.4	0.32	1.9	0.03	0.00	
		GNRC053	NSI								
		GNRC054	13	7	0.22	3.9	0.03	0.27	0.00	0.01	2
		and	66	15	0.53	4.0	0.66	0.88	0.01	0.13	2
		inc	77	3	1.3	8.5	1.9	2.3	0.02	0.31	
l		GNRC055	18	7	0.28	6.9	0.04	0.37	0.00	0.01	2

Issued Capital 653.1m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Contact T: +61 8 6380 9235 E: admin@challengerex.com

Criteria	JORC Code explanation	Commentary										
		GNRC056		56	1	2.3	138	0.08	3.8	0.01	0.07	
		GNRC057		37	12	0.06	2.4	0.58	0.36	0.01	0.06	2
		GNRC058	NSI									
		GNRC059	NSI									
		GNRC061	NSI									
		GNRC062		17	3	3.8	7.9	2.7	5.1	0.24	0.17	
		GNRC063		19	1	0.01	0.46	2.8	1.4	0.04	0.01	
		GNRC064		22	1	0.01	4.2	3.8	1.8	0.00	0.00	
		and		27	1	0.69	27	1.2	1.6	0.35	0.23	
		GNRC065		33	6	0.00	2.1	4.9	1.6	0.05	0.01	
		GNRC066	NSI									
		GNRC067	NSI									
		GNRC068		9	69	3.4	8.3	2.8	4.8	0.23	0.08	2
		inc		9	27	7.9	16	7.0	11.4	0.59	0.16	
		and		51	1	1.0	40	0.93	1.9	0.08	0.12	
		and		59	1	1.3	4.9	0.09	1.4	0.00	0.02	
		and		66	2	1.6	1.2	0.02	1.7	0.01	0.00	
		and		72	4	1.9	3.0	0.06	1.9	0.01	0.04	
		GNRC069		18	7	0.62	3.0	0.11	0.71	0.01	0.16	2
		inc		19	1	2.2	8.6	0.15	2.4	0.03	0.59	
		and			10	0.65	5.7	0.37	0.88	0.01	0.03	2
		inc		59	3	1.7	11	0.84	2.3	0.03	0.07	
		and			15	0.54	2.4	0.13	0.63	0.01	0.00	2
		inc		84	4	0.90	5.2	0.36	1.1	0.02	0.01	
		and		96	1	1.0	1.4	0.06	1.0	0.03	0.00	
		GNRC070		41	1	6.6	3.1	0.36	6.8	0.02	0.21	
		GNRC071		48	2	0.45	5.4	2.1	1.5	0.01	0.12	
		GNRC072			19	0.16	4.9	0.13	0.27	0.00	0.09	2
		GNDD073		NSI								
		GNDD074		41	2	1.2	20.5	0.04	1.4	0.00	0.02	
		and		47	2	0.8	16.7	0.13	1.1	0.03	0.03	
		GNRC075			18	0.78	1.6	0.07	18	0.01	0.22	2
		inc		37	2	2.2	1.6	0.08	2	0.01	0.32	
		and		46	2	1.8	2.4	0.08	2	0.00	0.07	
		GNRC076		35	5	12.2	7.2	0.02	12.3	0.01	0.10	
		inc		35	1	53.1	18	0.00	53.3	0.00	0.02	1
		GNDD077	168.	.50 14	.00	0.68	5.9	0.64	1.0	0.01	0.01	2

Issued Capital 653.1m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Contact T: +61 8 6380 9235 E: admin@challengerex.com

