HUB INFILL RC RETURNS EXCEPTIONAL GRADES

SUMMARY

19th February 2021

Late 2020 infill RC drilling at Hub has returned outstanding grades and widths, including:
9m @ 20.1 g/t Au from 39m, *incl.* 5m @ 34.3 g/t Au,
17m @ 10.9 g/t Au from 89m, *incl.* 4m @ 27.9 g/t Au and
6m @ 14.9 g/t Au from 48m, *incl.* 2m @ 38.8 g/t Au.

- The 25m x 25m spaced drilling has confirmed the continuity of the shallow high-grades.
- Infill diamond drilling is underway, targeting mineralisation down to 150m below surface.

NTM Gold Ltd (ASX: NTM) ("NTM" or "the Company") is pleased to provide a drilling update for the Hub and Gully areas, within the Redcliffe Gold Project located near Leonora, Western Australia.

Following the announcement of the proposed NTM and DCN Merger (ASX 16 Nov 2020), the final 2020 RC program concentrated on shallow infill drilling at Hub. The program was designed to improve mineralisation definition ahead of a resource update and development studies.

The drilling returned excellent grades and widths, confirming the continuity and dimensions, highlighting the quality of the deposit, particularly in the oxide and transition zones. Better results include:

9m @ 20.1 g/t Au from 39m in 20RRC087,	10m @ 9.1 g/t Au from 17m in 20RRC110,
17m @ 10.9 g/t Au from 89m in 20RRC094,	6m @ 14.9 g/t Au from 48m in 20RRC093,
15m @ 6.2 g/t Au from 76m in 20RRC103,	6m @ 14.2 g/t Au from 70m in 20RRC137,
15m @ 5.6 g/t Au from 53m in 20RRC099,	3m @ 21.2 g/t Au from 45m in 20RRC131.

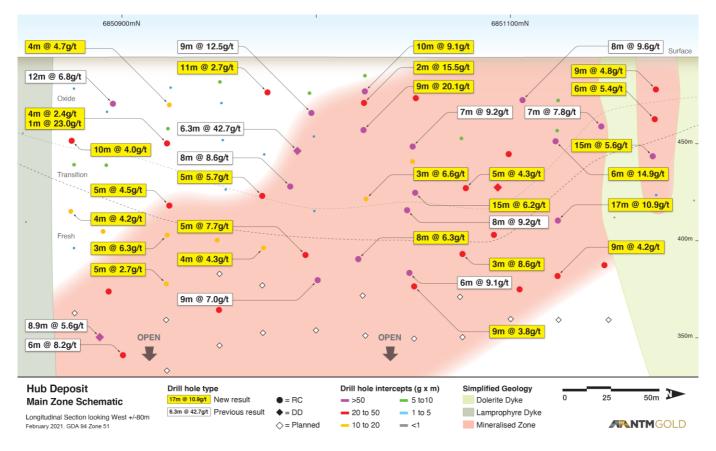
The program at Hub involved 70 RC holes for 6,558m, drilled on a 25m x 25m grid. Hole depths ranged from 22m to 155m. A diamond program is currently underway aiming to complete the pattern down to 150m below surface.

An additional 12 holes for 2,617m were drilled at Gully and Bindy with some encouraging results that require additional follow up. Better results include:

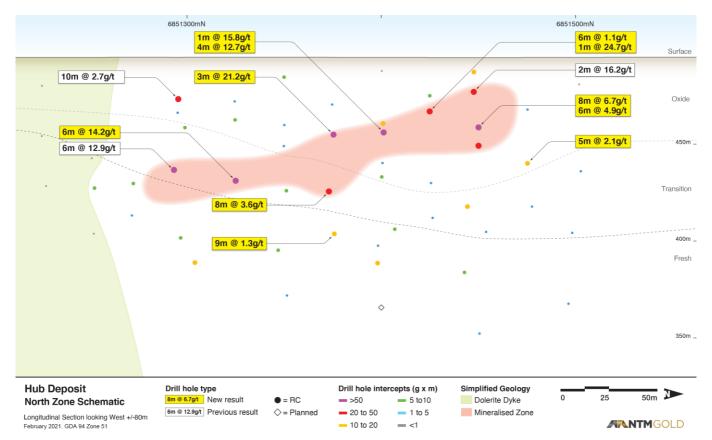
4m @ 4.2 g/t Au from 90m in 20RRC072, 2m @ 2.2 g/t Au from 194m in 20RRC077.

