

ASX ANNOUNCEMENT By e-lodgement 30 March 2021

KOUROUSSA AUGER DRILLING RESULTS OUTLINE THREE GOLD ANOMALY AREAS

Highlights

- First assay results from Kouroussa Auger drilling programme have outlined three areas of gold anomalies spread over an area ~1,200m by ~900m.
- > Two of the anomalies extend from an area of shallow artisanal workings with auger assay grades up to 1.86g/t gold (3m composite within basal saprolite).
- Identified anomalous area number 1 has an interpreted length of 450m and is open to the south. Anomalous area 2 has a length of 470m and is adjacent to the Kouroussa Gold Project.
- An area to the west has two auger holes intercepting anomalous 0.5g/t gold values at the base of hole. This area is a new discovery with it being void of any artisanal workings.
- The Kouroussa auger drilling programme was completed with a total of 113 holes for 943m drilled to date. The company is planning to drill infill auger holes to better delineate the identified anomalous areas.
- > Volt is continuing with its auger drilling campaign to test the identified anomalous grab samples and artisanal workings targets in all of its granted exploration permits.

Graphite and gold explorer and developer **Volt Resources Limited** (**ASX: VRC**) ("**Volt**" or "**the Company**") is pleased to announce the results from its initial power auger drilling programme for the Kouroussa permit. The programme has identified anomalous gold spread over an area of approximately 1,200 metres by 900 metres with no testing of the mineralization to depth. The mineralization over this broad area may relate to a single system, and this is to be confirmed by future deep drill programmes.

Volt Managing Director, Trevor Matthews, commented: "This is a very positive start to the auger drilling programme with the first exploration permit tested reporting a number of anomalous gold results which provides encouragement to do further work in the location.

The Volt board is looking forward to the results from the other two completed drill programmes and the current auger drilling programme underway at Konsolon."

Volt Resources Ltd ACN 106 353 253 Level 25, 108 St Georges Terrace, Perth WA 6000 Telephone: +61 (0)8 9486 7788

Kouroussa Auger Drilling Results

The Kouroussa exploration permit shares its border with the Kouroussa Gold Mine, and is within the same geological setting as nearby Predictive Discovery Ltd's Bankan Project. The auger drilling programmes are designed to generate initial Reverse Circulation and Diamond Drilling targets to be drilled later this year.

Two power auger drill rigs completed the initial Kouroussa drilling programme which comprised 113 auger holes for a total of 943 metres. The programme was concentrated in the areas that had anomalous grab sample results and artisanal workings. The auger drilling programme is undertaken to improve the geochemical understanding of the exploration targets using a cheap and efficient method that would penetrate and sample the rock below the lateritic and transported cover.

The first assay results have been received and the results are very encouraging with three geochemically anomalous areas identified. The most promising anomalous area is Area 1 which has a length of approximately 450m and is open to the south with composite sample results up to 1.86g/t gold. Area 2 has an existing surface anomaly and this has been confirmed as having auriferous potential through weak gold mineralization within a number of the auger holes. The third area is a new find and provides a new opportunity to link a broader area of potential mineralization to depth as two very anomalous gold values (0.46g/t and 0.47g/t gold) are recorded in an area with no artisanal workings and are both auriferous saprolite samples.

Figure 1. Spatial distribution of auger assay results¹

¹ Refer to ASX announcement dated 23 July 2020 titled "Guinea Gold Projects Exploration Update". The Company confirms that it is not aware of any new information or data that materially affects the information included in this document.

Given the success to date, further work will be progressed at the Kouroussa permit as follows:

- Infill auger drilling is proposed at all three areas in order to better delineate the anomalous areas. At Area 3, infill auger holes are planned to go deeper and infill to the south of the anomalous gold values.
- To understand the nature of the saprolite material, further geochemical testing of the auger samples with anomalous gold values as well as the saprolite samples located within adjacent primary enriched auger locations will be undertaken.

Exploration Programme

The exploration team has relocated to commence the largest auger drilling programme of the campaign, the Konsolon permit. The programme is comprised of 547 drill holes for a total of 8,205 metres. Similar to other permit drilling programmes, the average planned hole depth is 15 metres but will be amended by the actual depth required to intercept the saprolite rock.

