AVZ drills 203.3m* @ 1.59\% Liz ${ }_{2}$ \& 1,014ppm Sn from pit floor "wedge" at Roche Dure

Highlights

- AVZ's resource drilling at Roche Dure identifies further high-grade lithium and tin mineralisation directly beneath the historical pit floor.
- Pit floor mapping and drilling confirms slightly weathered to fresh pegmatitic rock makes up the pit floor and that it will likely be re-classified under JORC definition.
- Assay results from the first four holes in this drill program were not included in the May 2019 Mineral Resource.
- A new resource update is expected, pending all outstanding data being received in the first Quarter 2021.
- Pegmatite in holes MO20DD002 and MO20DD003 were slightly weathered to about 8m depth while holes MO20DD004 and MO20DD006 intersected fresh mineralised pegmatite from the top of the hole.
- All holes showed varying amounts of breakage with minor core loss caused by blasting damage from the previous hard rock mining operation at Roche Dure.
* Down-hole length. Additional drilling is required to confirm the true-thickness of the pegmatites.

AVZ Minerals Limited (ASX: AVZ, "the Company") is pleased to announce it has received further strong results from its Mineral Resource drilling of the Manono Lithium and Tin Project in the Democratic Republic of Congo.

The assay results come from the first four of nine planned diamond drill holes at Roche Dure in previously undrilled areas beneath the historical pit which were inaccessible and under water during the earlier resource drilling programs.

AVZ's Managing Director, Mr Nigel Ferguson, said: "These drilling results, combined with the pit floor mapping, confirm the pit floor "wedge" is in fact made up of pegmatitic rock that historically was mined as tin-bearing feedstock."
"This area had previously been categorised as waste material in our current mining and financial model due to a lack of drilling data and under our current model, is pre-stripped as waste before ore can be sent to the processing plant."

AVZ Minerals Limited

Level 2, 8 Colin Street West Perth, WA 6005

Australia
$\mathrm{T}:+61861179397$
F: + 61861182106
E: admin@avzminerals.com.au W: www.avzminerals.com.au

ABN 81125176703

Directors

Non-Executive Chairman: John Clarke Managing Director: Nigel Ferguson Technical Director: Graeme Johnston Non-Executive Director: Rhett Brans Non-Executive Director: Peter Huljich

Market Cap
\$534M
ASX Code: AVZ
"These positive drill results unequivocally demonstrate this is not the case and this material may be remodelled with increased confidence as revenue generating ore once all of the assay results are returned."
"The Company is waiting on further assay results, with the targeted drill program soon to be completed with only one hole currently underway."

The potential benefits from confirmation of the "wedge" pit floor material as Indicated Resources under the JORC code will possibly include*:

- Increased Indicated Resources available for conversion to Probable mineable reserves;
- Potential increase in the discounted cashflow as the previously assigned waste becomes mineable ore;
- A reduction in payback period as waste becomes revenue generating ore immediately upon commencement of mining operations;
- A potential reduction in the ore:waste strip ratio;
- An increased mine life with lower operating costs;
- An increased open pit volume; and
- An increased Life of Mine.
*Published in the DFS announcement on 21 April 2020 - "AVZ Delivers Highly Positive DFS for the Manono Project".

AVZ will collate the data and re-run the models to calculate both geological resources and then mineable reserves to be fed into the optimised feasibility study expected later this year.

Results from the four holes are detailed in the table below:

Hole I.D.	Section	Intersections of the Roche Dure pegmatite
MO20DD002	7100 mN	$8.15 \mathrm{~m}-146.67 \mathrm{~m} ; 138.52 \mathrm{~m} @ 1.59 \% \mathrm{Li}_{2} \mathrm{O}$ \& 1,250 ppm Sn
MO20DD003	7100 mN	$0.0 \mathrm{~m}-9.0 \mathrm{~m} ; 9.0 \mathrm{~m}$ @ $0.63 \% \mathrm{Li}_{2} \mathrm{O}$ \& 763 ppm Sn (with 3.05m of core loss) $9.0 \mathrm{~m}-41.19 \mathrm{~m} ; 32.19 \mathrm{~m}$ @ $1.33 \% \mathrm{Li}_{2} \mathrm{O}$ \& 1,257 ppm Sn (with 0.25 m core loss)
MO20DD004	7200 mN	$0.0 \mathrm{~m}-203.25 \mathrm{~m} ; 203.25$ @ $1.59 \% \mathrm{Li}_{2} \mathrm{O}$ \& 1,014ppm Sn (with 0.3 m of core loss) and including $9.00 \mathrm{~m}-19.00 \mathrm{~m}$; 10.0m @ $2.45 \% \mathrm{Li} 2 \mathrm{O}$ \& 661 ppm Sn and $105.0-120.0 \mathrm{~m} ; 15.0 \mathrm{~m} @ 1.95 \% \mathrm{Li}_{2} \mathrm{O}$ \& 1,087ppm Sn and 184.0m-201.0m; 17.0m @ 2.11\% Liz \& 768ppm Sn and $24.06 \mathrm{~m}-300.26 \mathrm{~m} ; 276.20 \mathrm{~m}$ @ $1.45 \% \mathrm{Li}_{2} \mathrm{O}$ \& 1,035ppm Sn (with 1 m of sample not returned)
MO20DD006	7200 mN	$2.7 \mathrm{~m}-31.0 \mathrm{~m}$; 28.3 @ 1.17\% Li $\mathrm{L}_{2} \mathrm{O}$ \& 1,412ppm Sn (with 1 m of sample not returned) and $31.0 \mathrm{~m}-35.9 \mathrm{~m} ; 4.90 \mathrm{~m}$ @ 0.04\% Liz O \& 689ppm Sn

Figure 1: Locations of drillholes MO2ODD002, 003, 004 and MO20DD006

Figure 2: Intersections achieved by MO20DD002 and MO20DD003 on section 7100mN

Figure 3: Intersections achieved by MO2ODD004 and MO20DD006 on section 7200mN

This release was authorised by Nigel Ferguson, Managing Director of AVZ Minerals Limited.

For further information, visit www.avzminerals.com.au or contact:

Mr. Leonard Math
Company Secretary
AVZ Minerals Limited
Phone: +61 861179397
Email: admin@avzminerals.com.au

Media Enquiries:

Mr Peter Harris
Peter Harris \& Associates
Phone: +61 (0) 412124833

Competent Person's Statement

The information in this report that relates to geology and the exploration results is based on information compiled by Mr. Nigel Ferguson (BSc) FAusIMM MAIG, a Competent Person whom is a Fellow of the Australian Institute of Mining and Metallurgy and a Member of the Australia Institute of Geoscientists. Mr. Ferguson is the Managing Director of AVZ Minerals Limited and has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr. Ferguson consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

Appendix 1

Collar Table for holes MO20DD002, 003, 004 and MO20DD006 (All DGPS positions)

Drill Hole_ID	Drilling Method	Section Line	Easting (mE)	Northing $(\mathbf{m N})$	Elevation (\mathbf{m})	Datum	Zone	Dip (degrees)	Azimuth $(\mathbf{m a g}$ degrees)	EOH (\mathbf{m})
MO20DD002	DDH	7100	542038.08	9189797.69	620.5	WGS84	$35 S$	-50	330	167.35
MO20DD003	DDH	7100	541977.57	9189904.07	609.9	WGS84	355	-50	330	92.38
MO20DD004	DDH	7200	542175.07	9189761.71	617.7	WGS84	355	-60	330	250
MO20DD006	DDH	7200	542069.15	9189950.25	608.47	WGS84	$35 S$	-60	330	72.03

