

ASX & Media Release

4 March 2021

ASX Symbol

GRL

Godolphin Resources Limited

Unit 13, 11-19 William Street Orange NSW 2800

PO Box 9497 Orange East NSW 2800 Australia

Telephone

+61 2 6318 8144

Email

info@godolphinresources.com.au

Website

www.godolphinresources.com.au

Directors

Jeremy Read
Non-Executive Chair

lan Buchhorn
Non-Executive Director

Doug Menzies
Non-Executive Director

Management

David Greenwood
Chief Executive Officer

Issued Capital

Fully Paid Ordinary Shares 84,104,443

Unlisted options exercisable at \$0.25 20.000.000

exercisable at \$0.20 27,714,409

exercisable at \$0.40 3,000,000

ACN 633 779 950

STRONG GOLD MINERALISATION DISCOVERED OUTSIDE THE MINERAL RESOURCE AT LEWIS PONDS

- Significant gold mineralisation has been intersected in five reverse circulation percussion (RC) drill holes at Lewis Ponds testing lodes outside of the current Mineral Resource
- Gold results from the Quarry Lode (not included in the current Mineral Resource) include:
 - o 8m @ 2.7g/t gold and 118g/t silver from 136m in GLPRC001
 - o 8m @ 2.85g/t gold and 30g/t silver from 122m in GLPRC002
- Bellmore Lode (not in the current Mineral Resource) results include
 - 2m @ 0.04g/t gold, 24g/t silver, 2.7% zinc, 3.1% lead from 74m in GLPRC005
- Tom's and Spicer's Lodes (current Mineral Resource) results include:
 - 12m @ 1.42g/t gold, 20g/t silver, 0.5% zinc and 0.2% lead from
 124m in the Tom's Lode and
 - 8m @ 0.8g/t gold, 58g/t silver, 3.3% zinc, 1.3% lead from 188m in the Spicer's Lode in GLPRC006
- RC results are to be followed up with further drilling

Godolphin Resources Limited (Godolphin, GRL or the **Company**) is pleased to announce assay results from a recent RC drill programme at Lewis Ponds.

The RC drill programme was designed to test areas identified by GRL as exceptional drill targets in a detailed soil survey completed in 2020 (see ASX announcement 15 September 2020). Three holes (GLPRC001, GLPRC002 & GLPRC004) tested areas highlighted by elevated gold-in-soil from the footwall of the Spicers Lode Mineral Resource Estimate (MRE). Two holes (GLPRC005 and GLPRC006) tested an area with sparse drill data in the Tom's and Spicers Lodes coincident with a zone of elevated gold-in-soil samples.

Excellent gold and silver assays were returned on the Quarry Lode discovery with best intersections of 8m @ 2.7g/t gold and 118g/t silver from 136m in GLPRC001 and 8m @ 2.85g/t gold and 30g/t silver from 122m in GLPRC002. Results from GLPRC006 returned elevated base metal grades on the Spicer's Lode, improving confidence in the existing resource.

The new Quarry Lode mineralised zone is open to the north and consequently it will be a focus of further drilling given its potential to significantly add to the existing overall MRE at Lewis Ponds.

Positive results from this RC drill programme follow the ASX announcement on 2 February 2021 of a revised MRE at Lewis Ponds focusing on the higher-grade gold and silver zones in the Tom's and Spicer's Lodes (which have accompanying high zinc and lead values) being 6.2 million tonnes at 2.0g/t gold, 80g/t silver, 2.7% zinc, 1.6% lead and 0.2% copper using a 3.5g/t gold equivalent cut off.

Godolphin's CEO David Greenwood commented:

"These excellent initial RC results testing gold-in-soil anomalies, some of which are outside the MRE at Lewis Ponds, provide significant confidence in proving up additional resources at Lewis Ponds and we will undertake follow up drilling as soon as practicable".

Background

Godolphin's 100%-owned Lewis Ponds Project (**Lewis Ponds** or the **Project**) consists of EL5583 which covers approximately 148 km² located 15km east of Orange (Figure 1).

The Project is a high priority for Godolphin due to the extensive historic gold and base metal workings, and the current inferred MRE of 6.2Mt @ 2.0g/t Au, 80g/t Ag, 2.7% Zn, 1.6% Pb & 0.2% Cu. Godolphin has freehold title over Lewis Ponds via its 100%-owned subsidiary company TriAusMin Pty Ltd.

Historical mining and exploration at Lewis Ponds focussed predominantly on base metals with associated gold and silver as by-products. A number of historical drill holes highlighted the significance of precious metals at Lewis Ponds, particularly at the northern limit of the historic drilling. In addition, soil assay results announced in 2020 (ASX release 15

September 2020) defined significant precious and base metal anomalies over a strike length of 1,300m. These results provided several high potential drill targets outside of the current MRE envelope for follow-up exploration.

Figure 1: Lewis Ponds structural setting

Drill Programme

An RC drill programme was undertaken in January 2021 and was designed to test areas identified as exceptional targets by a detailed soil survey completed in 2020.

GLPRC001, GLPRC002 & GLPRC004 were designed to target the newly interpreted Quarry and Torphy's Lodes in the footwall of the Lewis Ponds resource, in areas highlighted by historical workings and by gold-in-soil anomalies.

GLPRC005 and GLPRC006 tested an area with sparse data in the Spicer's and Tom's Lodes with a coincident strong gold in soil anomaly.

Results

GLPRC001 intersected both the footwall target lodes of the Quarry and Spicer's Lodes, validating the new Lewis Ponds geological interpretation in this area. The gold intercepts in the Quarry lode were up to 4.7g/t over a 2m composite interval. The composited interval over the Quarry Lode returned 24m at 0.93g/t gold and 53g/t silver from 120m, including 8m at 2.7g/t gold and 118g/t silver from 136m. The combined lead and zinc values for this 8m interval is 1.2% zinc + lead, while the first four meters near the hanging wall contact at 120m have base metal values of 3.1% zinc + lead combined (see Figure 3).

GLPRC002 also intersected the Quarry and Torphy's Lodes and as in GLPRC001, the base metal grades were overshadowed by the gold values. The Quarry Lode returned 22m at 1.35g/t gold and 23g/t silver from 114m including 8m at 2.85g/t gold and 30ppm silver from 122m. The footwall of the lode also returned 2m at 2.44g/t gold and 34g/t silver from 134m. The average base metal grades for the 22m Quarry Lode intersection are 1.4% zinc + lead combined (see Figure 4).

GLPRC004 intersected the Torphy's and Quarry Lodes as per design, and although the results from this hole showed low gold tenor, a 10m composite of 105 g/t silver was intersected from 42m. The validation of the geological model in this location is very valuable for future exploration, especially since the lodes show grade variability along strike and dip, opening the possibility for much improved results from future work.

These targeted footwall domains are not included in the recently announced Lewis Ponds MRE, and the intersections on these lodes are extremely encouraging for future exploration and potential mineral resource upside at Lewis Ponds.

Figure 3 and 4 below show sections through holes GLPRC001 and GLPRC002 to highlight the positive results received from the Quarry Lode. Gold grade is depicted above the drill trace and in order to show the total tenure of the results, gold equivalents are shown below the drill trace. The gold equivalent formula used is identical to the one used for the recent Lewis Ponds Mineral Resource Estimate (ASX announcement 2 February 2021) and is:

$$AuEq = Au(ppm) + (Ag(ppm) * 0.0167) + (Zn\% * 0.673) + (Pb\% * 0.39) + (Cu\% * 1.34)$$

	Au		Ag		Zn		Pb		Cu	
Metal Prices(AUD\$)	\$ 2,890	/Oz	\$ 33	/Oz	\$ 1.66	/lb	\$ 1.18	/lb	\$ 4.41	/lb
Recoveries	60%		79%	5	92%		75%		69%	

Table 1: Inputs for the gold equivalent calculation

GLPRC005 & GLPRC006 were designed to test an area with elevated gold in soil anomalism (see Figure 2), but also to test an area with minimal historical drill intercepts of the Tom's Lode near surface, as well as the Spicer's Lode.

Both drill holes intersected the Tom's Lode but GLPD005 was terminated due to a hole collapse and did not intersect the Spicer's Lode. GLPD006 intersected the Spicer's Lode as per the drill hole design, which reported 8m at 0.78g/t gold, 58g/t silver, 3.3% zinc and 1.3% lead from 188m. The Tom's Lode intercept returned values of 12m at 1.42g/t gold and 20g/t silver from 124m which included 4m at 2.4g/t gold from 132m. The base metal values for the 12m interval returned 0.7% combined zinc + lead.

A summary of best assay results from the recent RC drilling programme on Lewis ponds are tabulated in Table 2 below and detailed in Appendix 3.

Figure 2: Plan view of the recent RC drilling completed on Lewis Ponds as well as the gold in soil anomalism used for its design.

