

ASX ANNOUNCEMENT 4 March 2021

Crow/Aquila gold system continues to expand

The main lode at Crow, McLeod, now identified over 600m strike, 300m depth and up to 60m true thickness and remains open

Significant new results in the McLeod lode at Crow include:

- -33m @ 4.9g/t Au from 171m in HERC607 (incl 11m @ 12.1g/t Au from 171m)
- This new result is 80m along strike from the previously reported **64m @ 13.4g/t Au** from 141m in HERC238 including **19m @ 42.0g/t Au** from 170m.
- -24.8m @ 2.1g/t Au from 308.19m in HERC039D
- -7m @ 3.9g/t Au from 215m in HERC355
- -18m @ 1.3g/t Au from 55m in HERC611

Additional significant new intercepts in other lodes at Crow include:

- -6m @ 6.9g/t Au from 57m in HERC535
- -18m @ 3.4g/t Au from 210m in HERC623
- -14.3m @ 2.9g/t Au from 239.5m in HERC310D

Aquila Lode extended to 500m depth and remains open

Significant new extensional results include:

- 52.2m @ 2g/t Au from 519.83m in HEDD012 (incl 15.3m @ 4.5g/t Au from 556.68m)
- -12m @ 3.6g/t Au from 371m in HERC208D (incl 0.5m @ 71.3g/t Au from 374.77m) and
- -27.1m @ 1.2g/t Au from 405m in HERC208D intersects eastern end of the McLeod Lode
- -24.6m @ 1.7g/t Au from 293.2m in HERC250D

Infill results include:

-24m @ 3.2g/t Au from 314m in HEDD011

De Grey Managing Director, Glenn Jardine, commented:

"The large Crow/Aquila gold system continues to expand and be defined across multiple stacked subvertical lodes. The dominant lodes of McLeod and Aquila are oblique to each other, intersect at the eastern end and are expected to support a combined open pit scenario. Both lodes demonstrate high grade mineralisation that should also provide underground mining potential below any open pit mining limits.

The ongoing systematic infill RC drilling program at Crow has improved our understanding of the continuity of mineralisation. Step out drilling continues to extend mineralisation at all zones at Hemi.

RC drilling also continues at the recently discovered Diucon and Eagle zones to the immediate west."

Level 3, Suite 24-26, 22 Railway Road, Subiaco WA 6008 PO Box 2023 Subiaco WA 6904 E admin@degreymining.com.au P +61 8 6117 9328 F +61 8 6117 9330

degreymining.com.au ABN: 65 094 206 292 FRA Code: WKN 633879

De Grey Mining Limited (ASX: DEG, "De Grey", "Company") is pleased to provide the following drilling update at the Hemi Gold Discovery, located approximately 60km south of Port Hedland in Western Australia.

The Crow and Aquila zones are located adjacent and to the north of the large Brolga intrusion at Hemi. The Crow and Aquila mineralised system is approximately 800m E-W, 600m N-S, at least 500m in depth and remains open (Figure 1). Extensional and infill drilling are underway. Extensional drilling is targeting depth extensions to higher grade mineralisation. Infill drilling is being conducted at a nominal 40m x 40m spacing to define the overall mineralised system and to provide confidence in the continuity of higher grade lodes.

Significant new gold results in drilling are provided in Table 1.

Crow Zone

Drilling at Crow is showing multiple stacked lodes throughout this large intrusion. Mineralisation remains open at depth and to the west towards the newly discovered Diucon and Eagle zones.

The RC drilling program at Crow is targeting resource definition at a 40m x 40m spacing. This drilling is to confirm continuity of mineralisation between the existing 80m x 80m drilling. Results to date have been positive with continuity confirmed and additional stacked lodes intersected or extended. Infill and extensional drilling continues in parallel programs.

The most dominant lode within the Crow intrusion has been named the McLeod lode and is located approximately 200m north and oblique to Aquila intersecting each other at the eastern end (Figure 1). The McLeod lode is currently defined over 600m in strike, 300m depth and up to 60m true thickness and remains open (Figures 2 and 3). The McLeod lode contains some of the highest grade intercepts in the overall Hemi deposit.

The new significant higher grade intercept of **33m @ 4.9g/t Au** from 171m in HERC607 (incl **11m @ 12.1g/t Au** from 171m) is located 80m east of the previously reported high grade interval of **64m @ 13.4g/t Au** from 141m in HERC238 including **19m @ 42.0g/t Au** from 170m. Importantly, this intercept occurs below sediments in a plunge shoot of the intrusion and remains open.

Supporting new results within the McLeod Lode include:

- 24.8m @ 2.1g/t Au from 308.19m in HERC039D
- 7m @ 3.9g/t Au from 215m and 6m @ 1.8g/t Au from 227m in HERC355
- 18m @ 1.3g/t Au from 55m in HERC611
- 3.1m @ 3.7g/t Au from 418.95m in HERC354D
- 25m @ 0.6g/t Au from 144m in HERC537
- 6m @ 1.7g/t Au from 192m in HERC605
- 15m @ 1.7g/t Au from 109m and 13m @ 0.8g/t Au from 129m in HERC612

Significant new results (>10gm*m) defining other multiple stacked lodes within Crow include

4m @ 5g/t Au from 203m in HERC006D
10.1m @ 1.2g/t Au from 317m in HERC067D
14.2m @ 1.1g/t Au from 376m in HERC067D
13.6m @ 1.4g/t Au from 322m in HERC080D
18.4m @ 1.6g/t Au from 485.57m in HERC247D
9.9m @ 2.4g/t Au from 523m in HERC250D

3.3m @ 3.8g/t Au from 574.79m in HERC250D
8m @ 1.6g/t Au from 520m in HERC251D
14.3m @ 2.9g/t Au from 239.5m in HERC310D
6m @ 2.1g/t Au from 51m in HERC347
3m @ 3.4g/t Au from 35m in HERC352
11m @ 1.2g/t Au from 43m in HERC352

