ASX ANNOUNCMENT

Date: 10 February 2021

Nusantara Resources Limited ABN 69 150 791 290

Registered Office:

Level 4, 100 Albert Road, South Melbourne Vic 3205 Ph: +61 (3) 9692 7222

Issued Capital

229,273,007 shares 20,000,000 unlisted options 8,275,318 unlisted employee options and performance rights

Substantial Holders

PT Indika Energy TBK 28%
Lion Selection Group 22%
Federation Mining Pty Ltd, IMF Pty
Ltd, and Simon Le Messurier 12%

Nusantara Resources Limited is listed on the Australian Securities Exchange – ticker symbol NUS

Dollar values in this report are United States Dollars unless otherwise stated.

Enquiries regarding this report may be directed to: Mr Neil Whitaker Managing Director Ph: +62 (0) 811 1310 9191 or

Mr David Waterhouse Investor Relations

Ph: +61 (0) 407 880 937

This announcement has been authorised by the Managing Director/Board

OUTSTANDING MAPACING CLOSE SPACED DRILLING RESULTS

Strong Results to lead to Awak Mas Mineral Resource Estimate Update

- Close spaced drilling complete for the Mapacing domain with all assays received.
- Results confirm shallow, thick zones of high-grade ore available early in the mining schedule.
- Numerous ore-grade intersections from areas previously modelled to be below the grade of economic interest.
- Highlight intersections include:

MGD059 - **33m @ 1.85g/t Au** from 2m, including **2m @ 4.53g/t Au** from 5m and **5m @ 4.74g/t Au** from 15m;

MGD077 - **19m @ 3.76g/t Au** from 0m, including **1m @ 52g/t Au** from 1m.

- Mineral Resource Estimate for Awak Mas, including all close spaced drilling from Mapacing and Tanjung domains, is underway and expected during Q1 2021.
- Salu Bulo drilling is underway, with separate Mineral Resource Estimate update expected to follow in Q2 2021.

Neil Whitaker, Managing Director commented "the drilling results from Mapacing have confirmed shallow, high grade ore in an area we intend to mine very early in the mining schedule. The intersection of ore-grade intervals where we expected to find sub-grade material is an extremely pleasing and positive development, and we expect that the new close spaced data will benefit these areas which have previously been conservatively modelled. The Awak Mas Mineral Resource Estimate can now be updated, which paves the way for a new Ore Reserve".

About Nusantara Resources

Nusantara is an ASX Listed gold development company with its flagship Awak Mas Gold Project located in South Sulawesi, Indonesia.

OUTSTANDING MAPACING CLOSE SPACED DRILLING RESULTS

Close Spaced Diamond Drilling Progress

Nusantara Resources ("Nusantara", "the Company") is pleased to provide an update on close spaced diamond drilling for Mapacing, which is a geological domain that comprises the western portion of the Awak Mas Gold Deposit.

Mapacing is expected to provide a substantial contribution to the early mining schedule.

All assay results have now been received for the completed drilling which comprised 78 holes for 2,885 meters; key results are shown below, and all hole details and intervals are set out in Appendix 1, Significant Assay Results.

Close Spaced drilling continues Nusantara's de-risking strategy by improving the drilling density and geological understanding in areas that are targeted for first mining production, with the intention of delineating a high confidence maiden Measured Resource. Measured Resources would then be available for potential conversion to Proven Reserves.

Together with the results of the close spaced drilling conducted at Tanjung (that were previously reported on 15 January 2021) this completes the program of close spaced drilling that was planned for the Awak Mas Main Pit (see Figure 1). A Mineral Resource Estimate (MRE) update for Awak Mas is now underway.

A separate MRE update will follow for the close spaced drilling which is progressing strongly at the satellite deposit Salu Bulo, and was 44% complete (47 holes for 2,305m) as at 31 January 2021. Close spaced drilling is expected for completion in Q1 2021, and a Salu Bulo MRE update is planned to follow in Q2 2021.

Mapacing Close Spaced Drilling Results

Results from the Mapacing drilling include numerous broad intersections (up to 33m) and individual high grades (up to 52g/t gold), with many intercepts commencing at or close to surface – confirming the availability of high grade ore early in the mining schedule.

The interval grading 52g/t gold (for 1 metre, recorded from hole MGD077, which is part of a broader interval of 19m at 3.76g/t, from surface), is the highest grade returned from the close spaced drilling campaign to date.

The dominant form of mineralisation in the Awak Mas Gold Deposit is flat laying to shallow dipping thick zones contained by favourable stratigraphic units, with narrow cross cutting sub-vertical "feeder" zones.

The Mapacing geology differs – no feeder structures have been identified to date, yet the flat to shallow dipping ore zones are typically higher grade than similar positions across the rest of the deposit.

The stratigraphic layer that is mineralised in Mapacing is thinner than where it is observed elsewhere and exhibits the strongest foliation and brecciation – it appears to have been geologically well prepared as a potential host of gold mineralisation.

With very little overburden, Mapacing mineralisation is at or close to surface, and presents as thick, continuous and high grade (compared with the deposit average grade) zones and consequently a very low strip ratio.

Logging and assays of drilling at Mapacing confirm the expected overall geometries of mineralisation. Within the zones of mineralisation, assays have largely confirmed expected gold grades, with a number of pleasing exceptions of oregrade intersections, in areas where sub-grade mineralisation was expected based on the existing block model (eg holes MGD018, MGD031, MGD031, MGD035, MGD070). These results may have the effect of reducing internal waste or sub-grade material within mineable ore zones.

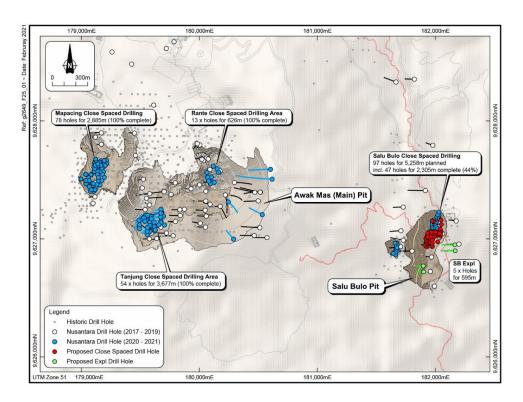
Selected results from Mapacing include:

MGD024 - 31m @ 1.9g/t Au from 0m, including 3m @ 5.4g/t Au from 2m and 4m @ 3.7g/t Au from 10m

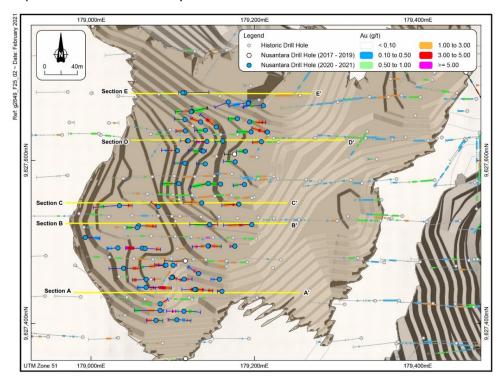
MGD031 - 26m @ 1.76g/t Au from 2m, including 4m @ 5g/t Au from 10m, 2m @ 3.7g/t Au from 20m and 6m @ 1.3g/t Au from 35m

MGD034 - 31m @ 1.89g/t Au from 11m, including 7m @ 3.9g/t Au from 15m and 7m @ 2.9g/t Au from 33m

MGD041 - 18m @ 2.91g/t Au from 0m, including 3m @ 5.04g/t Au from 3m and 3m @ 7g/t Au from 14m

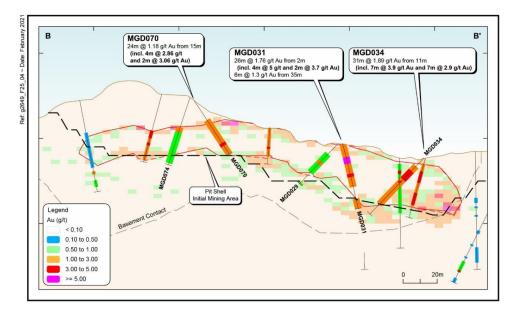

MGD045 - 20m @ 2.42g/t Au from 4m, including 2m @ 4.24g/t Au from 9m and 2m @ 4.65g/t Au from 14m

MGD059 - 33m @ 1.85g/t Au from 2m, including 2m @ 4.53g/t Au from 5m and 5m @ 4.74g/t Au from 15m


MGD061 - 18m @ 3.22g/t Au from 17m, including 3m @ 11.69g/t Au from 31m

MGD077 - 19m @ 3.76g/t Au from 0m, including 1m @ 52g/t Au from 1m

Figure 1: Plan view of the close spaced drilling programs for Awak Mas and Salu Bulo showing percentage completion and work in progress. All drilling for the Awak Mas Main Pit is now complete, whilst drilling at the Salu Bulo satellite pit was 44% complete at the end of January.