Figure 3: Section through GLPRC001 at 6316550mN, facing mine grid north

Figure 4: Section through GLPRC001 at 6316600mN facing mine grid north

Hole_ID	From	То	Au_ppm	Ag_ppm	Zn_ppm	Pb_ppm	Cu_ppm	Hole_ID	From	То	Au_ppm	Ag_ppm	Zn_ppm	Pb_ppm	Cu_ppm
GLPRC001	120	122	0.11	102.0	29100	13400	608	GLPRC004	38	40	0.12	20.6	5840	7840	1200
GLPRC001	122	124	0.03	17.6	11400	4300	670	GLPRC004	40	42	0.11	30.1	6340	6270	1110
GLPRC001	124	126	0.01	1.3	432	208	27	GLPRC004	42	44	0.25	140	6170	8590	1640
GLPRC001	126	128	0.05	0.2	82	29	10	GLPRC004	44	46	0.16	39.3	6160	6240	1280
GLPRC001	128	130	0.04	0.7	186	111	19	GLPRC004	46	48	0.11	74.6	5180	10100	1200
GLPRC001	130	132	0.04	7.6	4860	2350	176	GLPRC004	48	50	0.26	175	6550	6580	1250
GLPRC001	132	134	0.03	6.8	2530	1120	158	GLPRC004	50	52	0.11	93.7	3420	10800	727
GLPRC001	134	136	0.07	24.4	10900	4960	424	GLPRC004	52	54	0.08	50.8	5300	6910	740
GLPRC001	136	138	3,40	21.9	5730	2180	477	GLPRC005	64	66	0.09	9.1	14100	10800	568
GLPRC001	138	140	2.55	14.2	4650	2090	244	GLPRC005	66	68	0.04	14.2	19800	13400	368
GLPRC001	140	142	0.20	31.0	11100	4930	662	GLPRC005	68	70	0.03	2.9	3710	2730	48
GLPRC001	142	144	4.66	404.0	12400	5950	606	GLPRC005	70	72	0.06	5.0	1 1700	5520	47
GLPRC002	114	116	0.10	28.0	11700	5530	563	GLPRC005	72	74	0.03	3.1	4700	3900	27
GLPRC002	116	118	0.20	18.5	6750	3380	388	GLPRC005	74	76	0.04	23.7	26600	31000	39
GLPRC002	118	120	0.15	11.1	4840	2340	364	GLPRC006	124	126	0.26	11.3	15700	6260	122
GLPRC002	120	122	0.17	21.4	9180	4270	513	GLPRC006	126	128	1.25	25.4	4640	2720	130
GLPRC002	122	124	0.10	31.9	12300	6260	991	GLPRC006	128	130	2,08	60.0	2980	1360	347
GLPRC002	124	126	0.38	29.3	11000	5630	651	GLPRC006	130	132	0.20	12.3	5050	3180	335
GLPRC002	126	128	0.13	26.5	10400	4860	653	GLPRC006	132	134	2.99	4.5	696	140	50
GLPRC002	128	130	10.80	33.0	10500	5300	465	GLPRC006	134	136	1.72	5.1	456	39	36
GLPRC002	130	132	0.29	3.2	1170	609	99	GLPRC006	188	190	0.93	47.7	38400	14300	2730
GLPRC002	132	134	0.11	20.0	5980	2930	402	GLPRC006	190	192	0.44	75.1	34500	18900	1250
GLPRC002	134	135	4.14	26.1	10300	4910	944	GLPRC006	192	194	0.79	58.6	32600	12300	2220
GLPRC002	135	136	0.73	42.0	23500	14400	458	GLPRC006	194	196	1.01	50.3	25100	7220	2460

Table 2: Table of the assay results from within the modelled lodes at Lewis Ponds

ENDS

This market announcement has been authorised for release to the market by the Board of Godolphin Resources Limited.

For further information regarding Godolphin, please visit godolpinresources.com.au or contact:

David Greenwood
Chief Executive Officer
Godolphin Resources Limited
Tel +61 438 948 643

About Godolphin Resources

Godolphin Resources ("Godolphin" – ASX: GRL) is an ASX listed resources company, with 100% controlled Australian-based projects in the Lachlan Fold Belt (LFB) NSW, a world-class gold-copper province. Currently the Company's tenements cover 3200km2 of highly prospective ground focussed on the Lachlan Transverse Zone, one of the key structures which controlled the formation of copper and gold deposits within the LFB, the Godolphin Fault and the Molong Volcanic Belt. The Gundagai projects are associated with a splay of the Gilmore Suture mineralised structure. The Orange-based Godolphin team is rapidly exploring its tenement package with focussed, cost effective exploration leading to systematic drilling programmes.

Competent Person Statement

The information in this report that relates to Exploration Targets, Exploration Results, Mineral Resources or Ore Reserves is based on information compiled by Johan Lambrechts, a Competent Person who is a Member of the Australian Institute of Geoscientists. Mr. Lambrechts is a full-time employee of Godolphin Resources Limited, and shareholder, who has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr. Lambrechts consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

Appendix 1 – JORC Code, 2012 Edition, Table 1 report

Section 1 Sampling Techniques and Data (Criteria in this section applies to all succeeding sections)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. 	 All holes were sampled on a 2m down hole interval basis. A few intercepts were sampled as 1m intervals as well. Each 1m interval was split using a conical splitter resulting in a smaller 2-4kg and larger 20-25kg sample. When using 2m composites, the assay sample from each 1m interval were combined. A representation of the rock chips from each 1m interval was also collected and stored in RC chip trays for later use. Each interval was scanned with a Niton XRF scanner and the data recorded. NOTE: The XRF scanner does not record gold values and the data collected was not used for reporting purposes, but rather to inform the geologist of potential increase of trace element values, which in turn help prevent the potential of stopping the hole in unseen mineralization. All sampling lengths and other logging data was recorded in GRL's standard sampling record spreadsheets. Data includes from and to measurements, colour, lithology, magnetic susceptibility, structures etc. Visible sulphide content was logged as well as alteration and weathering. Industry standard practice was used in the processing of samples for assay, with 1-2m intervals of RC chips collected in green plastic and calico bags.
Drilling techniques	Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details.	 In this program, reverse circulation (RC) percussion drill holes were used. Hole dip was -50°. RC percussion drilling was performed with a face sampling hammer bit (bit diameter between 4½ and 5¼ inches) and samples were collected by a cone splitter.
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed.	 RC drill chip sample recovery was recorded by visual estimation of the reject sample, expressed as a percentage recovery. Overall estimated recovery was high. All samples were dry as a result of appropriate air pressure and volume and the lack of major ground water. Measures taken to ensure maximum RC sample recoveries included maintaining a clean cyclone and drilling equipment, as well as regular communication with the drillers and slowing drill advance rates when variable to poor ground conditions are encountered.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource Estimation, mining studies and metallurgical studies.	 The drill chips were geologically logged at 1m intervals with detailed recording of lithology, alteration, mineralisation and other observations such as colour, moisture and recovery. Drill chips were collected and sieved before being placed into reference chip trays for visual logging at 1m intervals. Logging was performed at the time of drilling, and planned drill hole target lengths adjusted by the geologist during drilling. The geologist also oversaw all sampling and drilling practices. A small selection of representative chips were collected for every 1 meter interval and stored in chip-trays as well as a representative split of mineralised areas stored for potential

Criteria	JORC Code explanation	Commentary						
		future use.						
Sub-sampling techniques and sample	For all sample types, the nature, quality and appropriateness of the sample	2m composite samples were recovered using a rig mounted cone splitter during drilling into a calico sample bag. Sample target weight was between 4 and 5kg.						
preparation	preparation technique.	Some 1m samples were also collected by splitting the main 1m interval material using a 50/50 splitter.						
		QAQC was employed. A standard, blank or duplicate sample was inserted into the sample stream at regular intervals and also at specific intervals based on the geologist's discretion. Standards were quantified industry standards. Duplicate samples were taken using the same sample sub sample technique as the original sub sample and inserted at the geologist's discretion. Sample sizes are appropriate for the nature of mineralisation.						
Quality of assay data	The nature, quality and appropriateness of	All GRL samples were submitted to Bureau Veritas laboratories in Adelaide.						
and laboratory tests	the assaying and laboratory procedures used and whether the technique is considered partial or total. Nature of quality control procedures	The samples were sorted, wet weighed, dried then weighed again. Primary preparation involved crushing and splitting the sample with a riffle splitter where necessary to obtain a sub-fraction which was pulverised in a vibrating pulveriser. All coarse residues have been retained.						
	adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.	The samples have been analysed by a 40g lead collection fire assay as well as multi acid digest with an Inductively Coupled Plasma (ICP) Optical Emission Spectrometry finish for multi elements						
		The lab randomly inserts analytical blanks, standards and duplicates into the client sample batches for laboratory QAQC performance monitoring.						
		GRL also inserted Certified Reference Material (CRM) samples and blanks were inserted at least every 10 samples to assess the accuracy and reproducibility of the drill core results.						
		All of the QAQC data has been statistically assessed to determine if results were within the certified standard deviations of the reference material. If required a batch or a portion of the batch may be re-assayed. (no re-assays required for the data in the release).						
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative	The lab randomly insert analytical blanks, standards and duplicates into the client sample batches for laboratory QAQC performance monitoring.						
	company personnel.Documentation of primary data, data entry	GRL also inserted QAQC samples as mentioned above						
	 Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 All of the QAQC data has been statistically assessed. GRL has undertaken its own further review of QAQC results of the BV routine standards through a database consultancy, 100% of which returned within acceptable QAQC limits as stated by the standard deviation stipulated on the certificate for the reference material used. This fact combined with the fact that the data is demonstrably consistent has meant that the results are considered to be acceptable and suitable for reporting. 						
Location of data points	Accuracy and quality of surveys used to	Collar Survey - Collars were surveyed to within 10cm accuracy using a Trimble DGPS.						
	locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource	Down Hole Survey - Down hole surveys were conducted using a Boart Longyear down hole camera lowered within the rods and readings for azimuth and dip taken at 30m intervals. A stainless-steel rod was used in the drill string allowing for						