11m @ 1g/t Au from 328m in HERC354D 8m @ 1.7g/t Au from 205m in HERC364 3m @ 6.1g/t Au from 128m in HERC365 5m @ 2.3g/t Au from 63m in HERC528 7m @ 2.1g/t Au from 42m in HERC535 6m @ 6.9g/t Au from 57m in HERC535 26m @ 1.1g/t Au from 89m in HERC611 12m @ 2.4g/t Au from 123m in HERC611 3m @ 3.7g/t Au from 45m in HERC612 30m @ 0.7g/t Au from 39m in HERC615 13m @ 1.9g/t Au from 92m in HERC615 13m @ 1.6g/t Au from 160m in HERC617 3m @ 8.3g/t Au from 185m in HERC617 13m @ 1.1g/t Au from 176m in HERC355 14m @ 1g/t Au from 139m in HERC618 12m @ 2.1g/t Au from 171m in HERC618 14m @ 1g/t Au from 25m in HERC619 10m @ 2g/t Au from 108m in HERC622 5m @ 3.4g/t Au from 139m in HERC623 18m @ 3.4g/t Au from 210m in HERC623 4m @ 3.7g/t Au from 241m in HERC623 12m @ 1.5g/t Au from 134m in HERC624 8m @ 3.2g/t Au from 56m in HERC636 15m @ 0.9g/t Au from 73m in HERC636

Aquila Zone

Aquila is well defined over 800m strike and recent results have highlighted plunging higher grade shoots at the eastern and western ends of the intrusion (Figure 4). Mineralisation remains open along strike and at depth.

The new intercept of **52.2m @ 2g/t Au** from 519.83m in HEDD012 (incl **15.3m @ 4.5g/t Au** from 556.68m) is particularly noteworthy as it is 300m below the previously reported intercept of **35m @ 3.1g/t Au** (HERC101) drilling on this section. Mineralisation is now defined to at least 500m depth at Aquila and the high grade tenor provides scope for potential underground mining below any final open pit mining limits (Figure 5). A new infill intercept of **24m @ 3.2g.//t Au** from 314m in HEDD011 was intersected approximately 40m east of HEDD012 (Figure 6).

Significant new extensional results (>10gm*m) at Aquila include:

- 52.2m @ 2g/t Au from 519.83m in HEDD012 (incl 15.3m @ 4.5g/t Au from 556.68m)
- 12m @ 3.6g/t Au from 371m (incl 0.5m @ 71.3g/t Au from 374.77m) and 27.1m @ 1.2g/t Au from 405m in HERC208D
- 8.9m @ 1.5g/t Au from 243.08m, 7m @ 1.6g/t Au from 266m, and 24.6m @ 1.7g/t Au from 293.2m in HERC250D
- 24m @ 1.2g/t Au from 63m in HERC353
- 27m @ 0.8g/t Au from 112m in HERC357D
- 18m @ 0.8g/t Au from 57m and 29m @ 0.8g/t Au from 126m in HERC366

Significant new infill results (>10gm*m) at Aquila include:

- 24m @ 3.2g/t Au from 314m in HEDD011 (incl 5m @ 5.8g/t Au from 318m and 5m @ 4.5g/t Au from 328m)
- 7m @ 2.8g/t Au from 43m in HERC527

Diamond drilling is continuing to target further extensions at Aquila.

Figure 1: Hemi - drilling location plan showing the new Aquila and Crow drilling results

Figure 2: Crow - McLeod Lode Longitudinal Projection showing showing the grade thickness (gram Au.metres) of drill intervals

(Note: grade thickness of overall mineralisation may not match intercepts at 0.5g/t Au lower cut as reported)

Figure 3 Aquila – Crow – Section 30480E

GREY

Hemi - Aquila Zone 800m W Е (grid) (grid) - 0m 0m-**Transported Cover** HERC527 7/2.8 HERC366 HERC353 6 20 . 0 2 29 (23) (15) 20 (34) 2 (111) (128) 3 168 9) HERC357D 24/1.2 (89) 29/0.8 39 123 180 22 65 1 (22) 5 302 364 26 27/0.8 100m-100m (11) 61 107 50 35 25 1 310 0 2 (41) (41) 82 72 36 81 64 0 . 64 0 . 0 108 7 1 (281) 36 126 16 26 **Extensional Drilling** (121) 1 (13) 200m 0 200m-0 66 HERC250D 39 (46) 46 HERC249D 8.9/1.5 HERC251D (5) 1 . (10) 0 (11)7/1.6 50 (3.5/1.3) HEDD011 2 23 (42) 500m 24.6/1.7 19.1/0.5 HERC208D 77 3 (43) . - 300m 0 . -0 . 6 300m-24/3.2 0 12/3.6 HERC248D ind. 0.5/71.3 \bigcirc (12) 52 38 . . . Precollar 23 Complete 36 **Drilling Piercepoints** . 0 0 ۲ 0 0 0 0 . 400m-Previous (365) 8. g/t Au y metres HEDD012 Gold Contouring **Extensional Drilling** Intersection location & g/t Au x metres Drilled New Results (126) (104) (gram. metre intersections Assays Pending Intrusion thickness <10 52.2/2.0 10-50 ind. 15.3/4.5 RC Precollar Drilled >50 500m-Planned-DD in Progress RC & DD Hemi Local Grid 29920E 30080E 30560E 30720E 30240E 30400 Results as of 23-02-2020

Figure 4: Aquila Longitudinal Projection showing the grade thickness (gram.metres Au) of drill intervals

(Note: new shallow intervals at Aquila are related to drill holes targeted to intersect deeper mineralisation in Crow)

This announcement has been authorised for release by the De Grey Board.

For further information, please contact:

Glenn Jardine Managing Director +61 8 6117 9328 admin@degreymining.com.au

Andy Beckwith Technical Director and Operations Manager +61 8 6117 9328 admin@degreymining.com.au Michael Vaughan (Media enquiries) Fivemark Partners +61 422 602 720 michael.vaughan@fivemark.com.au

Competent Person's Statement

The information in this report that relates to exploration results is based on, and fairly represents information and supporting documentation prepared by Mr. Phil Tornatora, a Competent Person who is a member of The Australasian Institute of Mining and Metallurgy. Mr. Tornatora is an employee of De Grey Mining Limited. Mr. Tornatora has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resource and Ore Reserves". Mr. Tornatora consents to the inclusion in this report of the matters based on his information in the form and context in which it appears.