Figure 2: Plan view of the Mapacing domain, showing close spaced drilling holes (blue dots) and locations of cross sections (figures 3-7 below).

The Cross Sections below show April 2020 MRE model blocks, drilling (close spaced drilling holes given prominence) and initial mining area pit shell.

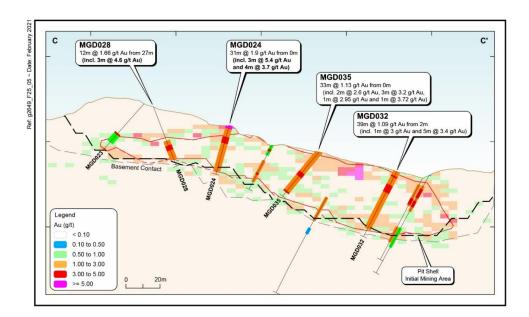


Figure 3: Cross section A – A'. Drill holes MGD015 and MGD018 have returned ore-grade intercepts where blocks have previously been modelled as very low grade. Holes MGD030 and MGD033 have confirmed high grade mineralisation at surface.

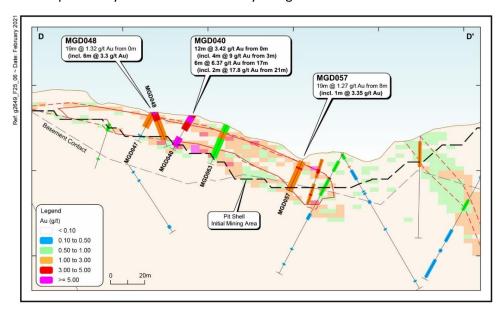


Figure 4: Cross section B – B'. Drill holes MGD031, MGD034, MGD070 and MGD074 have returned ore-grade intercepts where blocks have previously been modelled as very low grade.

Figure 5: Cross section C - C'. Drill holes MGD024, MGD028, MGD035 have returned ore-grade intercepts where blocks have previously been modelled as very low grade.

Figure 6: Cross section D - D'. Drill holes MGD040, MGD047 and MGD048 have intersected high grade material at surface, which had not ben modelled at this position previously.

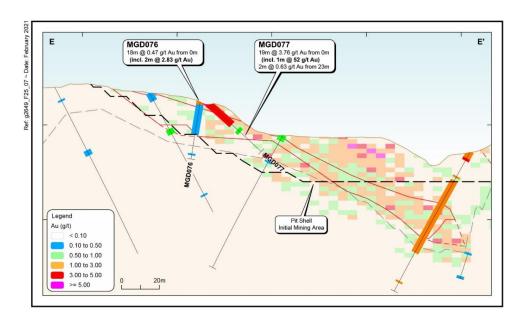


Figure 7: Cross section E - E'. Drill hole MGD077 contains the highest grade seen in the close spaced drilling program to date with 1m @ 52g/t Au from surface.

Mineral Resource Estimate Update

An update of the Mineral Resource Estimate for the Awak Mas Deposit has commenced and is expected to be completed during Q1 2021.

As well as providing close spaced drilling data that is intended to underpin the delineation of maiden Measured Resources within the Tanjung and Mapacing domains, close spaced drilling has been aimed at assessing the potential for grade increases, which was highlighted as an opportunity in the 4 October 2018 Definitive Feasibility Study.

Closer spaced data provides far greater resolution for geological interpretation and also gold distribution. The model is expected to benefit from the increased data density, where many areas have been conservatively modelled in the past due to broadly spaced drilling.

As reported previously (complete announcement on 15 January 2021), drilling at Tanjung identified several new, high grade "feeder" structures not previously modelled. The closer spaced data also defined areas of low grade or waste within the existing Resource which can now be separately domained. As discussed above, Mapacing drilling has returned ore-grade intercepts in areas previously modelled to be below the grade of economic interest.

Ore Reserve Estimate update

Following the completion of MRE updates, the Ore Reserve Estimate (ORE) for the Awak Mas project will be updated.

Competent Persons Statement

The information in this announcement that relates to the exploration results and Mineral Resources of Nusantara Resources is summarised from publicly available reports as released to the ASX of the respective companies. The results are duly referenced in the text of this report and the source documents noted above.

All stated Mineral Resources have been prepared in accordance with the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves' (the JORC Code 2012).

Exploration and Resource Targets

Any discussion in relation to the potential quantity and grade of Exploration Targets is only conceptual in nature. While Nusantara Resources may report additional Mineral Resources for the Awak Mas Gold Project, there has been insufficient exploration to date to estimate any additional mineral resources to the current Mineral Resources inventory. It is uncertain if further exploration will result in the delineation of additional Mineral Resources.

Exploration Results

The information in this report which relates to Exploration Results is based on, and fairly represents, information compiled by Mr Colin McMillan, (BSc) for Nusantara Resources. Mr McMillan is an employee of Nusantara Resources and is a Member of the Australian Institute of Mining and Metallurgy (AusIMM No: 109791).

Mr McMillan has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr McMillan consents to the inclusion in the report of the matters based on this information in the form and context in which it appears.

Mineral Resources

The information in this report that relates to the Mineral Resource Estimation for Awak Mas Gold Project is based, and on fairly represents information compiled by Mr Adrian Shepherd, Principal Geologist, (BSc), MAusIMM CP(Geo), for Cube Consulting Pty Ltd. Mr Shepherd is an employee of Cube Consulting Pty Ltd and is a Chartered Professional geologist and a current Member of the Australian Institute of Mining and Metallurgy (AusIMM No: 211818).

Mr Shepherd has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as Competent Persons as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr Shepherd consents to the inclusion in the report of the matters based on this information in the form and context in which it appears.

New Information or Data

Nusantara Resources confirms that it is not aware of any new information or data that materially affects the information included in the original market announcements and, in the case of estimates of Mineral Resources and Ore Reserves that all material assumptions and technical parameters underpinning the estimates in the relevant market announcement continue to apply and have not materially changed. The Company confirms that the form and context in which the Competent Person's findings are presented have not materially changes from the original market announcement.

Competent Person's Consent Form

Pursuant to the requirements of ASX Listing Rules 5.6, 5.22 and 5.24 and Clause 9 of the JORC Code 2012 Edition (Written Consent Statement)

Report name

ASX Release – Awak Mas Gold Project – 10/02/2021: OUTSTANDING MAPACING CLOSE SPACED DRILLING RESULTS

(Insert name or heading of Report to be publicly released) ('Report')

Nusantara Resources Limited

(Insert name of company releasing the Report)

Awak Mas Gold Project

(Insert name of the deposit to which the Report refers)

If there is insufficient space, complete the following sheet and sign it in the same manner as this original sheet.