Criteria	JORC Code explanation	Commentary									
		inc	168.50	1.00	1.5	59.3	6.6	5.3	0.13	0.08	
		inc	180.60	1.90	1.8	4.9	0.78	2.2	0.02	0.01	
		and	192.90	1.10	0.70	5.5	0.61	1.0	0.02	0.00	
		GNRC078	11	17	0.13	1.7	0.43	0.35	0.01	0.09	2
		inc	12	1	0.74	4.8	0.91	1.2	0.03	0.33	
		GNDD079	21.00	61.00	1.1	1.1	0.11	1.2	0.00	0.02	2
		inc	21.00	9.00	1.9	1.9	0.09	2.0	0.00	0.02	
		inc	40.00	2.00	2.7	1.7	0.08	2.8	0.00	0.06	
		inc	46.00	6.00	5.0	1.2	0.07	5.1	0.00	0.01	
		inc	74.00	3.00	1.0	0.86	0.17	1.1	0.00	0.12	
		GNRC080	NSI								
		GNRC081	23	30	0.28	2.0	0.33	0.46	0.01	0.10	2
		inc	32	5	1.0	3.6	0.73	1.4	0.01	0.20	
		GNDD082	168.00	15.00	0.68	0.39	0.04	0.70	0.00	0.01	2
		inc	168.00	1.00	2.4	0.46	0.11	2.4	0.00	0.02	
		inc	175.00	0.50	10.0	5.6	0.44	10.0	0.01	0.20	
		and	193.40	34.10	1.45	1.0	0.25	0.54	0.02	0.13	2
		inc	193.40	1.00	2.2	7.9	1.6	2.3	0.14	1.7	
		inc	203.50	0.90	2.6	10.6	2.9	4.5	0.16	1.4	
		inc	209.80	2.20	0.59	4.5	0.74	1.6	0.03	0.25	
		and	235.00	31.00	0.4	0.6	0.08	0.4	0.00	0.00	
		inc	242.50	1.50	1.0	2.1	0.21	1.1	0.01	0.01	
		GNDD083	11.00	21.00	0.22	10.0	0.15	0.40	0.00	0.01	2
		inc	19.20	1.80	1.0	6.1	0.10	1.1	0.00	0.00	
		and	170.00	1.00	1.3	3.6	0.22	1.4	0.02	0.26	
		GNRC084	4	1	1.2	2.0	0.07	1.2	0.00	0.06	
		and	41	3	5.2	6.4	5.0	7.6	0.08	0.14	
		and	60	4	3.6	11.6	5.0	6.1	0.02	0.05	
		and	78	21	0.81	2.6	0.08	0.87	0.00	0.00	2
		inc	91	1	6.7	10.7	0.42	7.0	0.01	0.00	
		and	97	2	1.6	1.2	0.03	1.6	0.01	0.00	
		and	143	2	0.67	4.9	0.87	1.1	0.00	0.01	
		GNDD085	22.50	1.30	5.47	75.6	0.08	6.3	0.01	0.09	
		and	39.30	2.20	2.11	2.4	0.55	2.40	0.01	0.24	
		GNRC086	3	21	0.38	1.5	0.33	0.55	0.01	0.08	2
		inc	4	1	0.85	3.4	0.89	1.3	0.03	0.27	
		and	22	2	2.9	1.9	0.08	3.0	0.01	0.03	

Issued Capital 653.1m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Contact T: +61 8 6380 9235 E: admin@challengerex.com

Criteria	JORC Code explanation	Commentary									
		GNRC087	22	4	0.65	15.9	0.26	0.95	0.00	0.04	
		GNDD088	45.05	23.45	0.07	0.23	0.53	0.33	0.00	0.01	2
		and	90.50	1.50	1.8	0.10	0.01	1.8	0.00	0.00	
		and	224.00	39.00	5.5	2.0	0.30	5.7	0.01	0.00	2
		incl	231.50	14.40	14.4	3.3	0.67	14.8	0.00	0.00	
		incl	238.50	7.40	23.4	5.7	1.27	24.1	0.01	0.01	1
		GNDD089	20.00	30.00	0.95	1.69	0.09	1.0	0.00	0.02	2
		inc	22.00	2.00	1.4	2.7	0.18	1.5	0.00	0.00	
		inc	30.50	1.70	2.9	2.3	0.12	3.0	0.00	0.01	
		inc	40.00	10.00	1.4	0.55	0.09	1.4	0.00	0.02	
		and	94.50	21.70	0.88	1.59	0.43	1.1	0.00	0.04	2
		inc	94.50	5.10	2.4	1.6	0.06	2.4	0.01	0.07	
		inc	102.50	1.50	1.9	1.5	0.15	2.0	0.01	0.03	
		inc	109.00	1.50	1.8	11.3	0.32	2.0	0.01	0.16	
		GNRC090	7	13	0.35	2.7	0.25	0.50	0.01	0.07	2
		inc	14	1	1.1	7.3	0.45	1.4	0.02	0.21	
		GNRC091	30	24	0.38	3.7	0.20	0.51	0.01	0.10	2
		inc	43	4	1.4	3.5	0.40	1.6	0.01	0.36	
		GNDD092	164.50	9.00	0.29	0.72	0.12	0.36	0.00	0.05	2
		and	213.00	17.00	0.23	0.63	0.06	0.27	0.00	0.04	2
		and	257.50	1.00	3.6	5.9	0.60	3.9	0.05	0.21	
		GNDD093	75.30	1.40	2.1	10.6	7.8	3.8	0.18	0.22	
		and	153.65	0.50	1.4	7.3	0.17	1.6	0.11	0.03	
		GNRC094	13	12	0.83	4.6	0.44	1.1	0.01	0.06	2
		inc	13	1	1.1	6.3	0.17	1.2	0.02	0.12	
		inc	17	1	8.3	20.6	0.27	8.6	0.06	0.52	
		inc	23	1	0.21	4.5	3.8	2.0	0.01	0.03	
		GNDD095	47.00	17.47	0.28	1.0	0.44	0.50	0.02	0.09	2
		inc	50.00	1.30	1.0	0.92	2.8	2.4	0.18	0.61	
		and	121.00	1.00	2.6	1.7	0.01	2.6	0.00	0.00	
		GNRC097	49	8	0.39	2.2	0.04	0.4	0.00	0.02	2
		inc	50	1	1.1	2.8	0.03	1.2	0.00	0.03	
		GNRC098	40	19	0.21	1.8	0.19	0.32	0.01	0.16	2
		and	88	8	4.9	4.5	0.76	5.3	0.02	0.07	2
		inc	88	2	15.6	15.9	2.8	17.0	0.07	0.20	2
		inc	94	2	2.6	1.2	0.13	2.7	0.00	0.03	
		GNDD099	53.00	2.80	0.42	19.8	2.0	1.6	0.09	0.33	