Previously released ASX Material References in the financial year 2020/21 that relates to Hemi Prospect include;

- HEMI Major extension, 5 June 2020
- HEMI Broad, high grade extensions at Aquila, 9 June 2020
- Further high grade and expanded footprint at Hemi, 22 June 2020
- High gold recoveries achieved at Hemi, 9 July 2020
- Further extensions confirmed at Brolga, 10 July 2020
- Hemi scale grows with Aquila new extensions, 22 July 2020
- Strong results boost Aquila westerly extension, 5 August 2020
- Aquila mineralisation extends to 400 vertical metres, New lode identified at Crow
- Brolga mineralisation extends north towards Aquila, northeast towards Scooby, 21 August
- Exceptional high grade gold intercept at Crow, 27 August 2020
- Falcon -Major new gold discovery at Hemi, 2 September 2020
- Falcon Drilling Update, 15 September 2020
- Strong Brolga infill and extensions, 25 September 2020.
- Encouraging Extensional and Infill Drilling Results at Aquila and Crow, 7 October 2020
- Thick High Grade near surface hits continue at Falcon, 12 October 2020
- Further positive results extend Aquila and Crow, 29 October 2020
- High-grade extensions at Crow and Aquila, 30 November 2020
- Exploration Update, 4 December 2020
- Strong infill and extensional results at Brolga, 21 December 2020
- Consistent extensive gold endowment at Falcon, 13 January 2021
- Diucon and Eagle: Two new intrusion hosted gold discoveries at Hemi, 29 January 2021
- Further metallurgical testwork confirms high gold recoveries, 16 February 2021
- Major depth extensions and new footwall lodes emerge at Falcon, 23 February 2021

Table 1: Significa	nt new results	(>2 gram	ı x m Au)
--------------------	----------------	----------	----------	---

HoleID	Zone	Depth From (m)	Depth To (m)	Down hole Width (m)	Au (g/t)	Collar East (GDA94)	Collar North (GDA94)	Coll ar RL (GD A94)	Dip (degree s)	Azimuth (GDA94)	Hole Depth (m)	Hole Type
HEDD003	Aquila	142.0	146.0	4.0	0.5	648751	7692397	68	-56	330	414	DD
HEDD011	Aquila	314.0	338.0	24.0	3.2	648626	7692138	69	-55	331	459	DD
incl	Aquila	318.0	323.0	5.0	5.8	648626	7692138	69	-55	331	459	DD
incl	Aquila	328.0	333.0	5.0	4.5	648626	7692138	69	-55	331	459	DD
HEDD012	Aquila	417.0	420.0	3.0	1.4	648668	7691983	69	-60	329	614	DD
HEDD012	Aquila	436.0	438.0	2.0	1.3	648668	7691983	69	-60	329	614	DD
HEDD012	Aquila	519.8	572.0	52.2	2.0	648668	7691983	69	-60	329	614	DD
incl	Aquila	519.8	550.0	30.2	1.0	648668	7691983	69	-60	329	614	DD
incl	Aquila	556.7	572.0	15.3	4.5	648668	7691983	69	-60	329	614	DD
HERC006D	Crow	203.0	207.0	4.0	5.0	648864	7692522	68	-55	326	442	DD
HERC006D	Crow	295.0	307.3	12.3	0.5	648864	7692522	68	-55	326	442	DD
HERC009D	Crow	168.5	182.1	13.6	0.5	648993	7692617	68	-55	327	379	DD
HERC009D	Crow	188.0	190.0	2.0	2.7	648993	7692617	68	-55	327	379	DD
HERC009D	Crow	239.0	243.0	4.0	0.5	648993	7692617	68	-55	327	379	DD
HERC009D	Crow	250.0	262.0	12.0	0.8	648993	7692617	68	-55	327	379	DD
HERC039D	Crow	298.0	301.0	3.0	2.6	648950	7692534	68	-56	329	451	DD
HERC039D	Crow	308.2	333.0	24.8	2.1	648950	7692534	68	-56	329	451	DD
incl	Crow	308.2	308.6	0.4	9.8	648950	7692534	68	-56	329	451	DD
incl	Crow	318.0	319.0	1.0	23.1	648950	7692534	68	-56	329	451	DD
incl	Crow	332.5	333.0	0.5	23.0	648950	7692534	68	-56	329	451	DD
HERC039D	Crow	371.0	376.0	5.0	0.7	648950	7692534	68	-56	329	451	DD
HERC067D	Crow	317.0	327.1	10.1	1.2	648710	7692468	68	-56	329	472	DD
incl	Crow	323.8	324.6	0.8	5.0	648710	7692468	68	-56	329	472	DD
HERC067D	Crow	331.7	335.0	3.3	0.6	648710	7692468	68	-56	329	472	DD
HERC067D	Crow	341.0	346.5	5.5	0.6	648710	7692468	68	-56	329	472	DD
HERC067D	Crow	352.0	353.0	1.0	3.5	648710	7692468	68	-56	329	472	DD
HERC067D	Crow	376.0	390.2	14.2	1.1	648710	7692468	68	-56	329	472	DD
HERC067D	Crow	410.0	416.3	6.3	1.5	648710	7692468	68	-56	329	472	DD
HERC080D	Crow	275.0	276.0	1.0	2.7	648613	7692474	68	-56	332	414	DD
HERC080D	Crow	322.0	335.6	13.6	1.4	648613	7692474	68	-56	332	414	DD
HERC122D	Aquila	136.6	139.5	2.9	0.9	648453	7692112	69	-52	328	140	DD
HERC208D	Aquila	303.0	309.7	6.7	1.0	649162	7692487	68	-55	329	438	DD
HERC208D	Aquila	326.0	328.0	2.0	1.7	649162	7692487	68	-55	329	438	DD
HERC208D	Aquila	350.0	350.9	0.9	2.7	649162	7692487	68	-55	329	438	DD
HERC208D	Aquila	371.0	383.0	12.0	3.6	649162	7692487	68	-55	329	438	DD
incl	Aquila	374.8	375.2	0.5	71.3	649162	7692487	68	-55	329	438	DD
HERC208D	Aquila	405.0	432.1	27.1	1.2	649162	7692487	68	-55	329	438	DD
incl	Crow	428.0	430.0	2.0	4.6	649162	7692487	68	-55	329	438	DD
HERC247D	Aquila	320.0	323.0	3.0	0.8	648749	7692240	69	-57	333	655	DD

