

LATIN RESOURCES LIMITED ACN: 131 405 144

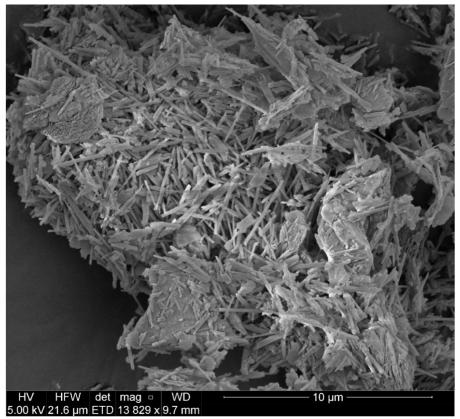
Unit 3, 32 Harrogate Street West Leederville, Western Australia, 6007.

P 08 6117 4798 E info@latinresources.com.au W www.latinresources.com.au

ASX Announcement

17 March 2021

LATEST RESULTS RETURN THICKEST HIGH-GRADE HALLOYSITE AND ULTRA-BRIGHT-WHITE KAOLIN INTERSECTION TO DATE, NOOMBENBERRY PROJECT, WA


HIGHLIGHTS:

- The latest results from test work from the Noombenberry project include results from the area where logging has shown thick bright white kaolinitic saprolite with results including:
 - NBAC068: 26m @ 9% halloysite, 86% Kaolinite, 80 ISO-B from 5m
 - Inc: 15m @ 15% halloysite, 80% Kaolinite, 80 ISO-B from 9m
 - NBAC058: 47m @ 7% halloysite, 79% kaolinite, 77 ISO-B from 8m Inc: 17m @ 12% halloysite, 73% Kaolinite, 80 ISO-B from 26m
- Other significant results include:
 - NBAC067: 15m @ 8% halloysite, 88% Kaolinite, 79 ISO-B from 10m
 - NBAC066: 6m @ 11% halloysite, 69% Kaolinite, 77 ISO-B from 10m
 - NBAC065: 16m @ 3% halloysite, 74% Kaolinite, 73 ISO-B from 9m
 - NBAC064: 4m @ 14% halloysite, 60% Kaolinite, 56 ISO-B from 16m
- SEM analysis of selected QC samples has shown good halloysite nano-tube development
- Preliminary work for the upcoming JORC resource is on-going and on-track for Q2 2021.

Latin Resources Limited (ASX: LRS) ("**Latin**" or "the **Company**") is very pleased to advise that results from analysis from an area where logging showed a very thick zone of kaolinitic saprolite, have confirmed strong halloysite development, within the ultra-bright white kaolinite. With results received from 300 of the 750 samples submitted for detailed test work at the Noombenberry Project ("Noombenberry" or "**the Project**"), the company is on track to deliver the maiden JORC resource in Q2 2021 on this extremely exciting project.

Significant composite results from the recently received test work results from the Noombenberry Project are presented in the table below (Table 1), with a full list of results received and drillhole collar details provided in Appendix 1.

As a part of the Company's routine analytical process, selected samples are sent for Scanning Electron Microscope ("SEM") Quality Control ("QC") analysis. Results from this work have shown good halloysite nano-tube development with high aspect ratio (*length to width ratio*) (*Figure 1*). This QC analysis is extremely important in the early stage of a new project of this nature, with the Company's exploration team working closely with the laboratory and other specialised industry experts to ensure the highest standards of test work and results are achieved.

