

8 FEBRUARY 2021

ASX/MEDIA RELEASE

NORTH KANOWNA STAR EMERGES AS A MAJOR EXPLORATION TARGET FOLLOWING OUTSTANDING NEW AIR-CORE RESULTS

Recent drilling confirms an extensive new gold trend with multiple target zones defined over a +3km strike length

Key Points:

- North Kanowna Star, easily accessed via existing roads, is located 29km SE of the proposed process plant, emerging as an important exploration and growth opportunity for Bardoc with results from air-core drilling undertaken in late 2020 returning significant results, including:
 - 15m @ 1.11g/t Au from 52m in NKA200380
 - 7m @ 1.95g/t Au from 44m in NKA200373
- These results support the ASX announcement of 5 November 2020, which included:
 - 21m @ 1.56g/t Au from 36m in NKA200051
 - 15m @ 1.22g/t Au from 68m in NKA200138
 - 4m @ 3.74g/t Au from 40m in NKA200139
 - 4m @ 3.59g/t Au from 52m in NKA200200
- Multiple mineralized zones now defined within the project area over a 3.7km strike length.
- Multiple prospects require follow-up work to advance them towards possible resource definition.
- Further geological interpretation is continuing, and deeper RC drilling is underway to define the scale of the potential resource areas.
- Four drill rigs are currently on-site at the Bardoc Tectonic Zone, targeting areas outside of existing resources at Aphrodite and North Kanowna Star.
- Bardoc is presenting at the *Resources Rising Stars* Summer Series Investor Webinar Tuesday, 9th February 2021 at 1:30pm AEDT (Sydney/Melbourne); 12:30pm AEST (Brisbane); 10:30am WST (Perth).

Bardoc Gold Limited (ASX: **BDC**, **Bardoc** or **the Company**) is pleased to advise that it has intersected extensive zones of shallow gold mineralisation in wide-spaced air-core drilling at its 100%-owned **North Kanowna Star Project**, 29km south-east of the proposed mill and infrastructure of the flagship **3.03Moz Bardoc Gold Project**, located 40km north of Kalgoorlie in Western Australia.

The North Kanowna Star project has current Mineral Resources of 32koz Au. The results reported in this announcement confirm that there are **multiple higher-grade mineralised areas additional to** the current Mineral Resource that require ongoing exploration to confirm their mineralised extents, with North Kanowna Star emerging as a significant long-term growth opportunity for Bardoc.

MANAGEMENT COMMENTS

Bardoc Gold's Chief Executive Officer, Mr Robert Ryan, said the Company had now defined numerous target areas across the North Kanowna Star Project which would be systematically tested over the coming months.

"The latest air-core assays from North Kanowna Star complete the current reconnaissance drilling program undertaken in late 2020. The results have changed our perception about the scale and significance of the opportunity at NKS, which is clearly emerging as a very large mineralised system.

"The drilling has defined multiple follow-up targets along a significant +3km mineralised trend, returning some exceptional results for this relatively early stage of reconnaissance exploration. RC drilling is now underway to define the scale of the potential resource areas.

"The North Kanowna Star program, together with drilling on the Bardoc Tectonic Zone, has been targeting new discoveries outside of our +3Moz resource. We are aiming to make significant new discoveries with the potential to either increase mine life or potentially increase the scale of our proposed operations at the Bardoc Gold Project.

"With exploration in full swing, we now have two clear avenues for growing shareholder value at Bardoc. One is through project development, with the Definitive Feasibility Study now in its final stages and on track for completion in late March – paving the way for project funding and a Final Investment Decision.

"The other is through organic growth and exploration – and we are now increasingly confident that we will be able to deliver significant exploration success, growth and excitement through the drill bit in the course of this year."

NORTH KANOWNA STAR RESULTS

The key results from North Kanowna Star come from the newly-defined **Serengeti Prospect** on a north-south trend that is 300m north-northwest of the existing 32koz Au Mineral Resource at Perseverance-Wedge. The drilling on this trend has confirmed it as a zone of significance requiring follow-up exploration.

The Serengeti Prospect is currently defined over a strike length of some 400m and remains open along strike and untested at depth.

Results from this drilling program include:

- 15m @ 1.11g/t Au from 52m in NKA200380
- 7m @ 1.95g/t Au from 44m in NKA200373
- 8m @ 0.87g/t Au from 72m in NKA2000447
- 17m @ 0.42g/t Au from 44m in NKA200369

Previously reported results from this zone (ASX Announcement 5 November 2020) included:

- 21m @ 1.56g/t Au from 36m in NKA200051
- 15m @ 1.22g/t Au from 68m in NKA200138
- 4m @ 3.74g/t Au from 40m in NKA200139
- 4m @ 3.59g/t Au from 52m in NKA200200

• 12m @ 0.74g/t Au from 40m in NKA200061

• 21m @ 0.86g/t Au from 52m in NKA200187

The results reported here are from a 451 hole air core program for 19,599m of drilling. Assays from 28 holes are still pending.

The program has successfully identified a north-south trend in the central part of the project area, as well as gold anomalism on the northernmost line that has anomalous gold in the bottom-of-hole or close to it of over 400m in an east-west (interpreted as across-strike) direction.

Further work on this northern area is required once pXRF data is interpreted.

Geologically, the mineralisation in the central area is associated with moderate silicification of a basaltic unit which is dipping shallowly to the east, and there is minor quartz veining and arsenopyrite visible within the chips. Rock type logging is being assisted by pXRF interpretation, which is particularly helpful in weathered rocks.

The Company has also completed a regional re-sampling program of all old RAB and air-core drill holes from the 1980s onwards. This re-sampling of the old drilling has added value by improving the rock type identification using modern methods, which are cheaper than traditional assays and also have a faster turnaround time.

Having confidence in the geology, using science, allows the Company's geologists to apply exploration models that are most appropriate based on geological understanding and modern exploration practices. It is noted that the North Kanowna Star Project has had minimal exploration work undertaken over the last 20 years and is therefore under-explored using modern methods and exploration models.