Multiple gold in soil anomalies were identified of between 1.0km and 2.5km in length across the Konsolon permit. A previous review of soil samples in the legacy dataset identified high grade gold including 20.25g/t, 12.87g/t, 5.12g/t, 4.97g/t and 3.21g/t gold.²

Figure 2. Konsolon historical soil sampling grid with high grade sample results.

² Refer to ASX announcement dated 23 July 2020 titled "Guinea Gold Projects Exploration Update". The Company confirms that it is not aware of any new information or data that materially affects the information included in this document.

Figure 2. The Konsolon Project's planned auger drill holes

Guinea Projects and Permits

Volt has six permits covering an area of 348.7 square kilometres in Guinea's highly prospective Siguiri Basin and has grouped them into three projects – the Kouroussa Project, Mandiana Project and Konsolon Project. The permits are held through Volt's 100% subsidiary Gold Republic Pty Ltd. See Figure 1 below for the project and permit locations.

The **Kouroussa Project** comprises three permits, the *Kouroussa, Kouroussa West* and *Fadougou* permits. The Kouroussa and Kouroussa West permits border the PDI permit which was the subject of a discovery of high-grade gold mineralization in April 2020. To the NE, the Kouroussa Permit borders the Kouroussa mine and the Fadougou permit is located 13km NE of the same mine.

The **Konsolon Project** constitutes one prospective permit. The permit includes multiple geochemical gold in soil anomalies identified by previous explorers but remains under explored.

The **Mandiana Project** comprises the highly prospective *Nzima* permit and *Monebo* permit. The Nzima permit borders the Nzima artisanal mine and is 15km SW of the 1.1Moz Tri-K Deposit owned by Managem.

Figure 3. The Permits located in the Suguiri Basin which forms part of the richly mineralised West African Birimian Gold Belt.

-ENDS-

Authorised by: Trevor Matthews Managing Director Volt Resources Limited

For further information please contact:

Trevor Matthews	
Managing Director	
Tel: +61 8 9486 7788	

Follow us on Twitter @ASXVolt

About Volt Resources Limited

Volt Resources Limited ("Volt") is a graphite and gold exploration and development company listed on the Australian Stock Exchange under the ASX code VRC. Volt is currently focused on the exploration and development of its wholly-owned Bunyu Graphite Project in Tanzania, as well as the creation of a new gold exploration and development business through leveraging the Company's existing extensive networks in Africa.

The Bunyu Graphite Project is ideally located near to critical infrastructure with sealed roads running through the project area and ready access to the deep-water port of Mtwara 140km from the Project. In 2018, Volt reported the completion of the Feasibility Study ("FS") into the Stage 1 development of the Bunyu Graphite Project. The Stage 1 development is based on a mining and processing plant annual throughput rate of 400,000 tonnes of ore to produce on average 23,700tpa of graphite products³. A key objective of the Stage 1 development is to establish infrastructure and market position in support of the development of the significantly larger Stage 2 expansion project at Bunyu.

The Guinea Gold Projects comprise 6 permits in Guinea, West Africa having a total area of 348km. The projects are located in the prolific Siguiri Basin which forms part of the richly mineralised West African Birimian Gold Belt.

Competent Person's Statement

The information in this announcement that relates to exploration results is based on information compiled and/or reviewed by Mr Mark Gifford, an independent Geological expert consulting to Volt Resources Limited. Mr Mark Gifford is a Fellow of the Australian Institute of Mining and Metallurgy and has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the December 2012 edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves" (JORC Code). Mr Gifford consents to the inclusion in the announcement of the matters based on his information in the form and context in which it appears.

³ Refer to Volt's ASX announcement titled "Positive Stage 1 Feasibility Study Bunyu Graphite Project" dated 31 July 2018. The Company confirms that it is not aware of any new information or data that materially affects the information included in this document and that all material assumptions and technical parameters underpinning the estimates continue to apply and have not materially changed.