Issued Capital 653.1m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Contact T: +61 8 6380 9235 E: admin@challengerex.com

Criteria	JORC Code explanation	Commentary									
		and	64.00	0.90	3.1	9.7	0.22	3.3	0.01	0.01	
		and	101.00	1.00	2.9	64.4	0.04	3.6	0.01	0.04	
		GNDD100	NSI								
		GNDD102	36.00	11.00	0.59	3.2	0.18	0.71	0.01	0.11	2
		inc	36.00	2.00	1.5	5.9	0.13	1.6	0.01	0.14	
		and	77.40	8.90	0.10	2.5	0.82	0.52	0.01	0.06	2
		inc	84.30	0.90	-	1.3	3.3	1.6	0.02	0.03	
		GNDD103	NSI								
		GNRC104	141	1	45.6	40.0	2.6	47.2	0.25	3.4	1
		GNDD106	100.00	25.00	0.66	0.29	0.01	0.67	0.00	0.00	2
		inc	114.00	1.50	1.8	1.7	0.01	1.8	0.00	0.00	
		inc	121.00	4.00	2.6	0.34	0.01	2.6	0.00	0.00	
		and	141.35	1.05	1.2	2.8	0.84	1.6	0.01	0.01	
		and	205.00	8.00	0.48	1.0	0.02	0.50	0.00	0.00	2
		inc	211.00	2.00	1.1	2.2	0.03	1.1	0.00	0.00	
		GNRC107	16	27	3.6	14.8	0.25	3.9	0.01	0.1	2
		inc	23	1	0.17	74.4	0.07	1.0	0.01	0.1	
		inc	29	2	1.2	12.2	0.06	1.3	0.01	0.1	
		inc	35	7	13.3	12.6	0.80	13.8	0.02	0.3	
		and	52	1	0.18	73.2	0.11	1.0	0.00	0.1	
		and	93	1	0.12	51.2	3.1	2.1	0.03	0.65	
		GNRC110	11	44	2.8	62.7	0.05	3.6	0.01	0.25	2
		inc	12	1	1.7	1.0	0.00	1.7	0.00	0.04	
		inc	20	11	1.8	37.2	0.02	2.2	0.01	0.37	
		inc	36	12	8.3	190	0.12	10.4	0.02	0.51	
		inc	41	3	27.3	613	0.05	34.1	0.03	0.87	1
		GNRC111	31	18	0.31	12.2	0.13	0.50	0.01	0.03	2
		inc	33	1	1.3	59.4	0.02	2.0	0.01	0.27	
		inc	41	1	2.1	82.7	0.01	3.0	0.01	0.10	
		GNDD114	64.00	14.70	3.2	3.3	0.08	3.3	0.01	0.06	
		inc	77.80	0.90	50.3	27.2	0.18	50.7	0.03	0.65	
		GNDD116	27.50	4.50	1.3	14.6	0.06	1.5	0.00	0.02	2
		inc	27.50	1.00	3.7	41.4	0.13	4.3	0.01	0.05	
		and	73.70	0.80	2.4	3.9	0.26	2.5	0.00	0.00	
		GNDD117	30.00	54.80	0.58	4.2	0.13	0.68	0.01	0.07	2
		inc	61.00	10.00	2.5	10.2	0.16	2.7	0.01	0.14	
		inc	84.20	0.60	1.4	4.1	0.11	1.5	0.01	0.02	

Issued Capital 653.1m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Contact T: +61 8 6380 9235 E: admin@challengerex.com