Appendix 2

Down-hole Survey Table MO2ODD002, 003, 004 and MO20DD006

Hole_ID	Depth (m)	Inclination (deg)	Azimuth (deg)
MO20DD002	0	-50	330
MO20DD002	30	-50	333
MO20DD002	60	-49	333
MO20DD002	90	-49	333
MO20DD002	120	-49	334
MO20DD002	150	-48	333
MO20DD003	0	-50	330
MO20DD003	30	-49	332
MO20DD003	60	-49	330
MO20DD003	90	-49	331
MO20DD004	0	-60	330
MO20DD004	30	-59	331
MO20DD004	60	-58	331
MO20DD004	90	-58	331
MO20DD004	120	-57	330
MO20DD004	150	-56	330
MO20DD004	190	-56	331
MO20DD004	210	-55	331
MO20DD004	240	-55	330
MO20DD006	0	-60	330
MO20DD006	60	-60	332

Appendix 3
Assay Results for holes MO2ODD002, 003, 004 and MO20DD006

Drill Hole ID	From (m)	To (m)	Lithology	DH Samp ID	$\mathrm{Li}_{2} \mathrm{O}$ (\%)	Sn (ppm)
MO20DD002	0.00	6.00	HmSst	NS_002		
MO20DD002	6.00	7.00	HmSst	50001	0.17	32.00
MO20DD002	7.00	7.72	HmSst	50002	0.21	59.00
MO20DD002	7.72	9.00	HmSst	50003	0.41	629.00
MO20DD002	9.00	10.00	Peg	50004	1.63	566.00
MO20DD002	10.00	11.00	Peg	50005	1.79	1120.00
MO20DD002	11.00	12.00	Peg	50006	1.45	1430.00
MO20DD002	12.00	13.00	Peg	50007	0.99	1170.00
MO20DD002	13.00	14.00	Peg	50008	1.09	1500.00
MO20DD002	14.00	15.00	Peg	50009	1.94	1390.00
MO20DD002	15.00	16.00	Peg	50011	1.86	1290.00
MO20DD002	16.00	17.00	Peg	50012	2.31	2910.00
MO20DD002	17.00	18.00	Peg	50013	1.79	1100.00
MO20DD002	18.00	19.00	Peg	50014	1.28	2390.00
MO20DD002	19.00	20.00	Peg	50016	2.30	1160.00
MO20DD002	20.00	21.00	Peg	50017	1.83	1150.00
MO20DD002	21.00	22.00	Peg	50018	1.56	1390.00
MO20DD002	22.00	23.00	Peg	50019	1.93	1260.00
MO20DD002	23.00	24.00	Peg	50020	1.44	756.00
MO20DD002	24.00	25.00	Peg	50021	2.14	977.00
MO20DD002	25.00	26.00	Peg	50022	2.48	676.00
MO20DD002	26.00	27.00	Peg	50023	2.41	882.00
MO20DD002	27.00	28.00	Peg	50024	1.88	1080.00
MO20DD002	28.00	29.00	Peg	50026	1.78	1820.00
MO20DD002	29.00	30.00	Peg	50027	1.53	1050.00
MO20DD002	30.00	31.00	Peg	50028	1.45	1640.00
MO20DD002	31.00	32.00	Peg	50029	1.67	952.00
MO20DD002	32.00	33.00	Peg	50031	1.30	1420.00
MO20DD002	33.00	34.00	Peg	50032	0.57	1400.00
MO20DD002	34.00	35.00	Peg	50033	1.40	918.00
MO20DD002	35.00	36.00	Peg	50034	1.37	1170.00
MO20DD002	36.00	37.00	Peg	50036	1.01	1550.00
MO20DD002	37.00	38.00	Peg	50037	1.77	1470.00
MO20DD002	38.00	39.00	Peg	50038	1.75	1160.00
MO20DD002	39.00	40.00	Peg	50039	2.56	800.00
MO20DD002	40.00	41.00	Peg	50040	1.54	1150.00
MO20DD002	41.00	42.00	Peg	50041	1.93	1480.00
MO20DD002	42.00	43.00	Peg	50042	1.30	1020.00
MO20DD002	43.00	44.00	Peg	50043	1.36	786.00
MO20DD002	44.00	45.00	Peg	50044	2.09	849.00
MO20DD002	45.00	46.00	Peg	50045	2.06	1500.00
MO20DD002	46.00	47.00	Peg	50046	1.65	1130.00
MO20DD002	47.00	48.00	Peg	50047	1.88	756.00
MO20DD002	48.00	49.00	Peg	50048	0.59	1050.00
MO20DD002	49.00	50.00	Peg	50049	1.45	1270.00
MO20DD002	50.00	51.00	Peg	50051	1.88	980.00

MO20DD002	51.00	52.00	Peg	50052	1.67	1070.00
MO20DD002	52.00	53.00	Peg	50053	1.22	1200.00
MO20DD002	53.00	54.00	Peg	50054	1.97	383.00
MO20DD002	54.00	55.00	Peg	50056	1.29	5080.00
MO20DD002	55.00	56.00	Peg	50057	1.62	1480.00
MO20DD002	56.00	57.00	Peg	50058	1.42	479.00
MO20DD002	57.00	58.00	Peg	50059	2.35	323.00
MO20DD002	58.00	59.00	Peg	50060	1.77	911.00
MO20DD002	59.00	60.00	Peg	50061	1.67	1240.00
MO20DD002	60.00	61.00	Peg	50062	2.22	397.00
MO20DD002	61.00	62.00	Peg	50063	1.16	854.00
MO20DD002	62.00	63.00	Peg	50064	2.00	896.00
MO20DD002	63.00	64.00	Peg	50066	2.64	748.00
MO20DD002	64.00	65.00	Peg	50067	1.02	2600.00
MO20DD002	65.00	66.00	Peg	50068	2.05	1260.00
MO20DD002	66.00	67.00	Peg	50069	1.74	1430.00
MO20DD002	67.00	68.00	Peg	50071	1.90	1470.00
MO20DD002	68.00	69.00	Peg	50072	1.69	1280.00
MO20DD002	69.00	70.00	Peg	50073	2.80	621.00
MO20DD002	70.00	71.00	Peg	50074	1.46	904.00
MO20DD002	71.00	72.00	Peg	50076	1.96	971.00
MO20DD002	72.00	73.00	Peg	50077	2.07	1280.00
MO20DD002	73.00	74.00	Peg	50078	2.17	534.00
MO20DD002	74.00	75.00	Peg	50079	2.65	1970.00
MO20DD002	75.00	76.00	Peg	50080	2.55	475.00
MO20DD002	76.00	77.00	Peg	50081	1.65	801.00
MO20DD002	77.00	78.00	Peg	50082	1.89	1110.00
MO20DD002	78.00	79.00	Peg	50083	1.78	1070.00
MO20DD002	79.00	80.00	Peg	50084	0.83	1380.00
MO20DD002	80.00	81.00	Peg	50085	0.60	1460.00
MO20DD002	81.00	82.00	Peg	50086	1.63	711.00
MO20DD002	82.00	83.00	Peg	50087	1.96	1240.00
MO20DD002	83.00	84.00	Peg	50088	0.86	1280.00
MO20DD002	84.00	85.00	Peg	50089	2.26	1130.00
MO20DD002	85.00	86.00	Peg	50091	1.69	542.00
MO20DD002	86.00	87.00	Peg	50092	2.49	730.00
MO20DD002	87.00	88.00	Peg	50093	1.12	795.00
MO20DD002	88.00	89.00	Peg	50094	1.20	1620.00
MO20DD002	89.00	90.00	Peg	50096	1.68	1690.00
MO20DD002	90.00	91.00	Peg	50097	1.85	808.00
MO20DD002	91.00	92.00	Peg	50098	1.94	606.00
MO20DD002	92.00	93.00	Peg	50099	0.96	639.00
MO20DD002	93.00	94.00	Peg	50100	1.94	735.00
MO20DD002	94.00	95.00	Peg	50101	1.77	490.00
MO20DD002	95.00	96.00	Peg	50102	1.29	833.00
MO20DD002	96.00	97.00	Peg	50103	1.71	919.00
MO20DD002	97.00	98.00	Peg	50104	1.13	932.00
MO20DD002	98.00	99.00	Peg	50106	1.38	1140.00
MO20DD002	99.00	100.00	Peg	50107	2.43	991.00
MO20DD002	100.00	101.00	Peg	50108	1.88	433.00