10/02/2021

(Date of Report)

Statement

I,

Colin Charles McMillan, (BSc. MAusIMM)

(Insert full name(s))

confirm that I am the Competent Person for the Report and:

- I have read and understood the requirements of the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (JORC Code, 2012 Edition).
- I am a Competent Person as defined by the JORC Code, 2012 Edition, having five years' experience that is relevant to the style of mineralisation and type of deposit described in the Report, and to the activity for which I am accepting responsibility.
- I am a Registered Member of The Australasian Institute of Mining and Metallurgy.
- I have reviewed the Report to which this Consent Statement applies.

I am a full-time employee of

Nusantara Resources Limited

(Insert company name)

Or

I/We am a consultant working for

(Insert company name)

and have been engaged by

(Insert company name)

to prepare the documentation for

(Insert deposit name)

on which the Report is based, for the period ended

(Insert date of Resource/Reserve statement)

I have disclosed to the reporting company the full nature of the relationship between myself and the company, including any issue that could be perceived by investors as a conflict of interest.

I verify that the Report is based on and fairly and accurately reflects in the form and context in which it appears, the information in my supporting documentation relating to Exploration Targets, Exploration Results, Mineral Resources and/or Ore Reserves (select as appropriate).

Consent

I consent to the release of the Report and this Consent Statement by the directors of:

Nusantara Resources Limited		
(Insert reporting company name) Add Mulliman		
Moon of	10/02/2021	
Signature of Competent Person:	Date:	
AuslMM	109791	
Professional Membership: (insert organisation name)	Membership Number:	
1 Divake	Neil Whitaker	
Signature of Witness:	Print Witness Name and Residence:	

Additional deposits covered by the Report for which the Compet	tent Person signing this form is accepting responsibility:
Additional Reports related to the deposit for which the Compete	ent Person signing this form is accepting responsibility:
Signature of Competent Person:	Date:
Professional Membership: (insert organisation name)	Membership Number:
(msert organisation name)	
Signature of Witness:	Print Witness Name and Residence:
	(eg town/suburb)

JORC CODE, 2012 EDITION - TABLE 1

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling	Nature and quality of sampling (eg cut channels, random chips,	Sampling has been carried out using mainly Diamond Drill ("DD") Core,
Techniques	or specific specialised industry standard measurement tools	and to a much lesser extent Reverse Circulation ("RC") sampling.
	appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These	Drilling was conducted in a number of campaigns by several companies since 1991, with four main phases:
	examples should not be taken as limiting the broad meaning of sampling.	 2017-2020: Nusantara Resources Limited ("NUS"); 2011-2012: One Asia Resources Limited; 2006-2007: Vista Gold (Barbados) Corporation, and 1991-1998: Battle Mountain Gold Company/Masmindo Mining Corporation Limited;
		Nusantara has completed 78 diamond holes for 2,885 from the close
		spaced drilling program on the Mapacing Domain of the Awak Mas
		deposit during November 2020 to early January 2021. Sampling has
		been carried out using Diamond Drill Hole ("DDH") whole core only.
		All drill core was generally sampled on 1m intervals, contingent on
		geology and core recovery.
		 Core was collected directly from the core barrel into core boxes; All core samples were taken as full core, with consideration for maximum sample volume and retaining half core for reference

Criteria	JORC Code explanation	Commentary
		not required for this close spaced drilling program. Minimum interval was 0.4m and maximum 1m for mineralised material, and Maximum 2m for the material that visually appears unmineralised.
		No specialised measurement tools, e.g. downhole gamma sondes, or handheld XRF instruments, etc. were employed.
	Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.	During the period from 2017 to 2020, sampling was carried out under Nusantara's protocols and QAQC procedures as per industry best practice.
		Quality Assurance ("QA") and Quality Control ("QC") protocols included the monitoring and analysis of inserted certified reference material, blanks and duplicates samples to ensure sample representivity.
		Samples were cut about 5 cm off the core orientation line, and the half-core with the orientation line correctly placed back into the tray and retained. The remaining half-core was collected, ensuring that the same side was consistently sampled and representative.
		Fractured and veined core, that was liable to "fall apart" when being cut, were wrapped in masking tape prior to cutting. The core to be

Criteria	JORC Code explanation	Commentary
		retained was placed back in the tray with all the pieces held in place by
		the masking tape. Core with veins at a low angle to the core axis were cut perpendicular
		to the veins so that the vein was evenly distributed between the halves.
		Historical sampling was carried out under the relevant company's protocols and procedures and is assumed to be industry standard practice for the time.
	Aspects of the determination of mineralization that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralization types (eg submarine nodules) may warrant disclosure of detailed information.	All Nusantara drilling was diamond core (all HQ3 size). Full core was sampled on nominal 1m intervals, the entire sample crushed to a nominal 2-3mm, and a 1kg sub-sample was pulverised to produce a 40g fire assay charge.

Criteria	JORC Code explanation	Commentary
Drilling	Drill type (eg core, reverse circulation, open-hole hammer,	The Awak Mas – Mapacing Domain close spaced drilling completed by
Techniques	rotary air blast, auger, Bangka, sonic, etc) and details (eg core	Nusantara has consisted of:
	diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	 All HQ3 core sizes Wire-line triple/split tube diamond core drilling; Downhole Survey using ProShot Gen 4 Camera. Hole depths varied from 18m to 59m total depth, with an average depth of 37m. Historic core drilling (1991-2012) at Awak Mas consisted of 732 drill holes for 86,932m: Dominantly HQ core sizes but has included BQZ, NQ2, HQ2, HQ3, PQZ and PQ3; Orientation spear used for structural orientations, and
		Depths varied from 11m to 450m, average depth of 126m.
		Historic RC drilling (1995-1996) of 158 holes for 16,290 metres was
		completed:
		 Using a 5.25" face sampling hammer, limited holes used a 4.75" hammer, and Depths varied from 23m to 202m, average drill depth of 103m.
Drill Sample	Method of recording and assessing core and chip sample	Core recovery and drill meterage recorded by field geologists and
Recovery	recoveries and results assessed.	trained core checkers at drill site, prior to transfer of the core to the
		core shed, and Recovery percentage (%) was recorded in the

Criteria	JORC Code explanation	Commentary
		geotechnical records as equivalent to the length of core recovered, as a percentage of the drill run. Overall recovery within the mineralised zones is >96%.
	Measures taken to maximize sample recovery and ensure representative nature of the samples.	Wireline triple/split tube system and large diameter PQ/HQ core were utilised (subject to depth restrictions) to maximise recovery and ensure that the samples are representative of the material being sampled.
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	The DDH sample recovery in the transitional and fresh rock zones is very high and no significant bias is apparent. Recoveries in oxidised rock are lower.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	Drill core was photographed and logged prior to sampling. Core has been geologically and geotechnically logged to a level of detail appropriate to support mineral resource estimation and mining studies.
		Lithology, mineralisation, alteration, foliation trend, fracturing, faulting, weathering, depth of soil and total oxidation were recorded. Orientation of fabrics and structural features were logged.

Criteria	JORC Code explanation	Commentary
	Whether logging is qualitative or quantitative in nature. Core (or costean, channel etc) photography. The total length and percentage of the relevant intersections logged.	Visually mineralised zones were able to be logged and interpreted before the assays were available. These observations were used to update the mineralisation model which is a valuable targeting tool for successive hole planning. Logging has been conducted both qualitatively and quantitatively – full description of lithologies, alteration and comments are recorded, as well as percentage estimates on veining and sulphide amount. All Nusantara diamond core has been digitally photographed. Total length of the Awak Mas Mapacing Domain close spaced drilling completed by Nusantara to date is 2,885m (78 holes) of which 100% has been logged.
Sub-Sampling Techniques and Sample Preparation	If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.	Whole core samples were taken generally on metre intervals, dependent on logged geological contacts. All sampling was from diamond core.