Criteria	JORC Code explanation	Commentary									
		and	106.70	0.40	8.5	43.4	3.3	10.5	0.25	2.92	1
		GNDD119	52.40	0.80	0.21	17.4	4.2	2.4	0.03	0.25	
		GNDD120	NSI								
		GNDD123	21.00	30.00	0.11	1.6	0.32	0.28	0.01	0.04	2
		GNDD124	44.00	7.00	0.08	3.6	0.65	0.42	0.02	0.13	2
		GNDD127	NSI								
		GNDD129	15.00	21.00	0.72	1.8	0.10	0.79	0.00	0.05	2
		inc	24.00	10.00	1.0	2.1	0.13	1.1	0.00	0.04	
		and	132.50	0.70	6.7	14.1	0.15	7.0	0.01	0.12	
		GNDD134	17.70	15.30	0.80	7.5	0.07	0.91	0.00	0.11	2
		inc	19.00	10.00	1.04	9.9	0.08	1.2	0.01	0.12	
		and	47.00	39.75	0.26	0.5	0.10	0.31	0.00	0.04	2
		and	129.50	7.50	0.45	0.5	0.06	0.48	0.00	0.02	2
		and	161.00	20.00	0.29	3.6	0.23	0.44	0.01	0.03	2
		inc	177.50	0.50	3.79	29.8	5.23	6.6	0.16	0.10	
		and	196.00	4.00	5.3	86.2	10.60	11.3	0.24	0.57	
		and	240.00	2.00	6.2	1.3	0.02	6.2	0.00	0.00	
		and	272.00	50.00	0.22	0.5	0.14	0.29	0.00	0.00	2
		and	500.10	0.95	2.3	8.1	0.16	2.4	0.21	0.00	
		and	519.00	20.00	0.73	0.7	1.80	1.6	0.02	0.00	2
		inc	529.50	2.90	4.7	3.6	11.6	10.2	0.12	0.00	
		and	560.25	17.75	0.20	0.7	0.38	0.39	0.01	0.00	2
		inc	560.25	0.75	0.09	2.0	4.94	2.4	0.05	0.00	
		inc	570.20	0.50	1.22	9.6	2.36	2.4	0.17	0.02	
		and	630.30	0.70	0.9	1.6	0.21	1.0	0.18	0.00	
		GNDD141	101.50	6.50	14.3	43.6	3.4	16.4	0.15	1.6	2
			101.50	2.50	36.8	111	8.6	42.1	0.30	4.2	1
		GNDD142	55.8	0.7	0.7	13.3	4.0	2.8	0.05	0.03	
		and	81.5	27.5	2.4	11.1	0.9	3.0	0.03	0.06	2
		inc	92.0	11.5	5.4	19.9	2.0	6.5	0.08	0.13	
		inc	107.0	2.0	0.9	5.3	0.2	1.0	0.00	0.03	
		and	125.0	11.0	0.3	3.2	0.1	0.39	0.00	0.01	2
		inc	132.9	1.1	1.6	4.6	0.1	1.7	0.01	0.08	
		and	152.0	40.0	5.1	11.7	1.9	6.2	0.05	0.12	2
		inc	153.1	1.0	23.4	40.1	13.5	30.2	0.34	0.00	1
		inc	160.0	10.7	10.7	28.4	4.9	13.3	0.13	0.15	
		inc	166.2	4.5	23.9	41.3	11.0	29.5	0.29	0.27	1

Issued Capital 653.1m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman **Contact** T: +61 8 6380 9235 E: admin@challengerex.com

teria	JORC Code explanation	Commentary									
		inc	177.2	12.8	5.2	9.3	0.7	5.7	0.02	0.24	
		inc	187.1	1.0	44.0	53.8	6.5	47.6	0.15	2.1	1
		and	237.0	0.5	1.1	2.7	0.1	1.2	0.01	0.17	
		bulk	81.5	110.5	2.5	7.4	0.9	3.0	0.03	0.06	
		intersect									2
		GNDD145	NSI								
		GNDD148	16.00	7.00	0.14	1.7	0.43	0.37	0.01	0.18	2
		and	59.00	2.00	0.00	1.0	2.7	1.3	0.01	0.01	
		GNDD149	8.00	4.00	0.63	1.5	0.28	0.78	0.01	0.07	
		GNDD157	20.00	66.00	0.52	1.1	0.08	0.57	0.00	0.07	2
		inc	54.00	10.00	2.2	1.8	0.14	2.3	0.00	0.24	
		and	132.90	10.00	0.18	6.6	0.52	0.49	0.01	0.08	2
		inc	132.90	0.50	0.88	13.1	1.4	1.7	0.03	0.67	
		inc	142.30	0.60	1.0	29.1	6.6	4.4	0.11	0.33	
		and	237.20	130.80	2.3	1.6	0.37	2.5	0.00	0.01	2
		inc	237.20	0.80	1.7	59.1	5.6	5.0	0.18	1.2	
		inc	255.80	1.20	0.63	5.3	9.4	5.1	0.01	0.01	
		inc	289.00	12.00	20.4	4.8	1.0	20.9	0.00	0.00	
		inc	290.50	4.06	55.7	12.9	2.1	56.8	0.01	0.01	1
		inc	321.00	2.00	1.3	0.6	0.01	1.3	0.00	0.00	
		inc	331.00	6.00	2.5	1.9	0.61	2.8	0.01	0.01	
		inc	343.00	9.00	1.7	0.6	0.10	1.7	0.00	0.00	
		and	407.50	0.50	2.2	1.2	0.37	2.4	0.00	0.00	
		Met:									
		GMDD039	18.00	8.00	0.15	1.9	0.60	0.45	0.01	0.07	2
		GMDD039	67.60	1.00	24.5	58	3.9	27.0	0.27	1.8	1
		GMDD040	116.72	8.68	5.5	12	2.2	6.7	0.06	0.00	
		inc	122.50	2.90	11.8	24	4.2	14.1	0.14	0.00	1
		GMDD041	31.00	16.0	2.6	4.9	0.27	2.8	0.01	0.25	2
		inc	41.70	2.0	20.0	29	1.2	20.8	0.06	1.7	
		GMDD041	63.50	5.1	7.9	83	7.9	12.5	0.47	0.21	
		GMDD043	18.00	10.00	0.09	1.7	0.48	0.34	0.01	0.10	2
		GMDD043	70.50	0.30	25.9	81	9.4	31.2	0.33	3.1	1
		(1) cut of	f 10 g/t Au e f 0.2 g/t Au e	quivalent							