Figure 1: Scanning Electron Microscope (SEM) imagery showing high aspect ratio halloysite nano-tube development in a selected QC sample from drill hole NBAC015 (36-40m) which returned a grade of 31% halloysite, 45% kaolinite and 80 ISO-B¹

Hole ID	From (m)	To (m)	Interval (m)	-45um (%)	Fe2O3 (%)	Al203 (%)	TiO2 (%)	SiO2 (%)	Kaolinite (%)	Halloysite (%)	Brightness (ISO-B)
NBAC058	8	55	47	33.0	0.8	33.4	0.6	51.8	79	7	77
Inc:	26	43	17	41.6	0.6	33.7	0.5	51.4	73	12	80
NBAC059	6	7	1	14.4	3.5	26.2	1.0	56.7	70	6	43
NBAC060	6	8	2	29.8	1.4	31.6	0.3	52.0	71	2	75
NBAC061	5	6	1	12.1	3.1	30.9	0.7	53.0	78	5	51
and	8	20	12	33.3	1.0	33.1	0.2	51.5	82	0	79
NBAC062	6	9	3	20.5	3.0	30.8	1.3	51.4	86	3	46
and	10	15	5	36.2	3.2	30.2	1.2	51.5	74	5	51
NBAC064	5	16	11	40.6	0.6	36.0	0.3	49.1	90	0	77
and	16	20	4	38.2	1.9	32.6	0.3	50.6	59	14	57
NBAC065	9	25	16	33.0	0.9	31.8	0.9	52.9	74	3	73
Inc:	21	25	4	35.2	1.2	32.0	0.4	51.9	68	6	69
NBAC066	10	16	6	40.7	1.1	32.9	0.6	50.9	69	11	77
NBAC067	4	19	15	44.2	0.7	37.4	0.3	47.8	88	8	79
NBAC068	5	31	26	49.0	0.6	37.5	0.4	47.9	86	9	80
Inc:	9	24	15	49.1	0.5	37.6	0.3	48.0	80	15	80

Table 1: Significant Intersections for the current batch of results - Noombenberry Project, Western Australia

¹ Refer to ASX announcement dated 24 February 2021 for full details and JORC tables

The Company is continuing to engage with potential offtake partners and progress discussions throughout the resource estimation process with more detailed information in respect to potential scale and material characteristics of our halloysite project.

Latin Resources Executive Director, Chris Gale commented, "The Noombenberry project just keeps on delivering high quality results. These latest results are from an area where our geologists logged and reported a very thick zone of kaolinitic saprolite development and have confirmed we have encountered very-high quality kaolinite and strong halloysite nano-tube development."

He went on to say, "While we still have a number of samples working their way through analysis, we are on track to deliver a maiden JORC resources in Q2 2021, while continuing our early-stage discussion with potential offtake partners. Global development opportunities for high purity halloysite are potentially unlimited and include battery technology, carbon capture, water purification and hydrogen storage."

This Announcement has been authorised for release to ASX by the Board of Latin Resources

For further information please contact:

