

4th MARCH 2021

OKLO CONFIRMS NEW HANGING WALL ZONE AND REPORTS FURTHER HIGH GRADE GOLD INTERCEPTS OF UP TO 42.6g/t GOLD (1.4oz/t)

Oklo Resources Limited ("Oklo" or "the Company") is pleased to report further drilling results from the 2021 field season at its flagship Dandoko Project located in west Mali, Africa.

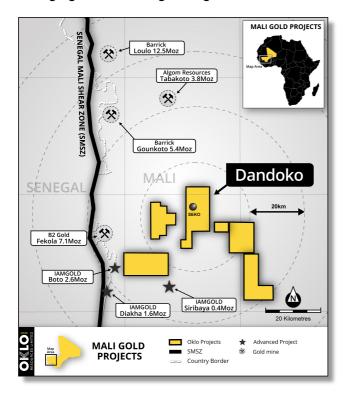
HIGHLIGHTS

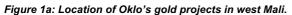
► Assay results received from infill and step-out resource definition drilling at **SK1** continues to intersect high-grade gold mineralisation including;

RDSK20-102 (SK1 North - infill)

- ▶ 14m at 4.17g/t gold from 155m, including,
 - ▶ 3m at 17.8g/t gold that includes
 - ▶ 1m at 42.6g/t gold

RDSK21-104 (SK1 South - step-out)


- ▶ 35m at 1.36g/t gold from 61m, including,
 - ▶ 5m at 5.34g/t gold that includes
 - ► 1m at 13.60g/t gold
- ► Hole RDSK21-104 successfully extended the emerging hanging wall lode down dip from the previously reported shallow gold intersection of **10m at 4.04g/t gold** from 11m.¹
- ► The hanging wall lode is associated with a wide zone of altered and deformed, brecciated sediments that averages 1g/t gold over 57m from a downhole depth of 39m. Follow-up drilling at depth is currently in progress.
- ► Assay results from reconnaissance shallow aircore (AC) drilling confirm further growth opportunities in close proximity to Seko for follow-up evaluation including:
 - ▶ 17m at 1.02g/t gold from 32m, including 4m at 2.75g/t gold, to the immediate southwest of SK1 South
 - ▶ 17m at 0.64g/t gold from 33m, including 6m at 1.13g/t gold, ~1km south of SK3


"We are highly encouraged by the wide zone of hydrothermal alteration emerging within the hanging wall at SK1 South associated with medium to high grade gold mineralisation. With the resource definition drilling program now complete, we remain on track to deliver our maiden Mineral Resource estimate during March." - commented Oklo's Managing Director, Simon Taylor.

¹ Refer ASX announcement 18th January 2021, "Resource Drilling Expands SK1 South at Depth and Along Strike

Oklo Resources Limited ("Oklo" or "the Company") is pleased to report the receipt of further assay results from its 2021 drilling campaign over Seko within the Company's flagship Dandoko Project.

Oklo's Dandoko Project is located within the Kenieba Inlier of west Mali, approximately 30km east of B2Gold's 7.1Moz Fekola Project and 50km south-southeast of Barrick Gold's 18Moz Loulo (including Yalea) / Gounkoto complex (Figure 1a). IAMGold's 2.0Moz Diakha/Siribaya gold resource projects are located to the immediate southwest of Oklo's ~505km² holding within this emerging world-class gold region.

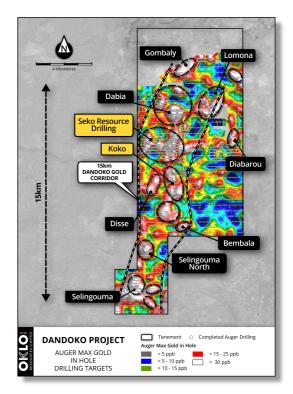


Figure 1b: Location of Seko and Koko gold trends within the Dandoko gold corridor

Oklo previously outlined extensive oxide-hosted gold mineralisation along the ~3km SK1 North –SK1 South – Koko trend (Figure 2a). The current drilling program is focussed on completing definition of the oxide zone along this trend in advance of finalising the maiden Mineral Resource estimate (MRE).

The assay results reported in this announcement comprise 6 diamond (DD) holes and 15 reverse circulation (RC) holes.

SK1 RESOURCE DRILLING RESULTS

The latest assay results have successfully extended the emerging SK1 South hanging wall zone down dip from the previously reported shallow gold intersection of 10m at 4.04g/t gold² from a downhole depth of 11m. Refer Figure 3, Section 1396300mN.

Hole RDSK21-104 intersected **35m at 1.36g/t gold** from a downhole depth of 61m, including, **5m at 5.34g/t gold** that included **1m at 13.60g/t gold**. This intersection is hosted within a 57m zone averaging 1g/t gold from 39m associated with altered and deformed brecciated sediments. The strong brecciation along with a variable weathering profile suggests that the hanging wall zone is proximal to the intersection of an interpreted northeast-trending structure with the principal north-northeast trending structure (host to the SK1 North and South mineralisation). Follow-up drilling is currently in progress over this new zone.

² Refer ASX announcement 18th January 2021, "Resource Drilling Expands SK1 South at Depth and Along Strike

4th MARCH 2021

ASX ANNOUNCEMENT

Infill DD hole RDSK20-102 returned a high-grade gold intersection of **14m at 4.17g/t gold** from 155m, including **3m at 17.8g/t gold** that included **1m at 42.6g/t gold**. This intersection at SK1 North firmed up the geological model of the deeper mineralisation. Refer Figure 4 Section F-F".

Other significant intersections from the resource definition drilling program included 1m at 5.49g/t gold and 3m at 1.35g/t gold in hole RCSK21-302 located at the southern end of SK1 South and 2m at 1.79g/t gold and 3m at 1.14g/t gold in hole RCSK21-295.

Further south at the Koko prospect, additional zones of gold mineralisation were intersected including 1m at 2.98g/t gold and 1m at 2.30g/t gold in hole RCKK21-291, and 4m at 0.54g/t gold and 1m at 2.20g/t gold in hole RCKK21-292.

RECONNAIASSANCE DRILLING RESULTS

A total of 88 shallow reconnaissance aircore (AC) holes have been completed exploring for new targets in close proximity to the main MRE areas around Seko. Broad zones of gold mineralisation were intersected in several holes confirming further growth opportunities for follow-up evaluation. Highlights included 17m at 1.02g/t gold from 32m, including 4m at 2.75g/t gold, to the immediate southwest of SK1 South and 17m at 0.64g/t gold from 33m, including 6m at 1.13g/t gold, ~1km south of SK3 (Figure 2a).