HoleID	Zone	Depth From (m)	Depth To (m)	Down hole Width (m)	Au (g/t)	Collar East (GDA94)	Collar North (GDA94)	Coll ar RL (GD A94)	Dip (degree s)	Azimuth (GDA94)	Hole Depth (m)	Hole Type
HERC247D	Crow	449.0	451.1	2.1	1.1	648749	7692240	69	-57	333	655	DD
HERC247D	Crow	485.6	504.0	18.4	1.6	648749	7692240	69	-57	333	655	DD
incl	Crow	496.6	497.8	1.2	7.1	648749	7692240	69	-57	333	655	DD
HERC247D	Crow	520.0	521.3	1.3	5.0	648749	7692240	69	-57	333	655	DD
HERC249D	Aquila	357.7	361.1	3.5	1.3	648819	7692275	69	-57	332	453	DD
HERC250D	Aquila	224.8	232.0	7.3	0.9	648868	7692356	68	-60	329	670	DD
HERC250D	Aquila	243.1	252.0	8.9	1.5	648868	7692356	68	-60	329	670	DD
HERC250D	Aquila	266.0	273.0	7.0	1.6	648868	7692356	68	-60	329	670	DD
HERC250D	Aquila	293.2	317.8	24.6	1.7	648868	7692356	68	-60	329	670	DD
HERC250D	Aquila	425.0	426.5	1.5	1.4	648868	7692356	68	-60	329	670	DD
HERC250D	Crow	523.0	532.9	9.9	2.4	648868	7692356	68	-60	329	670	DD
incl	Crow	528.0	531.0	3.0	5.4	648868	7692356	68	-60	329	670	DD
HERC250D	Crow	574.8	578.1	3.3	3.8	648868	7692356	68	-60	329	670	DD
HERC251D	Aquila	257.0	261.0	4.0	1.4	649024	7692402	68	-57	328	639	DD
HERC251D	Aquila	268.0	271.0	3.0	1.0	649024	7692402	68	-57	328	639	DD
HERC251D	Aquila	320.0	322.0	2.0	1.5	649024	7692402	68	-57	328	639	DD
HERC251D	Aquila	327.0	339.1	12.1	0.6	649024	7692402	68	-57	328	639	DD
HERC251D	Aquila	357.5	366.0	8.5	0.7	649024	7692402	68	-57	328	639	DD
HERC251D	Aquila	427.0	428.0	1.0	2.1	649024	7692402	68	-57	328	639	DD
HERC251D	Crow	477.0	478.0	1.0	2.6	649024	7692402	68	-57	328	639	DD
HERC251D	Crow	483.0	490.0	7.0	1.0	649024	7692402	68	-57	328	639	DD
HERC251D	Crow	504.0	505.0	1.0	2.8	649024	7692402	68	-57	328	639	DD
HERC251D	Crow	520.0	528.0	8.0	1.6	649024	7692402	68	-57	328	639	DD
HERC251D	Crow	573.0	576.3	3.3	1.2	649024	7692402	68	-57	328	639	DD
HERC307D	Crow	201.9	206.6	4.6	0.8	648781	7692585	68	-56	330	427	DD
HERC307D	Crow	214.8	218.5	3.7	1.6	648781	7692585	68	-56	330	427	DD
HERC307D	Crow	230.3	244.0	13.7	0.7	648781	7692585	68	-56	330	427	DD
incl	Crow	235.0	235.4	0.4	8.1	648781	7692585	68	-56	330	427	DD
HERC307D	Crow	278.4	281.0	2.6	1.7	648781	7692585	68	-56	330	427	DD
HERC310D	Crow	239.5	253.8	14.3	2.9	648759	7692778	68	-56	328	275	DD
incl	Crow	239.5	240.3	0.8	9.8	648759	7692778	68	-56	328	275	DD
incl	Crow	247.8	249.7	2.0	10.1	648759	7692778	68	-56	328	275	DD
incl	Crow	253.0	253.8	0.8	8.9	648759	7692778	68	-56	328	275	DD
HERC313D	Crow	261.0	267.5	6.5	0.7	648880	7692572	68	-55	332	391	DD
HERC346D	Aquila	127.0	131.0	4.0	1.2	648969	7692578	68	-56	330	340	RC
HERC347	Crow	51.0	57.0	6.0	2.1	648680	7692919	67	-56	332	204	RC
HERC348	Crow	56.0	61.0	5.0	0.7	648719	7692850	67	-56	332	204	RC
HERC348	Crow	68.0	71.0	3.0	0.7	648719	7692850	67	-56	332	204	RC
HERC348	Crow	158.0	164.0	6.0	0.5	648719	7692850	67	-56	332	204	RC
HERC348	Crow	170.0	171.0	1.0	3.2	648719	7692850	67	-56	332	204	RC