Chris Gale Executive Director Latin Resources Limited +61 8 6117 4798

Sarah Smith Company Secretary Latin Resources Limited +61 8 6117 4798

info@latinresources.com.au www.latinresources.com.au

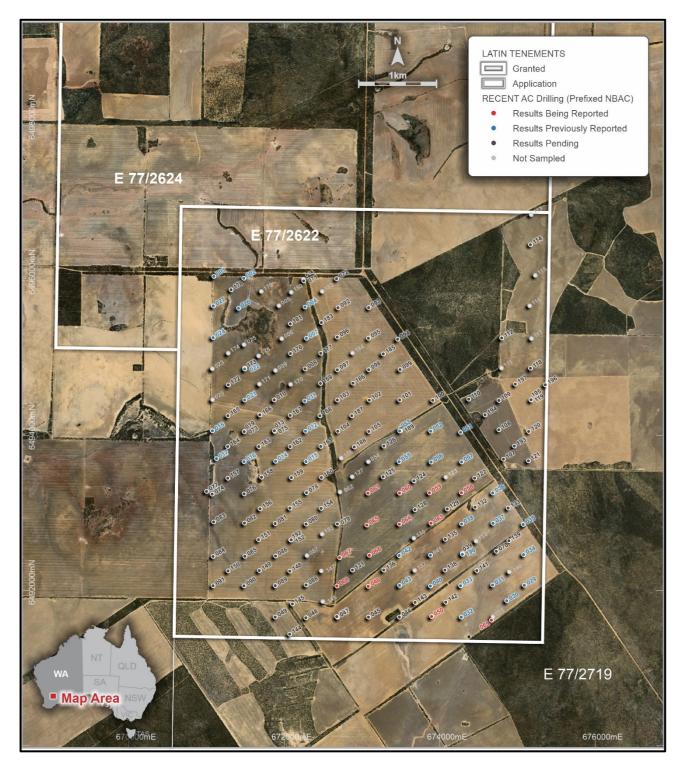


Figure 2: Noombenberry Project showing completed air-core drill sites

About Latin Resources

Latin Resources Limited (ASX: LRS) is an Australian-based mineral exploration company with several mineral resource projects in Latin America and Australia. The Australian projects include the Yarara gold project in the NSW Lachlan Fold belt, Noombenberry Halloysite Project near Merredin, WA, and the Big Grey Project in the Paterson region, WA.

The Company recently signed a JV agreement with the Argentinian company Integra Capital to fund the next phase of exploration on its lithium pegmatite projects in Catamarca, Argentina. The company is also actively progressing its Copper Porphyry MT03 project in the Ilo region.

Forward Looking Statement

This ASX announcement may include forward-looking statements. These forward-looking statements are not historical facts but rather are based on Latin Resources Ltd.'s current expectations, estimates and assumptions about the industry in which Latin Resources Ltd operates, and beliefs and assumptions regarding Latin Resources Ltd.'s future performance. Words such as "anticipates", "expects", "intends", "plans", "believes", "seeks", "estimates", "potential" and similar expressions are intended to identify forward-looking statements. Forward-looking statements are only predictions and are not guaranteed, and they are subject to known and unknown risks, uncertainties and assumptions, some of which are outside the control of Latin Resources Ltd. Past performance is not necessarily a guide to future performance and no representation or warranty is made as to the likelihood of achievement or reasonableness of any forward-looking statements or other forecast. Actual values, results or events may be materially different to those expressed or implied in this ASX announcement. Given these uncertainties, recipients are cautioned not to place reliance on forward looking statements. Any forward-looking statements in this announcement speak only at the date of issue of this announcement. Subject to any continuing obligations under applicable law and the ASX Listing Rules, Latin Resources Ltd does not undertake any obligation to update or revise any information or any of the forward-looking statements in this announcement or any changes in events, conditions or circumstances on which any such forward looking statement is based.

Competent Person Statement

Information in this ASX release that relates to Exploration Results and Exploration Targets is based on information completed by Mr Anthony Greenaway, who is a member of the Australasian Institute of Mining and Metallurgy. Mr Greenaway is a full-time employee of Latin Resources Ltd and has sufficient experience which is relevant to the style of mineralisation and types of deposits under consideration and to the activities undertaken to qualify as a Competent Person as defined in the 2012 Edition of the "Australian Code for Reporting of Mineral Resources and Ore Reserves". Mr Greenaway consents to the inclusion in this report of the matters based on information in the form and context in which it appears.

APPENDIX 1

Noombenberry Project Drill Collar and Assay Information

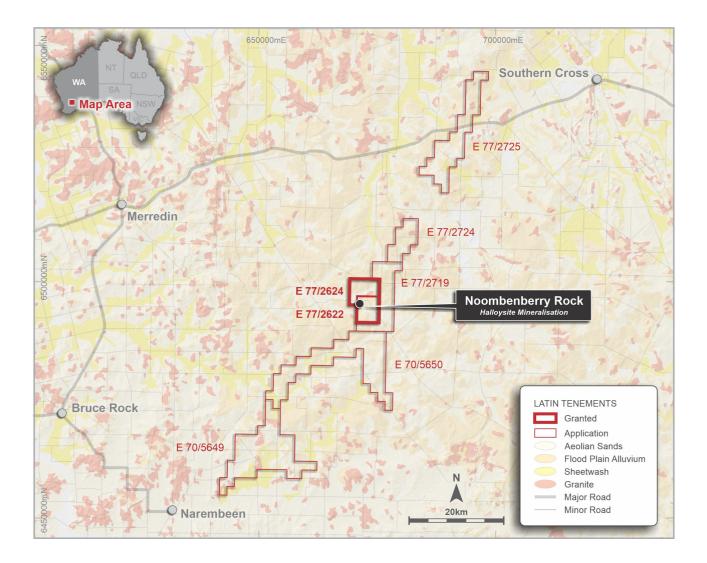
Table 2 – Air-Core drill hole collar details, Noombenberry Project, WA