MO20DD002	101.00	102.00	Peg	50109	1.08	879.00
MO20DD002	102.00	103.00	Peg	50111	0.60	2390.00
MO20DD002	103.00	104.00	Peg	50112	2.28	1210.00
MO20DD002	104.00	105.00	Peg	50113	1.57	1390.00
MO20DD002	105.00	106.00	Peg	50114	2.08	929.00
MO20DD002	106.00	107.00	Peg	50116	0.73	1440.00
MO20DD002	107.00	108.00	Peg	50117	1.36	2110.00
MO20DD002	108.00	109.00	Peg	50118	1.17	1600.00
MO20DD002	109.00	110.00	Peg	50119	1.76	774.00
MO20DD002	110.00	111.00	Peg	50120	1.97	783.00
MO20DD002	111.00	112.00	Peg	50121	1.04	2060.00
MO20DD002	112.00	113.00	Peg	50122	0.84	1250.00
MO20DD002	113.00	114.00	Peg	50123	1.67	495.00
MO20DD002	114.00	115.00	Peg	50124	1.33	303.00
MO20DD002	115.00	116.00	Peg	50125	0.94	731.00
MO20DD002	116.00	117.00	Peg	50126	1.19	1080.00
MO20DD002	117.00	118.00	Peg	50127	0.76	535.00
MO20DD002	118.00	119.00	Peg	50128	0.81	1140.00
MO20DD002	119.00	120.00	Peg	50129	0.87	1080.00
MO20DD002	120.00	121.00	Peg	50131	1.61	1030.00
MO20DD002	121.00	122.00	Peg	50132	1.12	1420.00
MO20DD002	122.00	123.00	Peg	50133	1.75	1360.00
MO20DD002	123.00	124.00	Peg	50134	1.70	1800.00
MO20DD002	124.00	125.00	Peg	50136	1.80	1380.00
MO20DD002	125.00	126.00	Peg	50137	1.56	1300.00
MO20DD002	126.00	127.00	Peg	50138	2.21	1160.00
MO20DD002	127.00	128.00	Peg	50139	1.73	732.00
MO20DD002	128.00	129.00	Peg	50140	1.29	1550.00
MO20DD002	129.00	130.00	Peg	50141	1.46	9950.00
MO20DD002	130.00	131.00	Peg	50142	1.14	1650.00
MO20DD002	131.00	132.00	Peg	50143	1.68	1720.00
MO20DD002	132.00	133.00	Peg	50144	1.33	952.00
MO20DD002	133.00	134.00	Peg	50146	1.85	1250.00
MO20DD002	134.00	135.00	Peg	50147	0.69	634.00
MO20DD002	135.00	136.00	Peg	50148	1.58	1320.00
MO20DD002	136.00	137.00	Peg	50149	1.89	802.00
MO20DD002	137.00	138.00	Peg	50151	1.97	1080.00
MO20DD002	138.00	139.00	Peg	50152	1.22	3520.00
MO20DD002	139.00	140.00	Peg	50153	1.85	1240.00
MO20DD002	140.00	141.00	Peg	50154	0.54	1680.00
MO20DD002	141.00	142.00	Peg	50156	0.52	3020.00
MO20DD002	142.00	143.00	Peg	50157	1.10	1560.00
MO20DD002	143.00	144.00	Peg	50158	2.26	862.00
MO20DD002	144.00	145.00	Peg	50159	1.90	630.00
MO20DD002	145.00	146.00	Peg	50160	1.11	880.00
MO20DD002	146.00	146.67	Peg	50161	0.07	284.00
MO20DD002	146.67	147.42	Grs	50162	0.04	4140.00
MO20DD002	147.42	148.00	Hms	50163	0.16	116.00
MO20DD002	148.00	149.00	Hms	50164	0.11	47.00
MO20DD003	0.00	0.75	Peg	50181	0.17	865.00

MO20DD003	0.75	1.00	LC	NS_DD003		
MO20DD003	1.00	1.60	Peg	50182	0.74	2430.00
MO20DD003	1.60	2.00	LC	NS_DD003_1		
MO20DD003	2.00	2.60	Peg	50183	1.15	1390.00
MO20DD003	2.60	3.00	LC	NS_DD003_2		
MO20DD003	3.00	4.00	LC	NS_DD003_		
MO20DD003	4.00	5.00	LC	NS_DD003_4		
MO20DD003	5.00	6.00	Peg	50184	2.02	1020.00
MO20DD003	6.00	7.00	Peg	50185	1.11	761.00
MO20DD003	7.00	8.00	Peg	50186	0.36	1240.00
MO20DD003	8.00	9.00	Peg	50187	0.96	909.00
MO20DD003	9.00	10.00	Peg	50188	1.52	1010.00
MO20DD003	10.00	10.75	Peg	50189	1.19	1820.00
MO20DD003	10.75	11.00	Peg	NS_DD003_5		
MO20DD003	11.00	12.00	Peg	50191	2.15	848.00
MO20DD003	12.00	13.00	Peg	50192	1.81	951.00
MO20DD003	13.00	14.00	Peg	50193	1.38	1070.00
MO20DD003	14.00	15.00	Peg	50194	1.83	590.00
MO20DD003	15.00	16.00	Peg	50196	1.25	832.00
MO20DD003	16.00	17.00	Peg	50197	0.83	1220.00
MO20DD003	17.00	18.00	Peg	50198	1.36	2390.00
MO20DD003	18.00	19.00	Peg	50199	2.62	2260.00
MO20DD003	19.00	20.00	Peg	50200	2.04	1750.00
MO20DD003	20.00	21.00	Peg	50201	2.70	669.00
MO20DD003	21.00	22.00	Peg	50202	0.96	1280.00
MO20DD003	22.00	23.00	Peg	50203	1.18	834.00
MO20DD003	23.00	24.00	Peg	50204	1.41	1360.00
MO20DD003	24.00	25.00	Peg	50206	2.69	563.00
MO20DD003	25.00	26.00	Peg	50207	2.58	1320.00
MO20DD003	26.00	27.00	Peg	50208	1.50	878.00
MO20DD003	27.00	28.00	Peg	50209	0.12	437.00
MO20DD003	28.00	29.00	Peg	50211	1.28	774.00
MO20DD003	29.00	30.00	Peg	50212	0.74	489.00
MO20DD003	30.00	31.00	Peg	50213	0.85	1080.00
MO20DD003	31.00	32.00	Peg	50214	0.78	675.00
MO20DD003	32.00	33.00	Peg	50216	0.69	681.00
MO20DD003	33.00	34.00	Peg	50217	1.85	880.00
MO20DD003	34.00	35.00	Peg	50218	0.82	1590.00
MO20DD003	35.00	36.00	Peg	50219	0.56	1130.00
MO20DD003	36.00	37.00	Peg	50220	1.28	1280.00
MO20DD003	37.00	38.00	Peg	50221	2.27	1540.00
MO20DD003	38.00	39.00	Peg	50222	0.48	1760.00
MO20DD003	39.00	40.00	Peg	50223	0.17	5820.00
MO20DD003	40.00	41.19	Grs	50224	0.10	958.00
MO20DD003	41.19	42.00	Grs	50225	0.08	103.00
MO20DD003	42.00	43.00	HmSst	50226	0.10	78.00
MO20DD003	43.00	92.38	HmSst	NS_DD003_6		
MO20DD004	0.00	1.00	Peg	50241	1.09	225.00
MO20DD004	1.00	2.30	Peg	50242	2.51	358.00
MO20DD004	2.30	2.60	LC	NS_DD004		