The significant drill hole intersections are summarised in Table 1 and Table 3, with all drill hole locations summarised in Table 2 and presented in Figures 2a – 2b, 3 and 4.

ONGOING WORK PLANS

The resource drilling program has been completed with all remaining samples dispatched to the laboratory for analysis. Upon receipt, the assay results will be incorporated into the MRE, which is on track for delivery during March.

Reconnaissance AC drilling is ongoing, testing additional targets in close proximity to Seko identified through a combination of previous auger geochemical drilling, induced polarisation (IP) geophysical surveys and geological mapping.

Regional programs are also commencing on the Kandiole, Kouroufing, Sari and Kossaya licences.

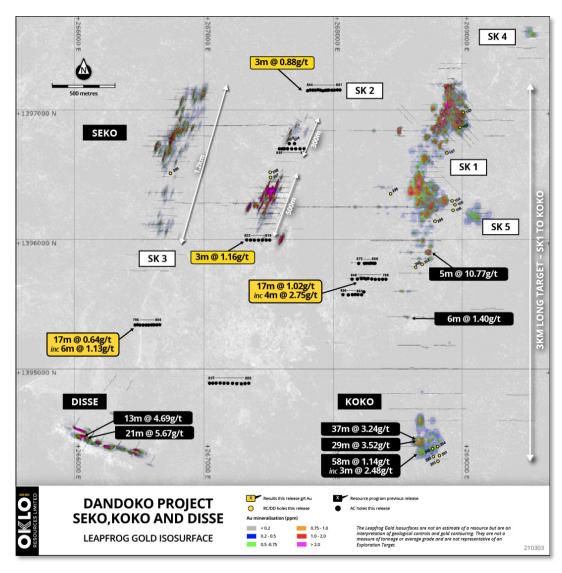


Figure 2a: Drill plan showing Leapfrog gold isosurfaces from previous drilling programs (AC, RC and DD) over Seko Anomalies SK1-5, Koko and Disse, completed holes

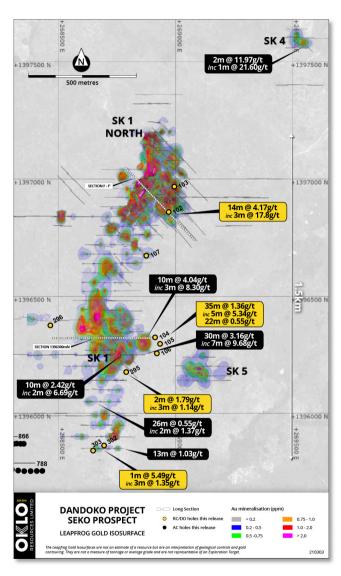


Figure 2b: Zoomed drill plan showing Leapfrog gold isosurfaces from previous drilling programs (AC, RC and DD) over SK1, completed holes

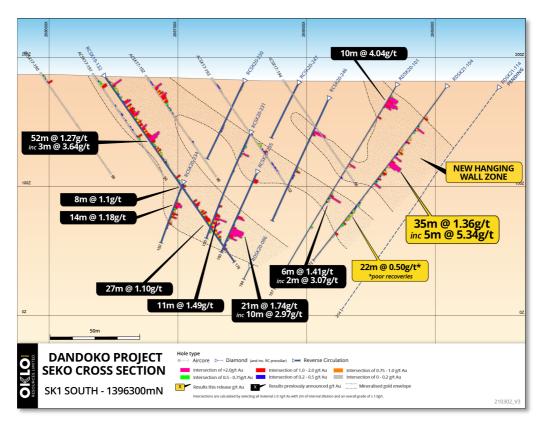


Figure 3: SK1 South Cross Section 1396300N

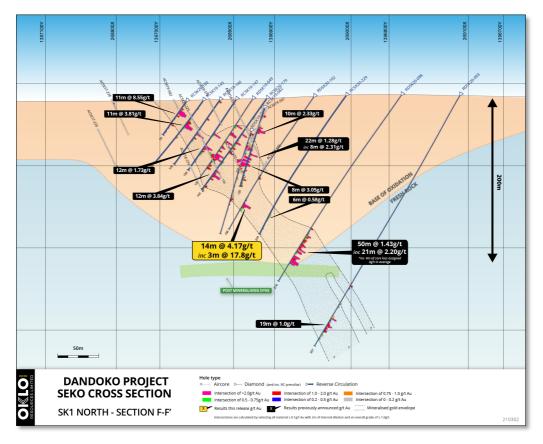


Figure 4: SK1 North Cross Section F-F'

COVID-19 UPDATE

With the easing of in-country restrictions by the Malian government and all international borders now open, the Company has resumed normal staff and contractor rotations and break schedules including for expatriate staff.

The Company will continue to maintain a focus on the welfare of its employees and is continuing with the measures implemented during the COVID-19 pandemic including; health screening and temperature monitoring, change in rosters, social distancing protocols, a change in flow of staff to and from local communities, and the minimisation of staff in the Bamako administrative office.

The situation is being continuously monitored by our in-country Director, Dr Madani Diallo and further actions may be appropriately undertaken as deemed necessary.

ABOUT SEKO

Extensive gold anomalies have previously been outlined by auger drilling along the 12km-long Dandoko gold corridor (Figure 1b). The potential of this corridor to host large, gold mineralised systems has been demonstrated by the drilling success at Seko and several other nearby prospect areas including Koko located ~ 3km to the south. Seko comprises five coherent auger gold trends (SK1-5) with a combined strike length of ~7km.

The initial phase of drilling at SK1 North in late 2019 returned a spectacular intersection of **47m at 10.95g/t gold** from 48m³. Follow-up drilling returned further exceptional intersections including **55m at 7.65g/t gold** from 54m, **51m at 4.28g/t gold** from 63m, **31m at 7.12g/t gold** from **30m and 29m at 2.46g/t gold** from 51m.⁴

A series of step-out DD holes testing the down-dip continuity of the high-grade gold mineralisation successfully intersected **30m at 8.54g/t gold** from 135m⁵ and **38m at 5.65g/t gold** from 159m⁶ in the deepest holes and **34m at 4.07g/t gold** from 83m⁷ immediately along strike.

- ENDS -

This announcement is authorised for release by Oklo's Managing Director, Simon Taylor.