Criteria	JORC Code explanation	Commentary
	For all sample types, the nature, quality and appropriateness of	Samples for this program of drilling have been cut and bagged on site
	the sample preparation technique.	and despatched to the Geoservices assay laboratory in Jakarta.
		All sample preparation was completed at the Geoservices lab in
		Jakarta; the process involved:
		 Samples weighed and dried at 105°C; Jaw and Boyd crushed to nominal 2-3mm; 1kg sub-sample rotary split for final preparation; Sub-sample pulverised by LM2 ring mill pulverisers to 95% passing 75microns for lab analysis, and 200g pulp aliquot for analytical analysis.
		The nature, quality and appropriateness of the sample preparation
		technique is consistent with industry standard practices.
	Quality control procedures adopted for all sub-sampling stages	For core sampling from the Close Spaced drill program, whole core is
	to maximise representivity of samples.	sampled.
	Measures taken to ensure that the sampling is representative	Coarse reject duplicate, coarse blanks, and both intra and umpire
	of the in situ material collected, including for instance results	laboratory pulp duplicates were used by Nusantara to ensure the
	for field duplicate/second-half sampling.	sampling was representative and un-bias. Control duplicate samples
		constitute 10-15% of the total submitted samples.
		For historical drilling programmes, duplicate sampling and check assaying was completed and no significant biases were identified.

Criteria	JORC Code explanation	Commentary
	Whether sample sizes are appropriate to the grain size of the material being sampled.	A sample size of 3-5kg is considered appropriate and representative of the material being sampled given the width and continuity of the intersections and the grain size of the material being collected.
Quality of Assay Data and Laboratory Tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	Current gold analysis by Nusantara has used a 40g charge fire assay method with an AAS finish. The primary assay laboratory used is Geoservices in Jakarta. There is no additional element analysis included for this close spaced drilling program. The gold fire-assay analysis is a total assay method, which is an industry standard for gold analysis, and an appropriate assay method for this type of deposit.
	For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether	No geophysical tools were used or data analysed. The following QC sampling protocols and insertion rates have been adopted for the current diamond drilling;

Criteria	JORC Code explanation	Commentary
	acceptable levels of accuracy (i.e. lack of bias) and precision have been established.	 Certified Refence Material (5%) Coarse Blank Material (2.5%) Coarse Duplicate Samples (5-10%) Blind pulp assay check duplicates, resubmitted to primary laboratory (2%) Umpire pulp assay check duplicates (5%) Random primary laboratory inspections on a monthly to quarterly basis. Performance of the control samples are regularly monitored, with any disparities investigated and remedied, Monthly QAQC reporting and meetings are held on at least a monthly basis. Results to date demonstrate an acceptable level of accuracy and precision.
Verification of Sampling	The verification of significant intersections by either independent or alternative company personnel.	Significant intersections were reviewed by the Geology Manager and Senior Geologists following receipt of the assay results.
and Assaying		All assay results are processed and validated by the GIS/Database Administrator prior to loading into the database. This includes plotting the standard and blank performances, and review of duplicate results.

Criteria	JORC Code explanation	Commentary
		Original assay certificates are issued as PDF's for all results and
		compared against digital CSV files as part of data loading procedure
		into the database.
		The Geology General Manager reviews all tabulated assay data as the
		Competent Person for the reporting of Exploration Results.
	The use of twinned holes.	No twinned holes have been drilled by Nusantara.
	Documentation of primary data, data entry procedures, data	Field drilling data is recorded directly into logging templates in Excel
	verification, data storage (physical and electronic) protocols.	spreadsheet format on laptop computers. Excel spreadsheets are
		imported to MS Access format for validation and management by the
		GIS/Database Administrator onsite.
		All drilling data is uploaded and managed via a centralised Dropbox
		facility with restricted access.
		Database is audited by an external consultant (Cube Consulting) prior
		to reporting of Exploration Results and Mineral Resource estimates.
	Discuss any adjustment to assay data.	All data below detection limit (<0.01 ppm Au) and "0" values have
		been entered as a small value of 0.005ppm Au which is half the
		detection limit for the gold analysis.

Criteria	JORC Code explanation	Commentary
		Negative values, missing samples, interval gaps denoted by no sample ("NS") and cavities were assigned as nulls (blanks) and ignored when extracting composites for grade interpolation. Samples not received by the laboratory, or with insufficient sample weight for analysis had the interval left blank in the database.
Location of Data Points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	Collars were initially located by hand held Global Positioning System ("GPS") with an accuracy of about 5-15m, dependent on the satellite coverage. Additionally, hole positions were validated by tape and compass measurement from nearby surveyed historic drill collars. All Nusantara drill collar will be located by third party surveyors using Differential Global Positioning System ("DGPS") or total station Electronic Distance Measuring ("EDM") survey equipment to an accuracy of approximately 0.1m. Down-hole surveys were routinely carried out, generally on 30m spacings using a digital multi-shot instrument Coretell ORIshot (Gen4). The 3D location of the individual samples is considered to be adequately established, and consistent with accepted industry standards.

Criteria	JORC Code explanation	Commentary
	Specification of the grid system used.	All drillhole data is referenced in the UTM WGS 84 Zone 51 (Southern
		Hemisphere) coordinate system.
	Quality and adequacy of topographic control.	Topographic mapping of the Awak Mas Gold Project area by Airborne
		Laser Scanning ("LIDAR") survey has been carried out by P.T. Surtech
		in November 2017. Topographic control now exists to a vertical and
		horizontal accuracy of 0.15m and is incorporated into all mineral
		resource estimates.
Data Spacing	Data spacing for reporting of Exploration Results.	As highlighted in the 2018 Definitive Feasibility Study (DFS), the
and		Company believes there is potential for the Project to realise a grade
Distribution		uplift when the ore body is mined. As explained in the DFS, the existing
		Reserve drill spacing, and block modelling is believed to have the
		potential to under-report higher grade vertical vein structures.
		Following the 2019 close spaced drilling program designed to deliver a
		nominal 12.5-15m spacing, during November 2020 to January 2021 a
		further close spaced drilling exercise has been completed within the
		Awak Mas deposit at the Mapacing domain area to drill and sample
		the potential high-grade subvertical vein structures within the deposit.

Criteria	JORC Code explanation	Commentary
		The program was designed to improve ore-body knowledge at a mining scale.
		Sampling of drill core has generally been at 1m intervals.
	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	Drill hole spacing is sufficient to imply geological and grade continuity with the lateral extents of mineralisation not fully defined by the current drilling.
	Whether sample compositing has been applied.	Sample compositing has not been applied.
Orientation of Data in Relation to Geological Structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	Drilling sections are orientated perpendicular to the strike of the mineralised host rocks. Drill holes were inclined between -40° and -85° to optimise intercepts of mineralisation with respect to thickness and distribution of the targeted shallow dipping zones. Current diamond drilling has confirmed that the drilling orientation has not introduced any sampling bias.
	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have	The mineralisation occurs in multiple orientations as a stockwork system, with a dominant shallow to moderate N-NE dipping, foliation

Criteria	JORC Code explanation	Commentary
	introduced a sampling bias, this should be assessed and reported if material.	parallel orientation, and less well developed narrow sub-vertical structures. Drilling with steep angled holes in most instances provides a representative sample across the mineralisation.
Sample Security	The measures taken to ensure sample security.	 Chain of Custody is managed by Nusantara whereby; All samples are placed into calico bags with sample tickets and clear sample ID numbering on the outside; Samples were bagged into polyweave sacks, zip tied, with the sample numbers written on the outside of the sack; Samples were stored onsite within a locked facility ready for dispatch; Prior to sample dispatch, the sample numbers, duplicates, standards were checked against the dispatch form; Samples were freighted by road to Belopa, and then air freighted to the Geoservices laboratory in Jakarta, and Geoservices in Jakarta notified Nusantara when the samples had been securely received intact.
Audits or Reviews	The results of any audits or reviews of sampling techniques and data.	The sampling procedures and drilling data were reviewed and audited by Denny Wijayadi (Cube Consulting Senior Geologist) while onsite from 11 to 15 September 2017. The site visit involved inspection of the drilling in progress, onsite sample preparation facilities, and an audit of the Geoservices laboratory in Jakarta.