NTM Gold Managing Director Andrew Muir commented:

"This RC program has continued to affirm the quality of Hub, returning outstanding grades and widths and validating the continuity of the mineralisation near surface. The current diamond drilling will provide further insights down to 150m ahead of development assessments.


Whilst the current drilling is targeting near surface mineralisation, the deposit remains open at c.500m depth and has a strike of at least 1.2km. The grade and size of Hub make the deposit a key value driver for the merged group, subject to shareholder approval, capitalising on the synergies of the combined asset base."

Hub Long Section



Hub Deposit	Drill hole type	Drill hole intercepts (g x m)	Simplified Geology				
Long Section Schematic	• = RC	— >50 — 5 to10	Dolerite Dyke	0	100	200m	
Longitudinal Section looking West +/-20m	♦ = DD	= 20 to 50 = 1 to 5	Lamprophyre Dyke				
February 2021. GDA 94 Zone 51	\diamondsuit = Planned	— 10 to 20 — <1	Mineralised Zone			NTMGOLD	

Main Zone Long Section

North Zone Long Section

Table 1 – RC Drill Results Summary – 1m Samples:

PROJECT	HOLE	FROM	то	RESULT +1.0 g/t Au
Hub	20RRC060	19	20	1m @ 1.2
	20RRC061	27	31	4m @ 4.7
	incl	30	31	1m @ 11.9
	20RRC061	44	48	4m @ 2.4
	20RRC061	53	54	1m @ 23.0
Bindy	20RRC063	241	242	1m @ 2.2
	20RRC063	276	277	1m @ 1.6
	20RRC065D	113	115	2m @ 1.3
	20RRC065D	131	132	1m @ 2.7
	20RRC065D	316	317	1m @ 1.5
	20RRC065D	381	382	1m @ 1.6
Hub	20RRC068	11	12	1m @ 1.3
	20RRC068	17	28	11m @ 2.7
	20RRC068	36	37	1m @ 3.6
	20RRC069	19	22	3m @ 1.1
	20RRC070	48	58	10m @ 4.0
	incl	53	54	1m @ 11.6
	20RRC071	61	63	2m @ 1.2
	20RRC071	66	67	1m @ 2.2
Gully Area	20RRC072	90	94	4m @ 4.2

PROJECT	HOLE	FROM	то	RESULT +1.0 g/t Au
	20RRC073	115	116	1m @ 2.4
	20RRC074	142	143	1m @ 1.0
	20RRC074	165	166	1m @ 3.8
	20RRC074	174	175	1m @ 1.0
	20RRC074	210	211	1m @ 1.8
	20RRC075	52	53	1m @ 1.0
	20RRC076	224	225	1m @ 1.8
	20RRC077	194	196	2m @ 2.2
	20RRC079	75	76	1m @ 1.2
	20RRC079	89	90	1m @ 1.1
	20RRC080	17	18	1m @ 2.2
Hub	20RRC083	114	122	8m @ 6.3
	incl	117	118	1m @ 13.5
	20RRC084	110	114	4m @ 4.2
	incl	113	114	1m @ 11.1
	20RRC085	58	59	1m @ 1.2
	20RRC086	79	84	5m @ 5.7
	incl	82	83	1m @ 9.6
	20RRC087	24	26	2m @ 15.5
	incl	25	26	1m @ 25.5
	20RRC087	39	48	9m @ 20.1
	incl	39	44	5m @ 34.3
	20RRC088	70	71	1m @ 1.5
	20RRC088	81	84	3m @ 6.6
	incl	82	83	1m @ 10.7
	20RRC089	85	90	5m @ 4.5
	incl	88	89	1m @ 10.6
	20RRC090	105	108	3m @ 6.3
	incl	105	106	1m @ 11.4
	20RRC091	115	120	5m @ 7.7
	incl	116	117	1m @ 14.3
	20RRC092	24	28	4m @ 2.1
	20RRC092	33	34	1m @ 1.4
	20RRC092	43	45	2m @ 3.2
	20RRC093	48	54	6m @ 14.9
	incl	50	52	2m @ 38.8
	20RRC093	58	62	4m @ 1.3
	20RRC094	89	106	17m @ 10.9
	incl	93	97	4m @ 27.9
	20RRC094	114	115	1m @ 1.4
	20RRC095	86	87	1m @ 1.8
	20RRC095	91	92	1m @ 2.9
	20RRC096	134	139	5m @ 2.7
	20RRC097	15	24	9m @ 4.8
	incl	22	23	1m @ 14.8
	20RRC098	35	41	6m @ 5.4
	incl	37	38	1m @ 20.2
	20RRC099	53	68	15m @ 5.6