For further information, please contact: Simon Taylor

Managing Director

T: +61 2 8319 9233

E: staylor@okloresources.com

Dominic Allen

Business Development Manager

T: +61 468 544 888

E: dallen@okloresources.com

³ Refer ASX announcement 20th November 2019, "Spectacular Hit of 47m at 10.97g/t Gold from Seko"

⁴ Refer ASX announcement 29th January 2020, "New High-Grade Zone Confirmed at Seko – 55m at 7.65g/t Gold"

⁵ Refer ASX announcement 5th February 2020, "High-Grade Continuity Confirmed at Depth at Seko"

⁶ Refer ASX announcement 1st April 2020, "SK1 North Confirmed Over 500m Includes 32m at 10.57g/t Gold"

⁷ Refer ASX announcement 25th February 2020, "SK1 Continues to Grow Along Strike And At Depth"

Table 1: Summary of significant intersections

AREA	HOLE No.	FROM (m)	TO (m)	WIDTH (m)	GOLD (g/t)
	ACSK20-794	32	49	17	1.02
	includes	32	36	4	2.75
	ACSK20-788	36	39	3	0.64
	RCSK21-295	69	71	2	1.79
		125	128	3	1.14
	RCSK21-300	38	39	1	1.06
	RCSK21-302	1	2	1	5.49
		26	29	3	1.35
	RCSK21-303	12	14	2	0.62
		92	93	1	0.87
	RDSK20-102	123	124	1	1.12
		155	169	14	4.17
SK1	includes	160	163	3	17.8
	includes	161	162	1	42.6
	RDSK21-103	127	129	2	0.74
	RDSK21-104	30	32	2	1.09
		39	43	4	1.19
	i	61	96	35	1.36
	includes	73	78	5	5.34
		114	137	22	0.50*
		144	145	1	1.03
	RDSK21-105	161	163	2	1.59
		170	175	5	0.73
	RDSK21-106	147	156	9	0.55
	includes	147	150	3	1.03
	ACSK21-846	27	30	3	0.57
	ACSK21-848	42	45	3	0.55
	ACSK21-867	18	24	6	0.35
	ACSK21-872	78	87	9	0.38
CV2	ACSK21-873	30	36	6	0.41
SK2	RCSK21-305	64	65	1	0.52
	ACSK21-818	0	3	3	1.61
	ACSK21-827	36	39	3	0.31
	ACSK21-828	15	24	9	0.38
	ACSK21-834	15	18	3	0.88
	ACSK20-795	33	50	17	0.64
SK3	includes	39	45	6	1.13
	RCSK21-299	18	19	1	1.48
	RCKK20-288	50	51	1	0.81
W.I	RCKK20-289	81	84	3	1.05
Koko		91	93	2	1.93
	RCKK20-291	35	36	1	2.98

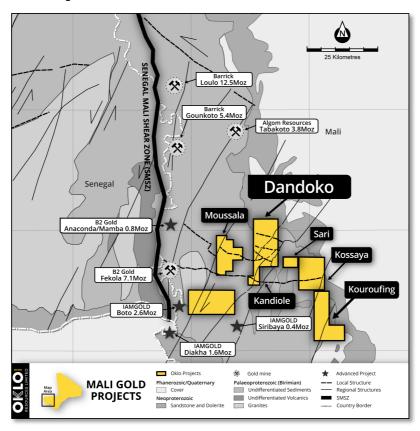
AREA	HOLE No.	FROM (m)	TO (m)	WIDTH (m)	GOLD (g/t)
		106	107	1	2.30
	RCKK20-292	24	28	4	0.54
		35	37	2	0.77
		104	105	1	2.20
	RCKK20-293	63	64	1	1.38
		101	102	1	2.17
	RCKK20-294	20	25	5	0.51

Intervals are reported using a threshold where the interval has a 0.3g/t Au average or greater over the sample interval and selects all material greater than 0.10g/t Au allowing for up to three samples of included dilution every 10m. Sampling was completed as 1m for DD/RC/AC drilling. * Poor recovery

Table 2: SK1 DD & RC drill hole locations

HOLE No.	Easting	Northing	RL	Length	Azimuth	Inc.
RC AND DD RESOURCE DRILLING						
RCKK20-290	268761	1394397	180	90	315	-55
RCKK20-291	268813	1394345	179	120	315	-55
RCKK20-292	268767	1394337	178	109	315	-55
RCKK20-293	268802	1394301	176	105	315	-55
RCKK20-294	268800	1394415	181	79	315	-55
RCSK21-295	268780	1396144	174	180	315	-55
RCSK21-296	268438	1396354	191	84	315	-55
RCSK21-297	267515	1396480	168	140	90	-55
RCSK21-298	267513	1396520	172	140	90	-55
RCSK21-299	266747	1396512	195	120	315	-55
RCSK21-300	268910	1396320	180	156	270	-55
RCSK21-302	268680	1395813	166	125	270	-60
RCSK21-303	268630	1395790	167	120	270	-60
RCSK21-304	267700	1396740	174	96	270	-55
RCSK21-305	267659	1396740	175	72	270	-55
RDSK20-102	268971	1396865	187	196.1	315	-55
RDSK21-103	268997	1396980	185	180	270	-60
RDSK21-104	268910	1396300	179	172.2	270	-55
RDSK21-105	268932	1396271	179	236	270	-60
RDSK21-106	268918	1396228	180	238.5	270	-60
RDSK21-107	268870	1396668	190	181.3	315	-55
	SHALL	OW RECONN	IAISSANCE	AC DRILLING	G	
ACSK20-788	268402	1395699	178	52	270	-60
ACSK20-789	268377	1395698	177	54	270	-60
ACSK20-790	268349	1395698	177	58	270	-60
ACSK20-791	268320	1395698	176	54	270	-60
ACSK20-792	268293	1395700	175	54	270	-60
ACSK20-793	268265	1395705	174	66	270	-60
ACSK20-794	268235	1395706	173	78	270	-60