Godol	phin

Criteria	JORC Code explanation	Commentary
	estimation.	accurate recording.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 The holes in this announcement were designed to target areas with very sparce drill intercept. Grade continuity of the targeted lodes can not be determined from this data alone, but the continuity of the Spicer's and Tom's lodes is variable based on the large number of drill intercepts and the completion of a Mineral Resource Estimate. Compositing of sample results was applied for the announcement and details are provided in the text, a summary table and a table showing all drill intervals in appendix 3.
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	 The holes were drilled perpendicular to the mapped strike of the lodes and surface outcropping lithologies and drilled from the hanging wall side toward the east dipping lodes. The orientation of the drilling is deemed appropriate and unbiased.
Sample security	The measures taken to ensure sample security.	All samples were collected and accounted for by GRL employees/consultants during drilling. All samples were bagged into calico plastic bags and closed with cable ties. Samples were transported to Orange from logging site by GRL employees/ consultants and submitted directly to the lab. The appropriate manifest of sample numbers and a sample submission form containing laboratory instructions were
		 The appropriate manifest of sample numbers and a sample submission form containing laboratory instructions were submitted to the laboratory. Any discrepancies between sample submissions and samples received were routinely followed up and accounted for.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	No audits have been conducted on the historic data to our knowledge.

Section 2 Reporting of Exploration Results (Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known 	 The Lewis Ponds project is comprised of tenement EL5583 located approximately 14km east-northeast of the city of Orange, central New South Wales, Australia. Local relief at the site is between 700 and 900m above sea level. Access to the area is by sealed and gravel roads and a network of farm tracks. The exploration rights to the project are owned 100% by the Godolphin Resources through the granted exploration license EL5583. Security of \$40,000 is held by the Department of Planning and Environment in relation to EL5583

Criteria	JORC Code explanation	Commentary
	impediments to obtaining a license to operate in the area.	
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	See appendix 2
Geology	Deposit type, geological setting and style of mineralization.	The Lewis Ponds Project occurs on the western margin of the Hill End Trough in the eastern Lachlan Fold Belt, which hosts a range of base metals in volcanic-hosted massive sulphide deposits (VMS), porphyry copper-gold and gold deposits, including Woodlawn (polymetallic), Cadia-Ridgeway (Cu-Au), North Parkes (Cu-Au), Copper Hill (Cu-Au), Tomingly (Au) and McPhillamy's (Au). The Molong Volcanic Belt is west of the EL 5583 and comprises Ordovician to early Silurian basal units of mafic to ultramafic volcanic and sedimentary rocks of the Kenilworth and Cabonne Groups. These units are separated from the Hill End Trough by the extensive Godolphin Fault Thrust System.
		The Mumbil Group unconformably overlies the Molong Volcanic Belt and comprises shallow-water Later Silurian sequence of felsic volcanics, volcanoclastics, siltstone and limestone. Part of this Group is the Barnby Hills Formation at Lewis Ponds and comprises (tuffaceous) siltstones overlying limestone and rhyodacitic volcaniclastics. To the east and conformably overlying rocks of the Mumbil Group, siltstone and minor sandstone units form part of the Silurian-Early Devonian Hill End Trough sedimentary sequence The Lewis Ponds deposit is located in a locally highly structured zone within the western limb of a north-west plunging syncline. The deposit consists of stratabound, disseminated to massive sulphide lenses.
		The deposit is hosted in Silurian felsic to intermediate volcanic rocks as a thin, mostly fine-grained sedimentary unit with occasional limestone lenses that has undergone significant deformation and is now defined as a steeply east dipping body with mineralisation that occurs over a strike length of more than 2km.
		The Southern mineralisation occurs within a limestone breccia and Tom's mine is hosted by siltstone and consists of fine-grained tuffaceous sediments.
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:	 Total drilling to the date of this report was 63,335 metres comprising of: 117 primary diamond holes for 41,253 metres 30 wedged diamond holes for 15,078 metres 9 diamond tails to RCP holes for 2,095 metres 57 RCP holes for 4,909 metres

Criteria	JORC Code explanation	Commentar	γ									
		Table below s	shows recen	GRL R	C drill det	ails						
		HoleID	Hole_Type	Depth	LeaseID	OrigGridID	Orig_East	Orig_North	Orig_RL	Dip	MGA Azi	
		GLPRC001	RC RC	162	EL5583	MGA94_55	709668	6316607	826	-50	225	
		GLPRC002	RC	163	EL5583	MGA94_55	709619	6316639	833	-50	225	
		GLPRC004	RC	96	EL5583	MGA94_55	709747	6316469	818	-50	225	
		GLPRC005	RC	138	EL5583	MGA94_55	710008	6316428	798	-50	225	
		GLPRC006	RC	210	EL5583	MGA94_55	709984	6316456	790	-50	225	I
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. 	No grade	aggregation	, weignti	ng, or cui	-on metnoa:	s were used	for this anno	uncement.			
Relationship between	These relationships are particularly	The mineralised units are near vertical and drilling has almost exclusively been conducted from the east at perpendicular angles										rpendicular angles
mineralization widths	important in the reporting of Exploration	with the mineralised units. The drill angle is -60 degrees, resulting in mineralised intersections slightly longer than the true width.										
and intercept lengths	Results. • If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.	Interpretation			-	-	-			Ū	. •	
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	·	orporated int									
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of results.	All results	of Godolphi	n's sam	oles from	the RC prog	gram have b	een reported	in this rele	easeS	See appen	E xib

Criteria	JORC Code explanation	Commentary
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	A Magnetic TMI survey was conducted in 2004 and found magnetic anomalies south east of Lewis Ponds
Further work	The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling).	Currently under assessment. Follow-up work is required, as mentioned in body of the announcement.

Appendix 2. Historic Exploration in the area of EL8556

1990's

- · Historic exploration data review, geological data compilation and mapping
- Rock chip sampling and detailed regional mapping, establishment of a regional grid baseline
- · EM, dipole-dipole, induced polarization and magnetic, moving loop Sirotem surveys
- · Diamond and RC drilling programs
- · Integration of exploration data into digital GIS format and conversion of older grids
- · Updated resource estimate

2000 - 2002

- · Conversion of historic datasets into modern GIS databases
- · Compilation, appraisal and reinterpretation of previous exploration data
- Geological re-interpretation of the Lewis Ponds deposit
- Updated Mineral Resource estimate 5.7 Mt at 1.9 g/t gold, 97/t silver, 0.15% copper, 1.1% lead and 2.4% zinc
- · Identification of regional prospects and targets
- · Co-sponsorship of PhD research on the Lewis Ponds Deposit

2003 - 2005

- Re-interpretation of the prospect geology and structure and investigation to exploit high-grade resource within Shoot 1 of the Main Zone
- Economic study of Lewis Ponds deposit based on underground mining of the Main Zone
- · RC and diamond drilling, both at Lewis Ponds and on regional prospects
- · Airborne HoistEM survey
- · Soil sampling and geochemistry
- · Integration and validation of drill hole database, exploration review
- Extensive consultants study on the Lewis Ponds Deposit (P Gregory)

2005 - 2008

- · Regional mapping, soil and rock sampling
- · Reinterpretation of the HoistEM survey
- · Multiple programs of RC and diamond drilling
- IP survey, downhole EM survey, moving loop EM survey
- Scoping study, JORC Indicated and Inferred Resource estimate of 6.6 Mt at 2.4% zinc, 0.2% copper, 1.4% lead, 69 g/t silver and 1.5 g/t gold
- Target TEM processing and interpretation of previously flown HoistTEM data (concluded that the HoistEM survey was corrupt and should be disregarded)
- · Rehabilitation and review
- 3D model of the resource area giving 10.9 Mt at 3 % zinc equivalent

2008 - 2011

- · Data review (external consultants)
- · Resource review and comparison, resource modelling (external consultants)
- · Additional rehabilitation
- Tenement wide VTEM survey
- 3D modelling of Lewis Ponds deposit
- VTEM data processing and interpretation

2011 – 2013

- Significant rehabilitation clean up or all historic core in core yard on the scale of tens of thousands of metres of core, rehabilitation of old holes
- Environmental work new fencing, new gate, weeding
- VTEM data processing and regional drill targeting
- Ground assessment drill targets, significant amount of landowner liaison and engagement for earthworks, logistics and accommodation services
- RC drilling of southern, up-plunge extensions to Lewis Ponds deposit at Toms, 9 holes totalling 869 metres
- Diamond drilling 6 holes for 1,317 m into VTEM anomalies identified in 2010 2011
- Re-processing of 1990's legacy IP over the Tom's Zone generated new targets, possible extensions to Lewis Ponds deposit
- Tenement scale project review and relinquishment of 6 units
- Prospect scale mapping and sampling of Mt Nicholas Prospect
- · Re-sampling of historical drill core from Williams Lode
- Re-processing of the tenement-wide 2010 VTEM survey
- · Ongoing land management program.
- · Ground assessment of prospects, rock chip sampling and drill targeting.
- Ongoing landowner liaison.