PROJECT	HOLE	FROM	ТО	RESULT +1.0 g/t Au
	incl	58	60	2m @ 12.1
	20RRC100	81	82	1m @ 1.8
	20RRC103	24	25	1m @ 1.1
	20RRC103	67	68	1m @ 2.9
	20RRC103	76	91	15m @ 6.2
	incl	82	85	3m @ 12.9
	20RRC104	127	136	9m @ 3.8
	20RRC105	48	49	1m @ 5.1
	20RRC105	52	53	1m @ 1.3
	20RRC105	58	59	1m @ 4.9
	20RRC106	43	44	1m @ 1.2
	20RRC106	75	80	5m @ 4.3
	incl	78	79	1m @ 10.1
	20RRC108	115	118	3m @ 8.6
	incl	117	118	1m @ 17.3
	20RRC110	10	14	4m @ 1.4
	20RRC110	17	27	10m @ 9.1
	incl	17	18	1m @ 34.9
	20RRC111	114	116	2m @ 2.2
	20RRC111	125	134	9m @ 4.2
	incl	129	130	1m @ 12.1
	20RRC118	100	104	4m @ 1.6
	20RRC120	20	21	1m @ 1.2
	20RRC120	24	31	7m @ 1.0
	20RRC120	39	40	1m @ 15.8
	20RRC120	43	47	4m @ 12.7
	incl	43	44	1m @ 40.5
	20RRC121	94	95	1m @ 1.8
	20RRC122	31	32	1m @ 2.3
	20RRC123	56	57	1m @ 3.1
	20RRC123	61	66	5m @ 2.1
	20RRC124	38	46	8m @ 6.7
	incl	42	43	1m @ 39.5
	20RRC124	50	56	6m @ 4.9
	incl	51	52	1m @ 18.3
	20RRC125	103	104	1m @ 1.7
	20RRC126	20	26	6m @ 1.1
	20RRC126	32	33	1m @ 24.7
	20RRC126	48	50	2m @ 1.8
	20RRC127	81	82	1m @ 1.1
	20RRC128	100	101	1m @ 1.3
	20RRC129	100	109	9m @ 1.3
	20RRC130	28	29	1m @ 1.6
	20RRC130	33	34	1m @ 1.2
	20RRC131	41	42	1m @ 4.0
	20RRC131	45	48	3m @ 21.2
	incl	45	46	1m @ 57.8
	20RRC132	76	84	8m @ 3.6
5	201110102	10		0.0

PROJECT	HOLE	FROM	то	RESULT +1.0 g/t Au
	20RRC133	10	14	4m @ 2.1
	20RRC133	19	20	1m @ 5.3
	20RRC133	23	24	1m @ 2.7
	20RRC134	113	116	3m @ 2.6
	20RRC135	25	28	3m @ 1.2
	20RRC136	37	38	1m @ 7.0
	20RRC137	70	76	6m @ 14.2
	incl	73	75	2m @ 35.6
	20RRC138	41	43	2m @ 3.9
	20RRC139	73	76	3m @ 2.5
	20RRC140	94	95	1m @ 2.8
	20RRC141	106	108	2m @ 2.6

Mineralisation calculated at +1.0 g/t, max 2m internal continuous dilution. NSR = No significant result. Downhole widths quoted, further drilling is required to confirm true width.