The mineralisation in the two cross-sections below extends over a strike length of some 400m and represents an additional mineralized position to the existing Mineral Resource at Perseverance Wedge (see Figure 4).

The main zones of mineralization in the southern half of the project are on north-south trends that cut across the resistive units from the 2020 Gradient Array Induced Polarisation (GAIP) survey and are poorly tested along strike and at depth.

These results from the northernmost line of air-core drilling, towards the northern boundary of the tenement, have now established anomalous gold over a strike length of some 3.7km, which is regionally significant considering that the **1.7Moz Au Aphrodite Deposit** is contained within some 3.5km of strike of gold anomalism and the **526koz Au Zoroastrian Deposit** is anomalous over 1.5km.

The mineralisation styles at Aphrodite, Zoroastrian and North Kanowna Star are all different, however they are a useful analogy to give some context as to the potential extent of the gold mineralisation at North Kanowna Star.

Given the scale of the anomalism and the success of the recent exploration programs, Bardoc Gold believes that the North Kanowna Star Project warrants sustained and systematic long-term exploration to expand the known 32koz resource at the Perseverance-Wedge Deposit at depth and along strike, and to define potential new resource positions across the broader project area.

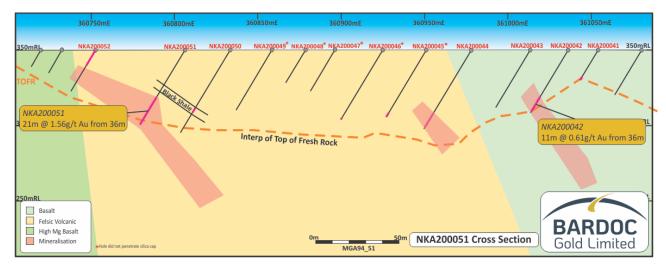


Figure 1: The southern section of the two shown on the plan has two zones of gold mineralisation.

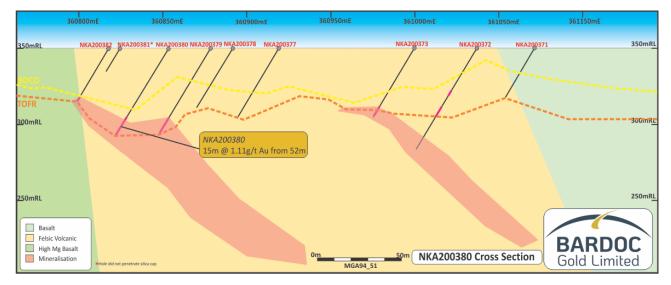


Figure 2: This section is 150m north along the mineralised strike.

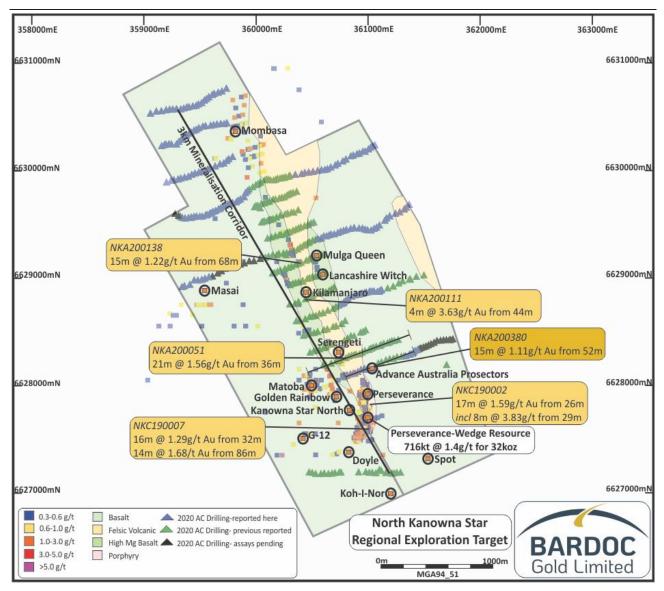
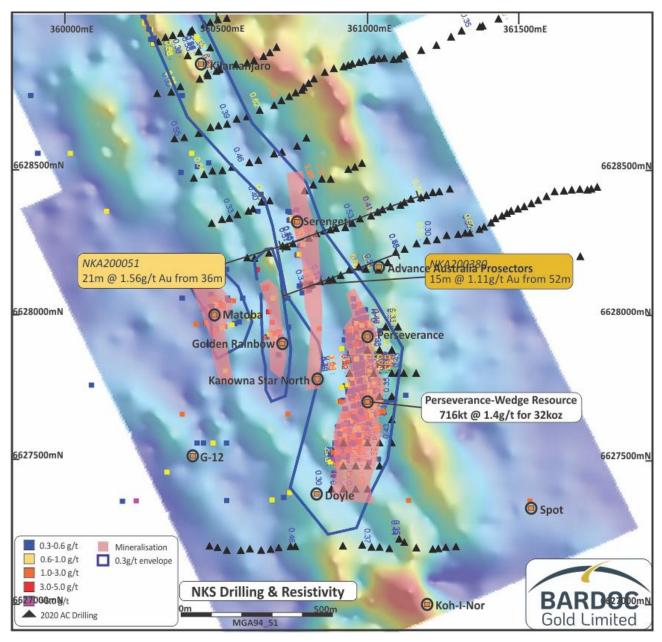



Figure 3: Anomalism over 3.5km of strike, multiple targets require testing.

Figure 4: Image of the 4 dominant mineralised corridors overlain on resistivity The Perseverance-Wedge Mineral Resource area is open to the north and south as well as at depth. There has been minimal testing at depth of the 3 zones located west of the Perseverance-Wedge Deposit.

NORTH KANOWNA STAR

The North Kanowna Star Project area contains significant gold mineralisation. It is a multi-prospect area with excellent geological characteristics with broad alteration and mineralisation present in a sequence of mafic and felsic volcanic rocks.

Historically, mining has occurred at several prospects, notably Perseverance, Lancashire Witch and the Golden Rainbow. Historical reports from Perseverance record sulphide rich rock samples recording 30g/t Au and chip samples across the face of a historic stope of 7g/t Au over 5m. A total of 93 tonnes of dump material from the Lancashire Witch were treated at the Kalgoorlie State Battery in the 1980s and had a reconciled grade of 4.4g/t Au.