Criteria	JORC Code explanation	Commentary
		Cube (2017) has previously independently reviewed, verified and
		validated data prior to the Mineral Resource estimate in May 2017, as
		documented in the associated Awak Mas Technical Report (2017).
		There were no adverse material results from any of the reviews or audits.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral	Type, reference name/number, location and ownership	The Awak Mas Gold Project includes the three main deposit areas of
Tenement and	including agreements or material issues with third parties	Awak Mas, Salu Bulo and Tarra for which current mineral Resources
Land Tenure	such as joint ventures, partnerships, overriding royalties,	exist and have been reported to JORC Code (2012) guidelines.
Status	native title interests, historical sites, wilderness or national	
	park and environmental settings.	

Criteria	JORC Code explanation	Commentary
		Nusantara holds a 100% beneficial interest in the Awak Mas Gold Project via a 7th Generation Contract of Work ("CoW") through its wholly owned subsidiary PT Masmindo Dwi Area. PT Masmindo Dwi Area is an Indonesian foreign investment company, which owns the exploration and mining rights to the Awak Mas Project
		through the CoW with the Government of the Republic of Indonesia. The Awak Mas Gold Project has a long history involving multiple companies through direct ownership, joint venture farm-ins, option to purchase agreements, or equity arrangements;
		 Battle Mountain discovered the Awak Mas deposit in 1991 after earning a 60% equity in the original partnership between New Hope and PT Asminco; Lone Star (1994) acquired the equity of both Battle Mountain and New Hope; Gascoyne structured an agreement which combined the various equities under Masmindo; Placer (1998) entered, and then later withdrew from a Joint Venture ("JV") with Masmindo; Vista Gold (2004) purchased 100% of Masmindo; Pan Asia (2009), now One Asia, acquired a 60% interest via a JV with Vista Gold upon completion of a Feasibility Study ("FS") and Environmental Impact Assessment ("AMDAL"); One Asia (2013) through its subsidiary Awak Mas Holdings purchased 100% of the Project from Vista Gold, and Nusantara Resources Limited (formerly Awak Mas Holdings) demerged from One Asia with a 100% interest in the Awak Mas

Criteria	JORC Code explanation	Commentary
		Gold Project and listed on the Australian Securities Exchange ("ASX") on the 2nd August, 2017.
		The 7th Generation CoW was granted on 19 February 1998 and covers
		an area of 14,390 ha.
		The CoW allows for 100% ownership and is located within a non-
		forested area – (APL) Land for Other Uses.
		The AMDAL for the project has been approved and Environment Permit
		Issued April 2017. The Competent Person is not aware of any other
		agreements that are material to the Project.
	The security of the tenure held at the time of reporting	The CoW defines a construction period of 3 years and an operating
	along with any known impediments to obtaining a licence to	period of 30 years.
	operate in the area.	The Competent Person has not been advised of any environmental
		liabilities associated with the Awak Mas Project at this time.
Exploration	Acknowledgment and appraisal of exploration by other	Since the discovery of the Awak Mas deposit by Battle Mountain in
Done by Other	parties.	1991, a number of historical resource assessments have been
Parties		completed.
		Previous exploration work in the project area includes systematic
		exploration by several operators, including Asminco and New Hope in

Criteria	JORC Code explanation	Commentary
		1987, followed by Battle Mountain, Lone Star, Gasgoyne, JCI, Masmindo Mining and Placer Dome between 1991 and 2004. Vista Gold and One Asia undertook the most recent exploration work between 2004 and 2013 which included the compilation and cataloguing of historic data, completion of significant infill resource drilling, and re-estimation of the contained, classified mineral resources.
		A mineral resource estimate ("MRE") update was completed by Tetra Tech in 2013 based on the results of the One Asia infill and metallurgical testwork drilling program. The MRE was reported in accordance with the JORC Code (2012) guidelines.
Geology	Deposit type, geological setting and style of mineralization.	Awak Mas Deposit A high level, low sulphidation hydrothermal system has developed at Awak Mas which is overprinted by a strong sub-vertical fracture control which has channelled the mineralising fluids. The mineralising fluids have exploited these pathways and migrated laterally along foliation parallel shallowly dipping favourable strata.

Criteria	JORC Code explanation	Commentary
		In addition to the conformable style of mineralisation there is a late
		stage hydrothermal overprint that has also deposited gold in some of
		the major sub vertical structures.
		The multi-phase gold mineralisation is characterised by milled and
		crackle breccias, vuggy quartz infill, and stockwork quartz veining with
		distinct sub-vertical feeder structures.
		Host lithologies for mineralisation are mainly the cover sequence of
		meta-sedimentary rocks and to a lesser degree the underlying
		basement sequence of diorites and biotite dominant schists. The cover
		and basement sequences are separated by an unconformable and
		sheared contact.
Drill hole	A summary of all information material to the understanding	This one hole is additional first-pass exploration drilling program was
Information	of the exploration results including a tabulation of the	designed to test the eastern extension of the Rante mineralisation into
	following information for all Material drill holes:	the Highwall area.
	easting and northing of the drill hole collar	A tabulation of location details for the recent drill hole which form the
	 elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole 	basis for this ASX Release are included in Appendix 1.
	 down hole length and interception depth hole length. 	The historical drilling database consists of;
		 One Asia Drilling (2011-2012) - 87 drill holes for 5,956m;

Criteria	JORC Code explanation	Commentary
		 Historic core drilling (1991-2007) of 645 drill holes for 81,045m, and Historic RC drilling (1995-1996) of 158 holes for 16,290 metres.
	If the exclusion of this information is justified on the basis	The Phase 1 infill resource drilling completed by Nusantara in 2017-
	that the information is not Material and this exclusion does	2018 at Awak Mas (25 holes for 4,263m) has been previously reported
	not detract from the understanding of the report, the	and incorporated in the most recent MRE update to the ASX;
	Competent Person should clearly explain why this is the case.	 Awak Mas Resource Increased by 0.2Moz. Dated 31 January 2018; Table 1, Appendix 1 Awak Mas Rante Domain - Exploration Results Tabulation.
		The complete historical dataset of 890 holes at Awak Mas, that were previously drilled have not been included as they are not Material to
		the reporting of the current close spaced Exploration Results.
		All historical drilling information has been previously reported in the
		following ASX release;
		 Awak Mas Gold Project Resource Update. Dated 9 May 2017, Mineral Resource (JORC 2012) – 1.74 Moz, New Geological Model;
	In reporting Exploration Results, weighting averaging	Exploration results are reported as length weighted averages of the
	techniques, maximum and/or minimum grade truncations	individual sample intervals.