Hole_ID	Easting	Northing	RL	Inclination	EOH_m	From	Interval	Gold g/t
KAG0001	404.475	1.179.795	391	90	9.00	0.00	6.00	<0.01
KAG0001	404.475	1.179.795	391	90	9.00	6.00	3.00	0.02
KAG0002	404.521	1.179.795	392	90	9.00	0.00	3.00	<0.01
KAG0002	404.521	1.179.795	392	90	9.00	6.00	3.00	1.86
KAG0003	404.575	1.179.793	399	90	10.00	0.00	3.00	0.02
KAG0003	404.575	1.179.793	399	90	10.00	7.00	3.00	0.05
KAG0004	404.625	1.179.799	401	90	10.00	0.00	3.00	0.28
KAG0004	404.625	1.179.799	401	90	10.00	7.00	3.00	0.5
KAG0005	404.673	1.179.795	404	90	11.00	0.00	3.00	0.02
KAG0005	404.673	1.179.795	404	90	11.00	7.00	4.00	<0.01
KAG0006	404.725	1.179.795	404	90	6.00	0.00	2.00	0.04
KAG0006	404,725	1,179,795	404	90	6.00	3.00	3.00	<0.01
KAG0007	404,770	1,179,796	398	90	5.00	0.00	2.00	<0.01
KAG0007	404,770	1,179,796	398	90	5.00	2.00	3.00	<0.01
KAG0008	404,826	1,179,794	400	90	6.00	0.00	3.00	<0.01
KAG0008	404,826	1,179,794	400	90	6.00	3.00	3.00	<0.01
KAG0009	404,876	1,179,794	401	90	6.00	0.00	2.00	<0.01
KAG0009	404,876	1,179,794	401	90	6.00	3.00	3.00	<0.01
KAG0010	404,925	1,179,794	401	90	5.00	0.00	3.00	<0.01
KAG0010	404,925	1,179,794	401	90	5.00	3.00	2.00	<0.01
KAG0011	404,475	1,179,989	395	90	5.00	0.00	3.00	0.01
KAG0011	404,475	1,179,989	395	90	5.00	3.00	2.00	<0.01
KAG0012	404,529	1,179,987	397	90	5.00	0.00	3.00	0.02
KAG0012	404,529	1,179,987	397	90	5.00	3.00	2.00	0.03
KAG0013	404,574	1,179,995	398	90	5.00	0.00	3.00	<0.01
KAG0013	404,574	1,179,995	398	90	5.00	3.00	2.00	<0.01
KAG0014	404,623	1,179,995	403	90	5.00	0.00	2.00	<0.01
KAG0014	404,623	1,179,995	403	90	5.00	2.00	3.00	<0.01
KAG0015	404,676	1,179,993	412	90	5.00	0.00	2.00	<0.01
KAG0015	404,676	1,179,993	412	90	5.00	2.00	3.00	<0.01
KAG0016	404,724	1,179,994	412	90	4.00	0.00	2.00	<0.01
KAG0016	404,724	1,179,994	412	90	4.00	2.00	2.00	<0.01
KAG0017	404,773	1,179,998	410	90	5.00	0.00	3.00	0.05
KAG0017	404,773	1,179,998	410	90	5.00	3.00	2.00	0.03
KAG0018	404,822	1,179,995	415	90	6.00	0.00	4.00	0.05
KAG0018	404,822	1,179,995	415	90	6.00	4.00	2.00	<0.01
KAG0019	404,871	1,179,994	422	90	5.00	0.00	2.00	0.79
KAG0019	404,871	1,179,994	422	90	5.00	2.00	3.00	0.11
KAG0020	404,923	1,179,996	420	90	12.00	0.00	3.00	0.14
KAG0020	404,923	1,179,996	420	90	12.00	9.00	3.00	0.05
KAG0021	404,925	1,180,167	460	90	16.00	0.00	3.00	0.07
KAG0021	404,925	1,180,167	460	90	16.00	12.00	3.00	0.09
KAG0022	404,874	1,180,163	422	90	9.00	0.00	3.00	0.02
KAG0022	404,874	1,180,163	422	90	9.00	6.00	3.00	0.02
KAG0023	404,828	1,180,169	431	90	12.00	0.00	3.00	0.06
KAG0023	404,828	1,180,169	431	90	12.00	10.00	2.00	0.05
KAG0024	404,777	1,180,163	425	90	9.00	0.00	3.00	<0.01
KAG0024	404,777	1,180,163	425	90	9.00	6.00	3.00	<0.01