HOLE No.	Easting	Northing	RL	Length	Azimuth	Inc.
ACSK20-795	266475	1395347	184	36	270	-60
ACSK20-796	266494	1395349	184	36	315	-60
ACSK20-797	266513	1395347	183	42	270	-60
ACSK20-798	266537	1395347	183	42	270	-60
ACSK20-799	266560	1395347	183	36	270	-60
ACSK20-800	266579	1395347	183	42	270	-60
ACSK20-801	266602	1395348	183	36	270	-60
ACSK20-802	266619	1395349	183	36	270	-60
ACSK20-803	266641	1395348	183	42	270	-60
ACSK20-804	266665	1395350	183	48	270	-60
ACSK21-805	267348	1394900	163	60	270	-60
ACSK21-806	267320	1394898	163	58	270	-60
ACSK21-807	267292	1394895	164	72	270	-60
ACSK21-808	267256	1394897	164	66	270	-60
ACSK21-809	267223	1394899	165	72	270	-60
ACSK21-810	267188	1394900	166	60	270	-60
ACSK21-811	267158	1394900	166	60	270	-60
ACSK21-812	267128	1394902	166	64	270	-60
ACSK21-813	267097	1394901	167	54	270	-60
ACSK21-814	267071	1394901	167	48	270	-60
ACSK21-815	267047	1394900	168	54	270	-60
ACSK21-816	267509	1395999	164	54	270	-55
ACSK21-817	267483	1396000	165	60	270	-55
ACSK21-818	267453	1396000	166	60	270	-55
ACSK21-819	267423	1395999	167	65	270	-55
ACSK21-820	267391	1395999	167	60	270	-55
ACSK21-821	267361	1396000	168	60	270	-55
ACSK21-822	267332	1396001	168	66	270	-55
ACSK21-823	267774	1396700	168	66	270	-60
ACSK21-824	267742	1396700	169	66	270	-60
ACSK21-825	267709	1396700	171	60	270	-60
ACSK21-826	267678	1396700	171	66	270	-60
ACSK21-827	267646	1396701	173	48	270	-60
ACSK21-828	267621	1396700	173	36	270	-60
ACSK21-829	267604	1396700	172	42	270	-60
ACSK21-830	267584	1396700	172	54	270	-60
ACSK21-831	268049	1397151	170	42	270	-60
ACSK21-832	268029	1397152	171	48	270	-90
ACSK21-833	268006	1397151	172	42	270	-60
ACSK21-834	267986	1397150	173	48	270	-60
ACSK21-835	267962	1397151	174	24	0	-90
ACSK21-836	267951	1397150	174	30	270	-60
ACSK21-837	267936	1397149	175	36	270	-60



HOLE No.	Easting	Northing	RL	Length	Azimuth	Inc.
ACSK21-838	267917	1397146	175	36	270	-60
ACSK21-839	267898	1397150	175	36	270	-60
ACSK21-840	267881	1397153	176	42	270	-60
ACSK21-841	267861	1397150	176	42	270	-60
ACSK21-842	267841	1397150	176	42	270	-60
ACSK21-843	267820	1397151	176	42	270	-60
ACSK21-844	267801	1397146	175	36	270	-60
ACSK21-845	269173	1397801	179	42	270	-60
ACSK21-846	268250	1395701	174	72	270	-55
ACSK21-847	268213	1395703	172	60	270	-55
ACSK21-848	268183	1395700	171	84	270	-55
ACSK21-849	268142	1395699	171	60	270	-55
ACSK21-850	268233	1395602	172	48	270	-55
ACSK21-851	268215	1395580	172	54	270	-55
ACSK21-852	268187	1395581	171	42	270	-55
ACSK21-853	268165	1395581	171	42	270	-55
ACSK21-854	268144	1395580	170	60	270	-55
ACSK21-855	268113	1395578	169	84	270	-55
ACSK21-856	269152	1397802	179	48	270	-60
ACSK21-857	269127	1397800	178	42	270	-60
ACSK21-858	269106	1397800	178	42	270	-60
ACSK21-859	269086	1397800	178	48	270	-60
ACSK21-860	269062	1397800	177	72	270	-60
ACSK21-861	269027	1397801	176	78	270	-60
ACSK21-862	268989	1397801	176	78	270	-60
ACSK21-863	268951	1397800	175	72	270	-60
ACSK21-864	268915	1397800	175	66	270	-60
ACSK21-865	268072	1395580	169	84	270	-55
ACSK21-866	268318	1395821	177	24	270	-55
ACSK21-867	268304	1395821	177	30	270	-55
ACSK21-868	268287	1395822	177	24	270	-55
ACSK21-869	268273	1395821	177	36	270	-55
ACSK21-870	268252	1395821	177	30	270	-55
ACSK21-871	268237	1395820	177	96	270	-55
ACSK21-872	268192	1395820	177	96	270	-55
ACSK21-873	269624	1397879	183	78	270	-55
ACSK21-874	269587	1397879	183	72	270	-55
ACSK21-875	269551	1397878	183	66	270	-55

ABOUT OKLO RESOURCES

Oklo Resources is an ASX listed gold exploration company with a total landholding of 1,405km² covering highly prospective greenstone belts in Mali, West Africa. The Company's current focus is on its West Mali landholding (~505km²), and in particular its flagship Dandoko Project located east of the prolific Senegal-Mali Shear Zone and in close proximity to numerous world-class gold operations. The Company has a corporate office located in Sydney, Australia and an expert technical team based in Bamako, Mali, led by Dr Madani Diallo who has previously been involved in several significant discoveries totalling circa 30Moz gold.

Location of Oklo Projects in West Mali

Competent Person's Declaration

The information in this announcement that relates to Exploration Results is based on information compiled by geologists employed by Africa Mining (a wholly owned subsidiary of Oklo Resources) and reviewed by Mr Simon Taylor, who is a member of the Australian Institute of Geoscientists. Mr Taylor is the Managing Director of Oklo Resources Limited. Mr Taylor is considered to have sufficient experience deemed relevant to the style of mineralisation and type of deposit under consideration, and to the activity that he is undertaking to qualify as a Competent Person as defined in the 2012 edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves" (the 2012 JORC Code). Mr Taylor consents to the inclusion in this report of the matters based on this information in the form and context in which it appears.

This report contains information extracted from previous ASX market announcements reported in accordance with the JORC Code (2012) and available for viewing at www.okloresources.com. Oklo Resources confirms that in respect of these announcements it is not aware of any new information or data that materially affects the information included in any original ASX market announcement. The announcements are as follows:

DANDOKO PROJECT

Announcements dated 21st December 2016, 30th January 2017, 21st February 2017, 3rd March 2017, 7th March 2017, 15th March 2017, 30th March 2017, 6th April 2017, 26th April 2017, 29th May 2017, 21st June 2017, 12th July 2017, 25th July 2017, 14th August 2017, 16th August 2017, 4th September 2017, 28th November 2017, 5th December 2017, 20th December 2017, 5th February 2018, 22nd February 2018, 8th March 2018, 28th March 2018, 3rd May 2018, 16th May 2018, 22nd May 2018, 2nd July 2018, 6th August 2018, 28th August 2018, 3rd September 2018, 19th September 2018, 30th January 2019, 6th March 2019, 15th August 2019, 22nd October 2019, 20th November 2019, 10th December 2019, 17th December 2019, 14th January 2020, 20th January 2020, 29th January 2020, 5th February 2020, 25th February 2020, 1st April 2020, 7th April 2020, 29th April 2020, 28th May 2020, 22nd May 2020, 22nd July 2020, 27nd August 2020, 31st August 2020, 26th October 2020, 9th December 2020, 17th December 2020 and 18th January 2021.