MO20DD004	2.60	3.00	Peg	50243	1.35	264.00
MO20DD004	3.00	4.00	Peg	50244	3.04	424.00
MO20DD004	4.00	5.00	Peg	50245	1.75	216.00
MO20DD004	5.00	6.00	Peg	50246	1.05	1250.00
MO20DD004	6.00	7.00	Peg	50247	1.46	995.00
MO20DD004	7.00	8.00	Peg	50248	1.65	1290.00
MO20DD004	8.00	9.00	Peg	50249	1.09	1230.00
MO20DD004	9.00	10.00	Peg	50251	2.58	804.00
MO20DD004	10.00	11.00	Peg	50252	2.10	980.00
MO20DD004	11.00	12.00	Peg	50253	1.63	528.00
MO20DD004	12.00	13.00	Peg	50254	2.69	183.00
MO20DD004	13.00	14.00	Peg	50256	3.77	293.00
MO20DD004	14.00	15.00	Peg	50257	1.79	549.00
MO20DD004	15.00	16.00	Peg	50258	3.62	377.00
MO20DD004	16.00	17.00	Peg	50259	1.97	996.00
MO20DD004	17.00	18.00	Peg	50260	2.37	728.00
MO20DD004	18.00	19.00	Peg	50261	1.96	1170.00
MO20DD004	19.00	20.00	Peg	50262	0.55	1280.00
MO20DD004	20.00	21.00	Peg	50263	1.84	1260.00
MO20DD004	21.00	22.00	Peg	50264	1.74	957.00
MO20DD004	22.00	23.00	Peg	50266	1.04	1390.00
MO20DD004	23.00	24.00	Peg	50267	1.33	1290.00
MO20DD004	24.00	25.00	Peg	50268	2.05	1030.00
MO20DD004	25.00	26.00	Peg	50269	1.86	1050.00
MO20DD004	26.00	27.00	Peg	50271	1.67	1420.00
MO20DD004	27.00	28.00	Peg	50272	1.81	1090.00
MO20DD004	28.00	29.00	Peg	50273	1.60	1440.00
MO20DD004	29.00	30.00	Peg	50274	1.23	994.00
MO20DD004	30.00	31.00	Peg	50276	1.07	1120.00
MO20DD004	31.00	32.00	Peg	50277	1.52	1460.00
MO20DD004	32.00	33.00	Peg	50278	1.44	1180.00
MO20DD004	33.00	34.00	Peg	50279	1.13	1310.00
MO20DD004	34.00	35.00	Peg	50280	2.51	1020.00
MO20DD004	35.00	36.00	Peg	50281	1.57	1280.00
MO20DD004	36.00	37.00	Peg	50282	1.98	1200.00
MO20DD004	37.00	38.00	Peg	50283	1.62	651.00
MO20DD004	38.00	39.00	Peg	50284	1.64	635.00
MO20DD004	39.00	40.00	Peg	50285	1.85	1840.00
MO20DD004	40.00	41.00	Peg	50286	1.22	1280.00
MO20DD004	41.00	42.00	Peg	50287	1.07	1120.00
MO20DD004	42.00	43.00	Peg	50288	2.43	726.00
MO20DD004	43.00	44.00	Peg	50289	2.13	796.00
MO20DD004	44.00	45.00	Peg	50291	2.51	1090.00
MO20DD004	45.00	46.00	Peg	50292	1.98	934.00
MO20DD004	46.00	47.00	Peg	50293	0.92	2620.00
MO20DD004	47.00	48.00	Peg	50294	2.69	1930.00
MO20DD004	48.00	49.00	Peg	50296	1.58	1680.00
MO20DD004	49.00	50.00	Peg	50297	1.96	695.00
MO20DD004	50.00	51.00	Peg	50298	2.46	1080.00
MO20DD004	51.00	52.00	Peg	50299	1.30	920.00

MO20DD004	52.00	53.00	Peg	50300	1.75	1220.00
MO20DD004	53.00	54.00	Peg	50301	0.79	1330.00
MO20DD004	54.00	55.00	Peg	50302	0.69	1190.00
MO20DD004	55.00	56.00	Peg	50303	0.15	1200.00
MO20DD004	56.00	57.00	Peg	50304	1.09	1230.00
MO20DD004	57.00	58.00	Peg	50306	1.55	928.00
MO20DD004	58.00	59.00	Peg	50307	1.50	1040.00
MO20DD004	59.00	60.00	Peg	50308	2.04	1690.00
MO20DD004	60.00	61.00	Peg	50309	1.38	1430.00
MO20DD004	61.00	62.00	Peg	50311	1.40	2230.00
MO20DD004	62.00	63.00	Peg	50312	1.81	1730.00
MO20DD004	63.00	64.00	Peg	50313	1.95	913.00
MO20DD004	64.00	65.00	Peg	50314	1.57	1660.00
MO20DD004	65.00	66.00	Peg	50316	1.48	913.00
MO20DD004	66.00	67.00	Peg	50317	1.33	922.00
MO20DD004	67.00	68.00	Peg	50318	1.43	992.00
MO20DD004	68.00	69.00	Peg	50319	1.37	1240.00
MO20DD004	69.00	70.00	Peg	50320	1.28	892.00
MO20DD004	70.00	71.00	Peg	50321	1.74	1260.00
MO20DD004	71.00	72.00	Peg	50322	2.74	900.00
MO20DD004	72.00	73.00	Peg	50323	2.44	973.00
MO20DD004	73.00	74.00	Peg	50324	2.20	1210.00
MO20DD004	74.00	75.00	Peg	50325	1.04	940.00
MO20DD004	75.00	76.00	Peg	50326	1.35	1060.00
MO20DD004	76.00	77.00	Peg	50327	1.95	974.00
MO20DD004	77.00	78.00	Peg	50328	1.93	911.00
MO20DD004	78.00	79.00	Peg	50329	1.95	1990.00
MO20DD004	79.00	80.00	Peg	50331	1.61	1200.00
MO20DD004	80.00	81.00	Peg	50332	1.32	334.00
MO20DD004	81.00	82.00	Peg	50333	1.42	228.00
MO20DD004	82.00	83.00	Peg	50334	0.89	942.00
MO20DD004	83.00	84.00	Peg	50336	1.61	435.00
MO20DD004	84.00	85.00	Peg	50337	0.95	739.00
MO20DD004	85.00	86.00	Peg	50338	0.99	947.00
MO20DD004	86.00	87.00	Peg	50339	2.01	1100.00
MO20DD004	87.00	88.00	Peg	50340	1.19	1040.00
MO20DD004	88.00	89.00	Peg	50341	0.75	1320.00
MO20DD004	89.00	90.00	Peg	50342	1.38	1080.00
MO20DD004	90.00	91.00	Peg	50343	1.63	1050.00
MO20DD004	91.00	92.00	Peg	50344	1.52	1110.00
MO20DD004	92.00	93.00	Peg	50346	0.47	919.00
MO20DD004	93.00	94.00	Peg	50347	0.24	1430.00
MO20DD004	94.00	95.00	Peg	50348	0.06	1440.00
MO20DD004	95.00	96.00	Peg	50349	0.02	981.00
MO20DD004	96.00	97.00	Peg	50351	0.02	1420.00
MO20DD004	97.00	98.00	Peg	50352	0.02	1300.00
MO20DD004	98.00	99.00	Peg	50353	0.02	1070.00
MO20DD004	99.00	100.00	Peg	50354	0.02	1710.00
MO20DD004	100.00	101.00	Peg	50356	0.02	1640.00
MO20DD004	101.00	102.00	Peg	50357	0.01	2080.00