Table 1 – Power Auger Drill Results, Kouroussa Permit, Kouroussa Project

KAG0025	404,727	1,180,163	429	90	10.00	0.00	3.00	<0.01
KAG0025	404,727	1,180,163	429	90	10.00	6.00	3.00	<0.01
KAG0026	404,676	1,180,161	424	90	5.00	0.00	2.00	<0.01
KAG0026	404,676	1,180,161	424	90	5.00	2.00	3.00	<0.01
KAG0027	404,625	1,180,157	419	90	4.00	0.00	2.00	0.03
KAG0027	404,625	1,180,157	419	90	4.00	2.00	2.00	0.05
KAG0028	404,575	1,180,162	421	90	6.00	0.00	2.00	0.02
KAG0028	404,575	1,180,162	421	90	6.00	2.00	4.00	0.05
KAG0029	404,524	1,180,170	421	90	5.00	0.00	2.00	0.01
KAG0029	404,524	1,180,170	421	90	5.00	2.00	3.00	<0.01
KAG0030	404,493	1,180,168	368	90	11.00	0.00	2.00	0.01
KAG0030	404,493	1,180,168	368	90	11.00	2.00	3.00	<0.01
KAG0030	404,493	1,180,168	368	90	11.00	5.00	3.00	<0.01
KAG0031	404,427	1,180,164	382	90	7.00	0.00	3.00	0.02
KAG0031	404,427	1,180,164	382	90	7.00	3.00	3.00	0.03
KAG0032	404,377	1,180,166	403	90	5.00	0.00	3.00	0.03
KAG0032	404,377	1,180,166	403	90	5.00	3.00	2.00	0.02
KAG0033	404,332	1,180,165	377	90	5.00	0.00	2.00	0.02
KAG0033	404,332	1,180,165	377	90	5.00	2.00	3.00	< 0.01
KAG0034	404,282	1,180,168	401	90	6.00	0.00	3.00	0.01
KAG0034	404,282	1,180,168	401	90	6.00	3.00	3.00	<0.01
KAG0035	404,230	1,180,166	401	90	9.00	0.00	3.00	<0.01
KAG0035	404,230	1,180,166	401	90	9.00	7.00	2.00	0.03
KAG0036	404,176	1,180,166	399	90	7.00	0.00	2.00	<0.01
KAG0036	404,176	1,180,166	399	90	7.00	4.00	3.00	<0.01
KAG0037	404,128	1,180,160	399	90	10.00	0.00	3.00	<0.01
KAG0037	404,128	1,180,160	399	90	10.00	5.00	3.00	<0.01
KAG0038	403,976	1,180,168	396	90	11.00	0.00	3.00	<0.01
KAG0038	403,976	1,180,168	396	90	11.00	9.00	2.00	0.02
KAG0039	403,924	1,180,166	393	90	13.00	0.00	3.00	<0.01
KAG0039	403,924	1,180,166	393	90	13.00	11.00	2.00	0.01
KAG0040	403,876	1,180,161	388	90	11.00	0.00	3.00	<0.01
KAG0040	403,876	1,180,161	388	90	11.00	8.00	3.00	<0.01
KAG0041	403,825	1,180,162	386	90	8.00	0.00	3.00	<0.01
KAG0041	403,825	1,180,162	386	90	8.00	6.00	2.00	<0.01
KAG0042	403,777	1,180,164	378	90	7.00	0.00	3.00	<0.01
KAG0042	403,777	1,180,164	378	90	7.00	5.00	2.00	<0.01
KAG0043	403,729	1,180,164	378	90	2.00	0.00	2.00	<0.01
KAG0044	403,678	1,180,164	377	90	8.00	0.00	3.00	<0.01
KAG0044	403,678	1,180,164	377	90	8.00	6.00	2.00	<0.01
KAG0045	403,626	1,180,167	376	90	11.00	0.00	3.00	0.04
KAG0045	403,626	1,180,167	376	90	11.00	6.00	5.00	<0.01
KAG0046	403,586	1,180,166	376	90	10.00	0.00	3.00	<0.01
KAG0046	403,586	1,180,166	376	90	10.00	5.00	5.00	<0.01
KAG0047	403,525	1,180,163	375	90	7.00	0.00	3.00	<0.01
KAG0047	403,525	1,180,163	375	90	7.00	6.00	1.00	0.01
KAG0048	404,433	1,179,991	399	90	6.00	0.00	3.00	0.02
KAG0048	404,433	1,179,991	399	90	6.00	3.00	3.00	< 0.01
KAG0049	404,373	1,179,989	394	90	7.00	0.00	3.00	0.03
KAG0049	404,373	1,179,989	394	90	7.00	4.00	3.00	0.02
KAG0050	404,323	1,179,999	393	90	8.00	0.00	3.00	0.01
KAG0050	404,323	1,179,999	393	90	8.00	5.00	3.00	<0.01
KAG0051	404,268	1,179,995	389	90	7.00	0.00	3.00	<0.01
KAG0051	404,268	1,179,995	389	90	7.00	4.00	3.00	0.01