Issued Capital 653.1m shares 86.6m options 120m perf shares 16m perf rights

Australian Registered Office Level 1

Mr Kris Knauer, MD and CEO 1205 Hay Street West Perth WA 6005 Mr Fletcher Quinn, Chairman

Directors

Contact T: +61 8 6380 9235 Mr Scott Funston, Finance Director

E: admin@challengerex.com

Criteria	JORC Code explanation	Commentary
		NSI: no significant intersection
Data aggregation methods	 In reporting Exploration Results weighting averaging techniques maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade 	Weighted average significant intercepts are reported to a gold grade equivalent. Results are reported to cut- off grade of a 1.0 g/t Au equivalent and 10 g/t Au equivalent allowing for up to 2m of internal dilution between samples above the cut-off grade and 0.2 g/t Au equivalent allowing up to 4m of internal dilution between samples above the cut-off grade. The following metals and metal prices have been used to report gold grade equivalent: Au US\$ 1450 / oz Ag US\$16 /oz and Zn US\$ 2200 /t.
	 of high-grade results and longer lengths of low-grade results the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	Metallurgical recoveries for Au, Ag and Zn are assumed to be the same and so no factors have been applied to calculate the Au equivalent values. Accordingly The formula used is AuEq (g/t) = Ag (g/t) + Au (g/t)x (16/1450) + Zn (%) x 2.12. Previous metallurgical test work and geological and petrographic descriptions suggest all the elements included in the metal equivalents calculation have a reasonable potential of eventual economic recovery. While Cu and Pb are reported in the table above, these metals are not used in the Au equivalent calculation at this early stage of the Project.
		No top cuts have been applied to the reported grades.
betweenreporting of Exploration Results.mineralisationIf the geometry of the mineralisation with respect to the drill hole angle is known its nature should be reported.	The mineralisation is moderately or steeply dipping and strikes NNE and ENE. For some drill holes, there is insufficient information in most cases to confidently establish the true width of the mineralized intersections at this stage of the exploration program.	
	ronartad	Apparent widths may be thicker in the case where bedding-parallel mineralisation may intersect ENE-striking cross faults and veins.
reported there should be a clear statement to this effect (eg 'down hole length true width not known').		Cross section diagrams have been provided with release of significant intersections to allow estimation of true widths from individual drill intercepts.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	Representative maps and sections are provided in the body of report.
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	All available data have been reported.
Other substantive exploration data	 Other exploration data if meaningful and material should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and 	Geological context and observations about the controls on mineralisation where these have been made are provided in the body of the report.

Issued Capital 653.1m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commentary
	method of treatment; metallurgical test results; bulk density groundwater geotechnical and rock characteristics; potential deleterious or	229 specific gravity measurements have been taken from the drill core recovered during the drilling program. These data are expected to be used to estimate bulk densities in future resource estimates.
	contaminating substances.	Eight Induced Polarisation (IP) lines have been completed in the northern area. Each line is approximately 1 kilometre in length lines are spaced 100m apart with a 50m dipole. The initial results indicate possible extension of the mineralisation with depth. Data will be interpreted including detailed re-processing and drill testing.
		A ground magnetic survey and drone magnetic survey have been completed. The results of these data are being processed and interpreted with the geological information provided from surface and in the drilling and will be used to guide future exploration.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions including the main geological interpretations and future drilling areas provided this information is not commercially sensitive. 	 CEL Plans to undertake the following over the next 12 months Additional data precision validation and drilling as required; Detailed interpretation of known mineralized zones; Geophysical tests for undercover areas. Structural interpretation and alteration mapping using high resolution satellite data and geophysics to better target extensions of known mineralisation. Field mapping program targeting extensions of known mineralisation. Investigate further drilling requirements to upgrade both the unclassified mineralisation and mineralisation in the existing historical resources to meet JORC 2012 requirements; Initial drill program comprising verification (twin holes) and targeting extensions of the historically defined mineralisation; Metallurgical test work.

