

ASX ANNOUNCEMENT

9 February 2021

Significant North-Western Extension of Cayley Lode Confirmed as Drilling Delivers New Wide Copper-Gold Intercepts and More High-Grade Gold

Drilling firms up north-western sector of the deposit, extending strike extent of resource definition area to ~850m within the broader 1.5km long discovery zone

- Drill hole SMD121 has extended the Cayley Lode copper-gold-silver mineralisation a further 150m to the north-west of the spectacular intercept in drill hole SMD106 (reported 2 November 2020). SMD121 intersected:
 - 73m at 0.64% Cu, 0.70g/t Au and 6.8g/t Ag from 104m down-hole, including:
 - <u>1.6m at 1.72% Cu, 20.47g/t Au and 30g/t Ag</u> from 110.4m; and
 - 27m at 1.04% Cu, 0.46g/t Au and 11g/t Ag from 150m, including:
 - 7m at 2.56% Cu, 1.00g/t Au and 19g/t Ag from 170m
- SMD121 has confirmed the presence of a broad zone of copper-gold-silver mineralisation including narrower zones of high-grade copper with significant very high-grade gold. SMD106 (see ASX announcement 2 November 2020), intersected:
 - 48m at 1.39% Cu, 6.33g/t Au and 12g/t Ag from 85m down-hole, including:
 - 16.7m at 3.13% Cu, 17.93g/t Au and 29g/t Ag from 115m, including:
 - 2m at 0.74% Cu, 132g/t Au and 38g/t Ag from 116m
- Significantly, drill hole SMD135 (in-progress) has intersected a narrow interval of bornite-chalcocite hanging-wall (possibly the Copper Lode Splay) mineralisation 225m further to the north-west of SMD121, while SMD134 (in progress) on the same section has intercepted a +30m interval of massive and semi-massive sulphide (mainly pyrite but increasing copper sulphides near the end of the interval) in the Cayley Lode position increasing the area of resource definition to ~850m, with the mineralisation remaining open both along strike and down-dip.
- Additional holes in the north-western sector have returned significant results, including areas of gold-rich mineralisation, confirming the wider distribution of this style of mineralisation in this part of the deposit:

Drill hole SMD110:

- 9m at 2.34% Cu, 0.56g/t Au and 12g/t Ag from 97m down-hole, including
 - 3m at 4.50% Cu, 0.87g/t Au and 17 g/t Ag from 102m

ASX Code: SVY Shares on issue: 261M Market capitalisation: \$177M Cash: \$26.54M (31 December 2020) ABN 33 119 826 907

Head Office

168 Stirling Hwy Nedlands, Western Australia 6009 T: +61 8 9287 7630 E: info@stavely.com.au W: stavely.com.au

Drill hole SMD111:

- \circ 35m at 0.46% Cu, 0.92g/t Au and 9.4g/t Ag from 131m down-hole, including
 - 17m at 0.42% Cu, 1.34g/t Au and 10g/t Ag from 131m, and
 - 2m at 2.85% Cu, 2.25g/t Au and 45g/t Ag in a basal intercept from 164m

Drill hole SMD112:

- 11.9m at 1.56% Cu, 0.29g/t Au and 12g/t Ag from 134.1m, including
 - 4m @ 2.49% Cu, 0.41g/t Au and 19g/t Ag from 135m
- > Meanwhile, drill hole SMD109, located in the southern-most section, intersected:
 - 11.5m at 2.74% Cu, 0.35g/t Au and 4.5g/t Ag from 283.5m, including
 2.1m at 7.25% Cu, 0.67g/t Au and 11g/t Ag from 292m
- Drilling continues with four drill rigs extending the Mineral Resource definition drilling to the north-west and two large-capacity drill rigs progressing the deep porphyry drill holes.

Stavely Minerals Limited (ASX Code: **SVY** – "Stavely Minerals") is pleased to report further significant results from the ongoing resource drilling program within the high-grade **Cayley Lode** discovery at the **Thursday's Gossan** prospect, part of its 100%-owned Stavely Copper-Gold Project in Victoria (Figure 1).

An intensive resource drill-out is continuing with the focus on extending the deposit to the north-west within the (now) overall 1.5km-long discovery zone, with in-fill and step-out drilling continuing based on a roughly 40m x 40m drilling grid (Figures 2 & 3).

The Mineral Resource drill-out is well advanced and progressing well, and continues to generate impressive results which have significantly extended the Cayley Lode mineralisation.

Commenting on the latest results, Stavely Minerals' Executive Chairman, Chris Cairns, said:

"Our recent drilling is continuing to extend the Cayley Lode to the north-west with another strong set of results in SMD121 extending the high-grade copper-gold-silver mineralisation a further 150m along strike.

"As well, visual indications from holes SMD134 and SMD135 currently in-progress (and shown in photo 1 below) – located a further 225m along strike to the north-west – takes the strike extent of the drill-defined Mineral Resource drilling grid to approximately 850m from hole SMD109 (located just north of the railway and reported in this announcement) to SMD135 (in progress).

"Importantly, the mineralisation remains open along strike both to the north-west and south-east and down-dip.

"Our expectation is that the Mineral Resource area will ultimately extend over a strike extent of more than 1 kilometre and that the lateral extent will eventually match the vertical extent, we have seen with mineralisation intersected in the north-south structure (NSS) in SMD045 at around 1,150m drill depth (see ASX announcement 18 June 2019).

"This large lateral and vertical extent is entirely consistent with the Magma, Arizona lode-style of high-grade copper-gold-silver mineralisation.

"Once we have completed the relatively tight drill pattern targeting the Cayley Lode from surface to ~200m depth and go into the Mineral Resource estimation process, laying the foundations for a Phase 1 open pit Scoping Study, we will open up the drill pattern to 100m drill collar spacings and start to define the high-grade mineralisation at depth.

"We also expect that, as the drill collars migrate to the west to define the Cayley Lode at depth, the shallow portions of these holes are likely to intercept the shallow portions of the Copper Lode Splay (CLS) structure and associated mineralisation.

"The progression from discovery to Mineral Resource estimate, and then into Scoping Study, additional drill definition at depth and bringing in additional mineralised structures is playing out very well. With each step, we are progressively de-risking a potential development scenario at the Cayley Lode. Additional exploration targets will be tested once the Mineral Resource definition drilling is largely complete, which we expect to occur over the next couple of months.

"We will have more to say with respect to a regional exploration initiative in coming weeks."

Figure 1. Stavely Project location map.

Figure 2. Thursday's Gossan drill collar location plan.

Figure 3. Aeromagnetic image with drill collars and the surface projection of the ultramafic contact structure (Cayley Lode).

Drill hole SMD121 (Figure 4) returned two Cayley Lode intercepts within a broader coppergold-silver mineralised interval including:

- o 73m at 0.64% Cu, 0.70g/t Au and 6.8g/t Ag from 104m down-hole, including
 - 1.6m at 1.72% Cu, 20.47g/t Au and 30g/t Ag from 110.4m, and
 - 27m at 1.04% Cu, 0.46g/t Au and 11g/t Ag from 150m, including
 - 7m at 2.56% Cu, 1.00g/t Au and 19g/t Ag from 170m

This section will likely require a further drill hole behind SMD121 prior to calculating the Mineral Resource estimate in order to extend mineralisation to around 200m below surface.

Drill hole SMD121 represents a 150m extension of mineralisation to the north-west of previously released intercepts in SMD106.

Drill hole SMD135 (in-progress) has intersected a narrow interval (0.5m) of bornite-chalcocite hanging-wall mineralisation (Photo 1) located 225m further to the north-west of SMD121, extending the strike extent of the Mineral Resource drilling grid to approximately 850m, with the mineralisation remaining open both along strike and down-dip. Additionally, on the same section drill hole SMD134 has intercepted a greater than 30m interval of massive to semi-massive sulphides, mostly pyrite but with increasing copper sulphides in the lower portion of the interval which remains in-progress. This is typical of the Cayley Lode intercepts with early pyrite then fractured and brecciated and in-filled with high-tenor copper sulphides, often with increasing copper towards the basal contact. The Daily Drilling Report descriptions are included in Appendix 1 at the end of this announcement.

Historic drill hole SMD012, located a further 50m to the north-west, had also intersected mineralisation with broad zones of mineralisation and discrete higher-grade zones associated with massive sulphides – not recognised at the time as lode-style mineralisation – including (Figure 5, see ASX announcement 23 August 2017):

- 124 metres at 0.31% Cu and 0.12 g/t Au, including
 - 13 metres at 0.31% Cu and 0.35 g/t Au, and including
 - 6 metres at 2.35% Cu and 1.05 g/t Au

Drill hole SMD121 further confirms the trend to more gold-rich drill intercepts towards the north-west with an overall increase in grade and discrete high-grade intervals such as the **1.6m at 20.47g/t Au**.

Similar to SMD121, drill hole SMD106 (Figure 6, see ASX announcement 2 November 2020) intersected a broader interval of copper-gold mineralisation that included a discrete high-grade gold zone with **2m at 132g/t Au**:

- 48m at 1.39% Cu, 6.33g/t Au and 12g/t Ag from 85m down-hole, including:
 - 16.7m at 3.13% Cu, 17.93g/t Au and 29g/t Ag from 115m, including:

<u>2m at 0.74% Cu, 132g/t Au and 38g/t Ag</u> from 116m

Meanwhile, drill hole SMD109 (Figure 7), located on the southern-most section of the deposit, immediately north of the railway, intersected:

11.5m at 2.74% Cu, 0.35g/t Au and 4.5g/t Ag from 283.5m, including 2.1m at 7.25% Cu, 0.67g/t Au and 11g/t Ag from 292m

Drill hole SMD110 (Figure 8), located in the north-west extension area, intersected:

- 9m at 2.34% Cu, 0.56g/t Au and 12g/t Ag from 97m down-hole, including
 - **3m at 4.50% Cu, 0.87g/t Au and 17 g/t Ag** from 102m

Drill hole SMD111 (Figure 9), located in the north-west extension area, intersected more gold-rich mineralisation:

o 35m at 0.46% Cu, 0.92g/t Au and 9.4g/t Ag from 131m down-hole, including

- 17m at 0.42% Cu, 1.34g/t Au and 10g/t Ag from 131m, and
- 2m at 2.85% Cu, 2.25g/t Au and 45g/t Ag in a basal intercept from 164m

Drill hole SMD112 (Figure 10), located in the north-west extension area, intersected:

11.9m at 1.56% Cu, 0.29g/t Au and 12g/t Ag from 134.1m, including
 4m @ 2.49% Cu, 0.41g/t Au and 19g/t Ag from 135m

Figure 4. Drill hole SMD121 cross-section.

Figure 5. Drill hole SMD012 cross-section (as released 23 August 2017).

Figure 6. Drill hole SMD106 cross-section.

Figure 7. Drill hole SMD109 cross-section.

Figure 8. Drill hole SMD110 cross-section.

Figure 9. Drill hole SMD111 cross-section.

Figure 10. Drill hole SMD112 cross-section.

The intention of the current Mineral Resource drill program is to delineate high-grade, nearsurface copper-gold-silver mineralisation over a significant strike extent in the Cayley Lode that would complement the existing large Inferred Mineral Resource in a shallow chalcociteenriched blanket of 28 million tonnes at 0.4% copper (gold and silver not estimated) at Thursday's Gossan (see Stavely Minerals Limited 2018 Annual Report). The chalcociteenriched blanket is now highlighted on the schematic cross-sections included in this report.

Once the near-surface potential is confirmed and some similar regional targets are tested, drilling will shift towards confirming the depth potential of the high-grade copper-gold-silver mineralisation on a number of mineralised structures including the Cayley Lode, the North-South Structure (NSS) and the Copper Lode Splay (CLS) (Figure 11).

Other structures that have the potential to host well-developed copper-gold mineralisation may be inferred from a recently completed seismic survey.

Photo 1. Bornite-chalcocite mineralisation in SMD135.

Two ~1,500m to 1,800m deep drill holes to test the two interpreted porphyry targets are currently in-progress. The collar locations of these two drill holes, SMD114 and SMD117, are shown on the collar location plan in Figure 2.

Completion of both porphyry target drill holes is expected in mid-February.

Figure 11. Schematic cross-section of the Thursday's Gossan prospect. Note that the current Cayley Lode Mineral Resource drilling is focused only on the mineralisation located above the LAS on the UCF.

Yours sincerely,

U.C.