The prospects currently being worked on are:

Kilimanjaro

The Kilimanjaro Prospect is situated on a flexure in a north-northwest striking shear zone and is associated minor quartz veining, broad silicification and fine-grained pyrite within a basaltic unit. The anomalous gold zone is some 60m wide with a strike of some 700m.

Recent results include:

- 12m @ 1.49g/t Au from 68m in NKA200138 (ASX 5 November 2020)
- 4m @ 3.63g/t Au from 44m in NKA200111 (ASX 5 November 2020)

Serengeti

This prospect is located 600m southeast of the Kilimanjaro Prospect. It is interpreted as being on a northerly striking shear that cuts across the Kilimanjaro shear zone. The mineralisation is associated with up to 4% quartz veining with 3-5% arsenopyrite within felsic volcanic units. It is somewhat parallel to the nearby (300m south-southeast) Perseverance Wedge mineralisation and is currently interpreted as a separate mineralised zone to the known 32koz Au Mineral Resource at the Perseverance Wedge Deposit.

Recent results include:

• 13m @ 2.17g/t Au from 44m in NKA200051 (ASX 5 November 2020)

Perseverance Wedge

This is the main resource area at North Kanowna Star with 32koz Au. The mineralisation is open at depth and along strike. Drill hole NKC190007 was drilled as the western most hole on the main line of workings and the deeper broad zone of mineralisation is still open at depth. The anomalism is associated with extensive quartz veining of up to 3% over 50m in down hole extent and with up to 5% pyrite.

Recent results include:

- 17m @ 1.59g/t Au from 26m including 8m @ 2.72g/t Au from 29m in NKC190002(ASX 22 January 2020)
- 16m @ 1.29g/t Au from 32m including 4m @ 3.34g/t Au from 32m and
- 14m @ 1.68g/t Au from 82m including 4m @ 3.72g/t Au from 85m in KNC190007 (ASX 22 January 2020)

Future work at North Kanowna Star

A GAIP survey was conducted at North Kanowna Star in 2020. This survey has proved vital in helping unlock the geology and structural interpretation of the project and adds an extra dimension to the trace element geochemical data during the interpretation and exploration modelling stages.

Consistent with the Company's philosophy of maximising the application of good scientific practice, further geophysical testing is being assessed for completion over the coming months.

Geophysics is an important tool for assessing rock properties cheaply and quickly over the prospect-wide scale and adds value in assisting with interpreting structure, geology and the ranking of prospects, thereby maximising the likelihood of success of drilling as we move forward over the longer term to unlock the potential of this regionally important mineralised system.

NEXT STEPS

- Air-core drilling is ongoing along the Bardoc Tectonic Zone.
- RC drilling is in progress north-east of Aphrodite and at North Kanowna Star.
- Exploration diamond core drilling is underway at Aphrodite targeting depth and strike extensions of the Sigma and newly interpreted structural positions.

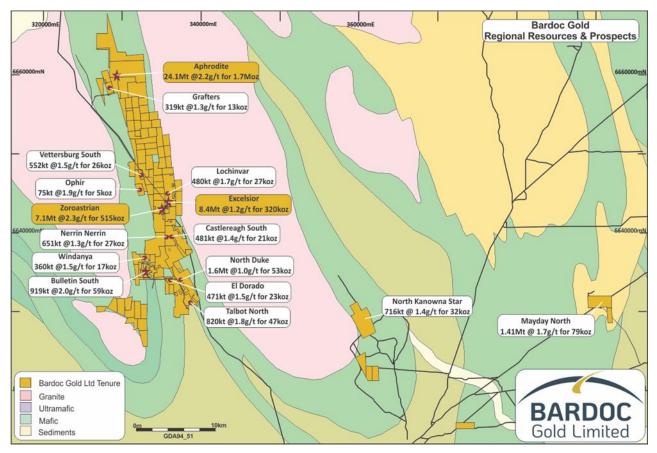


Figure 5: Bardoc Gold Project, tenement location plan.

BARDOC GOLD PROJECT – BACKGROUND

The Bardoc Gold Project runs contiguously north for 40km in the Eastern Goldfields. There are four main deposits and a multitude of smaller projects within the 250km² land-holding, providing a large Resource base and excellent exploration potential within the prolific Norseman-Wiluna greenstone belt and junction of the Bardoc Tectonic Zone (BTZ) and the Black Flag Fault (BFF).

These two deep-seated crustal structures host many multi-million-ounce deposits, including the worldrenowned Golden Mile in Kalgoorlie.