Details and co-ordinates of air-core drill holes from the Noombenberry Halloysite-Kaolin Project WA.

Hole ID	East (m)	North (m)	RL	Dip	Azi	EOH (m)	Comments
NBAC044	673484	6491657	427	-90	360	33	Results Pending
NBAC045	673087	6491656	434	-90	360	22	Results Pending
NBAC046	673084	6492053	440	-90	360	34	
NBAC047	672687	6491654	438	-90	360	35	Results Pending
NBAC048	672282	6491649	439	-90	360	29	Results Pending
NBAC049	671887	6491657	437	-90	360	10	Results Pending
NBAC050	673899	6491664	431	-90	360	32	
NBAC051	674271	6494037	458	-90	360	33	
NBAC052	673887	6494054	453	-90	360	27	
NBAC053	673488	6494056	452	-90	360	36	
NBAC054	673082	6493660	455	-90	360	2	Hole not sampled
NBAC055	673481	6493660	454	-90	360	32	
NBAC056	673892	6493655	452	-90	360	22	
NBAC057	674283	6493656	451	-90	360	39	
NBAC058	674282	6493259	444	-90	360	63	
NBAC059	673871	6493258	450	-90	360	10	
NBAC060	673487	6493255	454	-90	360	10	
NBAC061	673080	6493255	453	-90	360	24	
NBAC062	672718	6493269	454	-90	360	19	
NBAC063	673891	6492867	448	-90	360	3	Hole not sampled
NBAC064	673484	6492854	448	-90	360	21	
NBAC065	673065	6492842	448	-90	360	26	
NBAC066	673097	6492453	444	-90	360	18	
NBAC067	672714	6492423	452	-90	360	21	
NBAC068	672681	6492057	446	-90	360	40	
NBAC069	674668	6491617	426	-90	360	15	

Table 3 – Full geochemical results for air-core composite samples received to date