KAG0052	404,226	1,179,996	392	90	6.00	0.00	3.00	0.03
KAG0052	404,226	1,179,996	392	90	6.00	4.00	2.00	0.03
KAG0053	404,175	1,179,994	382	90	7.00	0.00	3.00	<0.01
KAG0053	404,175	1,179,994	382	90	7.00	5.00	2.00	0.01
KAG0054	404,126	1,179,993	386	90	9.00	0.00	3.00	0.02
KAG0054	404,126	1,179,993	386	90	9.00	5.00	3.00	0.01
KAG0055	404,074	1,179,993	389	90	13.00	0.00	3.00	<0.01
KAG0055	404,074	1,179,993	389	90	13.00	7.00	3.00	0.02
KAG0056	404,026	1,179,995	381	90	9.00	0.00	3.00	<0.01
KAG0056	404,026	1,179,995	381	90	9.00	8.00	1.00	0.46
KAG0057	403,977	1,179,996	384	90	9.00	0.00	3.00	0.01
KAG0057	403,977	1,179,996	384	90	9.00	6.00	3.00	0.02
KAG0058	403,928	1,179,993	375	90	8.00	0.00	3.00	0.01
KAG0058	403,928	1,179,993	375	90	8.00	6.00	2.00	<0.01
KAG0059	403,876	1,179,994	371	90	8.00	0.00	3.00	<0.01
KAG0059	403,876	1,179,994	371	90	8.00	6.00	2.00	0.02
KAG0060	403,825	1,179,997	370	90	8.00	0.00	3.00	< 0.01
KAG0060	403,825	1,179,997	370	90	8.00	7.00	1.00	0.47
KAG0061	403,775	1,179,996	369	90	8.00	0.00	4.00	0.03
KAG0061	403,775	1,179,996	369	90	8.00	6.00	2.00	0.04
KAG0062	403,725	1,179,991	369	90	6.00	0.00	3.00	0.01
KAG0062	403,725	1,179,991	369	90	6.00	5.00	1.00	0.02
KAG0063	403,669	1,179,994	369	90	1.00	0.00	1.00	<0.01
KAG0064	403,626	1,179,998	370	90	12.00	0.00	3.00	0.02
KAG0064	403,626	1,179,998	370	90	12.00	6.00	3.00	0.01
KAG0065	403,575	1,179,997	371	90	6.00	0.00	5.00	<0.01
KAG0066	403,522	1,179,991	368	90	5.00	0.00	4.00	0.01
KAG0067	404,427	1,179,795	389	90	9.00	0.00	4.00	0.2
KAG0067	404,427	1,179,795	389	90	9.00	7.00	2.00	0.04
KAG0068	404,377	1,179,797	389	90	10.00	0.00	4.00	<0.01
KAG0068	404,377	1,179,797	389	90	10.00	4.00	6.00	0.02
KAG0069	404,326	1,179,794	383	90	11.00	0.00	3.00	0.08
KAG0069	404,326	1,179,794	383	90	11.00	3.00	5.00	<0.01
KAG0069	404,326	1,179,794	383	90	11.00	8.00	3.00	<0.01
KAG0070	404,277	1,179,797	381	90	11.00	0.00	4.00	0.01
KAG0070	404,277	1,179,797	381	90	11.00	9.00	2.00	<0.01
KAG0071	404,222	1,179,795	379	90	13.00	0.00	3.00	0.04
KAG0071	404,222	1,179,795	379	90	13.00	8.00	5.00	<0.01
KAG0072	404,173	1,179,797	380	90	11.00	0.00	3.00	0.02
KAG0072	404,173	1,179,797	380	90	11.00	9.00	2.00	0.03
KAG0073	404,127	1,179,794	381	90	12.00	0.00	5.00	<0.01
KAG0073	404,127	1,179,794	381	90	12.00	10.00	2.00	<0.01
KAG0074	404,081	1,179,797	379	90	7.00	0.00	4.00	0.02
KAG0075	404,024	1,179,797	374	90	10.00	0.00	4.00	<0.01
KAG0075	404,024	1,179,797	374	90	10.00	8.00	2.00	<0.01
KAG0076	403,976	1,179,797	371	90	9.00	0.00	3.00	< 0.01
KAG0076	403,976	1,179,797	371	90	9.00	7.00	2.00	0.03
KAGU077	404,375	1,179,598	370	90	8.00	0.00	4.00	0.04
KAGU078	404,423	1,179,597	376	90	13.00	0.00	3.00	<0.01
	404,423	1,179,59/	3/0	90	13.00	11.00	2.00	0.04
	404,917	1,170,594	400	90	9.00	0.00	3.00	<0.01
	404,917	1,170,594	400	90	9.00	0.00	3.00	<0.01
	404,873	1,170,592	400	90	10.00	0.00	3.00	<0.01
KAGUU8U	404,873	1,179,592	400	90	10.00	5.00	5.00	<0.01