2013 - 2015

- Corporate merger with Heron Resources Limited.
- Two reconnaissance field trips, rock chip sampling, followed by geological, geophysical and geochemistry review, drill targeting and planning.
- Commencement of drill program at Brown's Creek.

2015 - 2016

- · Completion of Drilling program assay results review for Browns Creek
- Regional Rock chip assay review, and grab sampling at Lewis Ponds

2016-2017

- 4 DD holes for 780m
- · Metallurgical studies

Appendix 3: Table of assay results from the recent Lewis Ponds RC drill program

Hole ID	From	To	Au ppm	Ag ppm	Zn ppm	Pb ppm	Cu ppm	As ppm	Mn ppm	Sb ppm
GLPRC001	0	2	0.02	1	388	34	21	11	772	2.3
GLPRC001	2	4	0.01	0	100	22	24	10	1070	1.7
GLPRC001	4	6	0.01	0	152	13	21	41	1440	1.7
GLPRC001	6	8	0.01	0	154	12	43	49	2220	1.7
GLPRC001	8	10	0.01	1	114	11	37	108	2740	1.5
GLPRC001	10	12	0.01	1	156	51	29	62	2750	1.2
GLPRC001	12	14	0.01	1	122	91	32	35	3070	1.2
GLPRC001	14	16	0.01	1	78	91	54	22	1360	1.5
GLPRC001	16	18	0.38	1	328	69	39	147	1830	2.4
GLPRC001	18	20	0.09	1	356	52	43	215	2160	1.7
GLPRC001	20	22	0.01	1	992	60	35	308	1970	2.0
GLPRC001	22	24	0.01	1	118	32	28	469	1740	1.8
GLPRC001	24	26	0.01	1	70	14	27	760	1410	2.8
GLPRC001	26	28	0.03	1	78	30	38	818	1480	3.0
GLPRC001	28	30	0.56	0	72	22	33	748	1100	2.4
GLPRC001	30	32	0.09	0	82	22	37	573	726	2.0
GLPRC001	32	34	0.01	0	70	24	38	101	496	1.5
GLPRC001	34	36	0.02	0	78	24	67	293	468	1.7
GLPRC001	36	38	0.01	0	76	21	34	327	374	1.5
GLPRC001	38	40	0.06	0	74	32	37	151	418	1.7
GLPRC001	40	42	0.04	0	68	42	32	99	446	1.7
GLPRC001	42	44	0.10	0	84	36	32	334	548	1.9
GLPRC001	44	46	0.05	0	70	32	36	188	600	1.5
GLPRC001	46	48	0.03	0	72	42	39	178	582	1.7

	-	-	I .	•	7	l pi				Lou
Hole ID GLPRC001	From 48	<u>To</u> 50	Au ppm 0.04	Ag ppm 0	Zn ppm 80	Pb ppm 22	Cu ppm 43	As ppm 170	Mn ppm 784	Sb ppm 1.5
GLPRC001	50	52	0.04	0	82	77	40	834	1400	2.3
GLPRC001	52	54	0.32	0	92	43	40	81	1300	1.5
GLPRC001	54	56	0.03	0	80	20	30	35	2090	1.2
GLPRC001	56	58	0.03	0	82	39	36	154	1560	1.2
GLPRC001	58	60	0.04	1	118	136	44	148	1540	1.5
GLPRC001	60	62	0.01	1	100	84	48	311	1410	1.5
GLPRC001	62	64	0.01	1	98	102	44	76	1380	1.4
GLPRC001	64	66	0.01	1	96	68	40	120	1330	1.2
GLPRC001	66	68	0.03	1	296	163	46	106	1670	1.5
GLPRC001	68	70	0.02	1	354	205	51	176	1800	1.7
GLPRC001	70	72	0.07	0	86	37	28	18	1280	1.3
GLPRC001	72	73	0.07	0	106	50	27	110	1020	1.5
GLPRC001	73	74	0.05	1	190	215	63	225	1450	3.3
GLPRC001	73	76	0.14	0	116	38	31	117	1280	2.1
GLPRC001	76	78	0.01	1	136	114	34	57	1050	1.1
GLPRC001	78	80	0.01	1	92	63	40	38	922	1.1
GLPRC001	80	82	0.01	1	94	83	47	40	746	1.8
GLPRC001	82	84	0.02	1	106	71	38	39	870	1.3
GLPRC001	84	86	0.06	0	82	52	26	20	1000	1.2
GLPRC001	86	88	0.07	0	182	81	28	30	3330	2.6
GLPRC001	88	90	0.04	0	76	23	28	10	1100	0.9
GLPRC001	90	92	0.02	0	82	32	29	22	830	1.3
GLPRC001	92	94	0.01	0	74	52	25	15	712	1.3
GLPRC001	94	96	0.29	0	82	27	39	32	546	1.8
GLPRC001	96	98	0.02	0	94	22	32	25	614	2.6
GLPRC001	98	100	0.02	0	80	22	25	19	1070	1.9
GLPRC001	100	102	0.01	2	22	5	4	0	1760	0.4
GLPRC001	102	104	0.01	0	16	4	3	1	1250	0.4
GLPRC001	104	106	0.01	0	22	4	4	0	2050	0.5
GLPRC001	106	108	0.02	0	40	6	13	4	1690	0.9
GLPRC001	108	110	0.01	1	206	142	25	3	2150	2.0
GLPRC001	110	112	0.01	0	82	45	16	2	1620	1.2
GLPRC001	112	114	0.01	0	40	11	12	1	1900	1.1
GLPRC001	114	116	0.01	0	76	13	15	1	1960	0.6
GLPRC001	116	118	0.01	0	62	9	13	3	1660	1.1
GLPRC001	118	120	0.01	1	172	176	35	2	1460	1.8
GLPRC001	120	122	0.11	102	29100	13400	608	35	1570	69.6
GLPRC001	122	124	0.03	18	11400	4300	670	37	2100	18.5
GLPRC001	124	126	0.01	1	432	208	27	6	1820	2.1
GLPRC001	126	128	0.05	0	82	29	10	2	1730	1.4
GLPRC001	128	130	0.04	1_	186	111	19	4	1830	1.4
GLPRC001	130	132	0.04	8	4860	2350	176	2	1650	6.2
GLPRC001	132	134	0.03	7	2530	1120	158	1	1370	9.9
GLPRC001	134	136	0.07	24	10900	4960	424	1	1680	23.8
GLPRC001	136	138	3.40	22	5730	2180	477	2	972	29.3
GLPRC001	138	140	2.55	14	4650	2090	244	3	1390	20.0
GLPRC001	140	142	0.20	31	11100	4930	662	8	2060	42.9
GLPRC001	142 144	144	4.66	404	12400	5950	606	3670	1980	549.0
GLPRC001		146	0.06	5	592	293	62	53	4230	15.7
GLPRC001	146 148	148	0.02	1 0	118	52 49	36	18	1770	3.8
GLPRC001 GLPRC001		150	0.01	0	92 104	49 52	37 34	17 14	1730	2.6 2.2
	150	152	0.01	0			41		1740	
GLPRC001 GLPRC001	152 154	154 156	0.01 0.01	0	110 78	53 28	27	16 11	1730 1990	2.2 1.3
GLPRC001	154	158	0.01	0	76	<u>20</u> 51	30	14	2020	1.3
GLPRC001	158	160	0.01	0	96	30	28	14	1910	1.0
GLPRC001	160	162	0.01	0	86	30	27	7	2030	0.8
GLPRC001	0	2	0.01	6	864	878	133	69	2110	9.4
GLPRC002	2	4	0.10	3	320	256	58	86	4170	5.6
GLPRC002	4	6	0.09	3	648	59	47	58	8310	3.5
GLPRC002	6	8	0.13	5	530	102	50	95	6320	2.9
GLPRC002	8	10	0.24	2	254	125	44	62	2380	2.8
GLPRC002	10	12	0.19	3	548	82	40	93	2510	4.7
GLPRC002	12	14	0.13	10	1410	103	46	43	5180	3.5
GLPRC002	14	16	0.04	4	2460	1540	147	54	4740	5.8
GLPRC002	16	18	0.10	3	2560	1660	191	68	6070	6.5
GLPRC002	18	20	0.03	4	2720	589	75	44	9060	6.6
GLPRC002	20	22	0.04	9	16700	108	46	90	12400	6.3
GLPRC002	22	24	0.03	5	16900	110	32	60	6560	5.1
GLPRC002	24	26	0.02	6	4170	127	19	51	6230	5.0
GLPRC002	26	28	0.01	1	894	42	40	78	1610	4.0
GLPRC002	28	30	0.01	1	454	68	46	45	1260	5.7
GLPRC002	30	32	0.02	2	1100	89	35	32	2950	4.3
GLPRC002	32	34	0.02	1	268	51	19	31	1210	3.2
GLPRC002	34	36	0.02	0	120	33	31	23	794	2.6
GLPRC002	36	38	0.01	2	2500	124	36	26	2450	3.3
GLPRC002	38	40	0.01	0	100	23	31	43	940	2.7
GLPRC002	40	42	0.01	0	76	21	39	11	856	1.7
GLPRC002	42	44	0.03	0	102	42	28	30	844	2.7