Chris Cairns Managing Director

The information in this report that relates to Exploration Targets, Exploration Results, Mineral Resources or Ore Reserves is based on information compiled by Mr Chris Cairns, a Competent Person who is a Member of the Australian Institute of Geoscientists. Mr Cairns is a full-time employee of the Company. Mr Cairns is the Managing Director of Stavely Minerals Limited, is a substantial shareholder of the Company and is an option holder of the Company. Mr Cairns has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Cairns consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

Authorised for lodgement by Chris Cairns, Managing Director and Executive Chairman.

For Further Information, please contact:

Stavely Minerals Limited	Media Inquiries:
Phone: 08 9287 7630	Nicholas Read – Read Corporate
Email: <u>info@stavely.com.au</u>	Phone: 08 9388 1474

Appendix 1: Daily Drilling Report for SMD134 & SMD135

DAILY DRILLING REPORT

8 February 2021

SUMMARY

Rig	Hole ID	Planned Hole ID	Prospect	Easting	Northing	Dip	Azimuth (Mag)	Planned EOH depth (m)	Current Depth (m)
15	SMD134	PSMD227	Thursdays	641806	5836878	-60	59.5	230	137.5
			Gossan						
16	SMD135	PSMD211	Thursdays	641773	5836945	-60	59.5	180	132.4
			Gossan						

SMD134

Testing the Cayley Lode down-dip of SMD131. Cayley target at 135m.

0-2.0	Brown surficial soils/clays
2.0-18.2	Clays, possibly after sandstone. Mottled cream, brown and yellow-brown clays with patchy limonite and hematite staining. Base of complete oxidation 16.7m. Base of partial oxidation 18.2m.
18.2-42	Lower saprolite/saprock. Intense to strong pervasive clay-altered volcanic. Trace to 2% pyrite±chalcocite veins and fracture-fill.
42-92	Sandstone. Laminated. Trace pyrite and chalcocite disseminated and in veins. Clay alteration reducing from 53m. Weak to moderate pervasive chlorite alteration.
92-104.2	Tuff conglomerate. Sandstone and andesite? (volcanic) clasts. Moderate pervasive chlorite alteration. Weak friable pyrite veins, increasing.
104.2- <mark>130</mark>	Cayley Lode. Massive sulphide quartz vein. Trace fuchsite & Hematite. Broken ground. 70% pyrite. Trace chalcocite.
130-132.6	Cayley Lode. Massive pyrite, up to 85% pyrite.
132.6-137.5	Cayley Lode. Quartz-hematite-pyrite chalcopyrite. 40% pyrite and 1-2% copper sulphides.

Massive pyrite quartz vein in Cayley Lode at 106m.

Vuggy quartz pyrite zone at 122.8m

Quartz-hematite-pyrite-chalcopyrite Cayley Lode at 135.3

SMD135

Testing the Cayley Lode beneath VSTD001. Cayley target expected at shallow depth, 75m.

0-0.9	Brown surficial soils/clays
0.9-10	Upper saprolite. Cream, brown and yellow-brown clays. Limonite and goethite.
10-19.8	Sandstone? Strong clay alteration. Iron oxides occur pervasive and in veins. Base of oxidation at 19.8m. Very sharp box contact.
19.8-47.7	Sandstone. Disseminated pyrite and veined. Chalcocite occurs well developed on pyrite veins. Very strong cream alteration. Pitted and spotty texture.
47.7-54.8	Dacite porphyry. Sericite-clay altered, weak pyrite-chalcocite disseminated and in veins.
54.8-67.2	Dacite porphyry. Sparsely porphyritic. Strong clay alteration. Later than previous dacite? Trace pyrite and supergene chalcocite veins.
67.2-67.7	Cayley Lode. Massive sulphide. 85% sulphide. Bornite 35%, hypogene chalcocite 10% and 40% pyrite. Bornite and chalcocite occur in veins up to 15mm cutting early pyrite.
67.7-79.7	Laminated siltstone. Intermittent moderate pyrite veins with trace to weak bornite up to 10cm wide. Clay altered. 0.5m core-loss in this unit.

- 79.7-92.1 Sandstone. Highly fractured core. Weak to moderate pyrite disseminated and on fractures. Trace fuchsite.
- 92.1-125.8 Tuff conglomerate. Massive sandstone with rare clasts of silicified sediments. Some rare clasts of chlorite altered mafic with well-developed disseminated pyrite. Some bedding in sandstone. Increasing pyrite veins (a few mm to 5cm thick) with sericite selvages.
- 125.8-131.1 Semi-massive sulphides in tuff conglomerate. 10-20% variable pyrite, trace chalcocite, moderate fuchsite in fractures.
- 131.1-132.3 Tuff conglomerate. Fractured. 5% pyrite veins with trace to weak chalcopyrite.

Sharp base of oxidation contact at 19.8m.

Pyrite and chalcocite veining at 33.5m.

Dacite, strongly ser-cly(?) alt with remnant blocky plag phenocryst pits at 49.1m

Late dacite at 61.3m.

50cm massive pyrite, bornite and hypogene chalcocite vein at 67.4m.

10cm wide pyrite vein with weak bornite at 68.2m.

Tuff conglomerate at 103m.

Semi-massive sulphides with fuchsite in tuff conglomerate at 129m.

Thursday's Gossan Prospect – Cayley Lode Collar Table											
			МС	GA 94 zone 54							
Hole id	Hole Type	East	North	Dip/ Azimuth	RL (m)	Total Depth (m)	Comments				
SMD050	DD	642070	5836609	-60/59.5	264	132.6					
SMD051	DD	642160	5836476	-60/59.5	264	220.9					
SMD052	DD	642238	5836421	-60/59.5	264	271.7					
SMD053	DD	642302	5836355	-60/59.5	264	273.6					
SMD054	DD	642048	5836641	-60/59.5	264	245.5					
SMD055	DD	642032	5836595	-60/59.5	264	169.9	Hole failed prior to target depth				
SMD056	DD	642031	5836590	-60/59.5	264	185.8	Hole failed prior to target depth				
SMD057	DD	642386	5836309	-60/59.5	264	242.2					
SMD058	DD	642115	5836542	-60/59.5	264	140.5					
SMD059	DD	642122	5836461	-60/59.5	264	317.8					
SMD060	DD	642137	5836508	-60/59.5	264	203.2					
SMD061	DD	642276	5836435	-60/59.5	264	219.5					
SMD062	DD	642337	5836367	-60/59.5	264	227.70					
SMD063	DD	642063	5836585	-60/59.5	264	162.7					
SMD064	DD	642041	5836619	-60/59.5	264	184.9					
SMD065	DD	642427	5836356	-60/239.5	264	350					
SMD066	DD	641936	5836807	-60/59.5	264	294					
SMD067	DD	641884	5836880	-60/59.5	264	236					
SMD068	DD	642342	5836414	-60/239.5	264	342					
SMD069	DD	641725	5837063	-60/59.5	264	130.7					
SMD070	DD	642199	5836451	-60/59.5	264	399.6					
SMD072	DD	641585	5837196	-60/59.5	264	100.9					
SMD073	DD	641473	5837155	-60/59.5	264	409.9					
SMD074	DD	642162	5836437	-60/59.5	264	302					
SMD076	DD	642174	5836523	-60/59.5	264	198.4					
SMD078	DD	642237	5836464	-60/59.5	264	274.9					
SMD079	DD	642099	5836496	-60/59.5	264	306.7					
SMD080	DD	642196	5836406	-60/59.5	264	309.3					
SMD082	DD	642264	5836342	-60/59.5	264	313.4					
SMD083	DD	642599	5835995	-60/49.5	264	433.1					
SMD084	DD	642236	5836364	-60/59.5	264	278.1					
SMD085	DD	642444	5836022	-60/49.5	264	522.3					
SMD086	DD	642465	5836370	-60/239.5	264	385.9					
SMD087	DD	642060	5836522	-60/59.5	264	268.3					

Thursday's Gossar	n Prospect – Ca	yley Lode Coll	ar Table				
SMD088	DD	642427	5836445	-60/239.5	264	405.5	
SMD089	DD	642502	5836384	-60/239.5	262	502.1	
SMD090	DD	642068	5836563	-60/59.5	262	213.8	
SMD091	DD	642374	5836383	-60/59.5	262	191	
SMD092	DD	642346	5836411	-60/59.5	262	222	
SMD093	DD	642153	5836294	-60/59.5	262	515.1	
SMD093W1	DD	642153	5836294	-60/57.4	262	339.1	SMD093W1 is wedged off SMD093 in order to recover lost core through the Cayley Lode in SMD093
SMD094	DD	642205	5836237	-60/59.5	262	608.3	
SMD094W1	DD	642205	5836237	-60/57.0	262	281.1	SMD094W1 is wedged off SMD094 in order to recover lost core through the Cayley Lode in SMD093
SMD095	DD	642205	5836237	-60/59.5	262	304.6	
SMD096	DD	642319	5836284	-60/71.5	262	287.7	
SMD097	DD	642319	5836284	-60/88.5	262	298.6	
SMD098	DD	642102	5836364	-60/59.5	262	449.1	
SMD099	DD	642063	5836352	-60/59.5	262	531	
SMD100	DD	642396	5836495	-60/239	259	451.8	
SMD101	DD	642044	5836427	-70/59	260	379.7	
SMD102	DD	642471	5836355	-60/223	260	350.6	
SMD103	DD	642196	5836425	-60/59	261	214.6	
SMD104	DD	642225	5836386	-60/59	261	285.6	
SMD105	DD	642009	5836628	-60/59	258	315.6	
SMD106	DD	642015	5836661	-60/59	258	193.8	
SMD107	DD	642471	5836359	-60/59	260	232.8	
SMD108	DD	642031	5836548	-60/59	260	310.7	
SMD109	DD	642261	5836257	-60/59	260	399.2	
SMD110	DD	642000	5836699	-60/59	260	252.4	
SMD111	DD	641977	5836648	-60/59	260	294.2	
SMD112	DD	641971	5836718	-60/59	260	274.4	
SMD113	DD	642031	5836553	-58/56	260	280.3	
SMD114	DD	641558	5835953	-65/59	260	In Progress	
SMD115	DD	641995	5836579	-60/59	261	296.3	
SMD116	DD	641972	5836613	-60/58	261	304.2	
SMD117	DD	641940	5835842	-60/58	261	In Progress	
SMD118	DD	641936	5836691	-60/52	261	247.9	
SMD119	DD	641927	5836771	-60/59	262	246.5	
SMD120	DD	641896	5836793	-62/58	261	233	
SMD121	DD	641875	5836711	-60/60	261	292.9	
SMD122	DD	641926	5836671	-60/58	261	292.6	

Thursday's Gossar	n Prospect – Ca	yley Lode Coll	ar Table				
SMD123	DD	642209	5836316	-60/59	261	380.1	
SMD124	DD	641858	5836779	-60/59	261	242.8	
SMD125	DD	641885	5836827	-60/59	261	168.5	
SMD126	DD	641846	5836813	-60/59	257	248	
SMD127	DD	641849	5836739	-60/59	258	289.9	
SMD128	DD	641887	5836759	-60/59	257	256.5	
SMD129	DD	641821	5836766	-60/59	258	269.7	
SMD130	DD	641824	5836837	-60/59	260	234.5	
SMD131	DD	641851	5836885	-60/59	262	196.6	
SMD132	DD	641898	5836677	-60/53	261	In Progress	
SMD133	DD	641858	5836854	-60/59	261	214.7	
SMD134	DD	641806	5836878	-60/59	261	In Progress	
SMD135	DD	641773	5836945	-60/59	261	In Progress	
SMD136	DD	641736	5836932	-60/59	261	In Progress	
SMS001D	Sonic/DD	642197	5836489	-60/59.5	264	212	Failed to test target - drilled to east of Cayley Lode
SMS002AD	Sonic/DD	642275	5836478	-60/59.5	264	105.4	Failed to test target - drilled to east of Cayley Lode
SMS003	Sonic	642207	5836523	-60/59.5	264	97	Failed to test target - drilled to east of Cayley Lode
SMS004	Sonic	642150	5836555	-60/59.5	264	131.5	Failed to test target - drilled to east of Cayley Lode
SMS005	Sonic	642125	5836587	-60/59.5	264	85.5	
SMS006	Sonic	642102	5836620	-60/59.5	264	76	
SMS007	Sonic	642085	5836654	-60/59.5	264	64	
SMS008	Sonic	642055	5836680	-60/59.5	264	64	
SMS009	Sonic	642011	5836730	-60/59.5	264	54	Abandoned
SMS009A	Sonic	642011	5836730	-60/59.5	264	80	Re-drill of SMS009A
SMS010	Sonic	642083	5836614	-60/59.5	264	83	
SMS011	Sonic	642106	5836581	-60/59.5	264	88	
SMS012	Sonic	642193	5836530	-60/239.5	261	80	
SMS013	Sonic	642212	5836497	-60/234.5	262	58	