GLOBAL RESOURCE – BARDOC GOLD PROJECT

						D PROJE								
		Cut-Off	M	EASURI	ED	IND	CATED		IN	FERREI	D	TOTAL	RESOL	JRCES
Deposit	Туре	(g/t Au)	Tonnes (,000t)	Grade (g/t Au)	Ounces (,000oz)	Tonnes (,000t)	Grade (g/t Au)	Ounces (,000oz)	Tonnes (,000t)	Grade (g/t Au)	Ounces (,000 oz)	Tonnes (,000t)	Grade (g/t Au)	Ounces (,000oz)
Aphrodite	ОР	0.4	-	-	-	12,770	1.8	740	4,741	1.4	208	17,511	1.7	948
Aphrodite	UG	2.0	-	-	-	3,072	3.9	366	2,313	4.3	322	5,385	4.1	710
Aphrodite	TOTAL		-	-	-	15,842	2.2	1,106	7,054	2.3	530	22,896	2.3	1,658
Zoroastrian	ОР	0.4	-	-	-	3,862	1.8	229	1,835	1.5	89	5,698	1.7	318
Zoroastrian	UG	1.8	-	-	-	789	4.7	119	790	3.5	88	1,579	4.1	208
Zoroastrian	TOTAL		-	-	-	4,651	2.3	348	2,625	2.1	177	7,277	2.2	526
Excelsior	OP	0.4	-	-	-	6,729	1.2	266	1,749	1.0	54	8,478	1.2	320
Mayday North	OP	0.5	-	-	-	1,325	1.6	66	430	1.3	18	1,778	1.5	84
Talbot North	OP	0.4	-	-	-	698	1.8	40	123	1.8	7	820	1.8	47
Bulletin South	OP	0.4	152	2.2	11	546	2.1	36	150	2.1	10	849	2.1	57
Duke North	OP	0.4	-	-	-	851	1.0	28	795	1.0	25	1,646	1.0	53
Lochinvar	OP	0.4	-	-	-	423	1.8	24	57	1.6	3	480	1.7	27
El Dorado	ОР	0.5	-	-	-	203	1.4	9	383	1.5	18	586	1.5	28
El Dorado	UG	2.0	-	-	-	-	-	-	51	6.5	11	51	6.5	11
El Dorado	TOTAL		-	-	-	203	1.4	9	434	2.1	29	637	1.9	39
North Kanowna Star	OP	0.5	-	-	-	157	1.6	8	559	1.3	24	716	1.4	32
South Castlereagh	OP	0.5	-	-	-	111	1.6	6	369	1.3	15	481	1.4	21
Mulwarrie	OP	0.5	-	-	-	-	-	-	881	2.8	79	881	2.8	79
Nerrin Nerrin	OP	0.5	-	-	-	-	-	-	651	1.3	26	651	1.3	26
Vettersburg South	OP	0.6	-	-	-	-	-	-	552	1.5	26	552	1.5	26
Windanya	OP	0.6	-	-	-	-	-	-	360	1.5	17	360	1.5	17
Grafters	OP	0.5	-	-	-	-	-	-	319	1.3	14	319	1.3	14
Ophir	OP	0.6	-	-	-	-	-	-	75	1.9	5	75	1.9	5
TOTAL RESO	URCES		152	2.3	11	31.536	1.9	1.937	17.183	1.9	1,059	48.896	1.9	3.03

Note: Differences may occur due to rounding. Full details of the Mineral Resource estimate were provided in the Company's ASX Announcement dated 30 September 2020.

GLOBAL RESERVE – BARDOC GOLD PROJECT

PROJECT		PROBABLE		TOTAL		
PROJECT	Tonnes (kt)	Grade (g/t)	Gold (koz)	Tonnes (kt)	Grade (g/t)	Gold (koz)
Excelsior OP	3,540	1.4	160	3,540	1.4	160
Zoroastrian OP	350	1.9	20	350	1.9	20
Aphrodite OP	2,830	2.3	210	2,830	2.3	210
Bulletin OP	520	2.0	30	520	2.0	30
Zoroastrian UG	810	3.2	80	810	3.2	80
Aphrodite UG	2,380	3.7	290	2,380	3.7	290
TOTAL	10,430	2.4	790	10,430	2.4	790

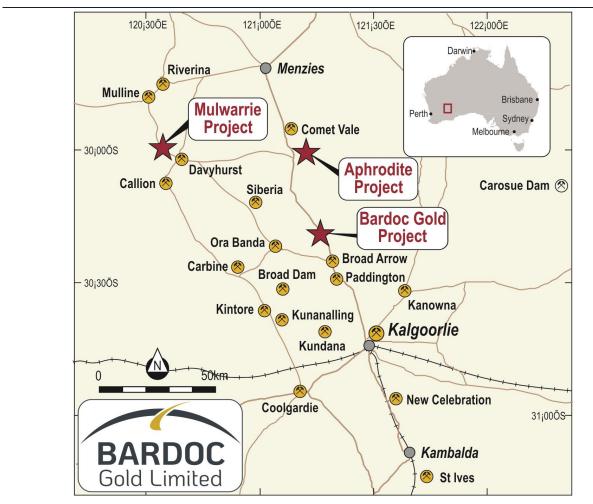


Figure 6: Project Location Plan

DISCLAIMERS AND FORWARD-LOOKING STATEMENTS

This announcement contains forward looking statements. Forward looking statements are often, but not always, identified by the use of words such as "seek", "target", "anticipate", "forecast", "believe", "plan", "estimate", "expect" and "intend" and statements that an event or result "may", "will", "should", "could" or "might" occur or be achieved and other similar expressions.

The forward-looking statements in this announcement are based on current expectations, estimates, forecasts and projections about Bardoc and the industry in which they operate. They do, however, relate to future matters and are subject to various inherent risks and uncertainties. Actual events or results may differ materially from the events or results expressed or implied by any forward-looking statements. The past performance of Bardoc is no guarantee of future performance.

None of Bardoc's directors, officers, employees, agents or contractors makes any representation or warranty (either express or implied) as to the accuracy or likelihood of fulfilment of any forward-looking statement, or any events or results expressed or implied in any forward-looking statement, except to the extent required by law. You are cautioned not to place undue reliance on any forward-looking statement. The forward-looking statements in this announcement reflect views held only as at the date of this announcement.

Approved for release by

Robert Ryan Chief Executive Officer

For further information contact:

INVESTORS:		MEDIA:	
Robert Ryan	Bardoc Gold Limited	Nicholas Read	Read Corporate
Telephone:	(08) 6215 0090	Telephone:	0419 929 046
Email:	admin@bardocgold.com.au	Email:	info@readcorporate.com.au

Competent Person's Statement

Exploration Results

Information in this announcement that relates to exploration results and mineral resources is based on information compiled by Mr. Bradley Toms who is the Exploration Manager of Bardoc Gold Limited. Mr. Toms is a Member of The Australian Institute of Geoscientists and has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity that he is undertaking, to qualify as Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr. Toms consents to the inclusion in the document of the information in the form and context in which it appears.

Mineral Resources

The Company confirms it is not aware of any new information or data that materially affects the information included in the 30 September 2020 Bardoc Resource Estimate and that all material assumptions and technical parameters underpinning the estimate continue to apply and have not materially changed when referring to its resource announcement made on 30 September 2020.