	-	-			-	l Di				
Hole ID GLPRC002	From 44	<u>To</u> 46	Au ppm 0.01	Ag ppm 0	Zn ppm 98	Pb ppm 35	Cu ppm 18	As ppm 18	Mn ppm 1290	Sb ppm 2.4
GLPRC002	46	48	0.01	1	118	53	17	17	1660	2.4
GLPRC002	48	50	0.01	0	102	49	16	24	1080	2.3
GLPRC002	50	52	0.01	0	84	41	23	15	806	2.0
GLPRC002	52	54	0.02	0	106	43	29	29	1000	2.8
GLPRC002	54	56	0.01	1	182	133	30	52	880	2.3
GLPRC002	56	58	0.02	1	286	264	28	62	1420	2.3
GLPRC002	58	60	0.02	4	1110	658	56	25	2400	3.9
GLPRC002	60	62	0.02	0	144	51	13	5	2260	1.0
GLPRC002	62	64	0.01	0	44	8	12	0	2840	0.8
GLPRC002	64	66	0.05	0	318	55	22	45	2630	2.0
GLPRC002	66	68	0.01	0	562	79	15	47	2400	2.0
GLPRC002	68	70	0.03	0	88	56	26	20	1280	2.3
GLPRC002	70	72	0.01	0	86	60	30	16	1100	2.1
GLPRC002	72	74	0.01	0	66	30	7	35	2470	1.1
GLPRC002	74	76	0.02	0	40	5	2	0	1790	0.3
GLPRC002	76	78	0.01	0	36	5 4	3	0	1870	0.3
GLPRC002 GLPRC002	78 80	80 82	0.01 0.01	0	38 42	5	3	3	1760 2290	0.4 0.6
GLPRC002	82	84	0.01	0	80	5	3	0	2520	0.6
	84		0.01	0	30	7	4	0	3220	
GLPRC002 GLPRC002	86	86 88	0.01	0	96	24	24	14	3220 882	0.3 2.0
GLPRC002 GLPRC002	88	90	0.02	0	80	27	25	13	696	1.9
GLPRC002	90	92	0.03	0	44	13	8	9	2150	0.8
GLPRC002	92	94	0.01	1	532	248	43	8	1170	2.3
GLPRC002	94	96	0.01	1	368	238	27	11	1110	1.8
GLPRC002	96	98	0.02	3	1510	560	28	11	1020	3.6
GLPRC002	98	100	0.02	2	850	339	28	58	1090	2.0
GLPRC002	100	102	0.02	3	1390	543	106	12	1100	2.8
GLPRC002	102	104	0.08	17	5040	2500	398	1	748	11.0
GLPRC002	104	106	0.03	10	2430	1290	131	2	798	5.0
GLPRC002	106	108	0.70	16	12500	5770	501	15	974	185.0
GLPRC002	108	110	0.10	5	2120	1030	76	2	1370	8.0
GLPRC002	110	112	0.06	4	2250	909	149	0	898	5.8
GLPRC002	112	114	0.02	9	3810	1900	258	0	1430	9.5
GLPRC002	114	116	0.10	28	11700	5530	563	4	1790	26.1
GLPRC002	116	118	0.20	19	6750	3380	388	2	1870	18.4
GLPRC002	118	120	0.15	11	4840	2340	364	1	1430	17.5
GLPRC002 GLPRC002	120 122	122 124	0.17 0.10	21 32	9180 12300	4270 6260	513 991	1 3	1580 1640	18.3 24.1
GLPRC002	124	126	0.10	29	11000	5630	651	2	1620	21.5
GLPRC002	124	128	0.36	29	10400	4860	653	12	2250	20.1
GLPRC002	128	130	10.80	33	10500	5300	465	36	2070	23.1
GLPRC002	130	132	0.29	3	1170	609	99	52	1010	7.9
GLPRC002	132	134	0.23	20	5980	2930	402	26	2380	17.6
GLPRC002	134	135	4.14	26	10300	4910	944	35	2370	28.0
GLPRC002	135	136	0.73	42	23500	14400	458	60	2590	37.9
GLPRC002	136	138	0.02	4	1340	1220	69	30	1360	5.4
GLPRC002	138	140	0.04	1	264	171	44	16	1980	3.2
GLPRC002	140	142	0.01	0	184	88	39	15	1990	2.8
GLPRC002	142	144	0.01	0	100	48	43	16	2150	1.9
GLPRC002	144	146	0.01	0	172	83	35	17	2080	2.5
GLPRC002	146	148	0.01	0	100	42	33	11	1790	1.2
GLPRC002	148	150	0.01	0	100	41	29	11	2170	1.1
GLPRC002	150	152	0.01	0	114	43	32	10	2140	1.0
GLPRC002	152	154	0.01	0	98	34	26	9	2150	1.2
GLPRC002	154	156	0.01	0	90	39	34	7	1960	0.8
GLPRC002	156	158	0.01	0	116	54	39	12	1710	0.8
GLPRC002 GLPRC002	158 160	160 162	0.01 0.01	0	150 120	115 69	34 27	16 16	1800 912	0.7 1.0
GLPRC002 GLPRC002	160	163	0.01	0	130	31	9	7	938	1.0
GLPRC002 GLPRC004	162	2	0.01	3	1650	660	207	49	1510	6.9
GLPRC004	2	4	0.06	2	3530	643	210	90	1400	7.2
GLPRC004	4	6	0.10	2	5220	505	302	415	880	7.2
GLPRC004	6	8	0.02	1	2130	194	240	132	370	4.0
GLPRC004	8	10	0.04	3	1620	405	264	134	1280	5.1
GLPRC004	10	12	0.17	2	5040	249	216	116	958	3.6
GLPRC004	12	14	0.15	1	4470	192	168	52	634	2.0
GLPRC004	14	16	0.25	1	5240	456	223	111	1090	3.9
GLPRC004	16	18	0.89	3	5350	604	390	185	748	7.8
GLPRC004	18	20	0.34	1	10200	429	265	54	934	5.5
GLPRC004	20	22	0.03	2	12200	713	414	117	1350	9.4
GLPRC004	22	24	0.02	3	11600	535	357	62	1090	6.1
GLPRC004	24	26	0.03	3	11100	1170	460	57	2930	7.2
GLPRC004	26	28	0.08	3	4850	1050	496	68	1320	9.3
GLPRC004	28	30	0.12	10	7320	4450	1620	110	8000	26.7
GLPRC004	30	32	0.09	7	3260	5150	1280	93	7870	35.0
GLPRC004	32	34	0.05	5	3380	3240	1000	71	5390	49.8
GLPRC004	34	36	0.04	6	4320	3680	1030	75	4720	18.4
GLPRC004	36	38	0.12	8	5020	6170	1270	98	4710	37.5