<table-container>Hole Hole Hole TMote FNote FDip/ A CR A CNote A CNote A CA A AA A BNote A BSMD05D64207593000 S0019.5CA A A A A D64207593000 S0019.5CA A A A A DA A A AA B A DA A D6420593000 S0019.5CA A A D DA A D6420593000 S0019.5CA A D DA D<th>Thursday's (</th><th colspan="14">Thursday's Gossan Prospect – Cayley Lode Intercept Table</th></table-container>	Thursday's (Thursday's Gossan Prospect – Cayley Lode Intercept Table													
Hole Fail Nath Pair Rat Pair Pair <th< th=""><th></th><th></th><th>MGA 94 z</th><th>one 54</th><th></th><th></th><th></th><th>Interce</th><th>pt</th><th></th><th></th><th></th><th></th><th></th></th<>			MGA 94 z	one 54				Interce	pt						
<table-container>noten</table-container>	11-1-1-1	Hole	Fast	Newda	Dip/	RL	Total	From	То	Width	Cu	Au	Ag	Ni	
SMD050 DD 642070 5836609 -6059.5 264 132.6 19 28 9 0.32 10 58 SMD051 DD 642070 5836609 -6059.5 24 101.1 4.4 100 58 1.00 58 SMD051 DD 642160 5836476 -6059.5 264 20.9 72 198 70 0.40 15.4 2.03 15.4 1.00 58 15.4 18.6 4.38 0.37 3.38 SMD051 DD 642130 5836421 -6059.5 264 20.9 72 193 7.0 0.40 15.4 <th>Hole Id</th> <th>Туре</th> <th>East</th> <th>North</th> <th>Azimuth</th> <th>(m)</th> <th>Depth (m)</th> <th>(m)</th> <th>(m)</th> <th>(m)</th> <th>(%)</th> <th>(g/t)</th> <th>(g/t)</th> <th>(%)</th>	Hole Id	Туре	East	North	Azimuth	(m)	Depth (m)	(m)	(m)	(m)	(%)	(g/t)	(g/t)	(%)	
MD051 DD 64208 6364 64 32 5.88 1.00 68 1.00	SMD050	DD	642070	5836609	-60/59.5	264	132.6	19	28	9	0.32				
Matrix Barrie Bar								62	94	32	5.88	1.00	58		
SMD051 DD 642160 589647 -60/69.5 264 20 96.7 101.1 4.4							Incl.	82	94	12	14.3	2.26	145		
SMD051 DD 642160 6836476 -60/59.5 264 220 22 29 7 0.40 -							and	85	87	2	40	3.00	517		
SMD051 DD 642160 5836476 -60/69.6 264 20.9 42 29 7 0.40 - - MD051 DD 642160 5836476 -60/69.6 264 20.9 480 157 59 1.80 0.43 15.4 - MD052 DD 64238 5836471 -60/69.6 264 271.7 185 8.0 0.60 0.40 16.8 SMD052 DD 64238 5836471 -60/69.6 264 271.7 16 92 67 0.38 0.40 2.5 SMD053 DD 64238 583647 -60/69.6 264 271.7 16 0.63 0.28 7.0 - SMD053 DD 642302 5636355 -60/69.6 264 271.7 176 178 2 1.17 1.23 4.1 SMD054 DD 642302 563635 -60/69.6 264 273 20 7 0.11								96.7	101.1	4.4				3.98	
Matrix Participant Pa	SMD051	DD	642160	5836476	-60/59.5	264	220.9	22	29	7	0.40				
Incl. Incl. <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>98</td><td>157</td><td>59</td><td>1.80</td><td>0.43</td><td>15.4</td><td></td></th<>								98	157	59	1.80	0.43	15.4		
Mark Field							Incl.	106.6	115.1	8.5	4.38	0.87	32.7		
SMD052 DD 642238 5836421 -00'89.5 264 271.7 185 8.0 9.69 0.40 16.8 SMD052 DD 642238 5836421 -00'89.5 271.7 25 92 67 0.33 0.10 2.5 SMD053 DD 642302 583635 -00'89.5 20 30 52 22 0.37 -0 -0 SMD053 DD 642302 583635 -00'89.5 264 201 211.3 10.3 3.09 1.69 22.6 SMD054 DD 642302 583635 -00'89.5 264 202 207 5 5.81 3.20 4.1 Incl. and 204 205 1 8.69 23.9 - SMD054 DD 642048 583641 -60'59.5 264 22.2 29 7 0.41							and	134.0	137.0	3.0	5.66	0.29	4.60		
SMD052 DD 642238 583641 -60'59.5 264 1.0. 271.7 Incl. 25 92 67 0.38 0.10 2.5 SMD052 DD 642238 583641 -60'59.5 264 271.7 25 92 67 0.38 0.10 2.5 SMD053 DD 642302 583635 -60'59.5 264 27.3 30 52 22 0.37 -								177.0	185	8.0	9.69	0.40	16.8		
SMD062 DD 64238 5836421 -60/59.5 264 271.7 1ncl. Incl. 26 92 67 0.38 0.10 2.5 SMD053 DD 642302 5836355 -60/59.5 264 273.6 30 52 22 0.37 - - SMD053 DD 642302 5836355 -60/59.5 264 273.6 30 52 22 0.37 - - SMD053 DD 642302 5836355 -60/59.5 264 273.6 30 52 22 0.37 - - 642048 5836641 -60/59.5 264 245.52 207 5 5.81 3.20 43.6 3MD054 DD 642048 5836641 -60/59.5 264 245.52 22 29 7 0.41 - - Incl. Incl. Incl. Incl. 90 97 7 7.10 0.72 39 - 1							Incl.	179.0	181.0	2.0	17.30	0.57	13.1		
SMD053 DD 642302 5836355 -60'59.5 264 273.6 30 52 22 0.37 - - SMD053 DD 642302 5836355 -60'59.5 264 273.6 30 52 22 0.37 -	SMD052	DD	642238	5836421	-60/59.5	264	271.7	25	92	67	0.38	0.10	2.5		
SMD053 DD 642302 5836355 -60/59.5 264 273.6 30 52 22 0.37 SMD053 DD 642302 5836355 -60/59.5 264 273.6 30 52 22 0.37 Incl. 176 178 2 1.17 1.23 4.1 Incl. and 201 211.3 10.3 3.09 1.69 22.6 SMD054 DD 642048 5836641 -60/59.5 264 245.52 22 29 7 0.41 SMD054 DD 642048 5836641 -60/59.5 264 245.52 22 29 7 0.41 SMD054 DD 642032 5836595 -60/59.5 264 169.9 111 4.62 0.57 25 Incl. Incl. Incl. Incl. 10.87 0.67							Incl.	76	92	16	0.63	0.28	7.0		
SMD053 DD 642302 5836355 -60/59.5 264 273.6 30 52 22 0.37 176 178 2 1.17 1.23 4.1 176 178 2 1.17 1.23 4.1 201 211.3 10.3 3.09 1.69 22.6 176 178 2 1.17 1.23 4.1 176 202 207 5 5.81 3.20 43.6 204 205 1 2.91 8.69 23.9 SMD054 DD 642048 5836641 -60/59.5 264 245.52 22 29 7 0.41 Incl. Incl. Incl. Incl. 10.87 0.67 52 Incl. Incl. Incl. 90 97 7 7.10 0.72 39 SMD055 DD 642032							Incl.	77	84	7	0.98	0.23	12		
MD054 DD 642048 5836595 -60/59.5 264 116.9 21.4 1.03 3.09 1.69 22.6 1.11 1.03 3.09 1.69 22.6 1.11 1.03 3.09 1.69 22.6 1.11 1.03 3.09 1.69 22.6 1.11 1.03 3.09 1.69 22.6 1.11 1.03 3.09 1.69 22.6 1.11 1.03 3.09 1.69 22.6 1.11 1.03 3.09 1.03 1.14 1.42 1.41 1.42 1.41 1.41	SMD053	DD	642302	5836355	-60/59.5	264	273.6	30	52	22	0.37				
SMD054 DD 642048 5836641 -60/59.5 264 245.52 22 29 7 0.41 0.72 39 1.69 22.6 0 SMD054 DD 642048 5836641 -60/59.5 264 245.52 22 29 7 0.41 0.60 16 0 SMD054 DD 642048 5836641 -60/59.5 264 245.52 22 29 7 0.41 0.56 16 0 <								176	178	2	1.17	1.23	4.1		
SMD054 DD 642048 5836641 -60/59.5 264 245.52 22 29 7 0.41 SMD054 DD 642048 5836641 -60/59.5 264 245.52 22 29 7 0.41								201	211.3	10.3	3.09	1.69	22.6		
SMD054 DD 642048 5836641 -60/59.5 264 245.52 22 29 7 0.41 SMD054 DD 642048 5836641 -60/59.5 264 245.52 22 29 7 0.41 SMD054 DD 642048 5836641 -60/59.5 264 245.52 22 29 7 0.41 Incl. P0 97 71 0.710 0.72 39 Incl. P0 97 7 7.10 0.67 52 Incl. P1 96 101 5 1.42 SMD055 DD 642032 5836595 -60/59.5 264 169.9 21.4 59 37.6 0.41 1.42 SMD056 DD 642032 5836590 -60/59.5 264 169.9 161.63 1.37 0.17 8 2							Incl.	202	207	5	5.81	3.20	43.6		
SMD054 DD 642048 5836641 -60/59.5 264 245.52 22 29 7 0.41 SMD054 DD 642048 5836641 -60/59.5 264 245.52 22 29 7 0.41 SMD054 DD 642048 5836641 -60/59.5 264 245.52 22 29 7 0.41 Incl. 90 97 11 4.62 0.57 25 Incl. 90 97 7 7.10 0.72 39 Incl. 92 95 3 10.87 0.67 52 SMD055 DD 642032 5836595 -60/59.5 264 169.9 21.4 59 37.6 0.41 SMD056 DD 642031 5836595 -60/59.5 264 185.8 24 82 58 0.29							and	203	204	1	8.42	1.77	97		
SMD054 DD 642048 5836641 -60/59.5 264 245.52 22 29 7 0.41 SMD054 PD 642048 5836641 -60/59.5 264 245.52 22 29 7 0.41 Incl. Incl. 90 97 7 7.10 0.72 39 Incl. Incl. 90 97 7 7.10 0.72 39 SMD055 DD 642032 5836595 -60/59.5 264 169.9 21.4 59 37.6 0.41 SMD055 DD 642032 5836595 -60/59.5 264 169.9 101 5 1.42 SMD056 DD 642031 5836590 -60/59.5 264 169.9 1616 157 1 1.18 0.72 8 SMD056 DD 642031 5836590 -60/59.5 264 185.8 162 163							and	204	205	1	2.91	8.69	23.9		
SMD055 DD 642031 5836595 -60/59.5 264 168.9 16.1 16.1 16.1 16.1 90 97 7 7.10 0.72 39 1.42 SMD055 DD 642032 5836595 -60/59.5 264 169.9 21.4 59 37.6 0.41 1.42 SMD055 DD 642032 5836595 -60/59.5 264 169.9 21.4 59 37.6 0.41 1.42 SMD056 DD 642032 5836595 -60/59.5 264 169.9 21.4 59 37.6 0.41 1.42 SMD056 DD 642032 5836595 -60/59.5 264 162.9 156 1.00 0.32 7 SMD056 DD 642031 5836590 -60/59.5 264 185.8 24 82 58 0.29 SMD057 DD 642386	SMD054	DD	642048	5836641	-60/59.5	264	245.52	22	29	7	0.41				
SMD055 DD 642032 5836595 -60/59.5 264 185.8 24 59 11 4.62 0.57 25 11 SMD055 DD 642032 5836595 -60/59.5 264 169.9 21.4 59 37.6 0.41 1.42 SMD055 DD 642032 5836595 -60/59.5 264 169.9 21.4 59 37.6 0.41 1.42 SMD056 DD 642032 5836595 -60/59.5 264 169.9 21.4 59 37.6 0.41 1.42 SMD056 DD 642032 5836595 -60/59.5 264 169.9 162 163 1 1.18 0.72 8 SMD056 DD 642031 5836590 -60/59.5 264 185.8 24 82 58 0.29 1 1 1.68 0.41 1 1.68 0.16 1 1.68 0.61 1 1 1.61 1								55	57	2	1.89	0.56	16		
Incl. 90 97 7 7.10 0.72 39 SMD055 DD 642032 5836595 -60/59.5 264 169.9 101 5 - - 1.42 SMD055 DD 642032 5836595 -60/59.5 264 169.9 21.4 59 37.6 0.41 - - 1.42 SMD056 DD 642032 5836595 -60/59.5 264 169.9 21.4 59 37.6 0.41 -								86	97	11	4.62	0.57	25		
Incl. 92 95 3 10.87 0.67 52 SMD055 DD 642032 5836595 -60/59.5 264 169.9 101 55 0.41 1.42 SMD055 DD 642032 5836595 -60/59.5 264 169.9 21.4 59 37.6 0.41 1.42 SMD056 DD 642032 5836595 -60/59.5 264 169.9 101. 24 29 55 1.00 0.32 7 1 SMD056 DD 642031 5836590 -60/59.5 264 185.8 162 163 1 3.64 0.60 43 SMD056 DD 642031 5836590 -60/59.5 264 185.8 1162 163 1.68 0.18 8 1.65 0.23 7.2 110.1 1.61 1162 160 3 3.75 0.25 10.2 1.61 SMD057 DD 642386 5836309 -60/59							Incl.	90	97	7	7.10	0.72	39		
SMD055 DD 642032 5836595 -60/59.5 264 169.9 Incl. 21.4 59 37.6 0.41 SMD055 DD 642032 5836595 -60/59.5 264 169.9 Incl. 21.4 59 37.6 0.41							Incl.	92	95	3	10.87	0.67	52		
SMD055 DD 642032 5836595 -60/59.5 264 169.9 21.4 59 37.6 0.41 24 29 5 1.00 0.32 7 78 833 5 1.37 0.17 8 156 157 1 1.18 0.72 8 162 163 1 3.64 0.60 43 SMD056 DD 642031 5836590 -60/59.5 264 185.8 24 82 58 0.29 SMD056 DD 642031 5836590 -60/59.5 264 185.8 24 82 58 0.29 SMD057 DD 642386 5836309 -60/59.5 264 185.7 165.3 8.3 1.65 0.23 7.2 Incl. Incl. 157 160 3 3.75 0.25 10.2 SMD057 DD<								96	101	5				1.42	
Incl. 24 29 5 1.00 0.32 7 78 83 5 1.37 0.17 8 156 157 1 1.18 0.72 8 162 163 1 3.64 0.60 43 SMD056 DD 642031 5836590 -60/59.5 264 185.8 24 82 58 0.29 SMD056 DD 642031 5836590 -60/59.5 264 185.8 24 82 58 0.29 Incl. 79 82 3 1.68 0.18 8 Incl. 157 165.3 8.3 1.65 0.23 7.2 SMD057 DD 642386 5836309 -60/59.5 264 242.2 26 37 11 0.32	SMD055	DD	642032	5836595	-60/59.5	264	169.9	21.4	59	37.6	0.41				
SMD056 DD 642031 5836590 -60/59.5 264 185.8 24 82 58 0.17 8 6 SMD057 DD 642386 5836309 -60/59.5 264 185.8 24 822 58 0.29 SMD057 DD 642386 5836309 -60/59.5 264 185.8 165 3.64 0.60 43 SMD057 DD 642386 5836309 -60/59.5 264 185.8 24 82 58 0.29 SMD057 DD 642386 5836309 -60/59.5 264 185.7 26 37 11 0.32							Incl.	24	29	5	1.00	0.32	7		
SMD056 DD 642031 5836590 -60/59.5 264 185.8 24 82 58 0.29 SMD056 DD 642031 5836590 -60/59.5 264 185.8 24 82 58 0.29 SMD056 DD 642031 5836590 -60/59.5 264 185.8 24 82 58 0.29 Incl. 79 82 3 1.68 0.18 8 Incl. 157 165.3 8.3 1.65 0.23 7.2 SMD057 DD 642386 5836309 -60/59.5 264 242.2 26 37 11 0.32								78	83	5	1.37	0.17	8		
SMD056 DD 642031 5836590 -60/59.5 264 185.8 24 82 58 0.29 SMD056 DD 642031 5836590 -60/59.5 264 185.8 24 82 58 0.29 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>156</td> <td>157</td> <td>1</td> <td>1.18</td> <td>0.72</td> <td>8</td> <td></td>								156	157	1	1.18	0.72	8		
SMD056 DD 642031 5836590 -60/59.5 264 185.8 24 82 58 0.29 Image: Constraint of the state of th								162	163	1	3.64	0.60	43		
Incl. 79 82 3 1.68 0.18 8 Incl. 157 165.3 8.3 1.65 0.23 7.2 Incl. 157 160 3 3.75 0.25 10.2 SMD057 DD 642386 5836309 -60/59.5 264 242.2 26 37 11 0.32	SMD056	DD	642031	5836590	-60/59.5	264	185.8	24	82	58	0.29				
MD057 DD 642386 5836309 -60/59.5 264 242.2 26 37 11 0.32							Incl.	79	82	3	1.68	0.18	8		
SMD057 DD 642386 5836309 -60/59.5 264 242.2 26 37 11 0.32								157	165.3	8.3	1.65	0.23	7.2		
SMD057 DD 642386 5836309 -60/59.5 264 242.2 26 37 11 0.32							Incl.	157	160	3	3.75	0.25	10.2		
	SMD057	DD	642386	5836309	-60/59.5	264	242.2	26	37	11	0.32				