MO20DD004	102.00	103.00	Peg	50358	0.01	1440.00
MO20DD004	103.00	104.00	Peg	50359	0.02	1300.00
MO20DD004	104.00	105.00	Peg	50360	0.60	985.00
MO20DD004	105.00	106.00	Peg	50361	1.89	487.00
MO20DD004	106.00	107.00	Peg	50362	2.26	963.00
MO20DD004	107.00	108.00	Peg	50363	2.49	914.00
MO20DD004	108.00	109.00	Peg	50364	2.03	654.00
MO20DD004	109.00	110.00	Peg	50365	2.16	1140.00
MO20DD004	110.00	111.00	Peg	50366	1.75	1610.00
MO20DD004	111.00	112.00	Peg	50367	1.26	991.00
MO20DD004	112.00	113.00	Peg	50368	2.20	1660.00
MO20DD004	113.00	114.00	Peg	50369	1.66	1310.00
MO20DD004	114.00	115.00	Peg	50371	1.72	1350.00
MO20DD004	115.00	116.00	Peg	50372	2.26	1360.00
MO20DD004	116.00	117.00	Peg	50373	1.72	1060.00
MO20DD004	117.00	118.00	Peg	50374	2.24	713.00
MO20DD004	118.00	119.00	Peg	50376	1.86	1500.00
MO20DD004	119.00	120.00	Peg	50377	1.85	590.00
MO20DD004	120.00	121.00	Peg	50378	0.92	610.00
MO20DD004	121.00	122.00	Peg	50379	1.54	321.00
MO20DD004	122.00	123.00	Peg	50380	2.15	1360.00
MO20DD004	123.00	124.00	Peg	50381	1.65	589.00
MO20DD004	124.00	125.00	Peg	50382	1.39	977.00
MO20DD004	125.00	126.00	Peg	50383	1.11	443.00
MO20DD004	126.00	127.00	Peg	50384	1.21	413.00
MO20DD004	127.00	128.00	Peg	50386	1.95	232.00
MO20DD004	128.00	129.00	Peg	50387	1.93	228.00
MO20DD004	129.00	130.00	Peg	50388	2.69	643.00
MO20DD004	130.00	131.00	Peg	50389	1.65	718.00
MO20DD004	131.00	132.00	Peg	50391	1.96	663.00
MO20DD004	132.00	133.00	Peg	50392	1.51	838.00
MO20DD004	133.00	134.00	Peg	50393	2.06	378.00
MO20DD004	134.00	135.00	Peg	50394	1.41	837.00
MO20DD004	135.00	136.00	Peg	50396	0.76	1040.00
MO20DD004	136.00	137.00	Peg	50397	2.03	952.00
MO20DD004	137.00	138.00	Peg	50398	3.28	765.00
MO20DD004	138.00	139.00	Peg	50399	0.61	769.00
MO20DD004	139.00	140.00	Peg	50400	1.85	1600.00
MO20DD004	140.00	141.00	Peg	50401	2.41	476.00
MO20DD004	141.00	142.00	Peg	50402	1.65	509.00
MO20DD004	142.00	143.00	Peg	50403	0.91	1670.00
MO20DD004	143.00	144.00	Peg	50404	1.46	931.00
MO20DD004	144.00	145.00	Peg	50405	0.80	1100.00
MO20DD004	145.00	146.00	Peg	50406	1.06	597.00
MO20DD004	146.00	147.00	Peg	50407	1.84	1740.00
MO20DD004	147.00	148.00	Peg	50408	1.14	1120.00
MO20DD004	148.00	149.00	Peg	50409	2.25	653.00
MO20DD004	149.00	150.00	Peg	50411	1.38	657.00
MO20DD004	150.00	151.00	Peg	50412	1.85	1410.00
MO20DD004	151.00	152.00	Peg	50413	0.93	1050.00

MO20DD004	152.00	153.00	Peg	50414	2.26	236.00
MO20DD004	153.00	154.00	Peg	50416	1.57	493.00
MO20DD004	154.00	155.00	Peg	50417	1.57	784.00
MO20DD004	155.00	156.00	Peg	50418	0.75	465.00
MO20DD004	156.00	157.00	Peg	50419	1.45	667.00
MO20DD004	157.00	158.00	Peg	50420	0.93	650.00
MO20DD004	158.00	159.00	Peg	50421	1.85	2680.00
MO20DD004	159.00	160.00	Peg	50422	2.34	634.00
MO20DD004	160.00	161.00	Peg	50423	1.59	493.00
MO20DD004	161.00	162.00	Peg	50424	1.45	1470.00
MO20DD004	162.00	163.00	Peg	50426	2.15	1010.00
MO20DD004	163.00	164.00	Peg	50427	2.60	760.00
MO20DD004	164.00	165.00	Peg	50428	0.45	1450.00
MO20DD004	165.00	166.00	Peg	50429	0.93	946.00
MO20DD004	166.00	167.00	Peg	50431	2.18	1110.00
MO20DD004	167.00	168.00	Peg	50432	1.33	811.00
MO20DD004	168.00	169.00	Peg	50433	1.34	927.00
MO20DD004	169.00	170.00	Peg	50434	1.94	1080.00
MO20DD004	170.00	171.00	Peg	50436	1.52	896.00
MO20DD004	171.00	172.00	Peg	50437	2.26	973.00
MO20DD004	172.00	173.00	Peg	50438	1.29	1150.00
MO20DD004	173.00	174.00	Peg	50439	1.82	984.00
MO20DD004	174.00	175.00	Peg	50440	1.79	1390.00
MO20DD004	175.00	176.00	Peg	50441	1.62	963.00
MO20DD004	176.00	177.00	Peg	50442	1.96	599.00
MO20DD004	177.00	178.00	Peg	50443	0.80	1360.00
MO20DD004	178.00	179.00	Peg	50444	0.87	1580.00
MO20DD004	179.00	180.00	Peg	50445	1.04	1330.00
MO20DD004	180.00	181.00	Peg	50446	1.56	1310.00
MO20DD004	181.00	182.00	Peg	50447	1.36	1300.00
MO20DD004	182.00	183.00	Peg	50448	1.35	1490.00
MO20DD004	183.00	184.00	Peg	50449	1.69	1390.00
MO20DD004	184.00	185.00	Peg	50451	1.90	623.00
MO20DD004	185.00	186.00	Peg	50452	1.95	989.00
MO20DD004	186.00	187.00	Peg	50453	2.37	758.00
MO20DD004	187.00	188.00	Peg	50454	2.34	1200.00
MO20DD004	188.00	189.00	Peg	50456	1.78	888.00
MO20DD004	189.00	190.00	Peg	50457	2.15	912.00
MO20DD004	190.00	191.00	Peg	50458	1.44	608.00
MO20DD004	191.00	192.00	Peg	50459	2.92	250.00
MO20DD004	192.00	193.00	Peg	50460	3.60	488.00
MO20DD004	193.00	194.00	Peg	50461	2.04	920.00
MO20DD004	194.00	195.00	Peg	50462	1.16	332.00
MO20DD004	195.00	196.00	Peg	50463	2.02	863.00
MO20DD004	196.00	197.00	Peg	50464	1.93	918.00
MO20DD004	197.00	198.00	Peg	50466	1.49	1380.00
MO20DD004	198.00	199.00	Peg	50467	2.34	936.00
MO20DD004	199.00	200.00	Peg	50468	2.50	518.00
MO20DD004	200.00	201.00	Peg	50469	1.90	480.00
MO20DD004	201.00	202.00	Peg	50471	1.33	1490.00