Issued Capital 653.1m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office

Level 1 1205 Hay Street West Perth WA 6005 **Directors** Mr Kris Knauer, MD and CEO

Mr Scott Funston, Finance Director

Mr Fletcher Quinn, Chairman

Contact T: +61 8 6380 9235 E: admin@challengerex.com

Section 3 Estimation and Reporting of Mineral Resources

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Database integrity	 Measures taken to ensure that data has not been corrupted by for example transcription or keying errors between its initial collection and its use for Mineral Resource estimation purposes. Data validation procedures used. 	Geological logging completed by previous explorers was done on paper copies and transcribed into the drill hole database. The data was checked for errors. Checks can be made against the original logs and core photographs. Assay data is received in digital format. Backup copies are kept and the data is copied into the drill hole database.
		The drill hole data is backed up and is updated periodically by a Company GIS and data team.
Site visits	 Comment on any site visits undertaken by the Competent Person and the outcome of those visits. If no site visits have been undertaken indicate why this is the case. 	Site visits have been undertaken from 3 to 16 October 2019 15 to 30 November 2019 and 1-19 February 2020. The performance of the drilling program collection of data and sampling procedures were initiated during these visits.
Geological interpretation	 Confidence in (or conversely the uncertainty of) the geological interpretation of the mineral deposit. Nature of the data used and of any assumptions made. The effect if any of alternative interpretations on Mineral Resource estimation. 	The interpretation is considered appropriate given the stage of the project and the nature of activities that have been conducted. The interpretation captures the essential geometry of the mineralised structure and lithologies with drill data supporting the findings from the initial underground sampling activities.
	 The use of geology in guiding and controlling Mineral Resource estimation. The factors affecting continuity both of grade and geology. 	The most recent resource calculation (2006 and 2003 – La Mancha) used all core drilling at the time and detailed underground channel sampling collected by EPROM CMEC and La Mancha. Overlying assumptions included a reduction of the calculated grade in each resource block by a factor of 10% to account for possible errors in the analyses and samples. An arbitrary reduction factor was applied to the 2006 resource whereby the net reported tonnage was reduced by 25% for indicated resource blocks 50% for inferred resource blocks and 75% of potential mineral resource blocks. The reason for the application of these tonnage reduction factors was not outlined in the resource report. It is noted that at the time of this report La Mancha was in a legal dispute concerning the project with its joint venture partner and given the acquisition of a 200000 Oz per annum producing portfolio the project was likely no longer a core asset for La Mancha at that time. Additionally under the original acquisition agreement La Mancha had to issue additional acquisition shares based on resource targets.
		The effect of removing the assumptions relating to application of the arbitrary tonnage reduction factors applied increases the overall resource tonnage by in excess of 50%. Removing these correction factors would bring the overall tonnage and grade close the earlier (2003 1999 and 1996)

Challenger Exploration Limited ACN 123 591 382 ASX: CEL

Issued Capital 653.1m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Contact T: +61 8 6380 9235 E: admin@challengerex.com

Criteria	JORC Code explanation	Commentary
		tonnage and grade estimates albeit in different categories (lower confidence) which are considered more appropriate.
		The mineralisation is defined to the skarn and vein bodies detailed cross section and plan maps were prepared for these bodies with their shapes used in controlling the resource estimate.
		The structure of the area is complex and a detailed structural interpretation is recommended as this may provide a better understanding of the continuity of mineralisation and possible extensions to it. The deposit contains bonanza gold values and while very limited twinning has indicated acceptable repeatability a rigorous study of grade continuity needs to be undertaken as part of future resource calculations.
Dimensions	 The extent and variability of the Mineral Resource expressed as length (along strike or otherwise) plan width and depth below surface to the upper and lower limits of the Mineral Resource. 	For the historic resource no reliable information has been provided to the owner however through further ongoing investigation is being conducted by the owner to address this information gap.
Estimation and modelling techniques	- The nature and appropriateness of the estimation technique(s) applied and key assumptions including treatment of extreme grade values domaining interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a description of computer software and parameters used.	The historic resource estimation techniques are considered appropriate. The 2003 and 2006 resources used a longitudinal section polygonal method was used for estimating resources with individual blocs representing weighted averages of sampled underground and/or areas of diamond drill pierce points with zones of influence halfway to adjacent holes. The area of the block was calculated in AutoCad directly from the longitudinal sections.
	 The availability of check estimates previous estimates and/or mine production records and whether the Mineral Resource estimate takes appropriate account of such data. The assumptions made regarding recovery of by-products. Estimation of deleterious elements or other non-grade variables of economic significance (eg sulphur for acid mine drainage 	Check assaying by PG Consulting returned values in the check assay sample which were 3.4% and 13% greater for Au and Ag than the original assays. A number pf previous resource estimates were available to check the 2006 resource estimate when the arbitrary tonnage reduction factors are removed brings the overall tonnage and grade close the earlier (2003 1999 and 1996) tonnage and grade estimates albeit indifferent categories which are considered more appropriate.
	 characterisation). In the case of block model interpolation the block size in relation to the average sample spacing and the search employed. Any assumptions behind modelling of selective mining units. 	It was assumed only gold silver and zinc would be recovered and that no other by products would be recovered. This is viewed as conservative given metallurgical data pointing to the production of a saleable zinc concentrate.
	 Any assumptions about correlation between variables. Description of how the geological interpretation was used to control the resource estimates. 	Based on the preliminary metallurgy estimation of deleterious elements or other non-grade variables of economic significance was not required.
	 Discussion of basis for using or not using grade cutting or capping. The process of validation the checking process used the comparison of model data to drill hole data and use of reconciliation data if available 	The minimum mining width of 0.8m was assumed for veins less than 0.6m and for wider widths a dilution of 0.2m was used to calculate the grade.