Thursday's Gossan Prospect – Cayley Lode Intercept Table													
		MGA 94 z	one 54				Interce	pt					
	Hole			Dip/	RL	Total	From	То	Width	Cu	Au	Ag	Ni
Hole Id	Туре	East	North	Azimuth	(m)	Depth (m)	(m)	(m)	(m)	(%)	(g/t)	(g/t)	(%)
SMD058	DD	642115	5836542	-60/59.5	264	140.5	19	48	29	0.37			
							68	91	23	1.34	0.26	3.5	
						Incl.	88	91	3	6.33	0.27	2.9	
SMD059	DD	642122	5836461	-60/59.5	264	317.8	21	22	1		3.15	25	
							22	39	17	0.41	0.23	4.5	
							197	202	5	3.28	0.27	13	
							235	253	18	1.00	0.10	3	
						Incl.	245.8	252.6	6.8	1.85	0.17	6	
SMD060	DD	642137	5836508	-60/59.5	264	203.2	19.2	135.4	102.3 ¹	0.68			
						Incl.	74	135.4	48.2 ²	1.04	0.31	14	
						Incl.	74	86	12	1.55	0.63	13	
						and	111	135.4	13.6 ³	1.90	0.38	33	
						Incl.	129	135.1	6.10	3.55	0.73	41	
							116.6	119	2.44				1.20
SMD061	DD	642276	586435	-60/59.5	264	219.5	160.2	164.5	4.3	2.06	0.44	23	
SMD062	DD	642337	5836367	-60/59.5	264	227.70	128	131	3.0	2.43	0.25	11	
							156	162	6.0	3.95	0.38	16	
						Incl.	160	162	2.0	7.46	0.61	31	
						and	160	161	1.0	10.5	0.86	35	
SMD063	DD	642063	5836585	-60/59.5	264	162.7	21	40	19	0.30			
							106	107	1.0	1.10	0.16	5.5	
SMD064	DD	642041	5836619	-60/59.5	264	184.9	20	47	27	0.26			
							121	129	8.0	5.12	1.48	34	
						Incl.	128	129	1.0	26.8	8.48	201	
SMD065	DD	642427	5836356	-60/239.5	264	350			No Si	gnificant R	Results		
SMD066	DD	641936	5836807	-60/59.5	264	294	15	18	3		0.41		
							17	30	13	0.53	0.11	8.0	
SMD067	DD	641884	5836880	-60/59.5	264	236	16	34	18	0.43	0.35	13	
						Incl.	25	27	2.0	1.21	0.27	27	
							107	109	2.0	1.32		8	
SMD068	DD	642342	5836414	-60/239.5	264	342	50.3	102	51.7	0.39			
						Incl.	98	102	4	1.75	0.31	16	
							285	287	2	0.26	0.65	1.8	
SMD069	DD	641725	5837063	-60/59.5	264	130.7	22	37	15		0.12		
							26	37	11	0.32	0.12	6.7	

Thursday's (Gossan Pi	rospect – Ca	ayley Lode I	ntercept Tab	le								
		MGA 94 z	one 54				Interce	pt					
	Hole			Dip/	RL	Total	From	То	Width	Cu	Au	Ag	Ni
Hole Id	Туре	East	North	Azimuth	(m)	Depth (m)	(m)	(m)	(m)	(%)	(g/t)	(g/t)	(%)
SMD070	DD	642199	5836451	-60/59.5	264	275.9	20	95	75.0	0.60	0.19	5	
						Incl.	65	84	19.0	1.48	0.40	15	
						and	69.3	73	3.7	6.02	1.18	66	
						and	71	72	1.0	9.23	2.67	125	
SMD072	DD	641585	5837196	-60/59.5	264	100.9			No Si	gnificant R	Results		
SMD073	DD	641473	5837155	-60/59.5	264	409.9	149	153	4.0	1.31	0.31	6	
							359	364	5.0	0.25	1.67	27	
						Incl.	361.1	362	0.9	0.42	4.58	51	
SMD074	DD	642162	5836437	-60/59.5	264	302	25	59	34.0	0.32			
							176	183.6	7.6	1.36	0.24	7	
							193	197.7	4.3 ⁵	1.94	0.27	10	
							213	234.3	21.3	1.31	0.43	6	
SMD076	DD	642174	5836523	-60/59.5	264	198.4	128	144	16	1.01	0.24	6.5	
						Incl.	139	144	5	2.42	0.55	14	
SMD078	DD	642237	5836464	-60/59.5	264	274.9	227.2	231	3.8	4.97	3.08	81	
SMD079	DD	642099	5836496	-60/59.5	264	306.7	24	41	17	0.31			
							86	87	1	1.29	0.41	9	
							141	144	3	1.38	0.15	5	
							153	154	1	1.16	0.31	8	
							159	161	2	0.64	1.82	8.4	
							207.9	211	3.1	3.16	0.70	30	
SMD080	DD	642196	5836406	-60/59.5	264	309.3	23	25	2	1.75			
							25	52	27	0.58			
							154	157.95	3.95	3.78	0.43	54	
						Incl.	156	157.95	1.95	7.02	0.35	102	
							189	196	7	1.07	0.26	23	
							224.2	230.6	6.4	2.71	0.52	8.3	
SMD082	DD	642264	5836342	-60/59.5	264	313.4	32	117.3	85.3	0.82			
						Incl.	99	117.3	18.3	2.56	0.16	9.4	
						Incl.	104.5	116	11.5	3.76	0.23	14	
							243	247.8	4.8	2.42	0.31	25	
SMD083	DD	642599	5835995	-60/49.5	264	433.1	29	41	12	0.29			
SMD084	DD	642236	5836364	-60/59.5	264	278.1	43	72	29	0.44			
							132	201	69	1.00	0.18	5.4	
						Incl.	157	201	44	1.43	0.26	7.3	
						Incl.	197	201	4	4.16	0.61	23	
L	1	1	1		1	1		1	1		1	1	