MO20DD004	202.00	203.25	Peg	50472	1.11	632.00
MO20DD004	203.25	204.10	Grs	50473	0.17	781.00
MO20DD004	204.10	205.00	HmSst	50474	0.42	115.00
MO20DD004	205.00	206.00	HmSst	50476	0.36	104.00
MO20DD004	206.00	207.00	HmSst	50477	0.31	54.00
MO20DD004	207.00	209.00	HmSst	NS_DD004_1		
MO20DD004	209.00	210.00	HmSst	50478	0.45	95.00
MO20DD004	210.00	210.73	HmSst	50479	0.35	156.00
MO20DD004	210.73	211.03	Grs	50480	0.30	378.00
MO20DD004	211.03	212.00	Peg	50481	2.34	1660.00
MO20DD004	212.00	213.00	Peg	50482	2.86	288.00
MO20DD004	213.00	214.00	Peg	50483	1.64	616.00
MO20DD004	214.00	215.00	Peg	50484	1.18	1080.00
MO20DD004	215.00	216.00	Peg	50485	1.71	1810.00
MO20DD004	216.00	217.00	Peg	50486	1.30	1580.00
MO20DD004	217.00	218.00	Peg	50487	2.16	871.00
MO20DD004	218.00	219.00	Peg	50488	0.72	1330.00
MO20DD004	219.00	220.00	Peg	50489	2.29	999.00
MO20DD004	220.00	221.00	Peg	50491		
MO20DD004	221.00	222.00	Peg	50492	2.68	994.00
MO20DD004	222.00	223.00	Peg	50493	1.87	1480.00
MO20DD004	223.00	224.00	Peg	50494	1.74	1270.00
MO20DD004	224.00	225.00	Peg	50496	1.43	1440.00
MO20DD004	225.00	226.00	Peg	50497	1.42	1240.00
MO20DD004	226.00	227.00	Peg	50498	1.66	2140.00
MO20DD004	227.00	228.00	Peg	50499	1.39	833.00
MO20DD004	228.00	229.84	Grs	50500	0.52	495.00
MO20DD004	229.84	231.00	Hmsbq	50501	0.22	60.00
MO20DD004	231.00	232.00	Hmsbq	50502	0.22	34.00
MO20DD006	0.00	2.70	SLK	NS_DD006		
MO20DD006	2.70	4.00	Peg	50731	0.92	4490.00
MO20DD006	4.00	5.00	Peg	50732	1.38	860.00
MO20DD006	5.00	6.00	Peg	50733	1.45	951.00
MO20DD006	6.00	7.00	Peg	50734	1.22	1120.00
MO20DD006	7.00	8.00	Peg	50735	0.79	592.00
MO20DD006	8.00	9.00	Peg	50736	0.23	1240.00
MO20DD006	9.00	10.00	Peg	50737	2.00	1270.00
MO20DD006	10.00	11.00	Peg	50738	2.20	865.00
MO20DD006	11.00	12.00	Peg	50739	0.30	740.00
MO20DD006	12.00	13.00	Peg	50741	0.93	1520.00
MO20DD006	13.00	14.00	Peg	50742	1.37	939.00
MO20DD006	14.00	15.00	Peg	50743	1.28	1020.00
MO20DD006	15.00	16.00	Peg	50744	0.23	4980.00
MO20DD006	16.00	17.00	Peg	50746	1.61	1090.00
MO20DD006	17.00	18.10	Peg	50747	1.61	1410.00
MO20DD006	18.10	19.00	Peg	50748	1.04	1230.00
MO20DD006	19.00	20.00	Peg	50749	1.74	982.00
MO20DD006	20.00	21.00	Peg	50750	1.63	497.00
MO20DD006	21.00	22.00	Peg	50751	1.19	1220.00
MO20DD006	22.00	23.00	Peg	50752	1.04	1910.00

MO20DD006	23.00	24.00	Peg	50753	0.93	1500.00
MO20DD006	24.00	25.00	Peg	50754	0.90	2050.00
MO20DD006	25.00	26.00	Peg	50756	1.19	1600.00
MO20DD006	26.00	27.00	Peg	50757	1.67	1470.00
MO20DD006	27.00	28.00	Peg	50758	0.71	511.00
MO20DD006	28.00	29.00	Peg	50759	1.04	872.00
MO20DD006	29.00	30.00	Peg	50761	0.98	904.00
MO20DD006	30.00	31.00	Peg	50762	1.25	757.00
MO20DD006	31.00	32.00	Peg	50763	0.05	736.00
MO20DD006	32.00	33.00	Peg	50764	0.04	1130.00
MO20DD006	33.00	34.00	Peg	50766	0.03	679.00
MO20DD006	34.00	35.00	Peg	50767	0.04	220.00
MO20DD006	35.00	35.90	Peg	50768	0.07	681.00
MO20DD006	35.90	37.00	Grs	50769	0.02	1470.00
MO20DD006	37.00	37.60	Grs	50770	0.02	479.00
MO20DD006	37.60	38.03	Qv	50771	0.01	16.00
MO20DD006	38.03	39.00	Hms	50772	0.20	190.00

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	- Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. - Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. - Aspects of the determination of mineralisation that are Material to the Public Report. - In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information.	- Diamond drilling, producing drill core has been utilised to sample the pegmatite below ground surface. This method is recognised as providing the highest quality information and samples of the unexposed geology. - Supplementing the drilling data, surface samples were collected from outcrops, utilising channel sampling from trenches and point-source sampling of scattered outcrops. - Based on available data, there is nothing to indicate that drilling and sampling practices were not to normal industry standards at the time within the Manono licence PR13359. The pegmatite has been sampled from the hanging wall contact continuously through to the footwall contact. In addition, the hostrocks extending 2 m from the contacts have also been sampled. - Diamond drilling has been used to obtain core samples which have then been cut longitudinally. Intervals submitted for assay have been determined according to geological boundaries. Samples were taken at 1 m intervals. - The submitted half-core samples typically had a mass of $3-4 \mathrm{~kg}$.
Drilling techniques	- Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	- The drilling was completed using diamond core rigs with PQ used from surface to sample through to fresh or unbroken rock and HQ sized drill rods used after the top-of-fresh-rock had been intersected. Most holes are angled between 50° and 75° and collared from surface into fresh bedrock. All collars were surveyed after completion. All holes were downhole surveyed using a digital multi-shot camera at about 30 m intervals. All core was oriented.