Criteria	JORC Code explanation	Commentary
Data	(eg cutting of high grades) and cut-off grades are usually	The following criteria have been applied in reporting of the Exploration
Aggregation	Material and should be stated.	results:
Methods		 Intercepts reported are intervals of Au >1g/t with intervals of <1g/t Au up to 3m included; Where no individual intercepts >1g/t exist, the intercepts reported are intervals of Au >0.1g/t with intervals of <0.1g/t Au up to 3m included; No high-grade capping has been applied, or was necessary, and All downhole intersection lengths and grades are reported to one decimal place.
	Where aggregate intercepts incorporate short lengths of	Any zones of significantly high-grade gold mineralisation have been
	high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	separately reported in Appendix 1.
	The assumptions used for any reporting of metal equivalent values should be clearly stated.	Metal equivalent values have not been used.
Relationship	These relationships are particularly important in the	The mineralisation geometry is complex and variable, but generally has
between	reporting of Exploration Results.	a main shallow orientation parallel to the foliation at ~30º towards the
Mineralization		northeast. A secondary mineralisation orientation are steeply east
Widths and		dipping to sub-vertical north-south feeder structures

Criteria	JORC Code explanation	Commentary
Intercept	If the geometry of the mineralization with respect to the	The drilling orientation is a compromise to target both mineralisation
Lengths	drill hole angle is known, its nature should be reported.	orientations, and generally the downhole length approximates the true
	If it is not known and only the down hole lengths are	width for the dominant broad and shallow dipping mineralised zones.
	reported, there should be a clear statement to this effect	Downhole intercepts of the steep sub-vertical structures will have a
	(eg 'down hole length, true width not known').	downhole length significantly longer than the true width.
Diagrams	Appropriate maps and sections (with scales) and tabulations	Relevant drill hole location plans, representative drill sections are
	of intercepts should be included for any significant	included within the main text of this release.
	discovery being reported These should include, but not be	All mineralised intersections used for the reporting of the Exploration
	limited to a plan view of drill hole collar locations and	Results are tabulated in Appendix 1.
	appropriate sectional views.	
Balanced	Where comprehensive reporting of all Exploration Results is	All exploration results from the current drilling program that relate to
Reporting	not practicable, representative reporting of both low and	the Awak Mas Mapacing Domain have been reported.
	high grades and/or widths should be practiced to avoid	
	misleading reporting of Exploration Results.	
Other	Other exploration data, if meaningful and material, should	Metallurgical testwork for the Awak Mass Gold Project by Minnovo
Substantive	be reported including (but not limited to): geological	(2017) has indicated improved gold recoveries of 92%-98% based on
	observations; geophysical survey results; geochemical	

Criteria	JORC Code explanation	Commentary
Exploration Data	survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	 Whole of Ore ("WOL") leaching on samples composited from onsite drill core. Full details on the WOL testwork been reported in the following ASX release; Awak Mas Gold DFS Optimisation – Metallurgical Breakthrough, dated 10 October 2017.
Further Work	The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale stepout drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	The Awak Mas Gold Project is an active growth project with additional areas identified for infill (25m x 25m) and extensional drilling, including targets at depth and outside of the current mineral resource limits. Drilling has focussed on upgrading the majority of the current Inferred Mineral Resources to the Indicated category, as well as growth of the Mineral Resource outside of the currently delineated mineralised domains. Planned future drilling will continue to target extensions to the east, and at depth at Rante, in areas where the trend of mineralisation is open and untested by historical drilling. The main objective is growth of the Mineral Resource outside of the currently delineated mineralised domains.

Criteria	JORC Code explanation	Commentary
		All drill collars from the current drill program will be surveyed using
		DGPS or total station EDM equipment.
		Further detailed core re-logging and development of a structural model
		will help progress the current geological model and enable its use as a
		drill targeting tool both for resource delineation and definition of new
		exploration targets within the CoW.
		An updated Awak Mas mineral resource estimate will be completed
		once all assay, survey and logging data from the additional
		Metallurgical testwork holes and Phase 2 exploration drill program are
		finalised, the geological interpretation refined and an updated
		geological model is available.

APPENDIX 1 SIGNIFICANT ASSAY RESULTS FROM NUSANTARA DRILLING AT MAPACING DOMAIN UNDERTAKEN DURING NOVEMBER 2020 TO JANUARY 2021

Reporting Criteria: Intercepts reported are intervals of Au >0.1 g/t with intervals of <0.1 g/t Au up to 3m included. Downhole and estimated true thickness reported to one decimal place. Au reported to two significant figures. Samples are generally from diamond core drilling which is HQ diameter. Core is photographed and logged by the geology team before sample. Whole core samples are prepared for assay. Each assay batch is submitted with duplicates and standards to monitor laboratory quality. Samples analysed for gold only using the fire assay (FAA40) technique.

Hole ID	Hole	Easting	Northing	Elevation	Total	Azimuth	Dip	From	To (m)	Interval	Au	Ag	Remarks
	Туре	UTM Grid	UTM Grid	(m)	Depth (m)	(Mag)		(m)		(m)	g/t	g/t	
		(m)	(m)										
					MAI	PACING DO	DMAIN						
MGD001	DDH	179,085	9,627,424	1,145	56	59	-79	6.0	13.0	7.0	0.42	NA	
								21.0	23.0	2.0	1.29	NA	
								27.0	45.0	18.0	1.09	NA	
							Including	27.0	32.0	5.0	2.23	NA	
MGD002	DDH	179,067	9,627,454	1,136	49	270	-69	26.0	27.0	1.0	0.53	NA	
								32.0	48.0	16.0	1.45	NA	
							Including	35.0	36.0	1.0	3.77	NA	
							Including	38.0	42.0	4.0	3.33	NA	
MGD003	DDH	179,105	9,627,404	1,148	40	270	-74	14.0	20.0	6.0	0.57	NA	

Nusantara Resources Limited

													<u> </u>
								29.0	38.0	9.0	1.28	NA	
							Including	30.0	31.0	1.0	5.30	NA	
MGD004	DDH	179,067	9,627,454	1,136	49	90	-83	10.0	16.0	6.0	1.01	NA	
								24.0	48.0	24.0	1.83	NA	
							Including	27.0	37.0	10.0	3.69	NA	
MGD005	DDH	179,105	9,627,405	1,148	43	90	-65	16.0	25.0	9.0	0.16	NA	
								29.0	33.0	4.0	1.41	NA	
							Including	31.0	32.0	1.0	3.20	NA	
								37.0	39.0	2.0	0.54	NA	
MGD007	DDH	179,084	9,627,416	1,145	50	270	-50	11.0	22.0	11.0	1.07	NA	
								30.0	31.0	1.0	2.24	NA	
MGD007								41.0	49.0	8.0	0.70	NA	
MGD008	DDH	179,085	9,627,416	1,145	48	92	-85	7.0	11.0	4.0	0.50	NA	
								15.0	35.0	20.0	2.21	NA	
							Including	25.0	29.0	4.0	8.81	NA	
							Including	26.0	27.0	1.0	27.00	NA	
MGD009	DDH	179,040	9,627,468	1,136	56	90	-67	21.0	22.0	1.0	0.82	NA	

													<u>, </u>
								26.0	54.0	28.0	1.05	NA	
							Including	32.0	35.0	3.0	3.48	NA	
							Including	38.0	40.0	2.0	3.51	NA	
MGD010	DDH	179,115	9,627,636	1,086	20	270	-55	0.0	20.0	20.0	1.06	NA	
							Including	7.0	11.0	4.0	2.30	NA	
MGD011	DDH	179,067	9,627,445	1,141	50	270	-78	18.0	20.0	2.0	0.20	NA	
								26.0	32.0	6.0	0.47	NA	
								36.0	49.0	13.0	0.33	NA	
MGD012	DDH	179,113	9,627,415	1,145	51	270	-65	13.0	17.0	4.0	0.92	NA	
								21.0	25.0	4.0	10.00	NA	
							Including	21.0	23.0	2.0	19.92	NA	
								30.0	34.0	4.0	3.73	NA	
MGD013	DDH	179,143	9,627,495	1,104	40	270	-60	0.0	2.0	2.0	0.10	NA	
								9.0	19.0	10.0	1.27	NA	
							Including	10.0	11.0	1.0	2.76	NA	

								26.0	34.0	8.0	2.10	NA	
							Including	27.0	29.0	2.0	5.90	NA	
								38.0	39.0	1.0	0.23	NA	
MGD014	DDH	179,114	9,627,415	1,145	50	90	-65	14.0	23.0	9.0	0.55	NA	
							Including	19.0	20.0	1.0	2.71	NA	
MGD014								29.0	31.0	2.0	0.60	NA	
								36.0	37.0	1.0	0.13	NA	
MGD015	DDH	179,067	9,627,444	1,141	56	90	-78	24.0	49.0	25.0	1.48	NA	
							Including	26.0	27.0	1.0	8.15	NA	
							Including	32.0	33.0	1.0	3.79	NA	
MGD016	DDH	179,144	9,627,495	1,104	38	90	-68	0.0	2.0	2.0	0.16	NA	
								9.0	30.0	21.0	1.18	NA	
							Including	16.0	18.0	2.0	5.67	NA	
								32.0	37.0	5.0	0.86	NA	
							Including	36.0	37.0	1.0	2.93	NA	
MGD017	DDH	179,079	9,627,404	1,142	28	270.9	-66.6	12.0	27.0	15.0	1.04	NA	