Table 3: Seko RC and DD assay results ≥0.10g/t Au

HOLE No.	FROM (m)	TO (m)	GOLD (g/t)
RCKK20-290	10	11	0.10
RCKK20-290	14	15	0.27
RCKK20-290	15	16	0.18
RCKK20-290	17	18	0.16
RCKK20-290	18	19	0.37
RCKK20-290	19	20	0.20
RCKK20-290	22	23	0.13
RCKK20-290	29	30	0.13
RCKK20-290	30	31	0.56
RCKK20-290	31	32	0.41
RCKK20-290	35	36	0.12
RCKK20-290	36	37	0.14
RCKK20-290	37	38	0.20
RCKK20-290	38	39	0.20
RCKK20-290	39	40	0.15
RCKK20-290	40	41	0.41
RCKK20-290	41	42	0.40
RCKK20-290	42	43	0.23
RCKK20-290	43	44	0.12
RCKK20-290	44	45	0.14
RCKK20-290	45	46	0.14
RCKK20-290	47	48	0.14
RCKK20-290	48	49	0.19
RCKK20-290	49	50	0.12
RCKK20-290	52	53	0.18
RCKK20-290	53	54	0.10
RCKK20-290	65	66	0.12
RCKK20-290	66	67	0.13
RCKK20-290	67	68	0.11
RCKK20-290	68	69	0.10
RCKK20-290	75	76	0.49
RCKK20-290	76	77	0.42
RCKK20-290	77	78	0.16
RCKK20-290	80	81	0.13
RCKK20-290	81	82	0.14
RCKK20-290	82	83	0.31
RCKK20-290	84	85	0.10
RCKK20-290	86	87	0.12
RCKK20-291	34	35	0.13
RCKK20-291	35	36	2.98
RCKK20-291	38	39	0.11
RCKK20-291	39	40	0.12

HOLE No.	FROM	ТО	GOLD
DCKK20 204	(m)	(m)	(g/t)
RCKK20-291	40	41	0.64
RCKK20-291	41	42	1.08
RCKK20-291	42	43	0.17
RCKK20-291	43	44	0.48
RCKK20-291	84	85	0.13
RCKK20-291	102	103	0.12
RCKK20-291	104	105	0.21
RCKK20-291	105	106	0.47
RCKK20-291	106	107	2.30
RCKK20-291	107	108	0.41
RCKK20-291	108	109	0.37
RCKK20-291	112	113	0.18
RCKK20-291	114	115	0.48
RCKK20-291	118	119	1.10
RCKK20-292	12	13	0.38
RCKK20-292	18	19	0.12
RCKK20-292	23	24	0.20
RCKK20-292	24	25	0.70
RCKK20-292	25	26	0.36
RCKK20-292	26	27	0.74
RCKK20-292	27	28	0.36
RCKK20-292	30	31	0.10
RCKK20-292	34	35	0.15
RCKK20-292	35	36	0.66
RCKK20-292	36	37	0.87
RCKK20-292	39	40	0.11
RCKK20-292	40	41	0.30
RCKK20-292	44	45	0.25
RCKK20-292	46	47	0.36
RCKK20-292	50	51	0.76
RCKK20-292	51	52	0.44
RCKK20-292	52	53	0.23
RCKK20-292	64	65	0.17
RCKK20-292	66	67	0.47
RCKK20-292	67	68	0.11
RCKK20-292	72	73	0.17
RCKK20-292	73	74	0.12
RCKK20-292	78	79	0.12
RCKK20-292	81	82	0.12
RCKK20-292	89	90	0.10
RCKK20-292	90	91	0.10
	91		0.10
RCKK20-292	1 31	92	0.11

HOLE No.	FROM (m)	TO (m)	GOLD (g/t)
RCKK20-292	92	93	0.25
RCKK20-292	93	94	0.44
RCKK20-292	94	95	0.17
RCKK20-292	95	96	0.23
RCKK20-292	96	97	0.12
RCKK20-292	97	98	0.14
RCKK20-292	98	99	0.18
RCKK20-292	99	100	0.11
RCKK20-292	100	101	0.20
RCKK20-292	101	102	0.18
RCKK20-292	103	104	0.12
RCKK20-292	104	105	2.20
RCKK20-292	105	106	0.32
RCKK20-292	106	107	0.26
RCKK20-292	108	109	0.12
RCKK20-293	39	40	0.14
RCKK20-293	63	64	1.38
RCKK20-293	70	71	0.20
RCKK20-293	71	72	0.11
RCKK20-293	77	78	0.17
RCKK20-293	101	102	2.17
RCKK20-294	19	20	0.38
RCKK20-294	20	21	0.66
RCKK20-294	21	22	0.48
RCKK20-294	22	23	0.98
RCKK20-294	23	24	0.45
RCKK20-294	24	25	0.50
RCKK20-294	27	28	0.29
RCKK20-294	28	29	0.22
RCKK20-294	30	31	0.12
RCKK20-294	32	33	0.24
RCKK20-294	33	34	0.16
RCKK20-294	34	35	0.20
RCKK20-294	35	36	0.60
RCKK20-294	36	37	0.16
RCKK20-294	37	38	0.15
RCKK20-294	39	40	0.29
RCKK20-294	42	43	0.12
RCKK20-294	54	55	0.14
RCKK20-294	55	56	0.41
RCKK20-294	56	57	0.16
RCKK20-294	61	62	0.15
RCKK20-294	62	63	0.21