Hole ID	From (m)	То (m)	Interval (m)	-45um (%)	Fe2O3 (%)	Al203 (%)	TiO2 (%)	SiO2 (%)	Kaolinite (%)	Halloysite (%)	Brightness (ISO-B)
NBAC044	Results P	ending									
NBAC045	Results P	ending									
NBAC046	7	11	4.0	45.8	1.1	37.2	0.4	48	97	0	76
NBAC046	11	15	4.0	44.7	1.2	36.6	0.3	48	94	0	79
NBAC046	15	19	4.0	43.8	1.5	33.9	0.3	50	83	0	79
NBAC046	19	20	1.0	39.9	2.6	29.7	0.2	53	67	0	57
NBAC046	20	21	1.0	33.0	1.5	30.5	0.2	53	68	0	74
NBAC046	21	23	2.0	30.3	1.8	30.6	0.2	53	64	3	61
NBAC046	23	24	1.0	29.6	1.3	30.8	0.3	53	68	0	77
NBAC046	24	26	2.0	29.4	3.7	30.1	0.2	52	64	0	47
NBAC046	26	28	2.0	27.0	4.7	28.0	0.2	53	60	0	46
NBAC046	28	29	1.0	26.3	3.2	27.3	0.3	55	47	0	59
NBAC046	29	30	1.0	21.7	8.1	24.2	0.2	54	40	0	32
NBAC047	Results P	ending									
NBAC048	Results P	ending									
NBAC049	Results P	ending									
NBAC050	5	6	1	15.8	6.2	25.3	1.0	55.5	69	4	28
NBAC050	6	9	3	13.0	1.7	30.9	0.4	54.5	84	0	59
NBAC050	9	12	3	46.6	0.9	35.4	0.2	49.6	88	0	76
NBAC050	12	16	4	79.7	0.9	36.0	0.2	48.6	87	0	84
NBAC050	16	18	2	78.9	1.9	33.8	0.9	49.9	83	0	71
NBAC050	18	19	1	82.8	1.7	35.4	1.1	48.3	91	0	78
NBAC050	19	21	2	33.4	1.8	31.5	0.5	52.2	69	0	73
NBAC050	21	23	2	38.3	4.1	30.3	0.4	51.4	68	0	47
NBAC058	8	9	1	17.3	1.8	28.6	1.4	57.0	76	1	56
NBAC058	9	10	1	13.6	1.2	28.6	1.5	57.7	69	7	61
NBAC058	10	14	4	26.1	0.9	33.5	0.8	51.7	85	6	71
NBAC058	14	18	4	24.2	0.6	35.2	0.6	50.6	88	7	77
NBAC058	18	22	4	22.4	0.9	33.8	0.6	52.4	94	0	73
NBAC058	22	26	4	31.0	0.7	34.8	0.5	51.0	91	5	80
NBAC058	26	30	4	40.3	0.6	35.2	0.5	50.4	81	14	82
NBAC058	30	34	4	42.0	0.7	35.5	0.5	50.1	89	4	80
NBAC058	34	39	5	41.9	0.6	32.7	0.5	51.9	65	15	80
NBAC058	39	43	4	42.0	0.6	31.7	0.5	53.1	60	14	79
NBAC058	43	47	4	34.5	0.9	31.5	0.5	52.8	67	8	78
NBAC058	47	51	4	34.6	1.2	32.4	0.6	52.3	78	3	78
NBAC058	51	55	4	30.3	1.3	33.4	0.6	50.7	81	1	73
NBAC058	55 59	59 60	4	32.0	1.8 2.0	33.1 31.9	0.6	50.4 51.9	81 78	0	64
NBAC058 NBAC059	6	7	1	31.4 14.4	3.5	26.2	0.6 1.0	51.9	78	0	61 43
NBAC059 NBAC060	4	6	2	21.3	1.0	32.6	0.5	52.4	70	0	68
NBAC060	6	8	2	21.5	1.4	31.6	0.3	52.4	79	2	75
NBAC000 NBAC061	5	6	1	12.1	3.1	30.9	0.3	53.0	71	5	51
NBAC061	6	8	2	11.3	1.3	30.5	0.7	54.4	86	0	60