Table 2 – Drill Data Summary

AREA	HOLE ID	RC EOH (m)	EAST	NORTH	RL	AZ	DIP
Hub	20RRC060	40	359400	6850925	495	270	-55
	20RRC061	60	359416	6850925	495	270	-55
Bindy	20RRC062	250	358020	6843780	500	270	-60
	20RRC063	300	358070	6843700	500	270	-60
	20RRC064D	245	358128	6843565	510	270	-60
	20RRC065D	382	358100	6843410	510	270	-60
	20RRC066D	184	358060	6843330	509	270	-57
Hub	20RRC067	70	359417	6850950	495	270	-56
	20RRC068	40	359404	6850975	495	270	-55
	20RRC069	30	359400	6850875	495	270	-55
	20RRC070	70	359420	6850875	495	270	-55
	20RRC071	100	359350	6850875	495	270	-60
	20RRC072	125	359330	6850875	495	270	-60
	20RRC073	155	359310	6850875	495	270	-60
Gully Area	20RRC074	232	358131	6855851	523	250	-60
	20RRC075	90	358090	6855683	527	67	-55
	20RRC076	270	358085	6855997	525	67	-60
	20RRC077	250	358096	6855894	525	67	-55
	20RRC078	200	358336	6855917	521	67	-57
	20RRC079	104	358467	6855643	521	67	-57
	20RRC080	110	358296	6855612	523	67	-60
Hub	20RRC081	152	359308	6848898	495	270	-60
	20RRC082	134	359420	6849873	495	270	-60
	20RRC083	140	359315	6851025	495	90	-60
	20RRC084	126	359325	6850975	495	90	-60
	20RRC085	72	359360	6850975	495	90	-60
	20RRC086	90	359345	6850975	495	90	-60
	20RRC087	84	359355	6851025	495	90	-60
	20RRC088	120	359335	6851025	495	90	-60
	20RRC089	102	359345	6850925	495	90	-60

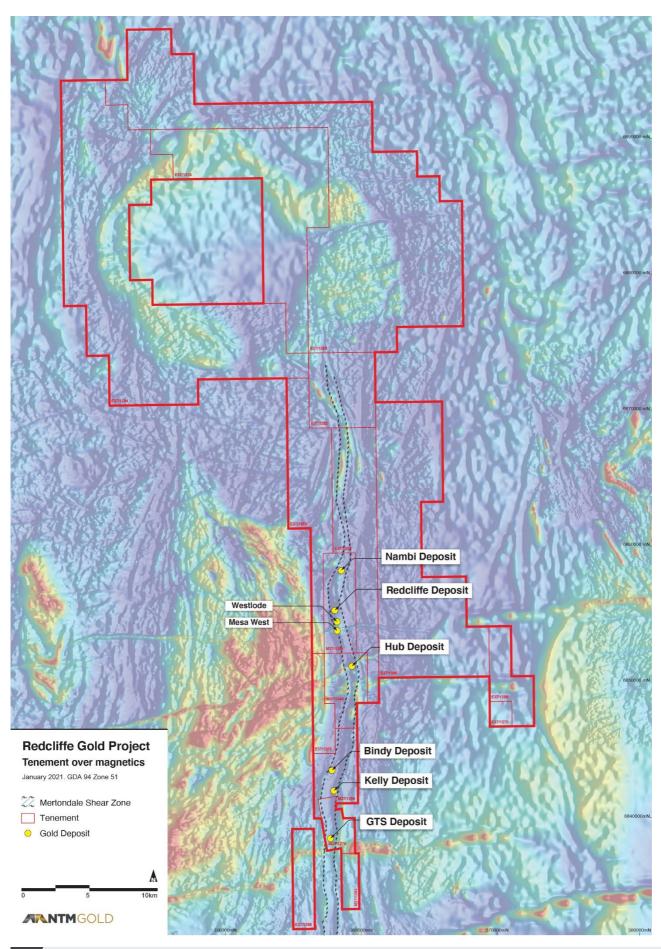
AREA	HOLE ID	RC EOH (m)	EAST	NORTH	RL	AZ	DIP
	20RRC090	132	359325	6850925	495	90	-60
	20RRC091	138	359317	6851000	495	90	-60
	20RRC092	54	359350	6851125	495	90	-60
	20RRC093	78	359335	6851125	495	90	-60
	20RRC094	126	359320	6851125	495	90	-60
	20RRC095	108	359335	6851000	495	90	-60
	20RRC096	148	359303	6850925	496	90	-60
	20RRC097	52	359350	6851175	495	90	-60
	20RRC098	76	359335	6851175	495	90	-60
	20RRC099	100	359320	6851175	495	90	-60
	20RRC100	130	359305	6851175	495	90	-60
	20RRC101	82	359390	6851150	495	270	-60
	20RRC102	124	359410	6851150	495	270	-60
	20RRC103	94	359413	6851050	495	270	-55
	20RRC104	142	359420	6851050	495	270	-60
	20RRC105	88	359350	6851075	495	90	-60
	20RRC106	100	359335	6851075	495	90	-60
	20RRC107	22	359315	6851075	495	90	-60
	20RRC108	136	359313	6851075	495	90	-60
	20RRC109	34	359380	6851075	495	270	-60
	20RRC110	40	359390	6851025	495	270	-60
	20RRC111	142	359305	6851125	495	90	-60
	20RRC112	52	359315	6851225	495	90	-60
	20RRC113	78	359300	6851225	495	90	-60
	20RRC114	124	359285	6851225	495	90	-60
	20RRC115	70	359299	6851250	495	90	-60
	20RRC116	130	359275	6851250	495	90	-60
	20RRC117	124	359378	6851400	495	270	-60
	20RRC118	112	359345	6851400	495	270	-60
	20RRC119	40	359305	6851400	495	270	-60
	20RRC120	82	359320	6851400	495	270	-60
	20RRC121	124	359340	6851475	495	270	-55
	20RRC122	94	359300	6851475	495	270	-60
	20RRC123	64	359315	6851475	495	270	-60
	20RRC124	82	359315	6851450	495	270	-60
	20RRC125	130	359345	6851450	495	270	-60
	20RRC126	64	359315	6851425	495	270	-60
	20RRC127	94	359342	6851425	495	270	-51
	20RRC128	130	359355	6851425	495	270	-55
	20RRC129	130	359360	6851375	495	270	-60
	20RRC130	40	359295	6851375	495	90	-60
	20RRC131	70	359280	6851375	495	90	-60
	20RRC132	100	359265	6851375	495	90	-60
	20RRC133	52	359303	6851350	495	90	-60
	20RRC134	124	359257	6851350	495	90	-60
	20RRC135	40	359305	6851325	495	90	-60
	20RRC136	70	359290	6851325	495	90	-60
	20RRC137	112	359275	6851325	495	90	-60