HoleID	Zone	Depth From (m)	Depth To (m)	Down hole Width (m)	Au (g/t)	Collar East (GDA94)	Collar North (GDA94)	Coll ar RL (GD A94)	Dip (degree s)	Azimuth (GDA94)	Hole Depth (m)	Hole Type
HERC352	Crow	35.0	38.0	3.0	3.4	648491	7692926	67	-56	332	156	RC
HERC352	Crow	43.0	54.0	11.0	1.2	648491	7692926	67	-56	332	156	RC
incl	Crow	52.0	53.0	1.0	6.9	648491	7692926	67	-56	332	156	RC
HERC353	Aquila	56.0	58.0	2.0	2.6	648823	7692516	68	-55	334	108	RC
HERC353	Aquila	63.0	87.0	24.0	1.2	648823	7692516	68	-55	334	108	RC
HERC354D	Aquila	121.0	123.0	2.0	1.1	648861	7692446	68	-56	329	503	RC
HERC354D	Aquila	142.0	150.0	8.0	0.9	648861	7692446	68	-56	329	503	RC
HERC354D	Aquila	168.0	174.0	6.0	1.0	648861	7692446	68	-56	329	503	RC
HERC354D	Aquila	217.0	221.0	4.0	0.8	648861	7692446	68	-56	329	503	DD
HERC354D	Aquila	258.0	261.9	3.9	0.8	648861	7692446	68	-56	329	503	DD
HERC354D	Crow	276.0	277.0	1.0	4.9	648861	7692446	68	-56	329	503	DD
HERC354D	Crow	328.0	339.0	11.0	1.0	648861	7692446	68	-56	329	503	DD
incl	Crow	333.0	333.5	0.6	10.7	648861	7692446	68	-56	329	503	DD
HERC354D	Crow	419.0	422.0	3.1	3.7	648861	7692446	68	-56	329	503	DD
incl	Crow	420.0	421.1	1.1	9.2	648861	7692446	68	-56	329	503	DD
HERC354D	Crow	438.0	441.8	3.8	0.6	648861	7692446	68	-56	329	503	DD
HERC354D	Crow	451.0	459.0	8.0	1.0	648861	7692446	68	-56	329	503	DD
incl	Crow	456.0	456.4	0.4	9.4	648861	7692446	68	-56	329	503	DD
HERC354D	Crow	474.8	478.1	3.3	2.2	648861	7692446	68	-56	329	503	DD
HERC354D	Crow	492.7	495.1	2.3	2.1	648861	7692446	68	-56	329	503	DD
HERC355	Crow	176.0	189.0	13.0	1.1	648692	7692579	68	-56	332	390	RC
incl	Crow	181.0	182.0	1.0	5.0	648692	7692579	68	-56	332	390	RC
HERC355	Crow	215.0	222.0	7.0	3.9	648692	7692579	68	-56	332	390	RC
incl	Crow	216.0	218.0	2.0	11.0	648692	7692579	68	-56	332	390	RC
HERC355	Crow	227.0	233.0	6.0	1.8	648692	7692579	68	-56	332	390	RC
HERC355	Crow	248.0	253.0	5.0	1.0	648692	7692579	68	-56	332	390	RC
HERC355	Crow	260.0	263.0	3.0	1.5	648692	7692579	68	-56	332	390	RC
HERC356D	Crow	206.0	212.0	6.0	0.8	648733	7692511	68	-56	335	472	RC
HERC356D	Crow	357.0	358.0	1.0	2.2	648733	7692511	68	-56	335	472	DD
HERC356D	Crow	364.5	376.0	11.5	0.7	648733	7692511	68	-56	335	472	DD
HERC356D	Crow	385.0	386.0	1.0	5.5	648733	7692511	68	-56	335	472	DD
HERC357D	Aquila	69.0	77.0	8.0	0.8	648772	7692441	68	-55	328	529	RC
HERC357D	Aquila	112.0	139.0	27.0	0.8	648772	7692441	68	-55	328	529	RC
HERC363D	Crow	140.0	144.0	4.0	1.7	648572	7692625	68	-55	326	250	RC
HERC364	Crow	56.0	60.0	4.0	0.8	648612	7692557	68	-55	328	336	RC
HERC364	Crow	180.0	184.0	4.0	1.9	648612	7692557	68	-55	328	336	RC
HERC364	Crow	205.0	213.0	8.0	1.7	648612	7692557	68	-55	328	336	RC
HERC364	Crow	250.0	252.0	2.0	1.5	648612	7692557	68	-55	328	336	RC
HERC364	Crow	325.0	327.0	2.0	2.3	648612	7692557	68	-55	328	336	RC
HERC365	Crow	128.0	131.0	3.0	6.1	648652	7692488	68	-55	326	198	RC