Hole ID	From (m)	То (m)	Interval (m)	-45um (%)	Fe2O3 (%)	Al203 (%)	TiO2 (%)	SiO2 (%)	Kaolinite (%)	Halloysite (%)	Brightness (ISO-B)
NBAC061	8	12	4	36.0	0.6	34.5	0.3	50.2	89	0 ²	83
NBAC061	12	15	3	32.4	0.9	33.6	0.2	51.2	85	0	80
NBAC061	15	17	2	29.7	1.4	32.2	0.2	52.1	78	0	80
NBAC061	17	20	3	32.9	1.6	31.2	0.2	53.3	71	0	71
NBAC061	20	22	2	35.8	3.0	29.9	0.1	52.9	67	0	42
NBAC062	6	8	2	22.5	3.2	31.3	1.4	50.8	87	4	43
NBAC062	8	9	1	16.4	2.7	29.8	1.2	52.7	85	1	51
NBAC062	9	10	1	26.6	2.7	30.3	1.3	52.3	84	0	56
NBAC062	10	12	2	30.0	3.2	29.5	1.4	52.3	72	5	47
NBAC062	12	15	3	40.3	3.2	30.6	1.1	51.1	76	5	55
NBAC062	15	16	1	38.2	3.7	29.6	1.0	51.3	73	0	51
NBAC064	4	5	1	17.3	1.9	30.3	2.0	53.8	82	0	50
NBAC064	5	8	3	47.8	0.5	37.7	0.3	48.0	97	0	77
NBAC064	8	10	2	40.5	0.7	36.9	0.5	48.0	96	0	75
NBAC064	10	14	4	36.7	0.6	35.3	0.3	49.5	88	0	78
NBAC064	14	15	1	33.6	0.5	33.1	0.3	52.0	75	0	81
NBAC064	15	16	1	42.1	0.7	34.9	0.3	50.1	82	0	78
NBAC064	16	17	1	43.3	0.6	34.4	0.2	50.2	77	2	77
NBAC064	17	18	1	44.0	2.2	33.4	0.3	49.7	73	4	49
NBAC064	18	19	1	38.3	2.9	32.0	0.3	50.0	43	27 ²	42
NBAC064	19	20	1	27.3	1.8	30.7	0.3	52.5	44	22 ²	58
NBAC065	8	9	1	19.2	3.4	29.3	1.1	54.7	82	0 ²	33
NBAC065	9	11	2	16.8	1.7	25.3	2.3	60.7	65	2	54
NBAC065	11	15	4	36.8	0.6	34.1	1.2	51.4	87	0	78
NBAC065	15	19	4	33.1	0.5	32.5	0.7	52.0	71	3	79
NBAC065	19	21	2	36.7	0.7	32.2	0.6	52.0	74	0	79
NBAC065	21	23	2	37.1	1.1	32.4	0.4	51.4	71	5	70
NBAC065	23	24	1	34.2	1.0	32.4	0.5	51.9	71	5	73
NBAC065	24	25	1	32.4	1.5	30.9	0.4	52.9	59	9	65
NBAC066	10	14	4	39.8	1.1	33.2	0.6	50.7	70	10	77
NBAC066	14	16	2	42.5	1.0	32.4	0.7	51.2	65	13	79
NBAC067	4	5	1	22.1	1.5	36.0	0.6	48.1	88	6	60
NBAC067	5	6	1	33.9	0.8	37.4	0.5	47.6	89	7	77
NBAC067	6	7	1	28.8	1.0	37.3	0.3	47.4	84	12	61
NBAC067	7	11	4	41.7	0.6	37.3	0.3	48.2	87	9	77
NBAC067	11	15	4	48.2	0.5	37.6	0.2	47.6	86	10	85
NBAC067	15	18	3	55.4	0.4	37.8	0.3	47.4	96	1	86
NBAC067	18	19	1	52.4	0.8	37.0	0.3	48.0	85	9	83
NBAC068	4	5	1	12.1	1.7	31.2	7.3	47.6	84	0	59
NBAC068	5	9	4	54.9	0.7	37.1	0.6	47.6	96	0	81
NBAC068	9	10	1	31.8	0.7	36.2	0.5	48.5	85	9	76
NBAC068	10	12	2	44.3	0.6	37.6	0.4	47.9	91	5	79
NBAC068	12	13	1	45.7	0.5	37.3	0.4	48.3	78	16	79
NBAC068	13	17	4	50.9	0.5	38.1	0.3	47.6	80	17	78
NBAC068	17	18	1	56.7	0.5	37.2	0.3	48.5	94	1	82
NBAC068	18	22	4	51.7	0.4	37.8	0.3	47.9	74	21	82
NBAC068	22	24	2	52.0	0.5	37.3	0.3	48.3	72	22	82