Hole ID	From	То	Au ppm	Ag ppm	Zn ppm	Pb ppm	Cu ppm	As ppm	Mn ppm	Sb ppm
GLPRC004	38	40	0.12	21	5840	7840	1200	161	6090	49.2
GLPRC004	40	42	0.11	30	6340	6270	1110	114	5250	43.5
GLPRC004	42	44	0.25	140	6170	8590	1640	215	1510	126.0
GLPRC004	44 46	46	0.16 0.11	39	6160	6240 10100	1280 1200	140 112	4540 9120	57.2
GLPRC004 GLPRC004	48	48 50	0.11	75 175	5180 6550	6580	1250	154	5950	155.0 290.0
GLPRC004	50	52	0.20	94	3420	10800	727	73	6580	119.0
GLPRC004	52	54	0.08	51	5300	6910	740	71	6820	38.5
GLPRC004	54	56	0.02	4	2280	922	114	7	2900	6.0
GLPRC004	56	58	0.02	18	13500	4570	995	13	2000	16.7
GLPRC004	58	60	0.02	2	1000	414	65	10	1960	3.2
GLPRC004 GLPRC004	60 62	62 64	0.01 0.01	4	1400 2260	784 971	113 214	63 25	4750 2780	4.5 4.0
GLPRC004	64	66	0.01	3	1090	542	120	15	1290	4.6
GLPRC004	66	68	0.01	3	1390	555	111	9	1220	4.1
GLPRC004	68	70	0.01	5	2540	979	145	9	2290	3.6
GLPRC004	70	72	0.02	3	1410	601	108	22	2490	3.2
GLPRC004	72	74	0.01	5	2230	834	167	40	2500	3.2
GLPRC004 GLPRC004	74 76	76 78	0.01 0.02	4 6	2460 5290	848 1170	152 359	35 17	2080 1530	4.0 7.6
GLPRC004	78	80	0.02	12	11400	3310	626	7	1870	8.9
GLPRC004	80	82	0.04	4	3030	1050	167	1	2750	3.3
GLPRC004	82	84	0.02	6	3520	1310	260	13	2150	17.7
GLPRC004	84	86	0.01	4	3050	924	157	5	2370	6.2
GLPRC004	86	88	0.01	3	2320	719	129	3	4060	3.6
GLPRC004 GLPRC004	88 90	90 92	0.01 0.01	3	1150 1420	286 565	63 153	3 44	4420 952	2.1 4.7
GLPRC004	92	94	0.01	1	498	196	190	36	974	1.3
GLPRC004	94	96	0.02	1	282	175	85	30	796	1.3
GLPRC005	0	2	0.08	1	290	990	135	38	600	2.8
GLPRC005	2	4	0.02	1	158	2510	198	23	1510	2.1
GLPRC005	4	6	0.02	0	148	1940	335	30	1040	1.6
GLPRC005 GLPRC005	6 8	8 10	0.02	1 2	174 166	954 1140	142 232	17 26	612 614	2.0 1.9
GLPRC005	10	12	0.04	1	120	597	266	50	176	1.6
GLPRC005	12	14	0.04	1	136	525	349	58	172	2.5
GLPRC005	14	16	0.14	6	408	1450	737	84	692	5.3
GLPRC005	16	18	0.52	9	686	2040	697	250	252	20.1
GLPRC005	18	20	0.04	13	532	4420	517	1170	136	23.3
GLPRC005 GLPRC005	20 22	22 24	0.04 0.01	<u>3</u> 5	110 512	1040 1530	405 451	227 63	108 974	8.9 8.9
GLPRC005	24	26	0.01	4	708	1100	189	9	894	2.3
GLPRC005	26	28	0.02	6	726	3340	199	6	734	4.1
GLPRC005	28	30	0.01	14	990	5670	143	35	948	7.1
GLPRC005	30	32	0.21	7	2570	5030	280	185	1420	19.1
GLPRC005	32	34	0.22	2	826	1500	200	18	350	7.1
GLPRC005 GLPRC005	34 36	36 38	0.02 0.01	2	512 516	851 1590	72 171	12 72	260 1510	3.7 3.0
GLPRC005	38	40	0.01	1	1060	1810	194	91	2150	3.6
GLPRC005	40	42	0.01	1	504	512	60	40	888	2.0
GLPRC005	42	44	0.01	1	826	1720	148	78	2680	1.8
GLPRC005	44	46	0.01	1	660	2070	188	85	1400	2.6
GLPRC005	46	48	0.01	1	638	2250	157	69	2180	2.4
GLPRC005 GLPRC005	48 50	50 52	0.02 0.08	1	794 888	1420 1940	125 134	126	1260 1530	5.8 4.5
GLPRC005	52	54	0.06	1	568	851	62	44	672	3.6
GLPRC005	54	56	0.23	0	1200	927	176	50	850	4.6
GLPRC005	56	58	0.06	0	682	705	83	37	270	3.0
GLPRC005	58	60	0.42	0	812	818	97	60	232	10.1
GLPRC005	60	62	0.08	24	3340	7650 5400	893	153	11500	24.4
GLPRC005 GLPRC005	62 64	64 66	0.05 0.09	6 9	1830 14100	5400 10800	168 568	75 57	464 904	39.3 13.8
GLPRC005	66	68	0.09	14	19800	13400	368	25	1040	20.2
GLPRC005	68	70	0.03	3	3710	2730	48	31	840	5.7
GLPRC005	70	72	0.06	5	11700	5520	47	95	1110	10.6
GLPRC005	72	74	0.03	3	4700	3900	27	34	880	5.8
GLPRC005	74	76	0.04	24	26600	31000	39	31	1260	20.2
GLPRC005 GLPRC005	76 78	78 80	0.03	3 0	4540 468	2310 220	23 7	35 41	1400 1460	3.9 1.3
GLPRC005	80	82	0.02	1	824	576	33	41	1590	8.1
GLPRC005	82	84	0.03	4	14300	6020	577	24	1090	5.9
GLPRC005	84	86	0.04	2	3950	2910	642	74	1080	3.8
GLPRC005	86	88	0.01	1	1760	1240	228	85	1320	1.8
GLPRC005	88	90	0.01	0	590	102	37	179	1890	1.5
GLPRC005 GLPRC005	90 92	92 94	0.01 0.01	1 0	1340 822	792 356	59 352	21 37	1300 980	1.1 0.9
GLPRC005 GLPRC005	92	94	0.01	1	4660	2100	879	11	1460	1.4
GLPRC005	96	98	0.03	2	2350	668	39	54	1310	1.1
GLPRC005	98	100	0.01	4	2610	451	59	113	990	1.5
GLPRC005	100	102	0.01	4	2270	673	28	54	1420	1.0