	EDON4	TO	COLD
HOLE No.	FROM (m)	TO (m)	GOLD (g/t)
RCKK20-294	74	75	0.12
RCSK21-295	35	36	0.13
RCSK21-295	69	70	3.24
RCSK21-295	70	71	0.34
RCSK21-295	71	72	0.19
RCSK21-295	77	78	0.53
RCSK21-295	78	79	1.25
RCSK21-295	86	87	0.29
RCSK21-295	87	88	0.12
RCSK21-295	94	95	0.12
RCSK21-295	95	96	0.14
RCSK21-295	123	124	0.20
RCSK21-295	124	125	0.43
RCSK21-295	125	126	0.72
RCSK21-295	126	127	0.23
RCSK21-295	127	128	2.48
RCSK21-295	128	129	0.10
RCSK21-295	129	130	0.12
RCSK21-295	133	134	0.10
RCSK21-296	3	4	0.14
RCSK21-296	4	5	0.18
RCSK21-296	5	6	0.16
RCSK21-296	6	7	0.19
RCSK21-296	7	8	0.17
RCSK21-296	8	9	0.13
RCSK21-296	9	10	0.14
RCSK21-296	15	16	0.13
RCSK21-296	75	76	0.13
RCSK21-296	77	78	0.11
RCSK21-297	20	21	0.12
RCSK21-297	21	22	0.11
RCSK21-297	23	24	0.15
RCSK21-297	46	47	0.13
RCSK21-297	47	48	0.56
RCSK21-297	94	95	0.12
RCSK21-297	116	117	0.15
RCSK21-297	120	121	0.10
RCSK21-297	130	131	0.15
RCSK21-297	131	132	0.23
RCSK21-297	133	134	0.10
RCSK21-298	113	114	0.78
RCSK21-298	114	115	0.10
RCSK21-299	0	1	0.10

HOLE No.	FROM (m)	TO (m)	GOLD (g/t)
RCSK21-299	4	5	0.10
RCSK21-299	5	6	0.12
RCSK21-299	7	8	0.21
RCSK21-299	9	10	0.39
RCSK21-299	10	11	0.16
RCSK21-299	11	12	0.13
RCSK21-299	12	13	0.17
RCSK21-299	18	19	1.48
RCSK21-299	19	20	0.23
RCSK21-299	20	21	0.23
RCSK21-299	21	22	0.27
RCSK21-299	30	31	0.12
RCSK21-299	100	101	0.31
RCSK21-299	102	103	0.16
RCSK21-299	103	104	0.23
RCSK21-299	104	105	0.10
RCSK21-299	108	109	0.16
RCSK21-299	109	110	0.39
RCSK21-299	110	111	0.32
RCSK21-299	111	112	0.26
RCSK21-299	117	118	0.14
RCSK21-300	38	39	1.06
RCSK21-300	40	41	0.11
RCSK21-300	130	131	0.34
RCSK21-300	131	132	0.11
RCSK21-300	132	133	0.13
RCSK21-300	149	150	0.50
RCSK21-302	1	2	5.49
RCSK21-302	6	7	0.18
RCSK21-302	12	13	0.11
RCSK21-302	13	14	0.11
RCSK21-302	14	15	0.18
RCSK21-302	26	27	0.33
RCSK21-302	27	28	1.84
RCSK21-302	28	29	1.87
RCSK21-302	103	104	0.12
RCSK21-302	105	106	0.15
RCSK21-302	106	107	0.13
RCSK21-302	107	108	0.18
RCSK21-302	110	111	0.15
RCSK21-302	111	112	0.16
RCSK21-303	12	13	0.75
RCSK21-303	13	14	0.48

HOLE No.	FROM (m)	TO (m)	GOLD (g/t)
RCSK21-303	18	19	0.10
RCSK21-303	92	93	0.87
RCSK21-305	32	33	0.16
RCSK21-305	33	34	0.44
RCSK21-305	43	44	0.10
RCSK21-305	52	53	0.23
RCSK21-305	54	55	0.14
RCSK21-305	56	57	0.16
RCSK21-305	62	63	0.17
RCSK21-305	64	65	0.52
RCSK21-305	65	66	0.11
RCSK21-305	70	71	0.47
RCSK21-305	71	72	0.16
RDSK20-102	122	123	0.22
RDSK20-102	123	124	1.12
RDSK20-102	149	150	0.25
RDSK20-102	150	151	0.29
RDSK20-102	152	153	0.28
RDSK20-102	154	155	0.30
RDSK20-102	155	156	0.41
RDSK20-102	156	157	0.25
RDSK20-102	157	158	0.12
RDSK20-102	158	159	0.43
RDSK20-102	159	160	0.47
RDSK20-102	160	161	8.95
RDSK20-102	161	162	42.60
RDSK20-102	162	163	1.84
RDSK20-102	163	164	0.27
RDSK20-102	164	165	1.24
RDSK20-102	166	167.6	0.53
RDSK20-102	167.6	169	0.64
RDSK20-102	169	170	0.14
RDSK20-102	178.1	179	0.17
RDSK21-103	105	108	0.10
RDSK21-103	120	121	0.11
RDSK21-103	124	125	0.11
RDSK21-103	125	126	0.25
RDSK21-103	126	127	0.18
RDSK21-103	127	128	0.84
RDSK21-103	128	129	0.63
RDSK21-103	129	130	0.15
RDSK21-103	130	131	0.29
RDSK21-103	131	132	0.24

HOLE No.	FROM (m)	TO (m)	GOLD (g/t)
RDSK21-103	132	133	0.21
RDSK21-103	133	134	0.17
RDSK21-103	134	135	0.25
RDSK21-103	135	136	0.45
RDSK21-103	136	137	0.20
RDSK21-103	137	138	0.14
RDSK21-104	30	31	0.80
RDSK21-104	31	32	1.37
RDSK21-104	32	33	0.13
RDSK21-104	35	36	0.14
RDSK21-104	36	37	0.17
RDSK21-104	37	38	0.11
RDSK21-104	38	39	0.29
RDSK21-104	39	40	0.43
RDSK21-104	40	41	0.54
RDSK21-104	41	42	2.94
RDSK21-104	42	43	0.84
RDSK21-104	43	44	0.33
RDSK21-104	44	45	0.15
RDSK21-104	45	46	0.55
RDSK21-104	50	51	0.16
RDSK21-104	51	52	0.93
RDSK21-104	52	53	0.23
RDSK21-104	54	55	1.23
RDSK21-104	55	56	0.38
RDSK21-104	56	57	0.26
RDSK21-104	57	58	0.24
RDSK21-104	58	59	0.21
RDSK21-104	59	60	0.12
RDSK21-104	61	62	0.86
RDSK21-104	62	63	0.25
RDSK21-104	63	64	0.85
RDSK21-104	64	65	1.59
RDSK21-104	65	66	0.96
RDSK21-104	66	67	0.46
RDSK21-104	67	68	0.35
RDSK21-104	68	69	0.19
RDSK21-104	69	70	2.56
RDSK21-104	70	71	0.28
RDSK21-104	71	72	0.15
RDSK21-104	72	73	0.21
RDSK21-104	73	74	1.29
RDSK21-104	74	75	4.24