HoleID	Zone	Depth From (m)	Depth To (m)	Down hole Width (m)	Au (g/t)	Collar East (GDA94)	Collar North (GDA94)	Coll ar RL (GD	Dip (degree s)	Azimuth (GDA94)	Hole Depth (m)	Hole Type
HERC365	Crow	189.0	190.0	1.0	2.4	648652	7692488	A94)	-55	326	198	RC
HERC366	Δαμία	47.0	48.0	1.0	6.4	648694	7692488	68	-56	320	190	RC
HERC366	Aquila	57.0	75.0	18.0	0.8	648694	7692418	68	-56	332	180	RC
HERC366	Aquila	93.0	95.0	2.0	1.3	648694	7692418	68	-56	332	180	RC
HERC366	Crow	126.0	155.0	29.0	0.8	648694	7692418	68	-56	332	180	RC
HERC373	Crow	38.0	45.0	7.0	1.1	648453	7692834	67	-56	329	162	RC
HERC373	Crow	82.0	89.0	7.0	0.6	648453	7692834	67	-56	329	162	RC
HERC374	Crow	187.0	189.0	2.0	1.4	648768	7692525	68	-51	329	200	RC
HERC527	Aquila	43.0	50.0	7.0	2.8	648488	7692293	69	-55	330	198	RC
HERC527	Aquila	56.0	58.0	2.0	1.3	648488	7692293	69	-55	330	198	RC
HERC528	Crow	63.0	68.0	5.0	2.3	648572	7692387	68	-55	330	210	RC
HERC530	Crow	42.0	45.0	3.0	1.0	648553	7692579	68	-54	331	126	RC
HERC530	Crow	59.0	61.0	2.0	1.7	648553	7692579	68	-54	331	126	RC
HERC531	Crow	53.0	59.0	6.0	0.8	648593	7692509	68	-54	330	179	RC
HERC531	Crow	74.0	83.0	9.0	0.9	648593	7692509	68	-54	330	179	RC
HERC535	Crow	36.0	37.0	1.0	3.1	648508	7692818	67	-55	333	174	RC
HERC535	Crow	42.0	49.0	7.0	2.1	648508	7692818	67	-55	333	174	RC
incl	Crow	42.0	43.0	1.0	10.2	648507	7692818	67	-55	333	174	RC
HERC535	Crow	57.0	63.0	6.0	6.9	648508	7692818	67	-55	333	174	RC
incl	Crow	58.0	61.0	3.0	12.9	648507	7692818	67	-55	333	174	RC
HERC535	Crow	92.0	101.0	9.0	1.1	648508	7692818	67	-55	333	174	RC
HERC535	Crow	108.0	110.0	2.0	1.3	648508	7692818	67	-55	333	174	RC
HERC536	Crow	50.0	54.0	4.0	0.5	648547	7692749	67	-56	330	240	RC
HERC536	Crow	63.0	66.0	3.0	0.9	648547	7692749	67	-56	330	240	RC
HERC536	Crow	95.0	103.0	8.0	0.9	648547	7692749	67	-56	330	240	RC
HERC536	Crow	213.0	214.0	1.0	2.4	648547	7692749	67	-56	330	240	RC
HERC537	Crow	63.0	65.0	2.0	1.7	648588	7692680	67	-55	327	270	RC
HERC537	Crow	128.0	138.0	10.0	0.5	648588	7692680	67	-55	327	270	RC
HERC537	Crow	144.0	169.0	25.0	0.6	648588	7692680	67	-55	327	270	RC
HERC537	Crow	174.0	176.0	2.0	1.0	648588	7692680	67	-55	327	270	RC
HERC538	Crow	38.0	45.0	7.0	1.2	648628	7692611	68	-55	332	312	RC
HERC538	Crow	267.0	268.0	1.0	2.8	648628	7692611	68	-55	332	312	RC
HERC538	Crow	277.0	281.0	4.0	2.4	648628	7692611	68	-55	332	312	RC
HERC538	Crow	295.0	302.0	7.0	1.2	648628	7692611	68	-55	332	312	RC
HERC605	Aquila	91.0	92.0	1.0	2.1	649088	7692693	68	-56	326	216	RC
HERC605	Aquila	167.0	169.0	2.0	1.9	649088	7692693	68	-56	326	216	RC
HERC605	Crow	192.0	198.0	6.0	1.7	649088	7692693	68	-56	326	216	RC
HERC607	Crow	171.0	204.0	33.0	4.9	649020	7692652	69	-56	333	208	RC
incl	Crow	171.0	182.0	11.0	12.1	649020	7692652	68	-56	333	208	RC
HERC608	Aquila	171.0	173.0	2.0	1.2	649059	7692583	68	-55	329	264	RC

HoleID	Zone	Depth From	Depth To (m)	Down hole Width	Au (g/t)	Collar East	Collar North	Coll ar RL (GD	Dip (degree	Azimuth (GDA94)	Hole Depth (m)	Hole Type
		(11)		(m)		(GDA94)	(GDA94)	(GD A94)	5)		(11)	
HERC608	Aquila	180.0	192.0	12.0	0.8	649059	7692583	68	-55	329	264	RC
HERC608	Aquila	198.0	199.0	1.0	2.6	649059	7692583	68	-55	329	264	RC
HERC608	Aquila	210.0	216.0	6.0	1.3	649059	7692583	68	-55	329	264	RC
HERC608	Crow	236.0	247.0	11.0	0.8	649059	7692583	68	-55	329	264	RC
HERC608	Crow	262.0	264.0	2.0	1.3	649059	7692583	68	-55	329	264	RC
HERC609	Crow	75.0	84.0	9.0	0.5	648743	7692890	67	-55	329	228	RC
HERC609	Crow	114.0	116.0	2.0	1.2	648743	7692890	67	-55	329	228	RC
HERC611	Crow	55.0	73.0	18.0	1.3	648828	7692743	67	-56	324	162	RC
incl	Crow	60.0	61.0	1.0	7.6	648828	7692743	67	-56	324	162	RC
HERC611	Crow	89.0	115.0	26.0	1.1	648828	7692743	67	-56	324	162	RC
HERC611	Crow	123.0	135.0	12.0	2.4	648828	7692743	67	-56	324	162	RC
incl	Crow	124.0	126.0	2.0	7.3	648828	7692743	67	-56	324	162	RC
HERC612	Crow	45.0	48.0	3.0	3.7	648867	7692674	68	-56	328	186	RC
HERC612	Crow	109.0	124.0	15.0	1.7	648867	7692674	68	-56	328	186	RC
incl	Crow	115.0	116.0	1.0	16.9	648867	7692674	68	-56	328	186	RC
HERC612	Crow	129.0	142.0	13.0	0.8	648867	7692674	68	-56	328	186	RC
HERC615	Crow	22.0	28.0	6.0	0.5	648646	7692898	67	-57	331	180	RC
HERC615	Crow	39.0	69.0	30.0	0.7	648646	7692898	67	-57	331	180	RC
HERC615	Crow	92.0	105.0	13.0	1.9	648646	7692898	67	-57	331	180	RC
incl	Crow	93.0	95.0	2.0	7.8	648645	7692898	67	-57	331	180	RC
HERC616	Crow	59.0	63.0	4.0	0.6	648686	7692828	67	-56	336	216	RC
HERC616	Crow	71.0	77.0	6.0	1.3	648686	7692828	67	-56	336	216	RC
HERC617	Crow	39.0	40.0	1.0	2.4	648726	7692759	68	-55	330	252	RC
HERC617	Crow	49.0	56.0	7.0	0.6	648726	7692759	68	-55	330	252	RC
HERC617	Crow	65.0	71.0	6.0	0.9	648726	7692759	68	-55	330	252	RC
HERC617	Crow	116.0	129.0	13.0	0.7	648726	7692759	68	-55	330	252	RC
HERC617	Crow	149.0	155.0	6.0	0.9	648726	7692759	68	-55	330	252	RC
HERC617	Crow	160.0	173.0	13.0	1.6	648726	7692759	68	-55	330	252	RC
incl	Crow	168.0	169.0	1.0	13.8	648725	7692759	67	-55	330	252	RC
HERC617	Crow	185.0	188.0	3.0	8.3	648726	7692759	68	-55	330	252	RC
incl	Crow	185.0	186.0	1.0	23.1	648725	7692759	67	-55	330	252	RC
HERC618	Crow	40.0	44.0	4.0	0.7	648766	7692690	68	-54	329	276	RC
HERC618	Crow	96.0	98.0	2.0	1.8	648766	7692690	68	-54	329	276	RC
HERC618	Crow	139.0	153.0	14.0	1.0	648766	7692690	68	-54	329	276	RC
HERC618	Crow	171.0	183.0	12.0	2.1	648766	7692690	68	-54	329	276	RC
HERC618	Crow	227.0	230.0	3.0	1.8	648766	7692690	68	-54	329	276	RC
HERC619	Crow	25.0	39.0	14.0	1.0	648514	7692966	67	-56	332	162	RC
HERC620	Crow	52.0	59.0	7.0	1.4	648557	7692893	67	-56	330	216	RC
HERC622	Crow	34.0	35.0	1.0	2.9	648634	7692758	67	-55	332	270	RC
HERC622	Crow	41.0	52.0	11.0	0.7	648634	7692758	67	-55	332	270	RC