KAG0081	404,822	1,179,598	392	90	9.00	0.00	3.00	0.01
KAG0081	404,822	1,179,598	392	90	9.00	4.00	3.00	0.04
KAG0082	404,771	1,179,601	396	90	10.00	0.00	3.00	<0.01
KAG0082	404,771	1,179,601	396	90	10.00	4.00	2.00	0.02
KAG0083	404,728	1,179,596	388	90	9.00	0.00	5.00	0.03
KAG0083	404,728	1,179,596	388	90	9.00	6.00	3.00	<0.01
KAG0084	404,673	1,179,594	391	90	8.00	0.00	3.00	0.06
KAG0084	404,673	1,179,594	391	90	8.00	3.00	5.00	0.03
KAG0085	404,627	1,179,594	387	90	7.00	0.00	5.00	0.49
KAG0086	404,584	1,179,591	388	90	9.00	0.00	2.00	0.05
KAG0086	404,584	1,179,591	388	90	9.00	2.00	2.00	0.05
KAG0086	404,584	1,179,591	388	90	9.00	4.00	5.00	0.02
KAG0087	404,525	1,179,589	383	90	9.00	0.00	3.00	0.02
KAG0087	404,525	1,179,589	383	90	9.00	5.00	4.00	0.03
KAG0088	404,475	1,179,592	380	90	13.00	0.00	4.00	0.04
KAG0088	404,475	1,179,592	380	90	13.00	11.00	2.00	0.04
KAG0089	404,324	1,179,599	378	90	8.00	0.00	4.00	0.02
KAG0089	404,324	1,179,599	378	90	8.00	6.00	2.00	0.01
KAG0090	404,275	1,179,595	372	90	13.00	0.00	3.00	0.01
KAG0090	404,275	1,179,595	372	90	13.00	9.00	4.00	<0.01
KAG0091	404,217	1,179,594	381	90	8.00	0.00	3.00	0.02
KAG0091	404,217	1,179,594	381	90	8.00	7.00	1.00	<0.01
KAG0092	404,176	1,179,599	368	90	13.00	0.00	4.00	<0.01
KAG0092	404,176	1,179,599	368	90	13.00	9.00	4.00	<0.01
KAG0093	404,123	1,179,600	372	90	7.00	0.00	3.00	<0.01
KAG0093	404,123	1,179,600	372	90	7.00	5.00	2.00	0.04
KAG0094	404,074	1,179,596	373	90	10.00	0.00	4.00	<0.01
KAG0094	404,074	1,179,596	373	90	10.00	8.00	2.00	<0.01
KAG0095	404,018	1,179,595	369	90	10.00	0.00	4.00	<0.01
KAG0095	404,018	1,179,595	369	90	10.00	7.00	3.00	<0.01
KAG0096	403,976	1,179,596	368	90	9.00	0.00	3.00	<0.01
KAG0096	403,976	1,179,596	368	90	9.00	6.00	3.00	0.03
KAG0097	403,926	1,179,599	355	90	10.00	0.00	4.00	0.03
KAG0097	403,926	1,179,599	355	90	10.00	8.00	2.00	<0.01
KAG0098	403,886	1,179,595	367	90	9.00	0.00	4.00	<0.01
KAG0098	403,886	1,179,595	367	90	9.00	6.00	3.00	0.01
KAG0099	403,722	1,179,595	363	90	11.00	0.00	5.00	<0.01
KAG0099	403,722	1,179,595	363	90	11.00	8.00	3.00	<0.01
KAG0100	403,683	1,179,591	363	90	7.00	0.00	4.00	0.09
KAG0100	403,683	1,179,591	363	90	7.00	4.00	3.00	0.01
KAG0101	403,623	1,179,582	361	90	7.00	0.00	4.00	<0.01
KAG0101	403,623	1,179,582	361	90	7.00	4.00	3.00	0.02
KAG0102	403,576	1,179,595	363	90	7.00	0.00	4.00	0.02
KAG0102	403,576	1,179,595	363	90	7.00	4.00	3.00	0.02
KAG0103	403,523	1,179,596	363	90	7.00	0.00	4.00	0.02
KAG0103	403,523	1,179,596	363	90	7.00	4.00	3.00	<0.01
KAG0104	403,621	1,179,791	369	90	9.00	0.00	4.00	0.02
KAG0104	403,621	1,179,791	369	90	9.00	7.00	2.00	0.02
KAG0105	403,577	1,179,800	366	90	9.00	0.00	3.00	0.02
KAG0105	403,577	1,179,800	366	90	9.00	7.00	2.00	0.06
KAG0106	403,525	1,179,790	368	90	8.00	0.00	3.00	<0.01
KAG0106	403,525	1,179,790	368	90	8.00	6.00	2.00	0.01
KAG0107	403,673	1,179,800	366	90	12.00	0.00	5.00	<0.01
KAG0107	403,673	1,179,800	366	90	12.00	8.00	4.00	<0.01