HOLE No.	FROM (m)	TO (m)	GOLD (g/t)
RDSK21-104	75	76	13.60
RDSK21-104	76	77	4.85
RDSK21-104	77	78	2.74
RDSK21-104	78	79	0.84
RDSK21-104	79	80	0.20
RDSK21-104	80	81	0.13
RDSK21-104	81	82	0.14
RDSK21-104	82	83	0.32
RDSK21-104	83	84	0.99
RDSK21-104	84	85	1.38
RDSK21-104	85	86	1.11
RDSK21-104	86	87	0.60
RDSK21-104	87	88	0.21
RDSK21-104	88	89	0.35
RDSK21-104	89	90	0.26
RDSK21-104	90	91	1.06
RDSK21-104	91	92	0.37
RDSK21-104	92	93	0.53
RDSK21-104	93	94	0.44
RDSK21-104	94	95	0.69
RDSK21-104	95	96	2.48
RDSK21-104	96	97	0.10
RDSK21-104	98	99	0.12
RDSK21-104	103	104	0.10
RDSK21-104	104	105	0.10
RDSK21-104	105	106	0.10
RDSK21-104	110	112	0.28
RDSK21-104	112	113	0.18
RDSK21-104	113	114	0.24
RDSK21-104	114	115	0.47
RDSK21-104	116	117	0.72
RDSK21-104	117	118	0.12
RDSK21-104	118	119.7	0.30
RDSK21-104	119.7	121.2	0.37
RDSK21-104	121.2	122.7	0.60
RDSK21-104	122.7	123.7	0.76
RDSK21-104	123.7	125.2	0.46
RDSK21-104	125.2	126.7	0.80
RDSK21-104	126.7	128	0.67
RDSK21-104	128	129	0.15
RDSK21-104	129	130.2	0.87
RDSK21-104	131.2	132	0.59
RDSK21-104	133	134	0.18

HOLE No.	FROM	ТО	GOLD
	(m)	(m)	(g/t)
RDSK21-104	134	135	1.00
RDSK21-104	135	137.2	0.57
RDSK21-104	137.2	138	0.16
RDSK21-104	138	139	0.24
RDSK21-104	144	145.2	1.03
RDSK21-104	145.2	147.2	0.28
RDSK21-104	147.2	148.2	0.29
RDSK21-104	148.2	149.2	0.19
RDSK21-104	150.2	152.7	0.13
RDSK21-104	163	164	0.11
RDSK21-105	151	152	0.42
RDSK21-105	152	153	0.12
RDSK21-105	153	154	0.29
RDSK21-105	155	156	0.25
RDSK21-105	156	157	0.15
RDSK21-105	159	160	0.19
RDSK21-105	160	161	0.11
RDSK21-105	161	162	1.12
RDSK21-105	162	163	2.06
RDSK21-105	169	170	0.10
RDSK21-105	170	171	0.70
RDSK21-105	171	172	1.33
RDSK21-105	172	173	0.54
RDSK21-105	173	174	0.45
RDSK21-105	174	175	0.64
RDSK21-105	177	178	0.18
RDSK21-105	178	179	0.23
RDSK21-105	187	188	0.11

HOLE No.	FROM	TO	GOLD
	(m)	(m)	(g/t)
RDSK21-105	230	231	0.16
RDSK21-105	235	236	0.15
RDSK21-106	146	147	0.26
RDSK21-106	147	148	1.64
RDSK21-106	148	149	1.15
RDSK21-106	149	150	0.30
RDSK21-106	151	152	0.18
RDSK21-106	152	153	0.64
RDSK21-106	153	154	0.34
RDSK21-106	155	156	0.57
RDSK21-106	156	157	0.14
RDSK21-106	157	158	0.10
RDSK21-106	173	174	0.17
RDSK21-106	174	175	0.12
RDSK21-106	175	176	0.17
RDSK21-106	183	184	0.24
RDSK21-106	184	185	0.11
RDSK21-106	187	188	0.22
RDSK21-106	188	189	0.13
RDSK21-106	200	201	0.21
RDSK21-106	209	210	0.16
RDSK21-106	210	211	0.23
RDSK21-107	49	50	0.13
RDSK21-107	51	52	0.18
RDSK21-107	52	53	0.31
RDSK21-107	53	54	0.40
RDSK21-107	54	55	0.31
RDSK21-107	176	177	0.13

NB: All gold assays ≥0.1g/t are listed

JORC CODE, 2012 EDITION – TABLE 1 Section 1 Sampling Techniques and Data

CRITERIA	JORC CODE EXPLANATION	COMMENTARY
Sampling techniques	 Nature and quality of sampling, measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 All holes have been routinely sampled on a 1m interval for gold 1 metre samples are preserved for future assay as required. AC samples were submitted as 3m composites for assay. AC and RC Samples were collected in situ at the drill site and are split collecting 2 to 3 kg per sample. Certified reference material and sample duplicates were inserted at regular intervals. DD samples are cut to half core on 1m intervals. All samples were submitted SGS, Bamako Mali using a 50g Fire Assay gold analysis with a 10ppb Au detection level.
Drilling techniques	▶ Drill type (eg core, reverse circulation, open <hole (eg="" air="" and="" auger,="" bangka,="" bit="" blast,="" by="" core="" depth="" details="" diameter,="" diamond="" etc)="" etc).<="" face<sampling="" hammer,="" if="" is="" method,="" of="" or="" oriented="" other="" rotary="" so,="" sonic,="" standard="" tails,="" td="" triple="" tube,="" type,="" what="" whether=""><td> AC and RC drilling was carried out by ETASI or AMS drilling DD drilling was undertaken by ETASI or AMS drilling and utilised PQ and HQ triple tube drilling </td></hole>	 AC and RC drilling was carried out by ETASI or AMS drilling DD drilling was undertaken by ETASI or AMS drilling and utilised PQ and HQ triple tube drilling
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 An initial visual estimate of AC/RC sample recovery was undertaken at the drill rig for each sample metre collected. Collected samples were weighed to ensure consistency of sample size and monitor sample recoveries. For DD core recovery and RQD observations are made. No systematic sampling issue, recovery issue or bias was picked up and it is therefore considered that both sample recovery and quality is adequate for the drilling technique employed
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 All drill samples were geologically logged by Oklo Resources subsidiary Africa Mining geologists. Geological logging used a standardised logging system.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non If non etc and whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub<sampling li="" maximise="" of="" representivity="" samples.<="" stages="" to=""> Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second<half li="" sampling.<=""> Whether sample sizes are appropriate to the grain size of the material being sampled. </half></sampling>	 ▶ AC/RC samples were split utilizing a 3 tier riffle splitter with a 1m sample being taken. ▶ Duplicates were taken to evaluate representativeness ▶ Further sample preparation was undertaken at the SGS laboratories by SGS laboratory staff ▶ All DD core was ½ cut and ¼ cut when a duplicate sample was taken. ▶ Duplicates were taken to evaluate representativeness ▶ At the laboratory, samples were weighed, dried and fine crushed to 70% <2mm (jaw crusher), pulverized and split to 85 %<75 um. Gold is assayed by fire assay (50g charge) with an AAS Finish. ▶ Sample pulps were returned from the SGS laboratory under secure "chain of custody" procedure by Africa Mining staff and are being