Ore Reserves – Open Pit & Underground

The information referred to in this announcement has been extracted from the Pre-Feasibility Report and Ore Reserve Statement dated 17 March 2020 and available to view on www.bardocgold.com. The Company confirms that it is not aware of any new information or data that materially affects the information included in the Ore Reserves Statement and that all material assumptions and technical parameters underpinning the estimates in the Ore Reserves Statement continue to apply and have not materially changed. The Company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the Ore Reserves Statement.

Appendix 1

Table 1 – Drill Hole Location Table

Only completed holes, with assay results received, are reported. All holes are drilled at -60° dip with an azimuth towards 250° (magnetic).

	Collar	Collar		Liele Death m
Hole_ID	MGAZ51_East m	MGAZ51_North m	Collar RL m 350	Hole Depth m
NKA200231	359738	6630774		96 67
NKA200232	359698	6630748	350	
NKA200233	359665	6630736	350	69 5.6
NKA200234	359629	6630725	350	56
NKA200235 NKA200236	359612 359581	6630715 6630694	350 350	46 64
NKA200238	359581	6630694	350	57
NKA200238	359542	6630663	350	60 45
NKA200239	359518	6630640	350	43
NKA200240	359489	6630628	350	
NKA200241	359468	6630614	350	50
NKA200242	359439	6630609	350 350	44
NKA200243	359404	6630603		36
NKA200244	359384	6630598	350	45
NKA200245	359358	6630589	350	60
NKA200246	359331	6630581	350	54
NKA200247	359293	6630584	350	62
NKA200248	359260	6630580	350	58
NKA200249	359232	6630579	350	64
NKA200250	359200	6630574	350	86
NKA200251	359158	6630564	350	93
NKA200252	359113	6630561	350	110
NKA200253	359061	6630542	350	39
NKA200254	359742	6630453	350	59
NKA200255	359718	6630444	350	49
NKA200256	359688	6630445	350	67
NKA200257	359654	6630441	350	62
NKA200258	359624	6630435	350	60
NKA200259	359598	6630429	350	89
NKA200260	359552	6630425	350	68
NKA200261	359528	6630421	350	64
NKA200262	359493	6630406	350	52
NKA200263	359470	6630392	350	48
NKA200264	359449	6630383	350	45
NKA200265	359421	6630369	350	36
NKA200266	359407	6630357	350	34
NKA200267	359382	6630340	350	38
NKA200268	359371	6630331	350	27

NKA200269	359350	6630311	350	27
NKA200270	359337	6630299	350	41
NKA200271	359314	6630279	350	52
NKA200272	359293	6630255	350	66
NKA200273	359248	6630255	350	42
NKA200274	359226	6630257	350	39
NKA200275	359198	6630253	350	33
NKA200276	359185	6630249	350	62
NKA200277	359161	6630239	350	37
NKA200278	359759	6630118	350	42
NKA200279	359742	6630102	350	11
NKA200280	359715	6630078	350	53
NKA200281	359681	6630071	350	13
NKA200282	359638	6630051	350	1
NKA200283	359592	6630035	350	26
NKA200284	359571	6630022	350	28
NKA200285	359539	6630007	350	31
NKA200286	359517	6630001	350	37
NKA200287	359492	6629994	350	53
NKA200288	359458	6629984	350	39
NKA200289	359429	6629972	350	32
NKA200290	359399	6629955	350	41
NKA200291	359365	6629947	350	39
NKA200292	359332	6629938	350	47
NKA200293	359308	6629930	350	27
NKA200294	359271	6629922	350	35
NKA200295	359246	6629916	350	31
NKA200296	359204	6629901	350	18
NKA200297	359794	6630138	350	28
NKA200298	361063	6630246	350	30
NKA200299	361043	6630240	350	28
NKA200300	361026	6630225	350	30
NKA200301	361006	6630209	350	60
NKA200302	360976	6630187	350	70
NKA200303	360956	6630187	350	59
NKA200304	360925	6630171	350	28
NKA200305	360904	6630164	350	63
NKA200306	360871	6630152	350	60
NKA200307	360849	6630144	350	90
NKA200308	360805	6630115	350	59
NKA200309	360777	6630097	350	78
NKA200310	360733	6630074	350	37
NKA200311	360710	6630059	350	74
NKA200312	360669	6630040	350	69
NKA200313	360639	6630025	350	26

NKA200314	360617	6630018	350	16
NKA200315	360587	6630015	350	17
NKA200316	360553	6630009	350	21
NKA200317	360511	6630000	350	12
NKA200318	360473	6629994	350	13
NKA200319	360438	6629990	350	24
NKA200320	360409	6629980	350	35
NKA200321	360353	6629972	350	30
NKA200322	359926	6629819	350	25
NKA200323	359909	6629803	350	29
NKA200324	359897	6629764	350	42
NKA200325	359864	6629743	350	32
NKA200326	359843	6629732	350	31
NKA200327	359826	6629717	350	45
NKA200328	359793	6629710	350	35
NKA200329	359770	6629703	350	44
NKA200330	359750	6629698	350	33
NKA200331	359728	6629689	350	62
NKA200332	359706	6629676	350	51
NKA200333	359686	6629659	350	52
NKA200334	359668	6629651	350	53
NKA200335	359642	6629636	350	37
NKA200336	359620	6629627	350	37
NKA200337	359603	6629617	350	43
NKA200338	359589	6629609	350	32
NKA200339	359566	6629599	350	39
NKA200340	359553	6629594	350	71
NKA200341	359523	6629584	350	66
NKA200342	359501	6629582	350	59
NKA200343	359472	6629584	350	51
NKA200344	359449	6629581	350	57
NKA200345	359425	6629576	350	58
NKA200346	359400	6629570	350	58
NKA200347	359370	6629567	350	54
NKA200348	359345	6629571	350	41
NKA200349	359328	6629581	350	60
NKA200366	361444	6628343	350	50
NKA200367	361422	6628334	350	48
NKA200368	361385	6628305	350	31
NKA200369	361370	6628297	350	61
NKA200370	361338	6628284	350	61
NKA200371	361066	6628182	350	38
NKA200372	361036	6628157	350	77
NKA200373	360994	6628159	350	52
NKA200374	361408	6628319	350	50