MANTMGOLD

AREA	HOLE ID	RC EOH (m)	EAST	NORTH	RL	AZ	DIP
	20RRC138	52	359305	6851300	495	90	-60
	20RRC139	82	359290	6851275	495	90	-60
	20RRC140	124	359275	6851275	495	90	-60
	20RRC141	112	359270	6851300	495	90	-60

Authorised by and for further enquiries:

Andrew Muir


Managing Director

4/20 Altona St, West Perth, WA, 6005

Telephone: (08) 9481 6666

Email: amuir@ntmgold.com.au

Redcliffe Project and Selected Prospects over Aerial Magnetics

About NTM

NTM Gold Ltd (ASX: NTM) is an emerging Perth-based explorer focused on the Leonora region, in the heart of Western Australia's Eastern Goldfields. The Leonora Laverton Terrane has produced more than 50 million ounces of gold historically and is considered to be one of Australia's most prospective provinces. NTM owns 100% of the Redcliffe Gold Project, a major developing project with established resources close to existing infrastructure and mines (Dacian: Mt Morgan's, Sons of Gwalia: St Barbara Ltd, Thunderbox: Saracen Mineral Holdings Ltd, and Darlot: Red 5 Limited).

The Redcliffe Gold Project is a +720km² tenement holding covering the Mertondale Shear Zone over some 40km length. The Mertondale Shear Zone is an interpreted major crustal structure important for gold mineralisation.

Competent Persons Statement

The information in this report that relates to Exploration Results is based on information compiled and/or reviewed by Georgina Clark, who is a Member of Australian Institute of Geoscientists. Ms Clark is a full-time employee of NTM and has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity she is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Ms Clark consents to the inclusion in the report of the matters based on this information in the form and context in which they appear.

Appendix I

REDCLIFFE RESOURCE

NTM updated the Estimate of Minerals Resources to the ASX on 12 May 2020, containing the statements and consent referred to in ASX Listing Rule 5.22. NTM confirms that it is not aware of any new information or data that materially effects the information included in the announcement of 12 May 2020 and that all material assumptions and technical parameters underpinning that estimate continue to apply and have not materially changed.