Thursday's G	iossan Pr	ospect – Ca	ayley Lode I	Intercept Tab	le								
		MGA 94 z	zone 54				Interce	pt					
	Hole			Dip/	RL	Total	From	То	Width	Cu	Au	Ag	Ni
Hole Id	Туре	East	North	Azimuth	(m)	Depth (m)	(m)	(m)	(m)	(%)	(g/t)	(g/t)	(%)
SMD085	DD	642444	5836022	-60/49.5	264	522.3	28	67	39	0.41			
							339	362	23	1.07	0.11		
						Incl.	357	361	4	4.44	0.26	7.9	
						Incl.	358	359	1	9.44	0.22	6.4	
SMD086	DD	642465	5836370	-60/239.5	264	385.9	142	154	12	1.01	0.18	2.6	
						Incl.	149	153	4	2.33	0.42	5.3	
							261	262	1	2.17	7.06	7.9	
							301	308	7	0.16	0.48	15	0.32
							318	321	3	0.49	0.29	3.4	
							326	327	1	5.90	0.33	47	
SMD087	DD	642060	5836522	-60/59.5	264	268.3	24	40	16	0.37			
							140	227 ⁶	87	1.74	0.57	20	
						Incl.	163	187	24	4.19	1.27	53	
						and	170	172	2	11.75	1.45	66	
						and	181.7	183.2	1.5	13.28	2.58	209	
						and	185.6	186.4	0.8	24.1	1.16	249	
						and	185	187	2	9.95	0.71	107	0.89
						Incl.	218	227	9	4.09	1.83	39	
						and	226	227	1	1.30	10.05	48	
SMD088	DD	642427	5836445	-60/239.5	264	405.5	212.3	242.3	30	1.98	0.23	9.1	
						Incl.	216	226.8	10.8	3.20	0.31	16	
						and	233.2	239	5.8	3.54	0.43	14	
							319.5	370	50.5	0.88	0.11	3.8	
						Incl.	319.5	331.2	11.7	1.42	0.15	4.5	
						and	342	357.6	15.6	1.26	0.17	5.0	
						and	365.6	370	4.4	1.61	0.20	5.7	
SMD089	DD	642502	5836384	-60/239.5	262	502.1	87	98.8	11.8	1.54	0.42	14	
						Incl.	91	94	3	3.28	1.09	34	
							214	233.9	19.9	2.40	0.35	17	
						Incl.	219	226.1	7.1	4.30	0.52	35	
						Incl.	219	222	3	6.02	0.71	52	
							271	280.7	9.7	3.10	0.97	26	
						Incl.	273	275	2	7.86	2.09	88	
						Incl.	273	274	1	11.05	2.73	131	

Thursday's	Gossan P	rospect – C	ayley Lode I	Intercept Tal	ble								
		MGA 94 2	zone 54				Interce	ept					
	Hole			Dip/	RL	Total	From	То	Width	Cu	Au	Ag	Ni
Hole id	Туре	East	North	Azimuth	(m)	Depth (m)	(m)	(m)	(m)	(%)	(g/t)	(g/t)	(%)
SMD090	DD	642068	5836563	-60/59.5	262	213.8	23	58	35	0.40			
						Incl.	54	56	2	1.10	1.06	18	
SMD091	DD	642374	5836383	-60/59.5	262	191			No Si	gnificant F	Results		
SMD092	DD	642346	5836411	-60/59.5	262	222			No Si	gnificant F	Results		
SMD093	DD	642153	5836294	-60/59.5	262	515.1	35	334.7	299.7	0.40			
						Incl.	35	99	64	0.68			
						Incl.	36	54	18	1.11			
							304.6	334.7	30.1	1.44	0.21	4.4	
						Incl.	306	310	4	3.17	0.26	7.5	
SMD094	DD	642205	5836237	-60/59.5	262	608.3	50	103	53	0.39			
							347	351.9	4.9	2.14	0.33	9.8	
SMD095	DD	642205	5836237	-60/59.5	262	304.6	28	78	50	0.40			
0		0.2200		00,0010			224	234	10	2.33	0.45	20	
SMD096	DD	642319	5836284	-60/71.5	262	287.7	33	58	25	0.52			
							152	154	2	1.25		10	
							220	235	15	3.26	0.62	16	
					Dupl	icate Sample	220	235	15	3.59	2.73	18	
						Incl.	222	223	1	2.41	24.6	16.5	
SMD097	DD	642319	5836284	-60/88.5	262	298.6	38	56	18	0.63			
							255.8	260.6	4.8	3.56	0.46	29	
SMD098	DD	642102	5836364	-60/59.5	262	449.1	64	89	25	0.26			
SMD099	DD	642063	5836352	-60/59.5	262	531	51	131	80	0.31			
							183	184	1	1.79	0.47	6.4	
SMD100	DD	642396	5836495	-60/239	259	451.8	118	121.6	3.6	0.34	0.21	13	
							222	226	4	0.20	0.51	2.7	
							297	305	8	0.66	0.27	7.2	
							332.2	341	8.8	1.57	0.24	4.5	
SMD101	DD	642044	5836427	-70/59	260	379.7	24	40	16		0.21	3.9	
							31	51	20	0.61			
							93	94	1	1.22	0.17	9.7	
							144	149	5	0.30	0.11	2.2	

Thursday's G	iossan Pr	ospect – Ca	ayley Lode I	ntercept Tak	ole								
		MGA 94 z	one 54				Intercept						
	Hole			Dip/	RL	Total	From	То	Width	Cu	Au	Ag	Ni
Hole id	Туре	East	North	Azimuth	(m)	Depth (m)	(m)	(m)	(m)	(%)	(g/t)	(g/t)	(%)
SMD102	DD	642471	5836355	-60/223	260	350.6	50	54	4	0.16			
							134	177	43	0.24			
							248.1	253	4.9	1.54	0.29	4.8	
							270	290	20	0.25			
							320	321	1	1.13	1.44	4.4	
SMD103	DD	642196	5836425	-60/59	261	214.6	24.4	59.6	35.2	0.25			
							24.4	190	165.6	0.33			
						Incl.	24.4	59.6	35.2	0.25			
						and	117	147.2	30.2	0.35	0.17	2	
						Incl.	185	188	3	5.52	0.45	10	
SMD104	DD	642225	5836386	-60/59	261	285.6	35	179	144	1.04	0.15	3.4	
						Incl.	95	179	84	1.55	0.23	5.0	
						Incl.	151	179	28	3.31	0.49	7.1	
SMD105	DD	642009	5836628	-60/59	258	315.6	22	29	7	0.30			
							126	139	13	0.40	0.37	8	
SMD106	DD	642015	5836661	-60/59	258	193.8	85 ⁷	133	48	1.39	6.33	12	
						Incl.	115 ⁸	131.7	16.7	3.13	17.93	29	
						Incl.	116	118	2	0.74	132	38	
						and.	130.8	131.7	0.9	21.10	17.45	232	
SMD107	DD	642471	5836359	-60/59	260	232.8	26	60	34	0.61	0.07	14	
							45	53	8	1.37	0.18	40	
						Incl.	46	49	3	2.51	0.36	63	
SMD108	DD	642031	5836548	-60/59	260	310.7	22	90	68	0.27			
							150.9	172.6	21.7	2.06	0.53	17	
						Incl.	164.9	171.2	6.3	3.57	1.17	25	
							254.6	264.6	10	1.33	0.16	7.8	
						Incl.	255.2	259.6	4.4	2.24	0.29	12	
SMD109	DD	642261	5836257	-60/59	260	399.2	35	77	42	0.53			
							262	265	3	1.35	0.20	2.7	
							283.5	295	11.5	2.74	0.35	4.5	
						Incl.	292	294.1	2.1	7.25	0.67	11	

Thursday's Gossan Prospect – Cayley Lode Intercept Table													
		MGA 94 z	one 54				Interce	pt					
	Hole	Fact	North	Dip/	RL	Total	From	То	Width	Cu	Au	Ag	Ni
	Туре	East	North	Azimuth	(m)	Depth (m)	(m)	(m)	(m)	(%)	(g/t)	(g/t)	(%)
SMD110	DD	642000	5836699	-60/59	260	252.4	20	65	45	0.28			
						Incl.	33	41	8	0.44	0.20	2.5	
							97	106	9	2.34	0.56	12	
						Incl.	102	105	3	4.50	0.87	17	
SMD111	DD	641977	5836648	-60/59	260	294.2	36.7	87	50.3	0.27	0.14	2.5	
						Incl.	83	87	4	0.82	0.97	10	
							131	166	35	0.46	0.92	9.4	
						Incl.	131	148	17	0.42	1.34	10	
						and	164	166	2	2.85	2.25	45	
SMD112	DD	641971	5836718	-60/59	260	274.4	119.6	147.6	28	0.79	0.16	5.4	
						Incl.	134.1	146	11.9	1.56	0.29	12	
						Incl.	135	139	4	2.49	0.41	19	
SMD113	DD	642031	5836553	-58/56	260	280.3	25	71	46	0.35			
							153	174	21	0.50	0.15	6.5	
							230	239.9	9.9	1.08	0.06	5.9	
SMD115	DD	641995	5836579	-60/59	261	296.3	23	62	39	0.26			
SMD116	DD	641972	5836613	-60/58	261	304.2	23	72	49	0.35		2.7	
SMD118	DD	641936	5836691	-60/52	261	247.9			As	says Penc	ling		
SMD119	DD	641927	5836771	-60/59	262	246.5			As	says Penc	ling		
SMD120	DD	641896	5836793	-62/58	261	233			As	says Penc	ling		
SMD121	DD	641875	5836711	-60/60	261	292.9	26	41	15	0.31			
							104	177	73	0.64	0.70	6.8	
						Inci.	110.4	112	1.6	1.72	20.47	30	
						and	150	177	27	1.04	0.46	11	
						Inci.	170	177	7	2.56	1.00	19	
							246	247	1	1.67	0.18	39.4	
SMD122	DD	641926	5836671	-60/58	261	292.6			As	says Penc	ling		
SMD123	DD	642209	5836316	-60/59	261	380.1			As	says Penc	ling		
SMD124	DD	641858	5836779	-60/59	261	242.8			As	says Penc	ling		
SMD125	DD	641885	5836827	-60/59	261	168.5			As	says Penc	ling		
SMD126	DD	641846	5836813	-60/59	257	248			As	says Pend	ling		
SMD127	DD	641849	5836739	-60/59	258	289.9			As	says Pend	ling		
SMD128	DD	641887	5836759	-60/59	257	256.5	Assays Pending						

Thursday's G	Gossan Pr	rospect – C	ayley Lode	Intercept Tab	ole								
		MGA 94 2	zone 54				Interce	pt					
Hole id	Hole Type	East	North	Dip/ Azimuth	RL	Total Depth (m)	From	То	Width	Cu	Au	Ag	Ni (%)
	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				(m)		(m)	(m)	(m)	(%)	(g/t)	(g/t)	(70)
SMD129	DD	641821	5836766	-60/59	258	269.7			As	says Penc	ling		
SMD130	DD	641824	5836837	-60/59	260	234.5			As	says Penc	ling		
SMD131	DD	641851	5836885	-60/59	262	196.6			As	says Penc	ling		
SMD133	DD	641858	5836854	-60/59	261	214.7	Assays Pending						
SMS001D	Sonic/ DD	642197	5836489	-60/59.5	264	212	No Significant Results						
SMS002AD	Sonic/ DD	642275	5836478	-60/59.5	264	105.4	No Significant Results						
SMS003	Sonic	642207	5836523	-60/59.5	264	97	No Significant Results						
SMS004	Sonic	642150	5836555	-60/59.5	264	131.5	No Significant Results						
SMS005	Sonic	642125	5836587	-60/59.5	264	85.5	No Significant Results						
SMS006	Sonic	642102	5836620	-60/59.5	264	76	3	51	48		0.29		
						Incl.	19	51	32	0.26			
						Incl.	45	47	2	1.42	0.32	12	
SMS007	Sonic	642085	5836654	-60/59.5	264	64	13	39	26		0.77		
							22	42	20	1.36	0.85	12	
						Incl.	24	39	15	1.68	1.09	14	
							42	45	3				1.46
SMS008	Sonic	642055	5836680	-60/59.5	264	64	20	45	25	0.45			
						Incl.	20	23	3	1.13	1.01	16	
SMS009	Sonic	642011	5836730	-60/59.5	264	54	32	54	22	0.69	0.13	3.6	
						Incl.	51	54	3	1.87	0.47	16	
SMS009A	Sonic	642011	5836730	-60/59.5	264	80	43	49	6	3.00	0.59	15	
SMS010	Sonic	642083	5836614	-60/59.5	264	83	20	79	59	0.44	0.20	2.2	
						Incl.	38	41	3	1.33	0.84	6.5	
SMS011	Sonic	642106	5836581	-60/59.5	264	88	22	42	20	0.31			
SMS012	Sonic	642193	5836530	-60/239.5	261	80	43	77	34	0.90	0.24		
						Incl.	46	55	9	2.24	0.67	18.0	
						Incl.	52	55	3	5.20	1.46	30.0	
SMS013	Sonic	642212	5836497	-60/234.5	262	58	10	40	30		0.23		
						Incl.	31	40	9	1.13	0.60	4.2	
		T				Incl.	38	39	1	3.52	2.53	14	

Note all new results are in **bold**. Chalcocite Blanket results are shown in blue.