² Preliminary result, pending SEM QC analysis

Hole ID	From (m)	То (m)	Interval (m)	-45um (%)	Fe2O3 (%)	Al203 (%)	TiO2 (%)	SiO2 (%)	Kaolinite (%)	Halloysite (%)	Brightness (ISO-B)
NBAC068	24	25	1	48.8	0.7	37.4	0.4	47.6	92	3	80
NBAC068	25	27	2	49.4	0.7	37.3	0.3	48.0	95	0	79
NBAC068	27	30	3	43.0	0.6	37.5	0.4	47.9	94	2	82
NBAC068	30	31	1	39.5	0.9	37.2	0.3	47.4	92	3	79
NBAC069	4	5	1	6.1	3.1	24.4	0.5	58.4	59	0	34
NBAC069	5	9	4	27.8	1.6	32.5	0.5	51.6	75	0	70
NBAC069	9	13	4	20.4	1.6	29.6	0.5	54.9	59	0	65

APPENDIX 2

Noombenberry Project Location Map

APPENDIX 3

JORC Code, 2012 Edition – Table 1
Section 1 Sampling Techniques and Data
(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g., 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information. 	 2020-21 LRS: Aircore drilling consisted of vertical holes to industry standard completed by independent Drilling contractors generating individual 1m samples. A total of 197 holes for 4,430m were completed at the Noombenberry Project in late 2020/ early 2021. Sample compositing was carried out on site by LRS's representative's Aircore 1m samples were composited based on perceived reflectance levels. Composite intervals range from 1-4m Outcrop grab samples collected via random chips collected from representative material
Drilling techniques	 Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 Latin resources have completed air-core drilling, using industry standard techniques. All drill collars are surveyed using handheld GPS.
Drill sample recovery	• Method of recording and assessing core and chip sample recoveries and results assessed.	 Individual 1-meter samples are collected into plastic sample bag and are retained on site, with smaller samples recorded in drill logs.

Criteria	JORC Code explanation	Commentary
	 Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Weights of samples sent for detailed analysis are recorded and reported by the laboratory No indication of sample bias with respect to recovery has been established.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 LRS geological logging is completed for all holes and is representative across the ore body. The lithology, alteration, and characteristics of drill samples are logged on hard copy logs and entered in excel using standardised geological codes. Logging is both qualitative and quantitative depending on field being logged. All drill-holes are logged in full.
Sub- sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 Spear sample compositing consisted of contiguous 1m drill samples up to 5m in total length, based on drill logs and visual estimation of whiteness of material. Sample composites were prepared with the aim of including kaolinised saprolite of similar quality within each composite, although in some cases narrow bands of discoloured kaolinised saprolite were included in the composite. Composite Sampling took place on site by LRS representatives Samples were processed by laboratory Bureau Veritas. Sample weights were recorded before any sampling or drying. Samples are dried at low temperature (60C) to avoid destruction of halloysite. The dried sample was then pushed through a 5.6mm screen prior to splitting. A small rotary splitter is used to split an 800g sample for sizing. The 800g split is then wet sieved at 180µm and 45µm. The +180 and +45µm fractions are filtered and dried with standard papers then photographed. The -45µm material is split for XRF, XRD and Brightness analysis and reserves are retained by LRS.

Criteria	JORC Code explanation	Commentary
		 At CSIRO, Division of Land and Water, South Australia testing was conducted on selected -45µm samples by the method below. The dried -45µm sample was analysed for quantitative elemental and mineralogical testing by XRD. A 2-gram subsample was micronised, slurried, spray dried and a spherical agglomerated sample prepared for XRD. Quantitative analysis of the XRD data was performed by CSIRO using SIROQUANT and Halloysite : Kaolinite proportions determined using profile fitting by TOPAS, calibrated by SEM point counting of a suite of 20 standards. ISO Brightness and L*a*b* colour of the dried -45micron kaolin powder were determined according to TAPPI standard T 534 om-15 using by the University of South Australia, using a Hunter lab QE instrument.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make 	 The analytical method and procedure were as recommended by the laboratory for exploration and are appropriate at the time of undertaking. The Company has collected several individual field duplicate samples and has drilled and sampled several twin holes. This is considered appropriate for early-stage exploration. The laboratory inserts a range of standard samples in the sample stream the results of which are reported to the Company. The laboratory uses a series of control samples to calibrate the XRD and XRD instrumentation. Analytical work was completed by an independent analytical laboratory. A number of samples are selected as part of the Company's routine QA/QC process and dispatched for independent SEM analysis for visually verification of clay mineral species.