				Ir	dicated								In	ferred						Total	
		Oxide		Tr	ansition	1		Fresh		(Dxide		Tr	ansitior	า		Fresh		Con	nbined	
	kT	Au g/t	kOz	kT	Au g/t	kOz	kT	Au g/t	kOz	kT	Au g/t	kOz	kT	Au g/t	kOz	kT	Au g/t	kOz	kT	Au g/t	kOz
Hub 2020	-		-	-		-	-		-	201.8	6.6	42.9	133.1	4.1	17.7	555.4	4.5	80.2	890.3	4.9	140.8
GTS Feb 2018	363.3	2.2	25.5	356.9	2.1	23.6	330.5	1.5	16.2	93.6	2.1	6.2	95.5	1.2	3.8	1,596.5	1.2	63.1	2,836.3	1.5	138.4
Kelly Oct 2017	-		-	-		-	-		-	1,943.5	0.9	53.7	1,093.9	0.8	28.5	28.5	0.6	0.5	3,065.9	0.8	82.8
Nambi May 2018	40.0	1.6	2.1	22.0	1.5	1.1	640.6	2.8	57.3	22.4	2.3	1.6	14.8	2.0	0.9	829.4	2.8	74.7	1,569.2	2.7	137.7
Bindy May 2018	-		-	-		-	-		-	0.9	0.8	0.0	1,018.7	1.0	33.1	1,720.1	1.2	66.4	2,739.7	1.1	99.5
Redcliffe May 2018	-		-	-		-	-		-	16.4	0.9	0.4	770.2	1.2	29.2	469.0	1.0	14.5	1,255.6	1.1	44.1
Mesa/West lode June 2018	-		-	-		-	-		-	271.7	1.0	8.4	429.5	1.1	15.2	357.5	1.0	11.8	1,058.7	1.0	35.4
Totals	403.3	2.1	27.6	378.9	2.0	24.7	971.1	2.4	73.4	2,550.2	1.4	113.4	3,555.6	1.1	128.4	5,556.5	1.7	311.2	13,415.7	1.6	678.7

Table 1: Redcliffe Project Resource Estimate Summary - 0.5g/t Lower Cut-Off

1. Totals may differ due to rounding, Mineral Resource estimates reported on a dry in-situ basis.

2. The Statement of Mineral Resource estimates has been compiled by Mr Andrew Bewsher who is a full-time employee of BMGS and a Member of the AIG. Mr Bewsher has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity that he has undertaken to qualify as a Competent Person as defined in the JORC Code (2012).

3. Hub Mineral Resource estimate figures reported in the tables above represent estimates at 5th May 2020. All other Mineral Resource estimate figures reported in the table above represent estimates at 1st June 2018. Mineral Resource estimates are not precise calculations, being dependent on the interpretation of limited information on the location, shape and continuity of the occurrence and on the available sampling results. The totals contained in the above table have been rounded to reflect the relative uncertainty of the estimate. Rounding may cause some computational discrepancies.

4. Mineral Resource Estimates are reported in accordance with the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (The Joint Ore Reserves Committee Code – JORC2012 Edition).

Appendix II

JORC Code, 2012 Edition – Table 1 report

Sampling Techniques and Data

RC drilling

Criteria	JORC Code explanation	Commentary
	Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.	The sampling has been carried out using Reverse Circulation drilling (RC). A total of 83 holes (20RRC060-141) were drilled in the reported program for a total of 9175m at depths ranging from of 30 to 382m.
Sampling	Include reference to measures taken to ensure sample representation and the appropriate calibration of any measurement tools or systems used.	The drill holes have been located with a differential GPS. Sampling was carried out under Company protocols and QAQC procedures as per current industry practice. See further details below.
techniques	Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1m samples from which 3kg was pulverised to produce a 30g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information.	RC holes were drilled with a 5.25 inch face-sampling bit, 1m samples collected through a cyclone and cone splitter, to form a 2-3kg single metre sample and a bulk 25-40kg sample. Samples are collected with a spear to generate 5m composite samples, or variable samples at EOH. The 2-3 kg composite samples were dispatched to ALS in Kalgoorlie. These samples were sorted and dried by the assay laboratory, pulverised to form a 50gm charge for Fire Assay/AAS.
Drilling techniques	Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	A Reverse Circulation (RC) drilling rig, operated by Challenge Drilling was used to collect the samples. A 5.25 inch bit was used.
	Method of recording and assessing core and chip sample recoveries and results assessed.	The majority of samples were dry, some wet samples were experienced at depth. RC recoveries and quality were visually estimated, and any low recoveries recorded in the database.
Drill sample recovery	Measures taken to maximise sample recovery and ensure representative nature of the samples.	RC face-sample bits, PVC casing in the top 6 metres and dust suppression were used to minimise sample loss. RC samples are collected through a cyclone and cone splitter, with the bulk of the sample deposited in a plastic bag and a sub sample up to 3kg collected and placed within the green bag. Cyclone and cone splitter are cleaned between rods and at EOH to minimize contamination
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	Ground water egress into the holes resulted in some damp to wet samples at depth, which have been noted in the database. Sample quality was noted on drill logs, and drilling of the hole was terminated when sample quality was compromised at depth.
	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	All chips were geologically logged by NTM geologists, using the Companies logging scheme.
Logging	Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.	Logging of RC chips records lithology, mineralogy, mineralisation, weathering, colour and other features of the samples. All samples are wet-sieved and stored in chip trays. These trays were stored off site for future reference.
	The total length and percentage of the relevant intersections logged.	All holes were logged in full.
	If core, whether cut or sawn and whether quarter, half or all core taken.	NA
Sub-sampling techniques and sample preparation	If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.	One-metre drill samples are channelled through a cone splitter installed directly below a rig mounted cyclone. A 2-3 kg sub-sample is collected in a calico bag and the balance in a plastic bag. The calico bag is positioned on top of the corresponding plastic bag for later collection if required. Most ore grade samples were dry. A 5m composite preliminary sample was collected by spearing the green drill bag. Results from the composite samples were used to identify which single meter samples to be submitted for laboratory analysis. Composite samples are not used in resources calculations.