- 1. Excluding 13.9m of core loss
- 2. Excluding 13.2m of core loss
- 3. Excluding 10.8m of core loss
- 4. 1.8m of core loss immediately above this interval
- 5. 0.4m of core loss included in this interval
- 6. 0.3m of core loss included in this interval
- 7. 0.6m core loss included in this interval
- 8. 0.3m core loss included in this interval

JORC Code, 2012 Edition – Table 1

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling	Nature and quality of	Stavely Project
techniques	sampling (eg cut channels,	Thursday's Gossan Prospect
	random chips, or specific	Stavely Minerals' Diamond Drilling
	standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.	For diamond holes the entire hole has been sampled. PQ quarter core and HQ half core is submitted for analysis. Pre drill hole SMD069 the sample intervals were based on lithology but in general were 1m. No intervals were less than 0.4m or greater than 1.2m.
		For diamond holes post drill hole SMD069, the maximum sample size is 1.2m and the minimum sample size is 0.6m, unless it is between core-loss. In zones of significant core- loss, sampling of all available core will be taken and a record of lost core will be made. There is no minimum sample size in these zones. Samples are taken every 1m on metre marks except in high grade lodes and massive sulphide within the Cayley Lode. Within the Cayley Lode, the sampling boundaries will reflect the high grade contacts at beginning and within high grade lodes and massive sulphide within the Cayley Lode whilst honouring the minimum and maximum sample sizes.
		Stavely Minerals' Sonic Drilling
		There is evidence of over-recovery of core samples from the Sonic drill rig in the plasticised clays, where up to 5m of sample is returned from a 3m drill run. The reason for the over-recovery of plasticised clays is believed to be a combination of the material at the bit face being forced into the barrel rather than out into the wall of the drill hole; the clays expand as they liquify due to the action of the high frequency resonant energy; the clay samples stretch as they are unloaded into the plastic bag.
		In order to determine the in-situ metre mark location on the core, the core block depths are accepted as correct, the length of the core sample present in the tray is measured and divided by the run length in order to determine the metre mark locations. A review by consultants Mining Plus Pty Ltd (Mining Plus) has concluded that this method of accounting for the over-recovery of sample is acceptable and is the only way to determine the in-situ location of the samples. Sampling of the Sonic core is undertaken by cutting the soft clay material into quarters and bagging the sample. In competent samples, large pieces of core will be cut into quarters and sampled along with small pieces to approximate one quarter of the sample present in the interval. Mining Plus have confirmed that this sampling procedure is acceptable.

	Stavely Minerals' RC Drilling
	Reverse Circulation (RC) percussion drilling was used to produce a 1m bulk sample (~25kg) which was collected in plastic bags and representative 1m split samples (12.5% or nominally 3kg) were collected using a cone splitter and placed in a calico bag. The cyclone was cleaned out with compressed air at the end of each hole and periodically during the drilling. The 1m split samples were submitted for analysis.
	Historical Drilling
	Historical diamond hole PEND1T was drilled by Penzoil of Australia in the late 1970's to a depth of 88.5m. Only portions of the hole were sampled, with composite samples varying from 1 to 8m. The samples were assayed for Au, Ag, As, Cu, Pb and Zn.
	Historical RAB drill holes with the prefix PENR were drilled by Penzoil of Australia in the 1970's. Alternate two metre composite samples were assayed for Ag, Cu, Pb and Zn.
	Historical aircore drill holes with the prefix STAVRA were drilled by North Limited in the early 1990's. Three metre composite samples were assayed for Au, Cu, Pb and Zn.
	Historical diamond hole VICT1D2 and VICT1D4 were drilled by North Limited in the early 1990's to a depth of 298m and 338m, respectively. For VICT1D2 the top 28 metres was not sampled, there after one metre or two metre composite samples were assayed for Au, Ag, Co and Mo. For VICT1D4 the top 27m was not sampled, there after one metre samples were assayed for Au, As, Cu, Mo, Pb and Zn.
	Historical holes with the prefix TGAC were drilled by Beaconsfield Gold Mines Pty Ltd (BCD).
	Historical aircore holes TGAC002 to TGAC125 were drilled in 2008- 2009. The top 15 to 16 metres (approximately) was not sampled, after that one metre intervals samples were taken for the remainder of the holes.
	Aircore holes TGAC126 to TGAC159 were drilled in 2012. No samples were taken for the top 9 metres, after which three metre composite samples were collected for the remainder of the holes.
	Historical holes with the prefix SAC were drilled by Beaconsfield Gold Mines Pty Ltd (BCD). Aircore holes SAC001 to SAC031 were drilled in 2009. The top approximately 5 to 30 metres were not sampled, after which three metre composite samples were assayed for Au, Ag, As, Bi, Cu, Hg, Pb, S and Zn.
	Historical holes with the prefix TGRC were drilled by Beaconsfield Gold Mines Pty Ltd (BCD) in 2009. One metre samples were assayed for Au, Ag, As, Co, Cu, Fe, Ni, Pb, S and Zn.

	Include reference to	Stavely Project					
	measures taken to ensure sample representivity and	Thursday's Gossan Prospect					
	the appropriate calibration	Stavely Minerals' Diamond Drilling					
	of any measurement tools or systems used.	Sample representivity was ensured by a combination of Company Procedures regarding quality control (QC) and quality assurance/ testing (QA). Certified standards and blanks were inserted into the assay batches. Historical Drilling					
		No information available.					
	Aspects of the	Stavely Project					
	determination of	Thursday's Gossan Prospect					
	Material to the Public	Stavely Minerals' Diamond Drilling					
	Material to the Public Report - In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m	Drill sampling techniques are considered industry standard for the Stavely work programme.					
		The diamond drill samples were submitted to Australian Laboratory Services ("ALS") in Adelaide, SA. Laboratory sample preparation involved:- sample crush to 70% < 2mm, riffle/rotary split off 1kg, pulverize to >85% passing 75 microns.					
	was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that	Diamond core samples were analysed by ME-ICP61 – multi acid digest with HF and ICPAES and ICPMS and Au-AA23 – fire assay with AAS finish. For sample that returned Cu values greater than 10,000ppm (1%) re-assaying was conducted by OG62, which is a four acid digest with ICP- AES or AAS finish.					
	has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.	Stavely Minerals' Sonic Drilling					
		The drill sampling technique from the Sonic rig has been audited by Mining Plus and is considered to be acceptable and pose no risk to the Mineral Resource and can be reported in accordance with the JORC Code (2012).					
		The diamond drill samples were submitted to Australian Laboratory Services ("ALS") in Adelaide, SA. Laboratory sample preparation involved:- sample crush to 70% < 2mm, riffle/rotary split off 1kg, pulverize to >85% passing 75 microns.					
		Diamond core samples were analysed by ME-ICP61 – multi acid digest with HF and ICPAES and ICPMS and Au-AA23 – fire assay with AAS finish. For sample that returned Cu values greater than 10,000ppm (1%) re-assaying was conducted by OG62, which is a four acid digest with ICP- AES or AAS finish.					
		Stavely Minerals' RC Drilling					
		Drill sampling techniques are considered industry standard for the Stavely work programme.					
		The 1m split samples were submitted to Australian Laboratory Services ("ALS") in Orange, NSW. Laboratory sample preparation involved:- sample crush to 70% < 2mm, riffle/rotary split off 1kg, pulverize to >85% passing 75 microns. The RC samples were analysed by ME-ICP61 – multi acid digest with HF and ICPAES and ICPMS and Au-AA23 – fire assay with AAS finish.					

		Historical Drilling
		No sample preparation is available for the historical drilling.
Drilling	Drill type (eg core, reverse	Stavely Project
techniques	circulation, open-hole	Thursday's Gossan Prospect
	hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard	The dips, azimuths and depths of drill holes in the current drilling programme are provided in the Thursday's Gossan Prospect - Cayley Lode Collar Table.
	tube. depth of diamond	Stavely Minerals' Diamond Drilling
	tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	Diamond drilling to test the Cayley Lode, including holes SMD050 to SMD113, SMD115 to SMD116, SMD118 to SMD131 and SMD133 have been drilled by Titeline Drilling. Holes SMD114, SMD117, SMD132 and SMD134 to SMD136 are currently in the process of being drilled by Titeline Drilling. For the diamond holes, drilling was used to produce drill core with a diameter of 85mm (PQ) from surface until the ground was sufficiently consolidated and then core with a diameter of 63.5mm (HQ) was returned. For the diamond tails, drilling was used to produce drill core with a diameter of 63.5mm (HQ).
		Diamond drilling was standard tube. Diamond core was orientated by the Reflex ACT III core orientation tool.
		Stavely Minerals' Sonic Drilling
		Holes SMS001D and SMS002AD have been drilled by Groundwave Drilling Services using a Sonic drill rig as pre- collars for diamond drilling. SMS003 to SMS013 have been drilled by Groundwave Drilling Services using a Sonic drill rig.
		Sonic rigs drill by vibrating the rod string and drill bit to produce high frequency resonant energy at the bit face, which is able to liquefy clay, push through sand, and pulverise solid lithologies. External casing is advanced at the same rate as the drill string in order to stop any material from collapsing into the open hole. The core barrel is retrieved from the drill hole using the conventional method of pulling all of the rods out of the drill hole. The sample is vibrated out of the barrel into metre long plastic bags after removing the drill bit. The sample bag is rested on the drill rig platform as the sample is vibrated out of the barrel. The driller determines the drill hole depth by calculating the length of the barrel, drill bit and stickup when the drill hole is collared. As the drill hole is advanced, rods are added to the rod string, and the depth recorded on core blocks placed into the core tray at the end of each run. Stavely Minerals' RC Drilling The RC holes were drilled by Budd Exploration Drilling P/L.
		The RC holes were drilled by Budd Exploration Drilling P/L. The RC percussion drilling was conducted using a UDR 1000 truck mounted rig with onboard air. A Sullair 350/1150 auxiliary compressor was used. 4" RC rods were used and $5^{1}/_{4}$ " to $5^{3}/_{4}$ " drill bits. A Reflex Digital Ezy-Trac survey camera was used. The holes were oriented at -60° towards azimuth 070°.

		Historical Drilling				
		Historical aircore holes TGAC002 to TGAC125 were drilled vertically by Beaconsfield Gold Mines Pty Ltd in 2008 and 2009 by Wallis Drilling.				
		Historical aircore holes with the prefix SAC were drilled by BCD in 2009. The holes were drilled vertically by Blacklaws Drilling Services.				
		Historical reverse circulation holes TGRC082 to TGRC143 were drilled by BCD in 2009. Drilling was conducted by Budd Exploration Drilling P/L using a Universal drill rig. TGRC138 was oriented at -60° towards magnetic azimuth 55°.				
		Historical aircore holes TGAC126 to TGAC159 were drilled by BCD in 2012. The holes were drilled vertically by Broken Hill Exploration using a 700psi/300cfm aircore rig.				
Drill sample	Method of recording and	Stavely Project				
recovery	assessing core and chip	Thursday's Gossan Prospect				
	sample recoveries and results assessed.	Stavely Minerals' Diamond Drilling				
		Diamond core recoveries were logged and recorded in the database.				
		Unless specifically mentioned, the core recovery for all diamond holes was on average greater than 90%.				
		Core recovery for SMD050 averaged 82% with an average recovery of 76% in the mineralised zone between 79m and 93m.				
		Core recovery for SMD051 averaged 86%. For the mineralised zone between 97m and 182m recovery averaged 76%, however between 98m and 127.7m the recovery only averaged 55%.				
		Core recovery for SMD053 was on average 87%, however the in the final metre of the mineralised zone there was only 46% recovery.				
		Core recovery for SMD054 averaged 87%.				
		Core recovery for SMD060 averaged 85%. However, core recovery between 104m and 116m was very poor at less than 50% and between 119.9m and 126.2m there was 100% core loss.				
		Core recovery for SMD074 averaged 93%, but a portion of the mineralised zone between 181.6m and 195.7m only averaged 76%.				
		While the overall recovery for SMD093 and SMD094 was 94% and 96%, respectively, there was core loss through the Cayley Lode and hence a wedge – SMD093W1 and SMD094W1 was drilled for each hole. There was still some core loss in the Cayley Lode in the wedges.				
		Core recovery for SMD096 averaged 90%, however for the Cayley Lode recovery was 99%, but 0.3m of core was lost from the bottom of the mineralised zone.				
		Core recovery for SMD104 averaged 89%, however in the high-grade zone the core recovery averaged 96%.				
		Our recovery for Simp too averaged 03%.				