Issued Capital 653.1m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors** Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Contact T: +61 8 6380 9235 E: admin@challengerex.com

Criteria	JORC Code explanation	Commentary
		No assumptions were made regarding correlation between variables.
		The mineralisation is defined within skarn and associated vein deposits. Detailed cross section and plan maps were prepared for these domains with their shapes used in controlling the resource estimate. Long sections of the veins and skarn were taken and sampling was plotted and the blocks outlined considering this.
		Grade cutting was not used in the calculation of the resource and no discussion was given as to why it was not employed. It is recommended that a study be undertaken to determine if an appropriate top cut need be applied No data is available on the process of validation.
Moisture	- Whether the tonnages are estimated on a dry basis or with natural moisture and the method of determination of the moisture content.	No data is available.
Cut-off parameters	- The basis of the adopted cut-off grade(s) or quality parameters applied.	The Mineral Resource Estimate is above a cut-off grade of 3.89 g/t Au. This is based on the assumed mining cost at the time of the estimate.
Mining factors or assumptions	 Assumptions made regarding possible mining methods minimum mining dimensions and internal (or if applicable external) mining dilution. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential mining methods but the assumptions made regarding mining methods and parameters when estimating Mineral Resources may not always be rigorous. Where this is the case this should be reported with an explanation of the basis of the mining assumptions made. 	 The Mineral Resource Estimate considered the assumptions outlined below which are considered appropriate; Metal prices: Au US\$550 Oz Ag US\$10 Oz Metallurgical Recovery; Au – 80% Ag – 70% Zn - nil Operating cost: US\$55t based on underground cut and fill mining and flotation and cyanidation combined The minimum mining width of 0.8m was assumed for veins less than 0.6m and for wider widths a dilution of 0.2m was used to calculate the grade.
Metallurgical factors or assumptions	- The basis for assumptions or predictions regarding metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential metallurgical methods but the assumptions regarding metallurgical treatment processes and parameters made when reporting Mineral Resources may not always be rigorous. Where this is the case this should be reported with an explanation of the basis of the metallurgical assumptions made.	 Historical metallurgical test-work is currently under review however the assumptions used (80% recovery for Au, Ag and Zn) based on initial test results seem conservative. The most recent test work was conducted in 1999 by Lakefield Research (cyanidation) and CIMM Labs (flotation) in Chile on 4 samples which all contain primary sulphide minerals and so can be considered primary, partial oxide or fracture oxide samples. The test work was conducted using a 150 micron grind which would appear to coarse based on petrography conducted by CEL which shows that the gold particles average 30-40 microns. Rougher flotation tests were performed with a 20 minute and 30 minute floatation time. Generally, the longer residence time improved recovery. Recoveries to concentrate for gold range from 59.6% - 80.6% and for silver from 63.1% – 87.2%.

Issued Capital 653.1m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Contact T: +61 8 6380 9235 E: admin@challengerex.com

Criteria	JORC Code explanation	Commentary
Environmental factors or assumptions	 Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and processing operation. While at this stage the determination of potential environmental impacts particularly for a greenfields project may not always be well advanced the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the environmental assumptions made. 	 Knelson concentrate tests with floatation of tailings were also completed. Applying a joint process Knelson concentrator and floatation of the tailings of the concentrator it is found that the global recovery is approximately 80% for gold. While the testwork was focused predominantly on gold recovery some rougher floation testwork was undertaken targeting Zn recovery producing up to 85% recoveries. In sulphide samples this produced a Zn concentrate containing 42% Zn with grades in excess of 50% Zn in comcentrate expected with additional floatation stages. The report concluded that it was possible to produce a commercial Au-Ag concentrate and a Zn concentrate. Extraction of gold and silver by cyanidation was tested on 3/8 and % inch (9.525mm and 19.05mm) crush sizes that are designed to test a heap leach processing scenario. Bottle roll of these crush size resulted in 41-39% gold recovery and 31-32% silver recovery with high cyanide consumption. No tests have been done on material at a finer grind size. It is considered that there are no significant environmental factors which would prevent the eventual extraction of gold from the project. Environmental surveys and assessments will form a part of future pre-feasibility.
Bulk density	 Whether assumed or determined. If assumed the basis for the assumptions. If determined the method used whether wet or dry the frequency of the measurements the nature size and representativeness of the samples. The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs porosity etc) moisture and differences between rock and alteration zones within the deposit. Discuss assumptions for bulk density estimates used in the evaluation process of the different materials. 	Densities of 2.7 t/m3 were used for mineralised veins and 2.6 t/m3 for wall rock. No data of how densities were determined is available. The bulk densities used in the evaluation process are viewed as appropriate at this stage of the Project. CEL is collecting specific gravity measurements from drill core recovered in 2019 and 2020 drilling programs, which it is expected will be able to be used to estimate the block and bulk densities in future resource estimates. For RC drilling, the weights of material recovered from the drill hole is able to be used as a measure of the bulk density.