NKA200375	360971	6628167	350	51
NKA200376	360939	6628157	350	33
NKA200377	360911	6628138	350	53
NKA200378	360885	6628124	350	45
NKA200379	360871	6628122	350	66
NKA200380	360845	6628116	350	67
NKA200381	360816	6628107	350	18
NKA200382	360810	6628103	350	41
NKA200383	361122	6628900	350	32
NKA200384	361103	6628885	350	33
NKA200385	361086	6628883	350	32
NKA200386	361055	6628887	350	38
NKA200387	361037	6628886	350	35
NKA200388	361019	6628886	350	31
NKA200389	361014	6628881	350	30
NKA200390	360987	6628877	350	25
NKA200391	360972	6628873	350	28
NKA200392	360949	6628868	350	37
NKA200393	360936	6628863	350	15
NKA200394	360921	6628858	350	28
NKA200395	360888	6628852	350	8
NKA200396	360858	6628839	350	9
NKA200397	360823	6628816	350	32
NKA200398	360805	6628801	350	34
NKA200399	360789	6628788	350	12
NKA200400	360783	6628777	350	21
NKA200401	360762	6628768	350	25
NKA200402	361369	6629693	350	60
NKA200403	361343	6629666	350	69
NKA200404	361325	6629650	350	87
NKA200405	361285	6629624	350	108
NKA200406	361247	6629610	350	107
NKA200407	361196	6629587	350	81
NKA200408	361167	6629566	350	34
NKA200409	361152	6629545	350	54
NKA200410	361129	6620520	350	50
NKA200411	361104	6629501	350	47
NKA200412	361078	6629480	350	42
NKA200413	361056	6629469	350	45
NKA200414	361029	6629454	350	39
NKA200415	360998	6629456	350	50
NKA200416	360976	6629462	350	40
NKA200417	360952	6629472	350	68
NKA200418	360922	6629473	350	68
NKA200419	360878	6629478	350	52

NKA200420	360847	6629469	350	69
NKA200421	360809	6629460	350	60
NKA200422	360784	6629451	350	41
NKA200423	360757	6629443	350	43
NKA200424	360733	6629431	350	32
NKA200425	360701	6629419	350	42
NKA200426	360673	6629417	350	35
NKA200427	360655	6629410	350	47
NKA200428	360632	6629400	350	42
NKA200429	360607	6629399	350	39
NKA200430	360585	6629381	350	34
NKA200431	360555	6629373	350	24
NKA200444	359583	6629020	350	73
NKA200445	359547	6629006	350	59
NKA200446	359519	6628995	350	63
NKA200447	359484	6628989	350	80
NKA200448	359451	6628990	350	66
NKA200449	359412	6628949	350	67
NKA200450	359364	6628936	350	63
NKA200451	359342	6628927	350	62

Appendix 2

Table 2 - - Significant Intersections >= 1m@ 0.10g/t Au, Intersections >=5 grammetres are in bold. Maximum 8m internal downhole dilution. No upper cuts applied, 4m composite samples are collected over the entire length of the drill hole. Drill holes in the collar table but not this table have "No Significant Assays".

Hole_ID	Depth_From	Depth_To	Width	Grade g/t Au
NKA200237	40	44	4	0.25
NKA200238	0	4	4	0.10
NKA200238	40	48	8	0.33
NKA200239	0	4	4	0.12
NKA200240	40	43	3	0.12
NKA200242	40	44	4	0.12
NKA200245	48	52	4	0.14
NKA200247	52	56	4	0.10
NKA200248	52	56	4	0.29
NKA200249	63	64	1	0.18
NKA200250	80	85	5	0.26
NKA200251	60	64	4	0.15
NKA200251	72	84	12	0.21
NKA200258	48	52	4	0.19
NKA200259	80	84	4	0.16
NKA200260	52	56	4	0.15
NKA200262	4	8	4	0.14
NKA200264	40	44	4	0.13
NKA200265	28	32	4	0.24
NKA200270	32	36	4	0.18
NKA200273	8	12	4	0.15
NKA200276	0	4	4	0.11
NKA200277	0	4	4	0.18
NKA200284	26	27	1	0.18
NKA200285	0	4	4	0.11
NKA200286	36	37	1	0.21
NKA200295	28	30	2	0.13
NKA200307	52	68	16	0.19
NKA200307	84	88	4	0.11
NKA200310	36	37	1	0.48
NKA200311	68	73	5	0.20
NKA200312	64	68	4	0.16
NKA200323	28	29	1	0.12
NKA200325	31	32	1	3.86
NKA200327	32	36	4	0.25
NKA200333	32	40	8	0.32
NKA200333	50	52	2	1.69
NKA200334	36	44	8	0.34
NKA200344	56	57	1	0.11
NKA200345	48	52	4	0.20

NKA200349	40	48	8	0.11
NKA200367	44	47	3	0.16
NKA200369	44	61	17	0.42
NKA200370	40	56	16	0.15
NKA200371	20	24	4	0.10
NKA200371	36	37	1	0.15
NKA200372	32	36	4	0.51
NKA200372	44	72	28	0.31
NKA200373	44	51	7	1.95
NKA200375	48	51	3	0.21
NKA200379	48	66	18	0.29
NKA200380	52	67	15	1.11
NKA200382	12	16	4	0.27
NKA200382	36	40	4	0.32
NKA200394	24	27	3	0.11
NKA200405	56	64	8	0.34
NKA200407	72	80	8	0.35
NKA200410	49	50	1	0.21
NKA200419	51	52	1	0.20
NKA200427	44	46	2	0.30
NKA200428	40	42	2	0.31
NKA200429	32	38	6	0.28
NKA200430	28	32	4	1.08
NKA200444	68	72	4	0.21
NKA200445	16	20	4	0.43
NKA200445	48	52	4	0.18
NKA200445	58	59	1	0.10
NKA200446	16	20	4	0.11
NKA200447	16	20	4	0.28
NKA200447	60	64	4	0.15
NKA200447	72	80	8	0.87
NKA200448	60	66	6	0.28
NKA200449	0	4	4	0.12
NKA200449	52	64	12	0.26
NKA200450	60	62	2	0.15
NKA200451	60	61	1	0.10