Criteria	JORC Code explanation	Commentary
Drill sample recovery	- Method of recording and assessing core and chip sample recoveries and results assessed. - Measures taken to maximise sample recovery and ensure representative nature of the samples. - Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	- Drill core recovery attained $>97 \%$ in the pegmatite. - Based upon the high recovery, AVZ did not have to implement additional measures to improve sample recovery and the drill core is considered representative and fit for sampling. - For the vast majority of drilling completed, core recovery was near 100% and there is no sample bias due to preferential loss or gain of fine or coarse material.
Logging	- Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. - Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. - The total length and percentage of the relevant intersections logged.	- Drill core was logged by qualified geologists using a data-logger and the logs were then uploaded into Geobank which is a part of the Micromine software system. The core was logged for geology and geotechnical properties (RQD \& planar orientations). A complete copy of the data is held by an independent consultant. - All core was logged, and logging was by qualitative (lithology) and quantitative (RQD and structural features) methods. All core was also photographed both in dry and wet states, with the photographs stored in the database. - The entirety of all drillholes are logged for geological, mineralogical and geotechnical data.

Criteria	JORC Code explanation	Commentary
Sub-sampling techniques and sample preparation	- If core, whether cut or sawn and whether quarter, half or all core taken. - If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. - For all sample types, the nature, quality and appropriateness of the sample preparation technique. - Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. - Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. - Whether sample sizes are appropriate to the grain size of the material being sampled.	- Core is cut longitudinally, and half-core samples of a nominal 1 m length are submitted for assay. - The current programme is diamond core drilling. - The sample preparation for drill core samples incorporates standard industry practice. The half-core samples have been prepared at ALS Lubumbashi and the ALS sample preparation facility on site at Manono, with holes from MO18DD021 onwards being prepared at Manono. - At AVZ's onsite sample preparation facility the half-core samples of approximately $4-5 \mathrm{~kg}$ are oven dried, crushed to -2 mm with a 500 g subample being split out. This 500 g sub-sample is then pulverised to produce a pulp with 85% passing -75 um size fraction. A 120 g subsample is then split from this, the certified reference material, blanks and duplicates are inserted at appropriate intervals and then the complete sample batch is couriered to Australia for assay analysis. - Standard sub-sampling procedures are utilised by ALS Lubumbashi and ALS Manono at all stages of sample preparation such that each sub-sample split is representative of the whole it was derived from. - Duplicate sampling was undertaken for the drilling programme. After halfcore samples were crushed at the Manono preparatory facility, an AVZ geologist took a split of the crushed sample which is utilised as a field duplicate. The geologist placed the split into a pre-numbered bag which was then inserted into the sample stream. It is then processed further, along with all the other samples. The drilling produced PQ and HQ drill core, providing a representative sample of the pegmatite which is coarse-grained. Sampling was mostly at 1 m intervals, and the submitted half-core samples typically had a mass of $3-4 \mathrm{~kg}$.

Criteria	JORC Code explanation	Commentary
Quality of assay data and laboratory tests	- The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. - For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. - Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.	- Diamond drillhole (core) samples were submitted to the Manono site laboratory (DRC) where they were crushed and pulverised to produce pulps. These pulps were couriered to Australia and analysed by ALS Laboratories in Perth, Western Australia using a sodium peroxide fusion of a 5 g charge followed by digestion of the prill using dilute hydrochloric acid thence determination by AES or MS, i.e. methods ME-ICP89 and ME-MS91. Samples from the drilling completed in 2017 i.e. MO17DD001 and MO17DD002, were assayed for a suite of 24 elements that included Li, Sn, Ta \& Nb. Samples from the drilling completed in 2018 were assayed for a suite of 12 elements; Li, Sn, $\mathrm{Ta}, \mathrm{Nb}, \mathrm{Al}, \mathrm{Si}, \mathrm{K}, \mathrm{Fe}, \mathrm{Mg}, \mathrm{P}$, Th and U, with Li reported as $\mathrm{Li}_{2} \mathrm{O}, \mathrm{Al}$ as $\mathrm{Al}_{2} \mathrm{O}_{3}$, Si as $\mathrm{SiO}_{2}, \mathrm{~K}$ as $\mathrm{K} 2 \mathrm{O}, \mathrm{Mg}$ as MgO , Fe as $\mathrm{Fe}_{2} \mathrm{O}_{3}$ and P as $\mathrm{P}_{2} \mathrm{O}_{5}$. - Peroxide fusion results in the complete digestion of the sample into a molten flux. As fusion digestions are more aggressive than acid digestion methods, they are suitable for many refractory, difficult-to-dissolve minerals such as chromite, ilmenite, spinel, cassiterite and minerals of the tantalum-tungsten solid solution series. They also provide a more-complete digestion of some silicate mineral species and are considered to provide the most reliable determinations of lithium mineralisation. - Sodium peroxide fusion is a total digest and considered the preferred method of assaying pegmatite samples. - Geophysical instruments were not used in assessing the mineralisation. - For the drilling, AVZ incorporated standard QAQC procedures to monitor the precision, accuracy and general reliability of all assay results from assays of drilling samples. As part of AVZ's sampling protocol, CRMs (standards), blanks and duplicates were inserted into the sampling stream. In addition, the laboratory (ALS Perth) incorporated its own internal QAQC procedures to monitor its assay results prior to release of results to AVZ. The Competent Person is satisfied that the results of the QAQC are acceptable and that the assay data from ALS is suitable for Mineral Resource estimation.

Criteria	JORC Code explanation	Commentary
Verification of sampling and assaying	- The verification of significant intersections by either independent or alternative company personnel. - The use of twinned holes. - Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. - Discuss any adjustment to assay data.	- Company geologists and consultants observed the mineralisation in the majority of cores on site, although no check assaying was completed by MSA. - Jusdox Surveying observed and photographed several collar positions in the field, along with rigs that were drilling at the time of the site visit. - Twinned holes for the verification of historical drilling, were not required. Short vertical historical holes were drilled within the pit but are neither accessible nor included within the database used to define the Mineral Resource. - Drilling data is stored on site as both hard and soft copy. Drilling data is validated onsite before being sent to data management consultants in Perth where the data is further validated. When results are received, they are loaded to the central database in Perth and shared with various stakeholders via the cloud. QC results are reviewed by both independent consultants and AVZ personnel at Manono. Hard copies of assay certificates are stored in AVZ's Perth offices. - AVZ has not adjusted assay data.
Location of data points	- Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. - Specification of the grid system used. - Quality and adequacy of topographic control.	- The drillhole collars have been located by a registered surveyor using a HiTarget V30 Trimble differential GPS with an accuracy of $+/-0.02 \mathrm{~m}$ unless otherwise noted. - All holes were downhole surveyed using a digital multi-shot camera at approximately 30 m intervals. - For the purposes of geological modelling and estimation, the drillhole collars were projected onto this topographic surface. In most cases adjustments were within 1 m (in elevation). - Coordinates are relative to WGS 84 UTM Zone 35 M .
Data spacing and distribution	- Data spacing for reporting of Exploration Results. - Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. - Whether sample compositing has been applied.	- Drillhole spacing was completed on sections 100 m apart, and collars were less than 100 m apart on section where possible.
Orientation of data in relation to geological structure	- Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. - If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	- The drillhole orientation is designed to intersect the Roche Dure Pegmatite at, or nearly at, 90° to the plane of the pegmatite. - No material sampling bias exists due to drilling direction.