HoleID	Zone	Depth From (m)	Depth To (m)	Down hole Width (m)	Au (g/t)	Collar East (GDA94)	Collar North (GDA94)	Coll ar RL (GD A94)	Dip (degree s)	Azimuth (GDA94)	Hole Depth (m)	Hole Type
HERC622	Crow	69.0	75.0	6.0	0.6	648634	7692758	67	-55	332	270	RC
HERC622	Crow	108.0	118.0	10.0	2.0	648634	7692758	67	-55	332	270	RC
HERC622	Crow	149.0	154.0	5.0	0.6	648634	7692758	67	-55	332	270	RC
HERC622	Crow	191.0	198.0	7.0	0.6	648634	7692758	67	-55	332	270	RC
HERC622	Crow	227.0	230.0	3.0	3.0	648634	7692758	67	-55	332	270	RC
HERC623	Crow	54.0	56.0	2.0	2.6	648674	7692689	68	-56	333	300	RC
HERC623	Crow	69.0	70.0	1.0	2.9	648674	7692689	68	-56	333	300	RC
HERC623	Crow	82.0	85.0	3.0	0.7	648674	7692689	68	-56	333	300	RC
HERC623	Crow	124.0	132.0	8.0	1.0	648674	7692689	68	-56	333	300	RC
HERC623	Crow	139.0	144.0	5.0	3.4	648674	7692689	68	-56	333	300	RC
HERC623	Crow	150.0	159.0	9.0	1.1	648674	7692689	68	-56	333	300	RC
HERC623	Crow	164.0	169.0	5.0	1.6	648674	7692689	68	-56	333	300	RC
HERC623	Crow	210.0	228.0	18.0	3.4	648674	7692689	68	-56	333	300	RC
incl	Crow	211.0	212.0	1.0	9.4	648674	7692689	68	-56	333	300	RC
incl	Crow	226.0	228.0	2.0	17.2	648674	7692689	68	-56	333	300	RC
HERC623	Crow	241.0	245.0	4.0	3.7	648674	7692689	68	-56	333	300	RC
HERC624	Crow	97.0	98.0	1.0	3.3	648713	7692619	67	-55	331	222	RC
HERC624	Crow	134.0	146.0	12.0	1.5	648713	7692619	67	-55	331	222	RC
incl	Crow	143.0	146.0	3.0	3.4	648713	7692619	67	-55	331	222	RC
HERC624	Crow	218.0	220.0	2.0	1.6	648713	7692619	67	-55	331	222	RC
HERC636	Crow	34.0	47.0	13.0	0.6	648551	7692821	67	-56	330	234	RC
HERC636	Crow	56.0	64.0	8.0	3.2	648551	7692821	67	-56	330	234	RC
incl	Crow	60.0	61.0	1.0	20.2	648551	7692821	67	-56	330	234	RC
HERC636	Crow	73.0	88.0	15.0	0.9	648551	7692821	67	-56	330	234	RC
HERC636	Crow	111.0	122.0	11.0	0.8	648551	7692821	67	-56	330	234	RC
HERC636	Crow	132.0	155.0	23.0	0.9	648551	7692821	67	-56	330	234	RC
incl	Crow	144.0	145.0	1.0	10.8	648551	7692821	67	-56	330	234	RC
HERC636	Crow	168.0	172.0	4.0	0.6	648551	7692821	67	-56	330	234	RC

JORC Code, 2012 Edition – Table 1

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information. 	 All drilling and sampling was undertaken in an industry standard manner Core samples were collected with a diamond rig drilling mainly NQ2 diameter core. After logging and photographing, NQ2 drill core was cut in half, with one half sent to the laboratory for assay and the other half retained. HQ and PQ core was quartered, with one quarter sent for assay. Holes were sampled over mineralised intervals to geological boundaries on a nominal 1m basis. Sample weights ranged from 2-4kg RC holes were sampled on a 1m basis with samples collected from a cone splitter mounted on the drill rig cyclone. 1m sample ranges from a typical 2.5- 3.5kg Aircore samples were collected by spear from 1m sample piles and composited over 4m intervals. Samples for selected holes were collected on a 1m basis by spear from 1m sample piles. Sample weights ranges from around 1-3kg. The independent laboratory pulverises the entire sample for analysis as described below. Industry prepared independent standards are inserted approximately 1 in 20 samples. The independent laboratory then takes the samples which are dried, split, crushed and pulverized prior to analysis as described below. Sample sizes are considered appropriate for the material sampled. The samples are considered representative and appropriate for this type of drilling. Diamond core and RC samples are appropriate for use in a resource estimate.
Drilling techniques	 Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.). 	 Diamond core diameters are - NQ2 (51mm), HQ3 (61mm), PQ (85mm). Reverse Circulation (RC) holes were drilled with a 5 1/2-inch bit and face sampling hammer. Aircore holes were drilled with an 83mm diameter blade bit