JORC, 2012 Edition – Tables – North Kanowna Star

1.1 Section 1 Sampling techniques and data

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information. 	 The mineralization was primarily sampled by air core (AC) drilling on nominal 160m x 40m (N x E) grid spacing. The holes were generally drilled towards magnetic 250°, at -60° to optimally intersect postulated lithological trends and possible gold mineralisation. Complete details are un-available for historic drilling. BDC AC recovered samples were collected and passed through a cyclone before being placed on the ground in 1m intervals. To date BDC has not completed any duplicates to support sample representivity. However, the sampling and drilling systems when inspected were operating in the correct manner. All BDC AC drilling was sampled on four metre composite down hole intervals with a 1m sample at the bottom of hole. The recovered samples were sampled using a spear or scoop and a nominal 2.5kg – 3.5kg sample was taken to a Kalgoorlie contract laboratory. Samples were oven dried, reduced by riffle splitting to 3kg as required and pulverized in a single stage process to 85% passing 75 µm. The sample is then prepared by standard fire assay techniques with a 40g charge. Approximately 200g of pulp material is returned to BDC for storage and potential assay at a later date.
Drilling techniques	 Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 RAB drilling makes up about 50% of the historic drilling and RC the other 50%. There are several campaigns of historic drilling between 1983 and 2010. These holes are sometimes without documentation of the rig type and capability, core size, sample selection and handling. For BDC drilling, the AC drilling system employed the use of an air core system with a nominal 105mm hole being drilled.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed Measures taken to maximise sample recovery and ensure representative nature of the samples Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 All BDC AC 1m samples are logged for drilling recovery by a visual estimate and this information is recorded and stored in the drilling database. All samples received by the laboratory are weighed with the data collected and stored in the database. BDC AC samples are visually logged for moisture content, sample recovery and contamination. This information is stored in the database. The AC drill system utilizes industry best practice and the contractor aims to maximize recovery at all times. AC holes are drilled dry whenever practicable to maximize recovery of sample. Study of sample recovery vs gold grade does not show any bias towards differing sample recoveries or gold grade. The drilling contractor uses standard industry drilling techniques to ensure minimal loss of any size fraction.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 All BDC AC samples are geologically logged directly into hand-held Geobank devices. The entire lengths of BDC AC holes are logged on a 1m interval basis, i.e. 100% of the drilling is logged, and where no sample is returned due to voids (or potentially lost sample) it is logged and recorded as such. Drill core is logged over its entire length and any core loss or voids intersected are recorded.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all subsampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. 	 No core samples are the subject of this announcement All BDC AC samples are put through a cyclone and each 1m interval is placed on the ground. Samples for assay are collected by scoops or spears with a representative sample selected using 4m composite samples. The bottom of hole sample is always 1m. The BDC AC samples are sorted, oven dried, the entire sample is pulverized in a one stage process to 85% passing 75 µm. The bulk pulverized sample is then bagged and approximately 200g extracted by spatula to a numbered paper bag that is used for the 50g fire assay charge. BDC samples submitted to the laboratory are sorted and reconciled against the submission documents. BDC inserts blanks and standards with blanks submitted in sample number sequence at 1 in 20. The laboratory uses their own

	Whether sample sizes are appropriate to the grain size of the material being sampled.	 internal standards of 2 duplicates, 2 replicates, 2 standards, and 1 blank per 50 fire assays. The laboratory also uses barren flushes on the pulveriser. Filed duplicates, 1 in 50 of assays above 1g/t Au, are taken after the completion of the drill program. The sample sizes are considered to be appropriate for the type, style, thickness and consistency of mineralization located at this project. The sample size is also appropriate for the sampling methodology employed and the gold grade ranges returned.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established. 	 BDC has routinely used local Kalgoorlie Certified Laboratories for all sample preparation and analysis. The most commonly used laboratories have been Intertek ALS and Bureau Veritas Australia. No complete details of the sample preparation, analysis or security are available for either the historic RAB/AC, DD or RC drilling results in the database. The assay method is designed to measure total gold in the sample. The laboratory procedures are appropriate for the testing of gold at this project given its mineralization style. The technique involves using a 40g or 50g sample charge with a lead flux which is decomposed in a furnace with the prill being totally digested by 2 acids (HCl and HNO3) before measurement of the gold content by an AA machine. The QC procedures are industry best practice. The laboratories are accredited and use their own certified reference materials. BDC submits blanks at the rate of 1 in 50 samples and certified reference material standards at the rate of 1 in 20 samples in the normal run of sample submission numbers. As part of normal procedures BDC examines all standards and blanks to ensure that they are within tolerances. Additionally, sample size, grind size and field duplicates are examined to ensure no bias to gold grade exists.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 BDC's Exploration Manager and Senior Project Geologist have inspected AC chips in the field to verify the correlation of mineralized zones between assay results and lithology/alteration/mineralization. A number of AC holes have also been drilled that confirmed results obtained from historical drillholes. No holes have been directly twinned, there are however holes within 60m of each other. Primary data is sent digitally every 2-3 days from the field to BDC's Database Administrator (DBA). The DBA imports the data into the commercially available and industry accepted DataShed database software. Assay results are merged when received electronically from the laboratory. The responsible geologist reviews the data in the database to ensure that it is correct and has merged properly and that all data has been received and entered. Any variations that are required are recorded permanently in the database. No adjustments or calibrations were made to any assay data used in this report.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation Specification of the grid system used Quality and adequacy of topographic control. 	 All drill holes have their collar location recorded from a hand held GPS unit. Downhole surveys are not completed as they are not material to this early stage exploration drilling. All drill holes and resource estimation use the MGA94, Zone 51 grid system. The topographic data used is yet to be validated by modern surveying methods. It is adequate for the reporting of Exploration Results and subsequent Mineral Resource estimates.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 The nominal exploration drill spacing is 160m x 40m. This report is for the reporting of recent exploration drilling. The drill spacing, spatial distribution and quality of assay results is appropriate for the nature and style of mineralisation being reported. The majority of AC holes were sampled at 4m.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 The majority of previous drilling is to magnetic 250 degrees. The bulk of the mineralized zones are close to perpendicular to this drilling direction. The current drilling is oriented towards magnetic west in order to intersect the lodes in the optimal direction. No relationship between drilling orientation and sampling bias is recognised at this time
Sample security	• The measures taken to ensure sample security.	 AC samples are delivered directly from the field to the Kalgoorlie laboratory by BDC personnel on a regular basis with no detours, the laboratory then checks the physically received samples against an BDC generated sample submission list and reports back any discrepancies