CRITERIA	JORC CODE EXPLANATION	COMMENTARY
		stored in a secure location for possible future analysis.
		Sample sizes and laboratory preparation techniques are considered to be appropriate for this early stage exploration and the commodity being targeted.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 Analysis for gold on AC, RC and diamond samples is undertaken at SGS Bamako by 50g Fire Assay with an AAS finish to a lower detection limit of 10ppb Au. Fire assay is considered a "total" assay technique. No field non assay analysis instruments were used in the analyses reported. A review of certified reference material and sample blanks inserted by the Company indicated no significant analytical bias or preparation errors in the reported analyses. Results of analyses for field sample duplicates are consistent with the style of mineralisation evaluated and considered to be representative of the geological zones which were sampled. Internal laboratory QAQC checks are reported by the laboratory and a review of the QAQC reports suggests the laboratory is performing within acceptable limits.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 All drill hole data is paper logged at the drill site and then digitally entered by Company geologists at the site office. All digital data is verified and validated by the Company's database consultant in Paris before loading into the drill hole database. No twinning of holes was undertaken in this program. Reported drill results were compiled by the company's geologists, verified by the Company's database administrator and exploration manager. No adjustments to assay data were made.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down<hole and="" estimation.<="" in="" li="" locations="" mine="" mineral="" other="" resource="" surveys),="" trenches,="" used="" workings=""> Specification of the grid system used. Quality and adequacy of topographic control. </hole>	 AC, RC and diamond drill hole collars are positioned using differential GPS (DGPS). Accuracy of the DGPS < +/< 0.1m and is considered appropriate for this level of exploration The grid system is UTM Zone 29N
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 RC and DD drilling is now being undertaken on a ~20x40m spacing as infill undertaken in areas of identified higher grade zones. Drilling reported in this program is being designed to infill or extend known mineralisation to a sufficient density of drilling to enable the estimation of a maiden resource.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	Exploration is at an early stage and, as such, knowledge on exact location of mineralisation and its relation to lithological and structural boundaries is not accurately known. However, the current hole orientation is considered appropriate for the program to reasonably assess the prospectivity of known structures interpreted from other data sources.
	► The measures taken to ensure sample security.	► RC and diamond samples were collected from the

CRITERIA	JORC CODE EXPLANATION	COMMENTARY
		laboratory in Bamako under secure "chain of custody" procedure by Africa Mining staff.
		Sample pulps were returned from the SGS laboratory under secure "chain of custody" procedure by Africa Mining staff and have been stored in a secure location.
		The AC samples remaining after splitting are removed from the site and trucked to the exploration camp where they are stored under security for future reference for a minimum of 6 months
Audits or reviews	► The results of any audits or reviews of sampling techniques and data.	There have been no external audit or review of the Company's sampling techniques or data at this early exploration stage.

Section 2 Reporting of Exploration Results

CRITERIA	JORC CODE EXPLANATION	CRITERIA
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The results reported in this report are all contained within the Dandoko Exploration Permit, Gombaly Exploration Permit which are held 100% by Africa Mining SARL, a wholly owned subsidiary of Oklo Resources Limited. The Dandoko permit (100km²) which was renewed on the 10/8/17, for a period of 3 years and renewable twice, each for a period of 2 years: The Gombaly permit (34km²) which was granted on the 10/8/17, for a period of 3 years and renewable twice, each for a period of 2 years
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 The area that is presently covered by the Dandoko permit was explored intermittently by Compass Gold Corporation between 2010 and 2013. Exploration consisted of aeromagnetic surveys, gridding, soil sampling and minor reconnaissance (RC) drilling. Exploration consisted of aeromagnetic surveys, gridding, soil sampling. Ashanti Mali undertook reconnaissance soil sampling surveys over part of the license area.
Geology	▶ Deposit type, geological setting and style of mineralisation.	 The deposit style targeted for exploration is orogenic lode gold. This style of mineralisation can occur as veins or disseminations in altered (often silicified) host rock or as pervasive alteration over a broad zone. Deposit are often found in close proximity to linear geological structures (faults & shears) often associated with deep<seated li="" structures.<=""> Lateritic weathering is common within the project area. The depth to fresh rock is variable and may extend up to 50-70m below surface and in this drill program weathering of >150m was encountered </seated>
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth	 Locations are tabulated within the report and are how on plans and sections within the main body of this announcement. Dip of lithologies and/or mineralisation are not currently known. Drilling was oriented based on dips of lithologies observed ~5km to the north of the prospect and may not reflect the actual dip.

CRITERIA	JORC CODE EXPLANATION	CRITERIA
	 hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut<off and="" are="" be="" grades="" li="" material="" should="" stated.<="" usually=""> Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. </off>	 Intervals are reported using a threshold where the interval has a 0.3 g/t Au average or greater over the sample interval and selects all material greater than 0.10 g/t Au allowing for up to 2 samples of included dilution every 10m. No grade top cut off has been applied to full results presented in Significant Intersection Table. No metal equivalent reporting is used or applied
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 The results reported in this announcement are considered to be of an early stage in the exploration of the project. Mineralisation geometry is not accurately known as the exact orientation and extent of known mineralised structures are not yet determined. Mineralisation results are reported as "downhole" widths as true widths are not yet known
Diagrams	▶ Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Drill hole location plans are provided in earlier releases with new holes tabulated within this release.
Balanced reporting	▶ Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	 Drill hole locations are provided in earlier reports. All assays received of >=0.1ppm have been reported. No high cuts to reported data have been made.
Other substantive exploration data	▶ Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	No other exploration data that is considered meaningful and material has been omitted from this report
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large<scale drilling).<="" li="" step<out=""> Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. </scale>	➤ AC, RC and diamond drilling is ongoing on the Company's SK1 North prospect with a view to completing a resource estimate for the Seko prospect in Q1, 2021.