KAG0108	403,722	1,179,798	369	90	12.00	0.00	3.00	0.03
KAG0108	403,722	1,179,798	369	90	12.00	9.00	3.00	0.02
KAG0109	403,772	1,179,793	369	90	10.00	0.00	3.00	0.08
KAG0109	403,772	1,179,793	369	90	10.00	7.00	3.00	<0.01
KAG0110	403,822	1,179,795	369	90	10.00	0.00	3.00	0.14
KAG0110	403,822	1,179,795	369	90	10.00	7.00	3.00	0.02
KAG0111	403,876	1,179,794	368	90	11.00	0.00	3.00	0.01
KAG0111	403,876	1,179,794	368	90	11.00	8.00	3.00	<0.01
KAG0112	403,925	1,179,789	371	90	11.00	0.00	3.00	0.01
KAG0112	403,925	1,179,789	371	90	11.00	9.00	2.00	0.02

Section 1 Sampling Techniques and Data

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 All auger holes were composite sampled in a routine of 3metre composite samples from surficial laterites and 3m composite within the saprolitic zone. Where there was less than 3metres of saprolite intercepted, a composite of the total intercepted saprolite was sampled. Some composite sampling widths varied depending on the width of lithological unit encountered, some samples were taken to a minimum of 1m widths. For all composited samples and unsampled intervals the remnant cuttings have been preserved and are available for future test work if required. Samples were collected in 1m intervals at the drill site and composited at the base camp, split using a 7 vane riffler splitter to obtain a ~2kg representative sample. Certified reference materials, duplicates and blanks were inserted at even distribution (1:20 respectively) in the sample stream. All grab samples were geologically logged by a suitably qualified geologist and submitted to SGS Bamako for analysis.
Drilling techniques	 Drill type (eg core, reverse circulation, open- hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 Auger Drilling was carried out by SIMG mining Services Company using a land cruiser mounted auger rigs.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 The collection of sample is done after 1m drill interval as it recovered by the auger drilling process. There was always a geologist present onsite to ensure that the sample was representative of the individual metre and did not contain (to minimal) material from further up the drill string.