							Including	25.0	27.0	2.0	5.91	NA	
MGD018	DDH	179,067	9,627,445	1,141	59	90	-57	17.0	19.0	2.0	4.05	NA	
							Including	18.0	19.0	1.0	7.90	NA	
								27.0	58.0	31.0	1.95	NA	
							Including	29.0	46.0	17.0	3.33	NA	
MGD019	DDH	179,080	9,627,404	1,142	33	90	-75	4.0	5.0	1.0	0.22	NA	
								10.0	18.0	8.0	1.05	NA	
							Including	13.0	16.0	3.0	2.10	NA	
								24.0	28.0	4.0	0.52	NA	
MGD020	DDH	179,033	9,627,493	1,133	43	270	-72	24.0	29.0	5.0	0.12	NA	
								34.0	43.0	9.0	0.47	NA	
							Including	42.0	43.0	1.0	1.65	NA	
MGD021	DDH	178,993	9,627,506	1,125	40	90	-62	26.0	39.0	13.0	0.20	NA	
MGD022	DDH	179,107	9,627,572	1,098	38	270	-56	13.0	38.0	25.0	0.84	NA	

							Including	16.0	20.0	4.0	2.70	NA	
MGD022							Including	26.0	28.0	2.0	2.40	NA	
MGD023	DDH	179,035	9,627,544	1,126	48	270	-47	28.0	35.0	7.0	0.63	NA	
							Including	28.0	29.0	1.0	3.70	NA	
								40.0	45.0	5.0	1.33	NA	
MGD024	DDH	179,082	9,627,543	1,112	33	300	-71	0.0	31.0	31.0	1.90	NA	
							Including	2.0	5.0	3.0	5.40	NA	
							Including	10.0	14.0	4.0	3.70	NA	
MGD025	DDH	179,115	9,627,650	1,083	25	270	-58	0.0	6.0	6.0	0.53	NA	
								13.0	21.0	8.0	0.94	NA	
							Including	16.0	19.0	3.0	2.00	NA	
MGD026	DDH	179,115	9,627,597	1,089	25	270	-60	1.0	7.0	6.0	0.16	NA	
								17.0	20.0	3.0	0.90	NA	
MGD027	DDH	179,176	9,627,495	1,099	28	270	-77	0.0	26.0	26.0	1.41	NA	
							Including	0.0	7.0	7.0	3.40	NA	
							Including	9.0	12.0	3.0	2.70	NA	

MGD028	DDH	179,035	9,627,545	1,126	43	90	-69	27.0	39.0	12.0	1.66	NA	
							Including	30.0	33.0	3.0	4.60	NA	
MGD029	DDH	179,145	9,627,521	1,099	35	270	-45	11.0	26.0	15.0	0.77	NA	
							Including	17.0	19.0	2.0	1.90	NA	
								34.0	35.0	1.0	0.57	NA	
MGD030	DDH	179,127	9,627,442	1,129	37	270	-63	0.0	15.0	15.0	3.00	NA	
							Including	1.0	3.0	2.0	7.10	NA	
							Including	6.0	10.0	4.0	4.70	NA	
MGD031	DDH	179,146	9,627,521	1,099	41	90	-75	2.0	28.0	26.0	1.76	NA	
							Including	10.0	14.0	4.0	5.00	NA	
							Including	20.0	22.0	2.0	3.70	NA	
MGD031								35.0	41.0	6.0	1.30	NA	
MGD032	DDH	179,181	9,627,546	1,085	46	270	-62	2.0	41.0	39.0	1.09	NA	
							Including	6.0	7.0	1.0	3.00	NA	
							Including	12.0	17.0	5.0	3.40	NA	

MGD033	DDH	179,128	9,627,442	1,129	34	90	-52	0.0	16.0	16.0	1.88	NA	
							Including	12.0	15.0	3.0	3.14	NA	
								25.0	34.0	9.0	1.25	NA	
							Including	25.0	27.0	2.0	3.40	NA	
MGD034	DDH	179,197	9,627,521	1,092	50	270	-45	0.0	2.0	2.0	0.16	NA	
								11.0	42.0	31.0	1.89	NA	
							Including	15.0	22.0	7.0	3.90	NA	
							Including	33.0	40.0	7.0	2.90	NA	
MGD035	DDH	179,136	9,627,548	1,096	36	270	-50	0.0	33.0	33.0	1.13	NA	
							Including	8.0	10.0	2.0	2.60	NA	
							Including	18.0	21.0	3.0	3.20	NA	
							Including	24.0	25.0	1.0	2.95	NA	
							Including	32.0	33.0	1.0	3.72	NA	
MGD036	DDH	179,144	9,627,572	1,086	35	260	-50	0.0	30.0	30.0	0.78	NA	
							Including	7.0	11.0	4.0	2.20	NA	

													_ _
MGD037	DDH	179,159	9,627,571	1,086	44	270	-68	1.0	2.0	1.0	0.10	NA	
								13.0	41.0	28.0	0.73	NA	
							Including	13.0	15.0	2.0	1.80	NA	
							Including	31.0	32.0	1.0	2.14	NA	
							Including	34.0	35.0	1.0	2.28	NA	
							Including	39.0	40.0	1.0	2.41	NA	
MGD038	DDH	179,099	9,627,456	1,124	36	104	-72	4.0	20.0	16.0	1.47	NA	
MGD038							Including	17.0	19.0	2.0	3.40	NA	
								28.0	36.0	8.0	1.07	NA	
							Including	31.0	32.0	1.0	3.42	NA	
MGD039	DDH	179,140	9,627,596	1,082	27	270	-65	0.0	1.0	1.0	0.10	NA	
								3.0	4.0	1.0	0.17	NA	
								8.0	11.0	3.0	0.73	NA	
								25.0	27.0	2.0	0.22	NA	
MGD040	DDH	179,142	9,627,623	1,084	25	270	-60	0.0	12.0	12.0	3.42	NA	

							Including	3.0	7.0	4.0	9.00	NA	
								17.0	23.0	6.0	6.37	NA	
							Including	21.0	23.0	2.0	17.80	NA	
MGD041	DDH	179,132	9,627,461	1,120	42	302	-66	0.0	18.0	18.0	2.91	NA	
							Including	3.0	6.0	3.0	5.04	NA	
							Including	14.0	17.0	3.0	7.00	NA	
								35.0	42.0	7.0	0.41	NA	
MGD042	DDH	179,137	9,627,611	1,083	28	270	-48	0.0	3.0	3.0	0.36	NA	
								9.0	19.0	10.0	0.60	NA	
							Including	16.0	17.0	1.0	2.99	NA	
MGD043	DDH	179,136	9,627,612	1,083	26	90	-77	0.0	5.0	5.0	0.55	NA	
							Including	2.0	3.0	1.0	2.01	NA	
								11.0	18.0	7.0	0.42	NA	
							Including	12.0	13.0	1.0	1.49	NA	
MGD044	DDH	179,194	9,627,647	1,064	47	90	-65	0.0	14.0	14.0	0.96	NA	

