

20th April 2021

ASX Announcement

ECLIPSE DEFINES HIGH-GRADE COPPER-SILVER AND BROAD ZINC MINERALISATION AT ROCK HILL COPPER PROSPECT IN THE NT

- Eclipse's review of data from historic drilling by Northern Territory Geological Survey has
 delineated high-grade copper-silver mineralisation and anomalous zinc zones at the Rock
 Hill Project area.
- Mineralised envelopes of copper-zinc-silver vary from 0.3m up to 30m thick. Significant intersections include (Table 1):

Drill Hole DDH1 - 3.0m @ 1,420g/t Ag from 6.1m

11.6m @ 0.43% Cu, from 58.2m

Including - 0.3m @ 4.6% Cu and 10g/t Ag from 58.2m including 0.3m @ 10.20% Cu, 27g/t Ag from 69.8m

Drill Hole DDH3 – 3.0m @ 0.18% Cu, 0.19% Zn, 2,288g/t Ag from 33.5m

30.5m @ 455g/t Ag from 33.5m

including 3.0m @ 2,288g/t Ag and 3.0m @ 1,118g/t Ag

Drill Hole DDH4 – 7.9m @ 26g/t Ag from 18.3m

8.2m @ 16g/t Ag from 28.4m

0.6m @ 3.5% Cu, 0.19% Zn and 0.3m @ 22g/t Ag from 66.1m

Drill Hole DDH5 – 1.8m @1.0% Cu from 46.0m

1.5m @ 0.6% Cu from 51.5m

including 0.3m @ 1.25% Cu with 10 g/t Ag

Drill Hole DDH7 – 0.9m @ 2.1% Cu from 62.2m

1.5m @ 4.9% Cu, 35 g/t Ag from 71.3m

Drill Hole DDH8 - 1.5m @ 3.2% Cu, 0.14% Zn and 12g/t Ag from 54.9m

Mineralised envelopes of zinc-silver vary from 12m up to 38m thick. Significant zinc intersections include:

Drill Hole DDH1 - 38.1m @ 0.14% Zn from 67.1m

Drill Hole DDH4 - 12.2m @ 0.15% Zn from 48.8m

Drill Hole DDH8 - 28.4m @ 0.13% Zn from 123.4m

- Rock Hill are prospects hosted in steeply dipping, east-west trending greenschist facies shear zones. Copper mineralisation occurs at several localities along more than 10km strike length.
- Potential mineralised corridor with approximate strike length of over 10km by 2.5km wide remains open in all directions. A further 10.2km of strike remains to be explored
- Future exploration to include airborne EM surveys followed up by RC drilling in strongly mineralised zones and further infill diamond drilling.

Eclipse Metals Ltd (ASX: **EPM**) (**Eclipse Metals** or the **Company**) is pleased to announce it has identified very encouraging historical diamond drilling results in an ongoing evaluation and desktop review of exploration on its ELA26487 Yuendi exploration licence application area (in the name of its wholly owned subsidiary Whitvista Pty Ltd). This ELA is one of the Company's Ngalia base-metal prospects in the Northern Territory within the Aileron Province of the Arunta Block.

Historical drilling results demonstrate presence of significant wide copper-zinc-silver mineralisation within the Mt Hardy and Yuendumu areas of the Arunta Complex.

Best results include:

11.6m @ 0.43% Cu, 0.3m @ 10.20% Cu, 27g/t Ag (DDH1); 3.0m @ 2,288g/t Ag (DDH3) and 3.0m @ 1,118g/t Ag (DDH3), and 38.1m @ 0.14% Zn (DDH1).

Eclipse Metals believes this ELA area has the potential to host significant base metal and silver mineralisation. The Aileron Province has been subject to relatively limited historical mining and is underexplored compared with other Proterozoic orogenic regions. The province has a high base metal and gold endowment.

Strong base metal and silver mineralisation results reported in historical drilling records indicate excellent potential to host high-grade and broad zones of mineralisation within ELA26487. Extensive visible copper mineralisation (consisting of malachite, azurite, chrysocolla) in historically mined prospects runs over several kilometres. The Rock Hill mineralised zones all remain untested by modern day exploration techniques. The only exploration work conducted over the Rock Hill Copper Mineral Field was completed by the Northern Territory Geological Survey in 1970 – more than 50 years ago.

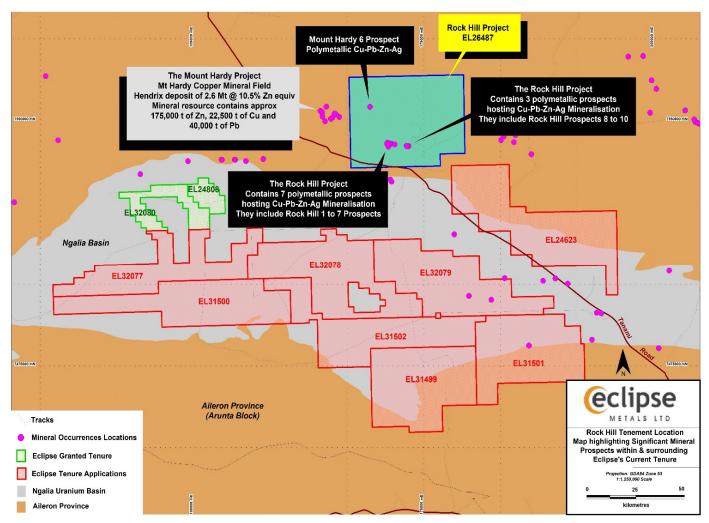


Figure 1. Ngalia Basin and adjacent tenements of Eclipse Metals

The Rock Hill Prospect areas have the potential to host similar resources to the proximal Mt Hardy Copper project area immediately to the west. The size of the untested mineralised corridor is considered to be very extensive with excellent potential to delineate further mineralisation through geophysical surveys and shallow drilling, especially in the high-grade mineralised Rock Hill Prospects. Further work will include reinterpretation of airborne magnetic data to delineate the source of the magnetic anomalies and the structural setting.