MANTMGOLD

Criteria	JORC Code explanation	Commentary
	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	Samples were prepared at ALS in Kalgoorlie. Samples were dried, and the entire sample pulverised to 90% passing 75µm, and a reference sub-sample of approximately 200g retained. A nominal 50g was used for the analysis (FA/AAS). The procedure is industry standard for this type of sample.
	Quality control procedures adopted for all sub-sampling stages to maximise representation of samples.	RC samples are collected at 1m intervals and composited into 5m samples using a PVC spear to sample individual metre samples. Certified Reference Materials (CRM's), blanks and duplicates are analysed with each batch of samples. These quality control results are reported along with the sample values in the final report. Selected samples are also re-analysed to confirm anomalous results.
	Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size	One-metre samples are split on the rig using a cone splitter, mounted directly under the cyclone. This is standard Industry practice. The samples weigh 2-4kg prior to pulverisation. Sample sizes are considered appropriate to give an
	of the material being sampled.	indication of mineralisation given the particle sizes and the practical requirement to maintain manageable sample weights.
Quality of assay data and	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	Samples were analysed for Au to g/t levels via a 50gm fire assay / AAS finish which gives total digestion and is appropriate for high-grade samples.
	For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	No geophysical tools were used in this program.
	Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.	Company QA/QC protocol for RC & DC drilling single meter sampling is for Field Standards (Certified Reference Materials) and Blanks inserted at a rate of 4 Standards and 3 Blanks per 100 single metre samples. Duplicate samples were collected at a rate of 3 in 100 single meter
Laboratory tests		samples in RC drilling. Similarly, for 5m composite sampling, Field Standards (Certified Reference Materials) and Blanks are inserted at a rate of 1 in 25 samples. At the assay laboratory additional Repeats, Lab Standards, Checks and Blanks are analysed concurrently with the field samples. Results of the field and Lab QAQC samples were checked on assay receipt. Majority of assays met QAQC protocols, showing no levels of contamination or sample bias. When a discrepancy is observed in minor intervals, the samples are re-analysed/re-sampled. Analysis of field duplicate assay data suggests expected levels of sampling precision, with less than 10% pair difference.
	The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes.	Significant results were checked by the MD and Exploration Manager. Twin holes were not employed during this part of the program.
Verification of sampling and assaying	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	All field logging was carried out via the LogChief software on a Toughbook laptop. Assay files are received electronically from the laboratory and automatically merged into the database. All data is stored in a Company database system, and maintained by the Database Manager.
	Discuss any adjustment to assay data. Accuracy and quality of surveys used to locate drill holes	No assay data was adjusted. The lab's primary Au field is the one used for analysis purposes. Drillhole locations were determined DGPS, with an
Location of	(collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	accuracy of 0.05m. The drill rig mast is set up using a clinometer and rig is orientated using hand held compass.
data points	Specification of the grid system used. Quality and adequacy of topographic control.	Grid projection is GDA94, Zone 51. A DTM has been created for the Redcliffe Gold Project based on all available DGPS data., with an accuracy of 0.05m.
	Data spacing for reporting of Exploration Results.	The drill spacing at each prospect was variable, based on previous drilling and the stage of each prospect. Drillhole coordinates are available elsewhere in this report.
Data spacing and distribution	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	The drilling at Hub has generated intercepts on a 25m-30m spacing. This has given a high degree of confidence in the geological and grade continuity, which will allow further Mineral Resource and Ore Reserve estimation. Further drilling is required in the Gully and Bindy areas to establish geological and grade continuity with a high