	Overall core recovery for SMD108 averaged 88%, however
	within the Cayley Lode it dropped to an average of 76%.
	Stavely Minerals' Sonic Drilling
	database.
	Core recovery for SMS001D averaged 97%.
	Core recovery for SMS002AD averaged 78%.
	Core recovery for SMS003 to SMS011 averaged between 89% and 98%.
	Core recovery for SMS012 averaged 86%.
	Core recovery for SMS013 averaged 84%.
	Stavely Minerals' RC Drilling
	RC sample recovery was good. Booster air pressure was used to keep the samples dry despite the hole producing a significant quantity of water. RC sample recovery was visually checked during drilling for moisture or contamination.
	Historical Drilling
	Core recovery for VICT1D2 averaged 88.6%.
	Core recovery for VICT1D4 averaged 97%.
Measures taken to	Stavely Project
maximise sample recovery	Thursday's Gossan Prospect
nature of the samples	Stavely Minerals' Diamond Drilling
	Diamond core is reconstructed into continuous runs on an angle iron cradle for orientation marking. Depths are checked against the depth given on the core blocks and rod counts are routinely carried out by the driller.
	Stavely Minerals' Sonic Drilling
	Sonic drilling is used in difficult ground conditions, due to its ability to drill a wide range of material types and recover the sample. The Sonic drilling is used for pre-collars for the diamond drilling as it is limited to a depth of around 150m and has limited success when drilling very hard competent lithologies. A wide variety of drill bits and barrels are
	available for use in different types of ground on the Sonic drill rig.
	available for use in different types of ground on the Sonic drill rig. Stavely Minerals' RC Drilling The RC samples are collected by plastic bag directly from the rig-mounted cyclone and laid directly on the ground in rows of 10. The drill cyclone and sample buckets are cleaned between rod-changes and after each hole to minimise down-hole and/or cross contamination. Historical Drilling

	Whether a relationship	Stavely Project				
	exists between sample	Thursday's Gossan Prospect				
	whether sample bias may	Stavely Minerals' Diamond Drilling				
	have occurred due to preferential loss/gain of fine/coarse material.	There are some issues with sample recovery within the mineralised zone. This includes the loss of material which is likely to have carried grade.				
		Stavely Minerals' RC Drilling				
		No analysis has been undertaken as yet regarding whether sample bias may have occurred due to preferential loss/gain of fine/coarse material and is not considered to have a material effect given the good sample recovery.				
		Historical Drilling				
		No details are available for the historical drill holes.				
Logging	Whether core and chip	Stavely Project				
	samples have been	Thursday's Gossan Prospect				
	geologically and	Stavely Minerals' Diamond and Sonic Drilling				
	geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	Geological logging of samples followed Company and industry common practice. Qualitative logging of samples including, but not limited to, lithology, mineralogy, alteration, veining and weathering. Diamond core logging included additional fields such as structure and geotechnical parameters.				
		Magnetic Susceptibility measurements were taken for each 1m Sonic and diamond core interval.				
		Stavely Minerals' RC Drilling				
		Geological logging of samples followed Company and industry common practice. Qualitative logging of samples including, but not limited to, lithology, mineralogy, alteration, veining and weathering. Magnetic Susceptibility measurements were taken for each 1m RC interval.				
		Historical drilling				
		All holes were geologically logged.				
	Whether logging is	Stavely Project				
	qualitative or quantitative in	Thursday's Gossan Prospect				
	nature. Core (or costean,	Stavely Minerals' Diamond and Sonic Drilling				
	channel, etc) photography.	All logging is quantitative, based on visual field estimates. Systematic photography of the core in the wet and dry form was completed.				
		Stavely Minerals' RC Drilling All logging is quantitative, based on visual field estimates. Chip trays with representative 1m RC samples were collected and photographed then stored for future reference.				
		Historical Drilling				
		All logging is quantitative, based on visual field estimates.				

	The total length and	Stavely Project				
	percentage of the relevant	Thursday's Gossan Prospect				
	intersections logged.	Stavely Minerals' Diamond and Sonic Drilling				
		Detailed core logging, with digital capture, was conducted for 100% of the core by Stavely Minerals' on-site geologist at the Company's core shed near Glenthompson.				
		Stavely Minerals' RC Drilling				
		All RC chip samples were geologically logged by Stavely Minerals' on-site geologist on a 1m basis, with digital capture in the field.				
		Historical Drilling				
		Historical holes have been logged in their entirety.				
Sub-sampling	If core, whether cut or sawn	Stavely Project				
techniques	and whether quarter, half or all core taken.	Thursday's Gossan Prospect				
preparation		Stavely Minerals' Diamond Drilling				
pi opui ution		Quarter core for the PQ diameter diamond core and half core for the HQ diameter core was sampled on site using a core saw.				
		Stavely Minerals' Sonic Drilling				
		Sampling of the Sonic core is undertaken by cutting the soft clay material into quarters and bagging the sample. In competent samples, large pieces of core will be cut into quarters and sampled along with small pieces to approximate one quarter of the sample present in the interval. Mining Plus have confirmed that this sampling procedure is acceptable.				
	If non-core, whether riffled,	Stavely Minerals' RC Drilling				
	tube sampled, rotary split, etc and whether sampled wet or dry.	Splitting of RC samples occurred via a rotary cone splitter by the RC drill rig operators. Cone splitting of RC drill samples occurred regardless of whether the sample was wet or dry.				
	For all sample types, the	Stavely Project				
	nature, quality and	Thursday's Gossan Prospect				
	sample preparation	Stavely Minerals' Diamond, RC and Sonic Drilling				
	technique.	Company procedures were followed to ensure sub- sampling adequacy and consistency. These included, but were not limited to, daily work place inspections of sampling equipment and practices. The sampling practices followed for the Diamond and Sonic				
		drilling were audited by Mining Plus in December 2019 and found to be appropriate. In February 2020, Cube Consulting conducted a site visit and audit of sampling procedures. Recommendations made have been implemented.				
		Historical Drilling				
		No details of sample preparation are given for the historical drilling.				

	Quality control procedures	Stavely Project				
	adopted for all sub-	Thursday's Gossan Prospect				
	sampling stages to	Stavely Minerals' Diamond and Sonic Drilling				
	maximise representivity of	Blanks and certified reference materials are submitted with				
	samples.	the samples to the laboratory as part of the quality control procedures.				
		High Grade (>1% Cu)				
		Standard – 1 per 10m (matrix matched)				
		Duplicate – 1 per 10m (1/4 core) Blank – 1 per 10m.				
		Low grade and waste (<1% Cu)				
		Standard – 1 per 20m (low grade standards) Duplicate – 1 per 40m (1/4 core) Blank – 1 per 80m.				
		Stavely Minerals' RC Drilling				
		Blanks and certified reference materials are submitted with the samples to the laboratory as part of the quality control procedures.				
		Historical Drilling				
		No details of quality control procedures are given for the historical drilling.				
	Measures taken to ensure	Stavely Project				
	that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.	Thursday's Gossan Prospect				
		Stavely Minerals' Diamond and Sonic Drilling				
		Quarter core sampling of the diamond PQ core and Sonic core is conducted to provide a field duplicate from hole SMD067 to SMD097 on and some Sonic holes. On-going duplicate sampling will be conducted on selected diamond holes.				
		Stavely Minerals' RC Drilling				
		No field duplicates for the RC drilling was conducted.				
		Historical Drilling				
		No details are given for the historical drilling.				
	Whether sample sizes are	Stavely Project				
	appropriate to the grain size of the material being	Thursday's Gossan Prospect				
	sampled.	Stavely Minerals' Diamond, RC and Sonic Drilling				
		The sample sizes are considered to be appropriate to correctly represent the sought mineralisation.				
		or rectly represent the sought mineralisation.				
Quality of	The nature, quality and	Stavely Project				
assay data and laboratory	appropriateriess of the assaving and laboratory	Thursday's Gossan Prospect				
tests	procedures used and	Stavely Minerals' Diamond, RC and Sonic Drilling				
	whether the technique is considered partial or total.	The core samples and 1m RC splits were analysed by multielement ICPAES Analysis - Method ME-ICP61. A				

	0.25g sample is pre-digested for 10-15 minutes in a mixture of nitric and perchloric acids, then hydrofluoric acid is added and the mixture is evaporated to dense fumes of perchloric (incipient dryness). The residue is leached in a mixture of nitric and hydrochloric acids, the solution is then cooled and diluted to a final volume of 12.5mls. Elemental concentrations are measured simultaneously by ICP Atomic Emission Spectrometry. This technique approaches total dissolution of most minerals and is considered an appropriate assay method for porphyry copper-gold systems.
	For samples which returned a Cu assay value in excess of 10,000ppm (1%) the pulp was re-assayed using Cu-OG62 which has a detection limit of between 0.001 and 40% Cu.
	This technique is a four acid digest with ICP-AES or AAS finish.
	The core samples and 1m RC splits were also analysed for gold using Method Au-AA23. Up to a 30g sample is fused at approximately 1,100°C with alkaline fluxes including lead oxide. During the fusion process lead oxide is reduced to molten lead which acts as a collector for gold. When the fused mass is cooled the lead separates from the impurities (slag) and is placed in a cupel in a furnace at approximately 900°C. The lead oxidizes to lead oxide, being absorbed by the cupel, leaving a bead (prill) of gold, silver (which is added as a collector) and other precious metals. The prill is dissolved in aqua regia with a reduced final volume. Gold content is determined by flame AAS using matrix matched standards. For samples which are difficult to fuse a reduced charge may be used to yield full recovery of gold. This technique approaches total dissolution of most minerals and is considered an appropriate assay method for detecting gold mineralisation.
	Historical Drilling
	Samples from TGAC002 to TGAC125 were submitted for the analysis of Au, Ag, As, Cu, Co, Fe, Ni, Pb, S and Zn. All elements except Au were assayed by ICP/OES methods. Gold was analysed using the Fire Assay method. Samples were submitted to either Genalysis Laboratory Services Pty Ltd (Amdel) in Adelaide or to Aminya Laboratories Pty Ltd (Onsite Laboratory Services) in Bendigo for analysis. Samples from TGAC126 to TGAC159 were submitted to Onsite Laboratory Services in Bendigo for Au by Fire assay and Ag, As, Cu, Fe, S, Pb and Zn by ICP/OES.
For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	

	Nature of quality control	Stavely Project
procedur standard duplicate laborator whether of accura and prec establish	procedures adopted (eg	Thursday's Gossan Prospect
	standards, blanks, duplicates external	Stavely Minerals' Diamond, RC and Sonic Drilling
	laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.	Laboratory QAQC involved the submission of standards, blanks and duplicates. For every 20 samples submitted either a standard or blank was submitted.
		The analytical laboratory provide their own routine quality controls within their own practices. The results from their own validations were provided to Stavely Minerals.
		Results from the CRM standards and the blanks gives confidence in the accuracy and precision of the assay data returned from ALS.
		Quarter core sampling of the diamond PQ core and Sonic core is conducted to provide a field duplicate from hole SMD067 to SMD097 on and some Sonic holes. On-going duplicate sampling will be conducted on selected diamond holes.
		Historical Drilling
		No quality control data available for historical drilling.
Verification of	The verification of	Stavely Project
assaving and	either independent or	Thursday's Gossan Prospect
	alternative company personnel.	Stavely Minerals' Diamond, RC and Sonic Drilling
		stavely Minerals Managing Director, the Technical Director or the Geology Manager – Victoria have visually verified significant intersections in the core and RC chips at Thursday's Gossan.
	The use of twinned holes.	No twinned holes have been drilled.
	Documentation of primary	Stavely Project
	data, data entry procedures, data verification, data storage (physical and electronic) protocols.	Thursday's Gossan Prospect
		Stavely Minerals' Diamond, RC and Sonic Drilling
		Primary data was collected for drill holes using the OCRIS
		logging template on Panasonic Toughbook laptop computers using lookup codes. The information was sent to a database consultant for validation and compilation into a SQL database.
		Historical Drilling
		No details provided for historical drilling.
	Discuss any adjustment to assay data.	No adjustments or calibrations were made to any assay data used in this report.
Location of	Accuracy and quality of	Stavely Project
data points surveys used to locate d	surveys used to locate drill holes (collar and down-holes)	Thursday's Gossan Prospect
	noles (collar and down-nole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	Stavely Minerals' Diamond, RC and Sonic Drilling
		Drill collar locations were pegged before drilling and surveyed using Garmin handheld GPS to accuracy of +/- 3m. Collar surveying was performed by Stavely Minerals' personnel. Subsequent to drilling, the collar locations for holes SMD050 on have been surveyed using a DGPS.
		; 0 -