GLPRC005 104 106 0.01 9 3220 571 30 121 9 GLPRC005 106 108 0.01 6 2030 677 22 61 11 GLPRC005 108 110 0.01 4 1690 409 66 101 8 GLPRC005 110 112 0.02 3 1550 1020 193 55 10 GLPRC005 110 112 0.01 2 7560 4950 65 28 11 GLPRC005 114 116 0.01 2 8970 3360 64 23 11 GLPRC005 116 118 0.01 1 2620 1100 223 16 13 GLPRC005 118 120 0.01 1 2620 1100 223 16 13 GLPRC005 120 122 0.01 1 888 474 242	Sb ppm
GLPRC005 104 106 0.01 9 3220 571 30 121 9 GLPRC005 106 108 0.01 6 2030 677 22 61 11 GLPRC005 108 110 0.01 4 1690 409 66 101 8 GLPRC005 110 112 0.02 3 1550 1020 193 55 10 GLPRC005 110 112 0.01 2 7560 4950 65 28 11 GLPRC005 114 116 0.01 2 8970 3360 64 23 11 GLPRC005 116 118 0.01 1 2620 1100 223 16 13 GLPRC005 116 118 120 0.01 1 2030 465 128 69 16 GLPRC005 120 122 0.01 1 888 474	17
GLPRC005 106 108 0.01 6 2030 677 22 61 13 GLPRC005 108 110 0.01 4 1690 409 66 101 8 GLPRC005 110 112 0.02 3 1550 1020 193 55 10 GLPRC005 112 114 0.01 2 7560 4950 65 28 11 GLPRC005 114 116 0.01 2 8970 3360 64 23 11 GLPRC005 116 118 0.01 1 2620 1100 223 16 13 GLPRC005 118 120 0.01 1 2030 465 128 69 11 GLPRC005 120 122 124 0.01 1 744 242 120 22 GLPRC005 120 122 124 0.01 1 744 242	13
GLPRC005 108 110 0.01 4 1690 409 66 101 8 GLPRC005 110 112 0.02 3 1550 1020 193 55 11 GLPRC005 112 114 0.01 2 7560 4950 65 28 11 GLPRC005 114 116 0.01 2 8970 3360 64 23 11 GLPRC005 116 118 0.01 1 2620 1100 223 16 13 GLPRC005 118 120 0.01 1 2620 1100 223 16 13 GLPRC005 120 122 0.01 1 2030 465 128 69 11 GLPRC005 120 122 0.01 1 888 474 242 120 9 37 13 13 11 GLPRC005 122 124 0.01 1	13
GLPRC005 110 112 0.02 3 1550 1020 193 55 10 GLPRC005 112 114 0.01 2 7560 4950 65 28 11 GLPRC005 114 116 0.01 2 8970 3360 64 23 11 GLPRC005 116 118 0.01 1 2620 1100 223 16 13 GLPRC005 118 120 0.01 1 2030 465 128 69 11 GLPRC005 120 122 0.01 1 888 474 242 120 5 GLPRC005 120 122 0.01 1 714 426 29 37 13 GLPRC005 124 126 0.01 1 350 299 31 136 14 GLPRC005 126 128 0.01 4 1760 784 106	1.2
GLPRC005 112 114 0.01 2 7560 4950 65 28 11 GLPRC005 114 116 0.01 2 8970 3360 64 23 11 GLPRC005 116 118 0.01 1 2620 1100 223 16 13 GLPRC005 118 120 0.01 1 2030 465 128 69 11 GLPRC005 120 122 0.01 1 2030 465 128 69 11 GLPRC005 120 122 0.01 1 888 474 242 120 5 GLPRC005 122 124 0.01 1 714 426 29 37 13 GLPRC005 122 124 0.01 1 350 299 31 136 14 GLPRC005 128 130 0.02 4 1790 1100 332	60 1.7 70 1.7 70 1.7 130 1.2 160 1.1 174 2.1 110 0.7 140 1.3 160 2.1 1336 3.4 1330 1.6 172 1.3 140 1.0 180 1.8 180 2.5 190 3.6 180 2.1
GLPRC005 114 116 0.01 2 8970 3360 64 23 17 GLPRC005 116 118 0.01 1 2620 1100 223 16 13 GLPRC005 118 120 0.01 1 2030 465 128 69 10 GLPRC005 120 122 0.01 1 888 474 242 120 5 GLPRC005 122 124 0.01 1 714 426 29 37 13 GLPRC005 124 126 0.01 1 350 299 31 136 14 GLPRC005 126 128 0.01 4 1760 784 106 32 13 GLPRC005 128 130 0.02 4 1790 1100 332 5 5 GLPRC005 130 132 0.01 2 590 339 47	770 1.7
GLPRC005 118 120 0.01 1 2030 465 128 69 10 GLPRC005 120 122 0.01 1 888 474 242 120 5 GLPRC005 122 124 0.01 1 714 426 29 37 13 GLPRC005 124 126 0.01 1 350 299 31 136 14 GLPRC005 126 128 0.01 4 1760 784 106 32 13 GLPRC005 128 130 0.02 4 1790 1100 332 5 5 GLPRC005 130 132 0.01 2 590 339 47 3 12 GLPRC005 132 134 0.01 1 1240 712 42 13 9 GLPRC005 134 136 0.01 1 258 129 12 5	1.00
GLPRC005 120 122 0.01 1 888 474 242 120 3 GLPRC005 122 124 0.01 1 714 426 29 37 13 GLPRC005 124 126 0.01 1 350 299 31 136 14 GLPRC005 126 128 0.01 4 1760 784 106 32 13 GLPRC005 128 130 0.02 4 1790 1100 332 5 5 GLPRC005 130 132 0.01 2 590 339 47 3 12 GLPRC005 132 134 0.01 1 1240 712 42 13 3 GLPRC005 134 136 0.01 1 258 129 12 5 11 GLPRC005 136 138 0.16 2 460 144 53 5	374 2.1 110 0.7 440 1.3 160 2.1 1336 3.4 130 1.6 172 1.3 140 1.0 180 1.8 180 2.5 90 3.6 180 2.1
GLPRC005 122 124 0.01 1 714 426 29 37 13 GLPRC005 124 126 0.01 1 350 299 31 136 14 GLPRC005 126 128 0.01 4 1760 784 106 32 13 GLPRC005 128 130 0.02 4 1790 1100 332 5 5 GLPRC005 130 132 0.01 2 590 339 47 3 11 GLPRC005 132 134 0.01 1 1240 712 42 13 9 GLPRC005 134 136 0.01 1 258 129 12 5 10 GLPRC005 134 136 0.01 1 258 129 12 5 11 GLPRC006 0 2 0.07 1 1050 783 355 168	110 0.7 1.3 1.60 2.1 1.3 1.60 2.1 1.3 1.60 3.4 1.30 1.6 1.72 1.3 1.40 1.0 1.80 1.8
GLPRC005 124 126 0.01 1 350 299 31 136 14 GLPRC005 126 128 0.01 4 1760 784 106 32 13 GLPRC005 128 130 0.02 4 1790 1100 332 5 5 GLPRC005 130 132 0.01 2 590 339 47 3 12 GLPRC005 132 134 0.01 1 1240 712 42 13 9 GLPRC005 134 136 0.01 1 258 129 12 5 10 GLPRC005 136 138 0.16 2 460 144 53 5 6 GLPRC006 0 2 0.07 1 1050 783 355 168 9 GLPRC006 2 4 0.05 2 1910 1050 245 115	13
GLPRC005 126 128 0.01 4 1760 784 106 32 13 GLPRC005 128 130 0.02 4 1790 1100 332 5 5 GLPRC005 130 132 0.01 2 590 339 47 3 12 GLPRC005 132 134 0.01 1 1240 712 42 13 5 GLPRC005 134 136 0.01 1 258 129 12 5 10 GLPRC005 136 138 0.16 2 460 144 53 5 6 GLPRC006 0 2 0.07 1 1050 783 355 168 9 GLPRC006 2 4 0.05 2 1910 1050 245 115 11 GLPRC006 4 6 0.04 2 1400 711 199 76 <	660 2.1 336 3.4 330 1.6 772 1.3 140 1.0 880 2.5 90 3.6 880 2.1
GLPRC005 128 130 0.02 4 1790 1100 332 5 5 GLPRC005 130 132 0.01 2 590 339 47 3 12 GLPRC005 132 134 0.01 1 1240 712 42 13 9 GLPRC005 134 136 0.01 1 258 129 12 5 10 GLPRC005 136 138 0.16 2 460 144 53 5 6 GLPRC006 0 2 0.07 1 1050 783 355 168 9 GLPRC006 2 4 0.05 2 1910 1050 245 115 1 GLPRC006 4 6 0.04 2 1400 711 199 76 12 GLPRC006 6 8 0.02 1 558 286 63 37 1 <td>336 3.4 230 1.6 372 1.3 440 1.0 880 1.8 880 2.5 90 3.6 280 2.1</td>	336 3.4 230 1.6 372 1.3 440 1.0 880 1.8 880 2.5 90 3.6 280 2.1
GLPRC005 130 132 0.01 2 590 339 47 3 12 GLPRC005 132 134 0.01 1 1240 712 42 13 9 GLPRC005 134 136 0.01 1 258 129 12 5 11 GLPRC005 136 138 0.16 2 460 144 53 5 6 GLPRC006 0 2 0.07 1 1050 783 355 168 9 GLPRC006 2 4 0.05 2 1910 1050 245 115 11 GLPRC006 4 6 0.04 2 1400 711 199 76 12 GLPRC006 6 8 0.02 1 558 286 63 37 11 GLPRC006 8 10 0.02 1 868 522 162 147 16 <td>230 1.6 172 1.3 140 1.0 180 1.8 180 2.5 90 3.6 280 2.1</td>	230 1.6 172 1.3 140 1.0 180 1.8 180 2.5 90 3.6 280 2.1
GLPRC005 132 134 0.01 1 1240 712 42 13 9 GLPRC005 134 136 0.01 1 258 129 12 5 11 GLPRC005 136 138 0.16 2 460 144 53 5 6 GLPRC006 0 2 0.07 1 1050 783 355 168 9 GLPRC006 2 4 0.05 2 1910 1050 245 115 11 GLPRC006 4 6 0.04 2 1400 711 199 76 12 GLPRC006 6 8 0.02 1 558 286 63 37 11 GLPRC006 8 10 0.02 1 868 522 162 147 16 GLPRC006 10 12 0.01 1 920 453 144 119 14 </td <td>172 1.3 140 1.0 180 1.8 180 2.5 180 2.5 280 2.1</td>	172 1.3 140 1.0 180 1.8 180 2.5 180 2.5 280 2.1
GLPRC005 134 136 0.01 1 258 129 12 5 10 GLPRC005 136 138 0.16 2 460 144 53 5 6 GLPRC006 0 2 0.07 1 1050 783 355 168 9 GLPRC006 2 4 0.05 2 1910 1050 245 115 11 GLPRC006 4 6 0.04 2 1400 711 199 76 12 GLPRC006 6 8 0.02 1 558 286 63 37 11 GLPRC006 8 10 0.02 1 868 522 162 147 16 GLPRC006 10 12 0.01 1 920 453 144 119 14 GLPRC006 12 14 0.02 1 1040 1320 243 98 18<	140 1.0 180 1.8 180 2.5 90 3.6 180 2.1
GLPRC005 136 138 0.16 2 460 144 53 5 6 GLPRC006 0 2 0.07 1 1050 783 355 168 9 GLPRC006 2 4 0.05 2 1910 1050 245 115 11 GLPRC006 4 6 0.04 2 1400 711 199 76 12 GLPRC006 6 8 0.02 1 558 286 63 37 11 GLPRC006 8 10 0.02 1 868 522 162 147 116 GLPRC006 10 12 0.01 1 920 453 144 119 14 GLPRC006 12 14 0.02 1 924 655 206 70 15 GLPRC006 14 16 0.02 1 1040 1320 243 98 18	680 1.8 980 2.5 90 3.6 280 2.1
GLPRC006 0 2 0.07 1 1050 783 355 168 9 GLPRC006 2 4 0.05 2 1910 1050 245 115 11 GLPRC006 4 6 0.04 2 1400 711 199 76 12 GLPRC006 6 8 0.02 1 558 286 63 37 11 GLPRC006 8 10 0.02 1 868 522 162 147 11 GLPRC006 10 12 0.01 1 920 453 144 119 14 GLPRC006 12 14 0.02 1 924 655 206 70 15 GLPRC006 14 16 0.02 1 1040 1320 243 98 18	980 2.5 90 3.6 980 2.1
GLPRC006 2 4 0.05 2 1910 1050 245 115 17 GLPRC006 4 6 0.04 2 1400 711 199 76 12 GLPRC006 6 8 0.02 1 558 286 63 37 11 GLPRC006 8 10 0.02 1 868 522 162 147 16 GLPRC006 10 12 0.01 1 920 453 144 119 14 GLPRC006 12 14 0.02 1 924 655 206 70 19 GLPRC006 14 16 0.02 1 1040 1320 243 98 18	90 3.6 280 2.1
GLPRC006 4 6 0.04 2 1400 711 199 76 12 GLPRC006 6 8 0.02 1 558 286 63 37 1* GLPRC006 8 10 0.02 1 868 522 162 147 16 GLPRC006 10 12 0.01 1 920 453 144 119 1 GLPRC006 12 14 0.02 1 924 655 206 70 15 GLPRC006 14 16 0.02 1 1040 1320 243 98 18	280 2.1
GLPRC006 6 8 0.02 1 558 286 63 37 1 GLPRC006 8 10 0.02 1 868 522 162 147 16 GLPRC006 10 12 0.01 1 920 453 144 119 14 GLPRC006 12 14 0.02 1 924 655 206 70 15 GLPRC006 14 16 0.02 1 1040 1320 243 98 18	
GLPRC006 8 10 0.02 1 868 522 162 147 16 GLPRC006 10 12 0.01 1 920 453 144 119 14 GLPRC006 12 14 0.02 1 924 655 206 70 15 GLPRC006 14 16 0.02 1 1040 1320 243 98 18	
GLPRC006 10 12 0.01 1 920 453 144 119 14 GLPRC006 12 14 0.02 1 924 655 206 70 15 GLPRC006 14 16 0.02 1 1040 1320 243 98 18	
GLPRC006 12 14 0.02 1 924 655 206 70 19 GLPRC006 14 16 0.02 1 1040 1320 243 98 18	
GLPRC006 14 16 0.02 1 1040 1320 243 98 18	
	330 1.8
THEREGING T 76 T 78 T THE TOTAL TOTA	210 0.9
	210 0.9
	240 1.2
	360 0.8
	510 0.8
	00 0.7
	70 1.6
	370 1.0
	30 0.6
	70 0.8
	060 0.7
	010 0.5
	016 0.5
	30 0.6
GLPRC006 44 46 0.01 1 878 446 90 37 8	398 0.6
GLPRC006 46 48 0.01 1 992 807 127 41 9	98 1.3
GLPRC006 48 50 0.01 1 1340 696 98 64 13	880 0.7
GLPRC006 50 52 0.02 1 1370 355 40 21 13	0.4
	40 0.6
	220 1.2
	00 1.3
	668 2.9
	586 2.9
	86 2.2
	340 4.0
	3.5
	16 3.2
	1.3
	1.1
	0.6
	880 0.3 600 0.8
	50 0.5
	70 0.5
	300 0.6
	40 2.5
	300 0.5
	90 0.7
	370 1.1
	20 2.0
	050 1.0
	000 2.4
	80 1.1
	330 0.7
	366 1.2
	542 1.8
	758 1.1
GLPRC006 110 112 0.04 2 3840 563 599 8 10	060 1.0
GLPRC006 112 114 0.01 1 2950 241 230 58 8	372 0.9
GLPRC006 114 116 0.03 7 6290 938 337 4 9	36 1.4
	280 5.6
	318 6.8
GLPRC006 122 124 0.13 3 2460 1130 90 80 7	100 7.0 184 15.0