Criteria	JORC Code explanation	Commentary
		 Auger can cause a smearing effect on samples during collection due to the nature of the process, this effect on the resultant grades of the material was minimized by using composite samples for both the upper and lower samples collated.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 All samples were geologically logged by Volt's in country Geological team. The qualitative system of logging was used to record the necessary information from recovered samples. Emphasis was placed on the separation of the upper laterised material and the underlying saprolitic material. Anomalous minerals and weathering within both geological settings were recorded and are available to be used for detail post analysis of the primary samples. Logging was done in every 1m interval sample, with all material auger drilled recovered from each metre of the auger hole.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all subsampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 Auger holes were sampled by compositing 3m interval sample from the laterite layer and 3 metres of the saprolite located at the base of hole. To avoid mixing of laterite and saprolite, sampling was not completed at the interface between the laterites and saprolites. Once all samples were combined from the defined "upper" and "lower" zones, they were thoroughly mixed prior to being split down by a 7 vane splitter to an approximate 2kg sub-sample. This sample was dried and prepared for pulverization and reduction to a representative sample for analysis by a SGS managed laboratory in Bamako, Mali. This sample preparation was completed to an industry best practice. During sample collation, 15% of the sample stream was QAQC samples and they were evenly inserted through the sample stream. The QAQC samples included certified standard materials, Blanks and Duplicates. At SGS Mali, industry best practice is adopted for laboratory sub sampling with avoidance
		• The collected sample size of around 2kg is considered appropriate to reasonably represent the material being test.

Criteria	JORC Code explanation	Commentary		
Quality of assay data and laboratory tests	• The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	 Analyses were undertaken at accredited Laboratory SGS Bamako in Mali which has full certification. The samples were assayed using Fire Assay which is appropriate for the element being determined. 		
	 For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 There was no reliance on determination of analysis by geophysical tools. Volt Resources QAQC programme include the inclusion of 5% certified standards, 5% field duplicates and 5% blank material. 		
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Due to early stage of sampling programme and no reliance on the data other than to rapidly assess the prospectivity of the ground for more detailed exploration. No independent verification was used. No twinned holes were completed. The data was captured at site in a hard copy form with appropriate entry fields to guide the geologist, then captured into an excel spreadsheet and later uploaded into an access database. 		
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 A hand-held GPS was used to identify the position of all grab samples (xy horizontal error of 5 metres) Reported using WGS 84 grid and UTM datum zone 29 North. Not applicable 		
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Auger holes were located on a nominal 50mx200m spaced pattern. Drilling reported is in early exploration nature, therefore no mineral resources or reserves have been estimated. 3m sample composite samples or less depending upon the lithological intercept. 		
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have 	 No orientation drilling was conducted as all holes were vertical and shallow in their form. 		

Criteria	JORC Code explanation	Commentary		
	introduced a sampling bias, this should be assessed and reported if material.			
Sample security	• The measures taken to ensure sample security.	• The sample's chain of custody involved the collected samples being shipped using company's car to the guarded base camp. When enough samples were collected and collated, they were then transported to SGS sample collection facility in Siguiri using company's car driven by company's driver.		
Audits or reviews	• The results of any audits or reviews of sampling techniques and data.	 No audits or reviews have yet been undertaken. 		

Section 2 Reporting of Exploration Results

(Criteria listed in	the preceding section also apply to this section	n.)
Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The results reported in this report are all from Kouroussa Exploration Permit number 22982 Located in Kouroussa Prefecture were applied on 22 April for a period of 3 years and granted on 9/9/2020 2020. The permit is under KB Gold SARLU, KB Gold are whole owned subsidiaries of Gold Republic Pty Ltd.
		• The Permits is held under KB GOLD SARLU, incorporated in Guinea. The surface area is administered by the Government as native title. The area is rural, with small villages.
Exploration done by other parties	 Acknowledgment and appraisal of exploration by other parties. 	 There is no previous exploration works and/or data that has been compiled or completed by other parties.
Geology	• Deposit type, geological setting and style of mineralisation.	 Birimian Greenstone lode style gold is being targeted.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	 Results for all the auger near surface drilling undertaken with gold anomalies are represented in map format in the main body of this announcement. Given the reconnaissance nature of the auger drilling for the purpose of enhancing the geochemical understanding of the project and large number of samples, plan presentation as provided in the body provides a fair understanding of the results and not listing all the results does not detract from the understanding of the report.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. 	 Grade of composited intervals are reported. Results on the maps are summarized by showing best grade values.

Criteria	JORC Code explanation	Commentary
	 Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 No metal equivalent reporting is used or applied.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 Since this is an early exploration stage, the results reported are considered early exploration reconnaissance in nature.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	 Maps showing the auger holes locations assays results superimposed with previous grab sample location assay results.
Balanced reporting	• Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	 All material available results have been reported.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	 No other exploration data that could be considered meaningful and/or material has been omitted from this report.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Further auger infill drilling and sampling as defined by the anomalous results noted in this primary series of analyses.