Criteria	JORC Code explanation	Commentary
Sample security	- The measures taken to ensure sample security.	- When utilizing ALS Perth, chain of custody is maintained by AVZ personnel on-site to Lubumbashi. Samples are stored on-site until they are delivered by AVZ personnel in sealed bags to the laboratory at ALS Perth. The ALS laboratory checked received samples against the sample dispatch form and issues a reconciliation report. - At Lubumbashi, the prepared samples (pulps) are sealed in a box and delivered by DHL to ALS Perth. - ALS issue a reconciliation of each sample batch, actual received vs documented dispatch. - The ALS Manono site preparation facility is managed by in house ALS trained personnel who supervise the sample preparation. Prepared samples are sealed in boxes and transported by air the Malabar clearing agency in Lubumbashi and are accompanied by an AVZ employee, where export documentation and formalities are concluded. DHL couriers the samples to ALS in Perth.
Audits or reviews	- The results of any audits or reviews of sampling techniques and data.	- The sampling techniques were reviewed by the Competent Person during multiple site visits. - The Competent Person considers that the exploration work conducted by AVZ was carried out using appropriate techniques for the style of mineralisation at Roche Dure, and that the resulting database is suitable for Mineral Resource estimation.

Section 2 Reporting of Exploration Results (Criteria listed in the previous section also apply to this section.)		
Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	- Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. - The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	- The Manono licence was awarded as Research Permit PR13359, issued on the $28^{\text {th }}$ December 2016 to o La Congolaise d'Exploitation Miniere SA (Cominiere). It is valid for 5 years. On the $2^{\text {nd }}$ February 2017, AVZ formed a joint-venture (JV) with Cominiere and Dathomir Mining Resources SARL (Dathomir) to become the majority partner in a JV aiming to explore and develop the pegmatites contained within PR 13359. Ownership of the Manono Lithium Project is AVZ 60\%, Cominiere 25% and Dathomir 15%. - AVZ manages the project and meets all funding requirements. - All indigenous title is cleared and there are no other known historical or environmentally sensitive areas.
Exploration done by other parties	- Acknowledgment and appraisal of exploration by other parties.	- Within PR13359 exploration of relevance was undertaken by Geomines whom completed a programme of drilling between 1949 and 1951. The drilling consisted of 42 vertical holes drilled to a general depth of around 50-60 m. Drilling was carried out on 12 sections at irregular intervals ranging from 50 300 m , and over a strike length of some 1,100 m. Drill spacing on the sections varied from $50-100 \mathrm{~m}$. The drilling occurred in the Roche Dure Pit only, targeting the fresh pegmatite in the Kitotolo sector of the project area. - The licence area has been previously mined for tin and tantalum through a series of open pits over a total length of approximately 10 km excavated by Zairetain SPRL. More than 60 Mt of material was mined from three major pits and several subsidiary pits focused on the weathered upper portions of the pegmatites. Ore was crushed and then upgraded through gravity separation to produce a concentrate of a reported $72 \% \mathrm{Sn}$. There are no reliable records available of tantalum or lithium recovery as tin was the primary mineral being recovered. - Apart from the mining excavations and the drilling programme, there has been very limited exploration work within the Manono region.

Criteria	JORC Code explanation	Commentary
Geology	- Deposit type, geological setting and style of mineralisation.	- The Project lies within the mid-Proterozoic Kibaran Belt - an intracratonic domain, stretching for over $1,000 \mathrm{~km}$ through Katanga and into southwest Uganda. The belt strikes predominantly SW-NE and is truncated by the N-S to NNW-SSE trending Western Rift system. The Kibaran Belt is comprised of a sedimentary and volcanic sequence that has been folded, metamorphosed and intruded by at least three separate phases of granite. The latest granite phase (900 to 950 million years ago) is assigned to the Katangan cycle and is associated with widespread vein and pegmatite mineralisation containing tin, tungsten, tantalum, niobium, lithium and beryllium. Deposits of this type occur as clusters and are widespread throughout the Kibaran terrain. In the DRC, the Katanga Tin Belt stretches over 500 km from near Kolwezi in the southwest to Kalemie in the northeast comprising numerous occurrences and deposits of which the Manono deposit is the largest. The geology of the Manono area is poorly documented and no reliable maps of local geology were observed. Recent mapping by AVZ has augmented the overview provided by Bassot and Morio (1989) and has led to the following description. The Manono Project pegmatites are hosted by a series of mica schists and by amphibolite in some locations. These host rocks have a steeply dipping penetrative foliation that appears to be parallel to bedding. There are numerous bodies of pegmatite, the largest of which have sub-horizontal to moderate dips, with dip direction being towards the southeast. The pegmatites post-date metamorphism, with all primary igneous textures intact. They cross-cut the host rocks but despite their large size, the contact deformation and metasomatism of the host rocks by the intrusion of the pegmatites seems minor. The absence of significant deformation of the schistosity of the host rocks implies that the pegmatites intruded brittle rocks. The pegmatites constitute a pegmatite swarm in which the largest pegmatites have an apparent en-echelon arrangement in a linear zone more than 12 km long. The pegmatites are exposed in two areas; Manono in the northeast, and Kitotolo in the southwest. These areas are separated by a 2.5 km section of alluvium-filled floodplain which contains Lake Lukushi. At least one large pegmatite extends beneath the floodplain. The pegmatites are members of the LCT-Rare Element group of pegmatites and within the pegmatite swarm there are LCT albite-spodumene pegmatites and LCT Complex (spodumene sub-type) pegmatites.

Criteria	JORC Code explanation	Commentary
Drill hole Information	- A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: - easting and northing of the drill hole collar - elevation or RL (Reduced Level - elevation above sea level in metres) of the drill hole collar - dip and azimuth of the hole - down hole length and interception depth - hole length. - If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	- See table for collar, survey and assay data.
Data aggregation methods	- In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. - Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. - The assumptions used for any reporting of metal equivalent values should be clearly stated.	- Intersections are reported as length-weighted grades within the logged pegmatite. - No grade truncations were applied. - The majority of samples were taken at 1 m lengths. - No equivalent values are used or reported.
Relationship between mineralisation widths and intercept lengths	- These relationships are particularly important in the reporting of Exploration Results. - If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. - If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known').	- The majority of samples were taken at 1 m lengths. - There is no relationship between mineralisation width and grade. - The geometry of the mineralisation is reasonably well understood however the pegmatite is not of uniform thickness nor orientation. Consequently, most drilling intersections do not represent the exact true thickness of the intersected pegmatite, although intersections are reasonably close to true thickness in most cases.
Diagrams	- Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	- The relevant plans and sections are included in this document.
Balanced reporting	- Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	- All pegmatite intersections for holes MO20DD002, 003, 004 and MO20DD006 are reported.

Criteria	JORC Code explanation	Commentary
Other substantive exploration data	-Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples - size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. Further work - The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. • No other exploration data is available.	• Diamond drill testing of the identified priority targets will be on-going.