Criteria	JORC Code explanation	Commentary
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Core recovery is measured for each drilling run by the driller and then checked by the Company geological team during the mark up and logging process. RC and aircore samples were visually assessed for recovery. Samples are considered representative with generally good recovery. Deeper RC and aircore holes encountered water, with some intervals having less than optimal recovery and possible contamination. No sample bias is observed.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography. The total length and percentage of the relevant intersections logged. 	 The entire hole has been geologically logged and core was photographed by Company geologists, with systematic sampling undertaken based on rock type and alteration observed RC and diamond sample results are appropriate for use in a resource estimation, except where sample recovery is poor. The aircore results provide a good indication of mineralisation but are not used in resource estimation.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all subsampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 Core samples were collected with a diamond drill rig drilling NQ2, HQ3 or PQ diameter core. After logging and photographing, NQ2 drill core was cut in half, with one half sent to the laboratory for assay and the other half retained. HQ and PQ core was quartered, with one quarter sent for assay. Holes were sampled over mineralised intervals to geological boundaries on a nominal 1m basis. RC sampling was carried out by a cone splitter on the rig cyclone and drill cuttings were sampled on a 1m basis in bedrock and 4m composite basis in cover. Aircore samples were collected by spear from 1m sample piles and composited over 4m intervals. Samples for selected holes were collected on a 1m basis by spear from 1m sample piles. Industry prepared independent standards are inserted approximately 1 in 20 samples. Each sample was dried, split, crushed and pulverised. Sample sizes are considered appropriate for the material sampled. The samples are considered representative and appropriate for this type of drilling Core and RC samples are appropriate for use in a resource estimate. Aircore samples are generally of good quality and appropriate for delineation of geochemical trends but are not generally used in resource estimates

Criteria	JORC Code explanation	Commentary
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established. 	 The samples were submitted to a commercial independent laboratory in Perth, Australia. For diamond core and RC samples Au was analysed by a 50g charge Fire assay fusion technique with an AAS finish and multi-elements by ICPAES and ICPMS Aircore samples were analysed for Au using 25g aqua regia extraction with ICPMS finish and multi-elements by ICPAES and ICPMS Aircore samples were analysed for Au using 25g aqua regia extraction with ICPMS finish and multi-elements by ICPAES and ICPMS The techniques are considered quantitative in nature. As discussed previously certified reference standards were inserted by the Company and the laboratory also carries out internal standards in individual batches The standards and duplicates were considered satisfactory
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Sample results have been merged by the company's database consultants. Results have been uploaded into the company database, checked and verified. No adjustments have been made to the assay data. Results are reported on a length weighted basis.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Diamond and RC drill hole collar locations are located by DGPS to an accuracy of +/-10cm. Aircore hole collar locations are located by DGPS to an accuracy of +/-10cm., or by handheld GPS to an accuracy of 3m. Locations are given in GDA94 zone 50 projection Diagrams and location table are provided in the report Topographic control is by detailed airphoto and Differential GPS data.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing, and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Drill spacing varies from 80m x 40m to 320m x 80m. All holes have been geologically logged and provide a strong basis for geological control and continuity of mineralisation. It has not yet been determined if data spacing and distribution of RC and diamond drilling is sufficient to provide support for the results to be used in a resource estimate. Sample compositing has not been applied except in reporting of drill intercepts, as described in this Table
Orientation of data in relation to	• Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	 The drilling is believed to be approximately perpendicular to the strike of mineralisation where known and therefore the sampling is considered representative

Criteria	JORC Code explanation	Commentary
geological structure	 If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 of the mineralised zone. In some cases, drilling is not at right angles to the dip of mineralised structures and as such true widths are less than downhole widths. This is allowed for when geological interpretations are completed.
Sample security	• The measures taken to ensure sample security.	• Samples were collected by company personnel and delivered direct to the laboratory via a transport contractor.
Audits or reviews	 The results of any audits or reviews of sampling techniques and data. 	 No audits have been completed. Review of QAQC data has been carried out by database consultants and company geologists.

Section 2 Reporting of Exploration Results (Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
<i>Mineral tenement and land tenure status</i>	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a license to operate in the area. 	 Drilling occurs on various tenements held by De Grey Mining Ltd or its 100% owned subsidiaries. The Hemi Prospect is approximately 60km SSW of Port Hedland.
Exploration done by other parties	 Acknowledgment and appraisal of exploration by other parties. 	 The tenements have had various levels of previous surface geochemical sampling and wide spaced aircore and RAB drilling by De Grey Mining. Limited previous RC drilling was carried out at the Scooby Prospect. Airborne aeromagnetics/radiometrics has been flown previously.
Geology	 Deposit type, geological setting and style of mineralisation. 	 The mineralisation style is not well understood to date but is thought to be hydrothermally emplaced gold mineralisation within structures and intrusions. Host rocks comprise igneous rocks intruding Mallina Basin metasediments. Style is similar to some other Western Australian gold deposits.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding 	Drill hole location and directional information provide in the report.

Criteria	JORC Code explanation	Commentary
	of the report, the Competent Person should clearly explain why this is the case.	
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Results are reported to a minimum cutoff grade of 0.5g/t gold with an internal dilution of 4m maximum. Higher grade intervals included in the above intercepts are reported at a 3g/t Au lower cut with an internal dilution of 2m maximum. Intercepts are length weighted averaged. No maximum cuts have been made.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known'). 	 The drill holes are interpreted to be approximately perpendicular to the strike of mineralisation. Drilling is not always perpendicular to the dip of mineralisation and true widths are less than downhole widths. Estimates of true widths will only be possible when all results are received, and final geological interpretations have been completed.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	 Plans and sections are provided in the report.
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	 All drill collar locations are shown in figures and all significant results are provided in this report. The report is considered balanced and provided in context.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	 Drilling is currently widely spaced and further details will be reported in future releases when data is available.
Further work	 The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Follow up aircore drilling will be undertaken to test for strike extensions to mineralisation. Programs of follow up RC and diamond drilling aimed at extending resources at depth and laterally are underway.