	Specification of the grid system used. Quality and adequacy of topographic control.	For the diamond holes, down-hole single shot surveys were conducted by the drilling contractor. Surveys were conducted at approximately every 30m down-hole. All current drill holes are being surveyed using a gyro. Historical Drilling No details provided for drill collar locations for historical drilling. The grid system used is GDA94, zone 54. At the Thursday's Gossan prospect, topographic control is achieved via use of DTM developed from a 2008 airborne magnetic survey conducted by UTS contractors measuring relative height using radar techniques. For Stavely Minerals' exploration, the RL was recorded for
Data spacing	Data spacing for reporting	each drill hole and soil sample location from the GPS. Accuracy of the GPS is considered to be within 5m.
and	of Exploration Results.	text.
distribution	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	No Mineral Resource and Ore Reserve estimation procedure(s) and classifications apply to the exploration data being reported.
	Whether sample	Stavely Project
	compositing has been	Thursday's Gossan Prospect
	applied.	Stavely Minerals' Diamond and Sonic Drilling
		The diamond core for the entire hole is sampled. For diamond core PQ quarter core and HQ half core was submitted for analysis. For the Sonic core, quarter core is submitted for analysis. Sample intervals were based on lithology but in general were 1m. No intervals were less than 0.4m or greater than 1.2m.
		Stavely Minerals' RC Drilling
		No sample compositing has been applied.
		Historical Drilling
		Historical diamond hole PEND11 was drilled by Penzoil of Australia and only portions of the hole were sampled, with composite samples varying from 1 to 8m.
		Historical RAB drill holes with the prefix PENR were drilled by Penzoil of Australia and alternate two metre composite samples were assayed for Ag, Cu, Pb and Zn.
		Historical aircore drill holes with the prefix STAVRA were drilled by North Limited and three metre composite samples were assayed for Au, Cu, Pb and Zn.
		Historical diamond holes VICT1D2 and VICT1D4 were drilled by North Limited. For VICT1D2 the top 28 metres was not sampled, there after one metre or two metre

		 composite samples were assayed for Au, Ag, Co and Mo. For VICT1D4 the top 27m was not sampled, there after one metre samples were assayed for Au, As, Cu, Mo, Pb and Zn. For historical aircore holes TGAC002 to TGAC125 approximately the top 15 to 16 metres was not sampled, after that one metre intervals samples were taken for the remainder of the holes. For aircore holes TGAC126 to TGAC159 no samples were taken for the top 9 metres, after which three metre composite samples were collected for the remainder of the holes. For aircore holes SAC001 to SAC031 the top approximately 5 to 30m were not sampled, after which three metre composite samples were assayed for Au, Ag, As, Bi, Cu, Hg, Pb, S and Zn. For historical holes with the prefix TGRC one metre samples were assayed for Au, Ag, As, Co, Cu, Fe, Ni, Pb, S and Zn.
Orientation of	Whether the orientation of	Stavely Project
data in	sampling achieves	Thursday's Gossan Prospect
relation to	unbiased sampling of	Stavely Minerals' Diamond and Sonic Drilling
geological structure	possible structures and the extent to which this is known, considering the deposit type.	The orientation of diamond and Sonic drill holes is tabulated in the Cayley Lode Collar Table included in this report. As best as practicable, drill holes are designed to intercept targets and structures at a high angle.
		Stavely Minerals' RC Drilling
		perpendicularly intercept the sulphide rich D veins within the low angle structure.
	If the relationship between	Stavely Project
	the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	Thursday's Gossan Prospect
		Stavely Minerals' Diamond and Sonic Drilling
		With holes SMD050 to SMD125 and SMS001 to SMS013 drilled to 070° or 250° grid azimuth, the drilling has intersected the Cayley Lode mineralisation approximately perpendicularly. SMD096 and SMD097 are drilled at 82° and 99° grid azimuth to intersect the Cayley Lode mineralisation beneath an area where surface access has not been granted as yet.
Sample	The measures taken to	Stavely Project
security	ensure sample security.	Thursday's Gossan Prospect
		Stavely Minerals' Diamond, RC and Sonic Drilling
		Samples in closed poly-weave bags are delivered by Stavely personnel to Ballarat from where the samples are couriered to ALS Laboratory in Adelaide, SA.
		Historical Drilling
		No available data to assess security.

Audits or	The results of any audits or	An audit of the sampling techniques, QAQC and the
reviews	reviews of sampling techniques and data.	database was conducted by Mining Plus in November 2019 and by Cube Consulting in February 2020. The majority of the recommendations of the audit have been implemented. In particular there were slight adjustments to the sampling interval, frequency of QAQC samples and a minor update
		to the database.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

JORC Code explanation	Commentary
Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	Stavely Project The drilling at Thursday's Gossan is located on RL2017 (previously EL4556), which forms the Stavely Project. The mineralisation at Thursday's Gossan is situated within retention licence RL2017. The Stavely Project was purchased by Stavely Minerals (formerly Northern Platinum) from BCD Resources Limited in May 2013. Stavely Minerals hold 100% ownership of the Stavely Project tenements. A Section 31 Deed and a Project Consent Deed has been signed between Stavely Minerals Limited and the Eastern Maar Native Title Claim Group for RL2017. The New Challenge Resources Pty Ltd net smelter return royalty of 3% on EL4556 (now RL2017) has been purchased by Stavely Minerals for a cash consideration of \$350,000 and the issue of 850,000 Stavely Minerals' shares.
The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	Stavely Project RL2017 was granted on 8 May 2020 for a term of 10 years. The tenement is in good standing and no known impediments exist.
Acknowledgment and appraisal of exploration by other parties.	 Stavely Project Thursday's Gossan Prospect Exploration activity became focused on Thursday's Gossan and the Junction prospects following their discovery by Pennzoil of Australia Ltd in the late 1970s. North Limited continued to focus on Thursday's Gossan in the 1990s. North's best drill result at Thursday's Gossan came from VICT1D1 which gave 161m of 0.26% Cu from 43m, including 10m of 0.74% Cu from 43m from a supergeneenriched zone containing chalcocite. The tenement was optioned to CRA Exploration between 1995 and 1997. CRAE drilled several deep diamond drill holes into Thursday's Gossan, including DD96WL10, which intersected 186m from 41m of 0.15% Cu and DD96WL11, which intersected 261.7m from 38.3m of 0.13% Cu. EL4556 was further explored by Newcrest Operations Limited under option from New Challenge Resources Ltd between 2002 and 2004. Their main focus was Thursday's Gossan in order to assess its potential as a porphyry copper deposit. One of their better intersections came from drill hole VSTD01 on the northern edge of the deposit which gave 32m at 0.41 g/t Au and 0.73% Cu from 22m in supergene-enriched material.
	JORC Code explanation Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. Acknowledgment and appraisal of exploration by other parties.

Criteria	JORC Code explanation	Commentary
		undertook an extensive drilling programme focused on several prospects including Thursday's Gossan. One of their diamond drill holes at Thursday's Gossan, SNDD001, encountered zones with quartz- sulphide veins assaying 7.7m at 1.08 g/t Au and 4.14% Cu from 95.3m and 9.5m at 0.44 g/t Au and 2.93% Cu from 154.6m along silicified and sheared contacts between serpentinite and porphyritic intrusive rocks. Once Beaconsfield Gold Mines Pty Ltd had fulfilled their option requirements, title of EL4556 passed to their subsidiary company, BCD Metals Pty Ltd, who undertook a gravity survey and extensive drilling at prospects including
		All work conducted by previous operators at Thursday's Gossan. All work conducted by previous operators at Thursday's Gossan is considered to be of a reasonably high quality.
Geology	Deposit type, geological	Stavely Project
	setting and style of	Thursday's Gossan Prospect
	mineralisation.	The Thursday's Gossan prospect is located in the Mount Stavely Volcanic Complex (MSVC). Intrusion of volcanic arc rocks, such at the Mount Stavely Volcanic Complex, by shallow level porphyries can lead to the formation of porphyry copper ± gold ± molybdenum deposits. The Thursday's Gossan Chalcocite deposit (TGC) is considered to be a supergene enrichment of primary porphyry-style copper mineralisation. Mineralisation is characterised by chalcopyrite, covellite and chalcocite copper sulphide mineralisation within a sericite, illite and kaolin clay alteration assemblage. Copper mineralisation is within a flat lying enriched 'blanket' of overall dimensions of 4 kilometres north-south by up to 1.5 kilometres east- west by up to 60 metres thick with an average thickness of approximately 20 metres commencing at an average depth below surface of approximately 30 metres. The majority (circa 60%) of the Mineral Resources reside within a higher-grade zone of approximate dimensions of 1 kilometre x 300 metres by 35 metres thick.
		The mineralisation at the Cayley Lode at the Thursday's Gossan prospect is associated with high-grade, structurally controlled copper-gold-silver mineralisation along the ultramafic contact fault.
		The Thursday's Gossan area hosts a major hydrothermal alteration system with copper-gold mineralisation over a 10 kilometre long corridor. The Junction porphyry target is defined by a coincident magnetic high, strong soil copper geochemistry, RAB drilling copper anomalism. Stavely Minerals believes the technical evidence indicates there is significant porphyry copper-gold mineralisation potential at depth at Thursday's Gossan.
Drill hole	A summary of all	Included in the drill hole table in the body of the report.
Information	information material to the understanding of the	

Criteria	JORC Code explanation	Commentary
	exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill	
	noie collar din and azimuth of the hole	
	down hole length and interception depth	
	hole length.	
	If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	No material drill hole information has been excluded.
Data	In reporting Exploration	Stavely Project
aggregation methods	Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated.	Thursday's Gossan Prospect Porphyry target exploration results are nominally reported where copper results are greater than 0.1% over a down- hole width of a minimum of 3m.
		For the Cayley Lode, high-grade mineralisation exploration all copper/ and or gold intervals considered to be significant have been reported with subjective discretion.
		No top-cutting of high-grade assay results have been applied, nor was it deemed necessary for the reporting of significant intersections.
	Where aggregate intercepts	Stavely Project
	incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	Thursday's Gossan Prospect In reporting exploration results, length weighted averages are used for any non-uniform intersection sample lengths. Length weighted average is (sum product of interval x corresponding interval grade %) divided by sum of interval length.
	The assumptions used for any reporting of metal equivalent values should be clearly stated.	No metal equivalent values are used for reporting exploration results.

Criteria	JORC Code explanation	Commentary
Relationship	These relationships are	Stavely Project
between	particularly important in the	Thursday's Gossan Prospect
mineralisation	reporting of Exploration	There is insufficient drilling data to date to demonstrate
intercept	If the geometry of the	continuity of mineralised domains and determine the
lengths	mineralisation with respect	relationship between mineralisation widths and intercept
	to the drill hole angle is	
	known, its nature should be	
	If it is not known and ank	Pofer to the Tables and Figures in the text
	the down hole lengths are	Relet to the Tables and Figures in the text.
	reported, there should be a	
	clear statement to this effect	
	(eg 'down nole length, true width not known')	
Diagrams	Appropriate maps and	Refer to Figures in the text. A plan view of the drill hole
	sections (with scales) and	collar locations is included.
	tabulations of intercepts	
	snould be included for any significant discovery being	
	reported These should	
	include, but not be limited to	
	a plan view of drill hole	
	appropriate sectional views.	
Balanced	Where comprehensive	Stavely Project
reporting	reporting of all Exploration	Thursday's Gossan Prospect
	representative reporting of	All copper and gold values considered to be significant for
	both low and high grades	structurally controlled mineralisation have been reported.
	and/or widths should be	
	practiced to avoid misleading reporting of	
	Exploration Results.	
Other	Other exploration data, if	All relevant exploration data is shown on figures and
substantive	meaningtul and material,	discussed in the text.
data	includina (but not limited to):	
	geological observations;	
	geophysical survey results;	
	geocnemical survey results; bulk samples – size and	
	method of treatment;	
	metallurgical test results;	
	bulk density, groundwater,	
	characteristics: potential	
	deleterious or	
	contaminating substances.	

Criteria	JORC Code explanation	Commentary
Further work	The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	Stavely ProjectThursday's Gossan ProspectA resource drill-out is currently in progress at the CayleyLode. In addition, drilling will be conducted to test the lateraland depth extents of the Cayley Lode.Diamond drilling has been planned to test the mineralisedstructures at the Copper Lode Splay and the North-SouthStructure at shallower depths.Deep diamond drilling is in progress to test the blindporphyry targets.