Criteria	JORC Code explanation	Commentary
Verification of sampling and assaying	 and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established. The verification of significant intersections by either independentor alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Sample and assay data from aircore drilling have been compiled and reviewed by the LRS Exploration Manager, who was involved in the logging and sampling of the drilling at the time. No independent intercept verification has been undertaken. Primary data is on paper drill logs and entered in excel and stored in an access database. Hole and sample location are captured with a hand-held GPS Assay data and results is reported by the
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down- hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 laboratory, unadjusted as contained in the original laboratory reports Drill collar locations were captured using a handheld GPS with +/- 5m accuracy The grid system used is UTM GDA 94 Zone 50
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Nominal first pass drill spacing is 400m x 400m, with off-set infill to a nominal 200m x 200m.

Criteria	JORC Code explanation	Commentary
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralized structures is considered to have introduced a sampling bias, this 	 Sampling is preferentially across the strike or trend of mineralized outcrops. Drill holes are vertical as the predominant geological sequence is a flat lying weathering profile Drill intersections are reported as down hole widths
Sample security	 should be assessed and reported if material. The measures taken to ensure sample security. 	• Samples are collected and stored on site, prior to being transported to the laboratory by LRS personnel and contractors
Audits or reviews	• The results of any audits or reviews of sampling techniques and data.	• None undertaken at this stage

Section 2 Reporting of Exploration Results (Criteria listed in the preceding section also apply to this section.)

	Criteria listed in the preceding sect	ion also apply to this section.)
Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 and E77/2622 are granted exploration licenses. E77/2719, E77/2725, E70/5650 and E70/5649 are tenement application lodged with WA DMIRS The Company is not aware of any impediments to obtaining a license to operate, subject to carrying out appropriate
Exploration done by other parties	 Acknowledgment and appraisal of exploration by other parties. 	• No historic exploration has been completed on the tenement areas
Geology	 Deposit type, geological setting and style of mineralisation. 	 The Noombenberry Project area is dominated by Granite lithologies which have undergone variable weathering. The simplified geological succession comprises: approximately 3-8m of surficial cover including sand/ soils and cemented (ferruginous) material Variably weathered granite – kaolinitic clays and quartz fragments Basement granite Kaolin occurrences, such as that seen on the Noombenberry Project, developed in situ by weathering of the feldspar-rich basement. The resultant kaolin deposits are subhorizontal zone of kaolinised granite resting with a sharp contact on unweathered basement. The kaolinised zone is overlain by loosely consolidated Tertiary and Quaternary sediment and silcrete. Halloysite is a rare derivative of kaolin where the mineral occurs as nanotubes. The kaolin encountered at the Noombenberry Project contain variable amounts of naturally occurring halloysite within the kaolinite saprolite.

Criteria	JORC Code explanation	Commentary
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	details are reported in the text of this ASX release.Drill hole and grab sample locations are
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 No metal equivalent values have been quoted. Significant intersections are calculated on a nominal >70 ISO-B brightness, or >5% halloysite

Criteria	JORC Code explanation	Commentary
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known'). 	 Drilling is reported to have been carried out at right angles to targeted controlling structures and mineralised zones where possible. Drilling intervals and interactions are reported as down hole widths. Insufficient information is available at this stage to report true widths
Diagrams	• Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	 The Company has released various maps, figures and sections showing the sample results geological context.
Balanced reporting	• Where comprehensive reporting ofall Exploration Results is not practicable, representative reportingof both low and high grades and/or widths should be practiced avoiding misleading reporting of Exploration Results.	 All analytical results have been reported or appropriately referenced.
Other Substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	 All information that is considered material has been reported, including drilling results, geological context and mineralisation controls etc

Criteria	JORC Code explanation	Commentary
Further work	 The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	Noombenberry Project depending on the results of this initial drilling.