Audits or	The results of any audits or reviews of sampling	٠	An internal review of sampling techniques and procedures was completed
reviews	techniques and data.		in March 2018. No external or third party audits or reviews have been
			completed.

1.2 Section 2 Reporting of Exploration Results – North Kanowna Star

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral	• Type, reference name/number, location and	• The results reported in this Announcement are on granted Mining tenement
tenement and	ownership including agreements or material	held by GPM Resources Pty Ltd.
land tenure	issues with third parties such as joint ventures,	Tenement Holder Area (Ha) Expiry Date
status	partnerships, overriding royalties, native title	M27/102 GPM Resources Pty Ltd 799.45 21/05/2031
	interests, historical sites, wilderness or national	At this time the tenement is in good standing.
	park and environmental settings.	• Tenement is subject to Royalties of \$1.00 per tonne of ore mined and a \$15
	• The security of the tenure held at the time of	per ounce for the first 50,000 ounces produced from M27/102 and
	reporting along with any known impediments	M27/140.
Exploration done	 to obtaining a licence to operate in the area. Acknowledgment and appraisal of exploration 	Exploration by other parties has been reviewed and is used as a guide to
by other parties	by other parties.	BDC's exploration activities. This includes work by, Aurion Gold and other
<i>,</i> ,		exploration companies. Previous parties have completed underground
		mining, geophysical data collection and interpretation, soil sampling and
		drilling.
		• This report comments only on exploration results collected by Bardoc Gold.
Geology	• Deposit type, geological setting and style of	North Kanowna Star gold mineralisation is hosted predominantly in a
57	mineralisation.	shallowly easterly dipping shear zone that is marked by sericitisation
		and albitisation with pyrite. Arsenopyrite is also present. The
		mineralised system cross cuts various rock types, predominantly fine
		grained basalts and fine to medium grained felsic volcanics.
Drill hole	• A summary of all information material to the	See Table in this announcement
Information	understanding of the exploration results including a tabulation of the following	• No results from previous un-reported exploration are the subject of this
		announcement.
	information for all Material drill holes:	• Easting and Northing define the collar location in MGA94 zone 51 map
	\circ easting and northing of the drill hole collar	projection. The map projection is a transverse Mercator projection, which
	 elevation or RL (Reduced Level – elevation 	conforms with the internationally accepted Universal Transverse Mercator
	above sea level in metres) of the drill hole	Grid system. Collar elevations are RL's (elevation above sea level)
	collar	• Dip is the inclination of the hole from the horizontal (i.e. a vertically down
	\circ dip and azimuth of the hole	drilled hole from the surface is -90°). Azimuth for current drilling is reported
	$\circ $ down hole length and interception depth	in magnetic degrees as the direction toward which the hole is drilled.
	\circ hole length.	MGA94 and magnetic degrees vary by approximately 1° in this project area
	 If the exclusion of this information is justified on 	• Down hole length of the hole is the distance from the surface to the end of
	the basis that the information is not Material	the hole, as measured along the drill trace. Intercept depth is the distance
	and this exclusion does not detract from the	down the hole as measured along the drill trace. Intersection width is the
	understanding of the report, the Competent	downhole distance of an intersection as measured along the drill trace.
	Person should clearly explain why this is the	• Hole length is the distance from the surface to the end of the hole, as
Data anna attan	case.	measured along the drill trace.
Data aggregation	In reporting Exploration Results, weighting	No high grade cuts have been applied to assay results. AC assay results are
methods	averaging techniques, maximum and/or	distance weighted using their applicable down hole width for each assay.
	minimum grade truncations (e.g. cutting of	 Intersections are reported if the interval is at least 1m wide at 0.1g/t Au
	high grades) and cut-off grades are usually Material and should be stated.	grade. Intersections greater than 1m in downhole distance can contain up
		to 8m (i.e. 2 x 4m samples)of low grade or barren material.
	Where aggregate intercepts incorporate short lengths of birth arade results and lenger lengths	 No metal equivalent reporting is used or applied.
	lengths of high grade results and longer lengths of low grade results, the procedure used for	
	such aggregation should be stated and some	
	typical examples of such aggregations should	
	be shown in detail.	
	 The assumptions used for any reporting of 	
	metal equivalent values should be clearly	
	stated.	
Relationship	These relationships are particularly important	• The intersection width is measured down the hole trace, it is not usually the
between	in the reporting of Exploration Results.	true width. Cross sections in this announcement allows the relationship
mineralisation		between true and down hole width to be viewed.
widths and	• If the geometry of the mineralisation with	 Data collected from historical workings within the area show the primary
intercept lengths	respect to the drill hole angle is known, its	ore zones to be sub-vertical (east dipping) in nature with a general northerly
	nature should be reported.	strike.
		 All drill results within this announcement are downhole intervals only and
	• If it is not known and only the down hole	true widths are not reported. True widths are approximately 70% of the
	lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length,	reported drill intercept widths.

Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	Plan and cross sectional views are contained within this announcement.
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	 All results >= 0.1g/t Au are reported. The results are length weighted composites based on the Au grade and down hole length, a maximum of 8m of internal dilution is included.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	announcement.
Further work	 The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	drill holes, possibly AC, DC and RC, to further extend the mineralised zones and to collect additional detailed data on known and as yet unidentified