Issued Capital 653.1m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman Contact T: +61 8 6380 9235 E: admin@challengerex.com

Criteria	JORC Code explanation	Commentary
Classification	 The basis for the classification of the Mineral Resources into varying confidence categories. Whether appropriate account has been taken of all relevant factors (i.e., relative confidence in tonnage/grade estimations reliability of input data confidence in continuity of geology and metal values quality quantity and distribution of the data). Whether the result appropriately reflects the Competent Person's view of the deposit. 	The Mineral Resource Estimate has both Indicated and Inferred Mineral Resource classifications are considered appropriate given the confidence that can be gained from the existing data and results from drilling. The reliability of input data for the 2003 and 2006 resources is acceptable as is the confidence in continuity of geology and metal values quality quantity and distribution of the data. Appropriate account has been taken of all relevant factors with the exception of studies into the appropriateness of the application of a top cut. The reported 2006 NI43-101 (non-JORC Code compliant Measured and Indicated) estimate for the Hualilan Project is measured resource of 164294 tonnes averaging 12.6 grams per tonne gold and 52. g/t silver and 2.5% zinc plus an indicated resource of 51022 tonnes averaging 12.4 grams per tonne gold and 36.2 g/t silver and 2.6% zinc plus an inferred resource of 213952 tonnes grading 11.7 grams per tonne gold and 46.6 g/t silver and 2.3% zinc. (Source La Mancha resources Toronto Stock Exchange Release April 7 2007 - Interim Financials) – See Table 1. The 2006 estimate did not include the east-west mineralised Magnata Vein despite the known mineralisation in the Magnata Vein being drilled on a 25 x 50-metre spacing. The 2003 NI43-101 (non-JORC Code compliant) estimate atributed approximately half of its measured and indicated tonnage to the Magnata Vein. The 2006 estimate also included arbitrary tonnage reduction factors of 25% for indicated category 50% for inferred category and 75% for potential category. The 2006 estimate also included a significant tonnage of Potential Category Resources which have not been reported. The reported 2003 NI43-101 (non-JORC Code compliant) estimate for the Hualilan project is a measured resource of 299578 tonnes averaging 14.2 grams per tonne gold plus an indicated resource of 145001 tonnes averaging 14.6 grams per tonne gold representing some 647809 ounces gold. (Source La Mancha resources fation 510539 tonnes grading 13.4 grams per tonne gold

www.challengerex.com

Issued Capital 653.1m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commentary					
		Historic 2003 NI43-101 (non-JORC Code compliant):					
		CATEGORY	TONNES	Au (g/t)	Ag (g/t)	Zn%	
		Measured	299578	14.2			
		Indicated	145001	14.6			
		Inferred	976539	13.4			
		Historic 2006 NI43-1	101 (non-JORC Code comp	liant)			
		CATEGORY	TONNES	Au (g/t)	Ag (g/t)	Zn%	
		Measured	164294	12.5	52.1	2.5	
		Indicated	51022	12.4	36.2	2.6	
		Inferred	213952	11.7	46.6	2.3	
Audits or reviews	- The results of any audits or reviews of Mineral Resource estimates.	The historic resource estimate has not been audited.					
		resource report. This report were released	2000) Mineral Resource E independent report was d to the TSX. This report co s are seen to be realistic.	one to NI-43-101 s	tandard and th	ne results of this	
Discussion of relative accuracy/ confidence•Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits or ifThere is sufficient confidence in the data quality drilling me be relied upon. The available geology and assay data correl deemed appropriate given the confidence limits. The main accuracy is grade continuity and top cut.				data correlate we	ll. The approad	h or procedure a	
	 such an approach is not deemed appropriate a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate. The statement should specify whether it relates to global or local estimates and if local state the relevant tonnages which should be 	<i>ce of the</i> and closer spaced drilling is required to improve the understanding of strike and dip directions. It is noted that the results from the twinning are encouraging in terms of grade repeatability.			g of the grade	continuity in bot	
	 relevant to technical and economic evaluation. Documentation should be include assumptions made and the procedures used. These statements of relative accuracy and confidence of the estimate 	noted that an arbitrary grade reduction factor of 10% has already been applied to the					

Issued Capital 653.1m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commentary
	should be compared with production data where available.	
		No production data is available for comparison

Issued Capital 653.1m shares 86.6m options 120m perf shares

16m perf rights

Australian Registered Office

Level 1 1205 Hay Street West Perth WA 6005 Directors

Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

Contact T: +61 8 6380 9235 E: admin@challengerex.com