							Including	3.0	5.0	2.0	2.60	NA	
							Including	6.0	7.0	1.0	3.92	NA	
MGD044								18.0	47.0	29.0	1.21	NA	
							Including	18.0	19.0	1.0	2.39	NA	
							Including	27.0	29.0	2.0	4.27	NA	
							Including	35.0	39.0	4.0	3.10	NA	
MGD045	DDH	179,100	9,627,457	1,125	39	236	-84	4.0	24.0	20.0	2.42	NA	
							Including	9.0	11.0	2.0	4.24	NA	
							Including	14.0	16.0	2.0	4.65	NA	
								28.0	29.0	1.0	0.35	NA	
								34.0	35.0	1.0	1.11	NA	
MGD046	DDH	179,160	9,627,439	1,120	18	270	-71	1.0	18.0	17.0	1.33	NA	
							Including	13.0	16.0	3.0	3.64	NA	
MGD047	DDH	179,119	9,627,624	1,086	21	270	-61	0.0	12.0	12.0	2.48	NA	
							Including	1.0	3.0	2.0	5.40	NA	
								17.0	18.0	1.0	0.19	NA	

MGD048	DDH	179,118	9,627,624	1,086	23	90	-69	0.0	19.0	19.0	1.32	NA	
							Including	1.0	7.0	6.0	3.30	NA	
MGD049	DDH	179,157	9,627,454	1,119	25	270	-65	6.0	8.0	2.0	1.99	NA	
								14.0	20.0	6.0	0.46	NA	
MGD050	DDH	179,188	9,627,571	1,078	43	270	-70	14.0	17.0	3.0	2.36	NA	
							Including	15.0	16.0	1.0	6.33	NA	
								24.0	36.0	12.0	0.70	NA	
								40.0	43.0	3.0	0.20	NA	
MGD051	DDH	179,134	9,627,647	1,083	25	286	-60	0.0	25.0	25.0	1.25	NA	
							Including	15.0	16.0	1.0	2.71	NA	
							Including	20.0	22.0	2.0	3.80	NA	
MGD052	DDH	179,115	9,627,455	1,124	30	90	-71	0.0	18.0	18.0	1.94	NA	
							Including	7.0	10.0	3.0	5.20	NA	
							Including	17.0	18.0	1.0	3.94	NA	

MGD053	DDH	179,092	9,627,472	1,117	40	270	-69	0.0	1.0	1.0	0.35	NA	
								14.0	39.0	25.0	1.61	NA	
							Including	24.0	28.0	4.0	3.30	NA	
MGD054	DDH	179,106	9,627,612	1,091	28	270	-45	9.0	14.0	5.0	1.75	NA	
								18.0	21.0	3.0	0.17	NA	
MGD055	DDH	179,179	9,627,651	1,066	35	270	-70	7.0	35.0	28.0	0.70	NA	
							Including	7.0	12.0	5.0	2.50	NA	
MGD056	DDH	179,189	9,627,611	1,068	32	270	-70	0.0	25.0	25.0	0.88	NA	
							Including	5.0	10.0	5.0	3.00	NA	
MGD057	DDH	179,208	9,627,623	1,063	27	266	-66	0.0	3.0	3.0	0.14	NA	
								8.0	27.0	19.0	1.27	NA	
							Including	12.0	13.0	1.0	3.35	NA	
MGD058	DDH	179,091	9,627,471	1,119	45	267	-47	17.0	29.0	12.0	1.38	NA	
								39.0	45.0	6.0	0.67	NA	
							Including	41.0	42.0	1.0	1.95	NA	
MGD059	DDH	179,216	9,627,635	1,060	35	277	-56	2.0	35.0	33.0	1.85	NA	

							Including	5.0	7.0	2.0	4.53	NA	
							Including	15.0	20.0	5.0	4.74	NA	
MGD060	DDH	179,140	9,627,637	1,082	29	270	-62	0.0	20.0	20.0	0.92	NA	
							Including	3.0	4.0	1.0	3.48	NA	
							Including	5.0	7.0	2.0	2.40	NA	
MGD061	DDH	179,063	9,627,492	1,121	35	270	-54	17.0	35.0	18.0	3.22	NA	
							Including	31.0	34.0	3.0	11.69	NA	
MGD062	DDH	179,123	9,627,660	1,080	35	76	-55	0.0	35.0	35.0	0.93	NA	
							Including	25.0	27.0	2.0	2.24	NA	
							Including	32.0	35.0	3.0	3.35	NA	
MGD063	DDH	179,161	9,627,624	1,077	25	270	-66	0.0	21.0	21.0	0.63	NA	
							Including	5.0	9.0	4.0	1.60	NA	
MGD064	DDH	179,123	9,627,660	1,080	30	284	-46	0.0	12.0	12.0	1.74	NA	
							Including	1.0	4.0	3.0	3.88	NA	
								19.0	30.0	11.0	0.90	NA	
							Including	23.0	25.0	2.0	1.94	NA	

Nusantara Resources Limited

-													- _
MGD065	DDH	179,196	9,627,635	1,066	31	270	-55	7.0	31.0	24.0	0.83	NA	
							Including	8.0	11.0	3.0	2.68	NA	
MGD066	DDH	179,123	9,627,660	1,080	31	360	-80	0.0	14.0	14.0	1.01	NA	
							Including	0.0	3.0	3.0	2.20	NA	
								24.0	31.0	7.0	0.68	NA	
							Including	24.0	27.0	3.0	1.40	NA	
MGD067	DDH	179,066	9,627,492	1,119	36	90	-57	25.0	34.0	9.0	1.48	NA	
							Including	26.0	28.0	2.0	4.87	NA	
MGD068	DDH	179,176	9,627,598	1,073	38	270	-67	10.0	21.0	11.0	0.85	NA	
							Including	11.0	13.0	2.0	2.35	NA	
								25.0	29.0	4.0	0.52	NA	
							Including	26.0	27.0	1.0	1.08	NA	
MGD069	DDH	179,100	9,627,472	1,118	37	92	-84	0.0	22.0	22.0	0.98	NA	
							Including	2.0	3.0	1.0	5.33	NA	
								33.0	34.0	1.0	0.30	NA	

MGD070	DDH	179,058	9,627,520	1,123	39	90	-56	15.0	39.0	24.0	1.18	NA	
							Including	23.0	27.0	4.0	2.86	NA	
MGD070							Including	31.0	33.0	2.0	3.06	NA	
MGD071	DDH	179,211	9,627,667	1,052	35	270	-45	17.0	23.0	6.0	0.73	NA	
							Including	20.0	22.0	2.0	1.47	NA	
								28.0	35.0	7.0	0.33	NA	
							Including	28.0	29.0	1.0	1.03	NA	
MGD072	DDH	179,193	9,627,671	1,052	34	262	-42	8.0	9.0	1.0	2.01	NA	
								15.0	27.0	12.0	0.33	NA	
								32.0	34.0	2.0	0.13	NA	
MGD073	DDH	179,193	9,627,670	1,051	37	235	-75	5.0	12.0	7.0	0.32	NA	
								19.0	22.0	3.0	1.23	NA	
								29.0	32.0	3.0	0.12	NA	
MGD074	DDH	179,057	9,627,518	1,125	42	270	-72	19.0	41.0	22.0	0.78	NA	
							Including	19.0	22.0	3.0	2.41	NA	
MGD075	DDH	179,153	9,627,641	1,077	35	310	-45	5.0	24.0	19.0	1.42	NA	

							Including	16.0	22.0	6.0	3.03	NA	
MGD076	DDH	179,112	9,627,683	1,063	31	270	-80	0.0	18.0	18.0	0.47	NA	
							Including	0.0	2.0	2.0	2.83	NA	
								28.0	29.0	1.0	0.21	NA	
MGD077	DDH	179,115	9,627,683	1,063	40	90	-40	0.0	19.0	19.0	3.76	NA	
							Including	1.0	2.0	1.0	52.0	NA	
								23.0	25.0	2.0	0.63	NA	
MGD078	DDH	179,168	9,627,672	1,052	25	246	-45	7.0	15.0	8.0	1.58	NA	
							Including	7.0	10.0	3.0	3.65	NA	
								21.0	25.0	4.0	0.79	NA	