MANTMGOLD

Criteria	JORC Code explanation	Commentary
		degree of confidence to allow for a Mineral Resource Estimate.
	Whether sample compositing has been applied.	No compositing has been employed in the reported results.
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	The orientation of the drill holes (azimuth) is perpendicular to the strike of the targeted mineralisation. Down hole widths are quoted. The mineralisation changes from steep east to steep west dip, and drilling directions is adjusted to allow for perpendicular intersection direction in future programmes
	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	The drill orientation is perpendicular to the main mineralised trend. The mineralisation changes from sub- vertical to steep west dip, and drilling directions is adjusted to allow for perpendicular intersection direction.
Sample security	The measures taken to ensure sample security.	Composite samples were submitted in numbered polyweave bags (five calico bags per polyweave bag), sealed and transported to ALS in Kalgoorlie for assaying.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	Sampling and assaying techniques are industry-standard. Batch assay data is routinely reviewed to ascertain laboratory performance. The laboratory is advised of any discrepancies and samples are re-assayed. The Company also submits further re-splits to primary and secondary laboratories as part of the audit process.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	The RC drilling occurred within the tenements listed below, all of which are held 100% by NTM Gold Ltd. The Project is located 55km NE of Leonora in the Eastern Goldfields of Western Australia. - M37/1286 – Gully - M37/1348 – Hub - M37/1295 - Bindy
	The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	The tenement subject to this report is in good standing with the Western Australian DMIRS.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	Previous exploration at the Project has been completed by Ashtons, Dominion, SOG's and CRAE in the 1990's, who completed mining of the Nambi and Nambi Sth pits. Pacrim Energy Ltd/Redcliffe Resources Ltd completed exploration in the area from in 2007-2016. Where relevant, assay data from this earlier exploration has been incorporated into NTM databases.
Geology	Deposit type, geological setting and style of mineralisation.	Mineralisation at the Redcliffe Gold Project is hosted largely within Archaean-aged mafic schist and volcano-sediment package (inc chert, black shale, graphitic in part) and intermediate-mafic rocks. A mylonitic fabric is observable in the lithologies. Gold mineralisation generally occurs in northerly striking, sub-vertical to steep dipping zones associated with silica-sulphide-mica alteration and veining. Depth of oxidation over the project varies from over 100m in the south (GTs to Hub) to less than 10m (Mesa to Aliso).
Drillhole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: - Easting and northing of the drill hole collar - Elevation or RL of the drill hole collar - Dip and azimuth of the holes - Down hole length and intercept depth - Hole length If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the	Refer to table in the body of text.
Data aggregation methods	understanding of the report, the Competent Person should clearly explain why this is the case. In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and	Grades are reported as down-hole length-weighted averages of grades. No top cuts have been applied to the reporting of the assay results.

Criteria	JORC Code explanation	Commentary
	cut-off grades are usually Material and should be stated.	
	Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	All higher-grade intervals are included in the reported grade intervals.
	The assumptions used for any reporting of metal equivalent values should be clearly stated.	No metal equivalent values are used.
Relationship between mineralisation widths and intercept lengths	These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known').	The geometry of the mineralisation at depth is interpreted to vary from steeply west dipping to sub-vertical. (80° to 90°). All assay results are based on down-hole lengths, and true width of mineralisation is approximately 60-100% of the down hole width, depending on the orientation of the target.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Refer to Figure in the body of text.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	Refer to results reported in body of text and summary statistics for the elements reported.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	Refer to body of text and this appendix.
	The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling).	Diamond drilling is continuing at the Hub deposit, to extend the 25m infil to a vertical depth of 150m. Further drill testing of the mineralisation results at the Gully and Bindy areas is required.
Further work	Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	Subsequently drilled DD holes at Hub are indicated on the long section within the body of the text.