Hole ID	From	To	Au ppm	Ag ppm	Zn ppm	Pb ppm	Cu ppm	As ppm	Mn ppm	Sb ppm
GLPRC006	124	126	0.26	11	15700	6260	122	89	826	23.4
GLPRC006	126	128	1.25	25	4640	2720	130	128	622	14.0
GLPRC006	128	130	2.08	60	2980	1360	347	161	682	11.4
GLPRC006	130	132	0.20	12	5050	3180	335	122	1220	12.0
GLPRC006	132	134	2.99	4	696	140	50	207	606	2.7
GLPRC006	134	136	1.72	5	456	39	36	242	830	2.1
GLPRC006	136	138	0.32	2	790	286	95	277	1090	3.5
GLPRC006	138	140	0.03	4	674	99	45	123	662	2.3
GLPRC006	140	142	0.19	3	564	44	38	149	450	1.9
GLPRC006	142	144	0.11	3	566	58	39	135	458	2.1
GLPRC006	144	146	0.21	3	1140	369	58	134	520	2.4
GLPRC006	146	148	0.33	3	798	249	59	118	472	1.8
GLPRC006	148	150	0.11	2	592	154	46	70	404	1.4
GLPRC006	150	152	0.04	1	594	110	12	8	344	1.6
GLPRC006	152	154	0.02	Ó	1240	35	18	39	282	1.4
GLPRC006	154	156	0.23	3	712	164	49	74	362	2.1
GLPRC006	156	158	0.24	3	894	237	48	50	428	2.0
GLPRC006	158	160	0.04	1	872	78	55	33	396	1.1
GLPRC006	160	162	0.02	1	576	70	45	36	414	1.2
GLPRC006	162	164	0.05	1	630	180	39	16	726	1.1
GLPRC006	164	166	0.03	Ó	498	94	48	14	882	1.0
GLPRC006	166	168	0.02	0	492	46	34	12	1290	0.9
GLPRC006	168	170	0.04	Ö	558	34	46	21	962	1.3
GLPRC006	170	172	0.03	Ů.	400	27	38	22	712	1.3
GLPRC006	172	174	0.09	0	612	48	41	122	596	2.0
GLPRC006	174	176	0.60	20	5010	3690	928	117	2340	15.9
GLPRC006	176	178	0.53	4	464	524	94	559	904	3.2
GLPRC006	178	180	0.77	76	35700	15800	1230	256	832	59.1
GLPRC006	180	182	0.25	6	1840	655	458	198	1010	12.5
GLPRC006	182	184	0.90	80	43100	15500	2080	604	1270	128.0
GLPRC006	184	186	0.28	10	17900	9660	539	576	1990	33.3
GLPRC006	186	188	0.38	13	9760	5350	563	525	2350	51.3
GLPRC006	188	190	0.93	48	38400	14300	2730	501	1470	91.7
GLPRC006	190	192	0.44	75	34500	18900	1250	270	1740	84.5
GLPRC006	192	194	0.79	59	32600	12300	2220	843	1570	56.6
GLPRC006	194	196	1.01	50	25100	7220	2460	1170	1010	62.2
GLPRC006	196	198	0.32	16	5880	3150	346	278	1640	26.5
GLPRC006	198	200	0.10	9	7470	3780	492	145	302	14.5
GLPRC006	200	202	0.04	3	8060	608	490	140	662	5.0
GLPRC006	202	204	0.03	2	1500	373	206	20	642	3.5
GLPRC006	204	206	0.04	1	1070	246	92	11	644	2.0
GLPRC006	206	208	0.02	1	1850	143	205	3	582	1.3
GLPRC006	208	210	0.03	1	3080	154	343	24	588	2.8
GLPRC006	210	212	0.01	0	0	0	0.0	0	0	0.0
GLPRC006	194	196	1.01	50	25100	7220	2460	1170	1010	62.2
GLPRC006	196	198	0.32	16	5880	3150	346	278	1640	26.5
GLPRC006	198	200	0.10	9	7470	3780	492	145	302	14.5
GLPRC006	200	202	0.04	3	8060	608	490	140	662	5.0
GLPRC006	202	204	0.03	2	1500	373	206	20	642	3.5
GLPRC006	204	206	0.03	1	1070	246	92	11	644	2.0
GLPRC006	206	208	0.04	1	1850	143	205	3	582	1.3
GLPRC006	208	210	0.02	1	3080	154	343	24	588	2.8
GLPRC006	210	212	0.03	0	3000	0	0	0	0	0.0