ABOUT THE NGALIA BASIN PROJECTS

ELA26487 is located approximately 300km north-west of Alice Springs in the Northern Territory. The Rock Hill Project tenement has an area of approximately 1,017km² situated 6.5km north of the Yuendumu Indigenous Community settlement.

The Rock Hill prospects lie approx. 20km southeast from the Mt Hardy Copper field held by Todd River Resources Ltd, which has yielded a JORC Resource of 2.6 Mt @ 6.7% Zn, 0.9% Cu, 1.5% Pb, 35 g/t Ag.

EPM's projects within the Ngalia basin include two granted exploration licences (ELs) and eight EL applications with an area of approx. 7,000km². The Company's portfolio of strategic tenements within the basin covers parts of the Ngalia Basin and parts of the surrounding Arunta Block, where ELA 26487 is located (Figure 1).

The adjacent Mt Hardy project comprises several high-grade structurally-controlled precious and base metal oxide and sulphide targets generated from geochemical and geophysical surveys, including the advanced extensively drilled Hendrix Prospect.

During the 1960s, some high-grade mineralisation from the oxidised zone at Rock Hill was mined by prospectors from the nearby Yuendumu Settlement, but no record of this production is available.

GEOLOGY AND MINERALISATION

At the surface, the country rocks of the Rock Hill copper prospects are composed of schists and phyllites. At depth, several of the drill holes intersected quartz-rich metadiorite, intruded by quartz-diorite and quartzodioritic aplite. Granite occurs north of the prospect areas where quartz and quartz-pegmatite veins are common. All the metamorphic and igneous rocks belong to the Precambrian Arunta Block complex. Quaternary aeolian sand and soil overlie most of the area and alluvial deposits occur along the course of Keridl Creek in the northern portion of EL26487 (Figure 2).

At the Rock Hill prospects, intermittent mineralisation is visible at surface over an area about 33 metres wide and at least 800 metres long, parallel to the strike of the foliated rocks which trend east-west with a near vertical dip. On the surface copper is present as carbonate and secondary sulphides in schists and phyllites, as well as in intrusive quartz veins and pegmatites. Chalcocite is present both in the oxidised and in the sulphide zones. Grade of the copper mineralisation is highest above the water table, due to supergene enrichment. A number of chalcopyrite-rich intersections were made at depth in the sulphide zone (Figure 3).

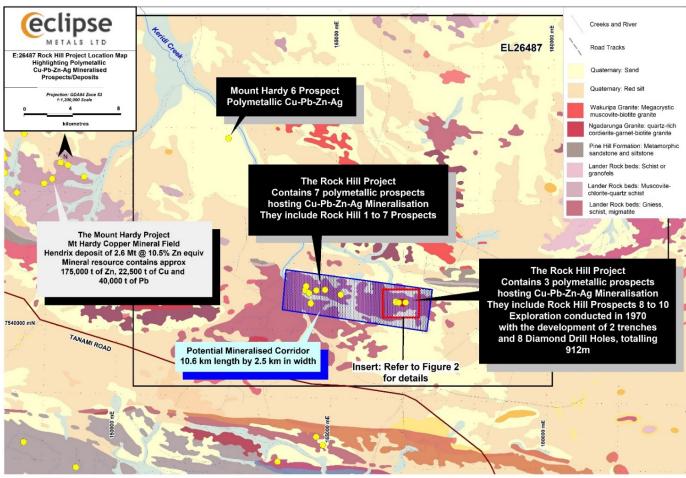


Figure 2: Regional Geology Map highlighting the Rock Hill Prospects and Potential Mineralised Corridor

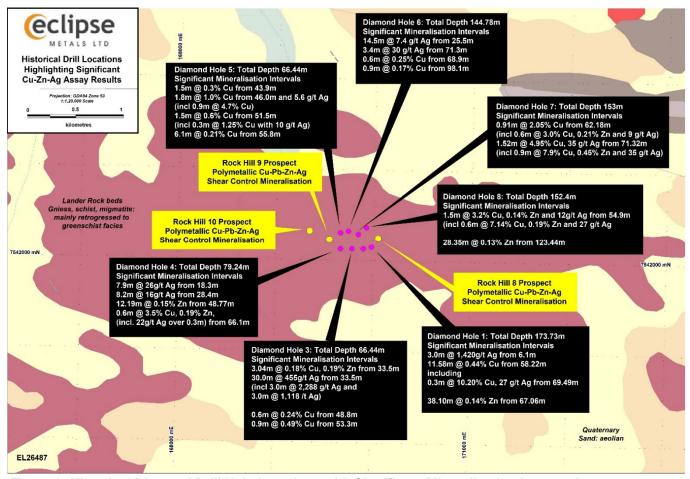


Figure 3: Historical Diamond Drill Hole Locations with Significant Mineralisation Intersections

DRILL HOLE DATA

Eclipse has reviewed data from 912m of drilling in eight historical diamond holes. The drill collar file is presented in Table 2. Analytical data associated with each hole has been digitally captured to form a database.

Data was derived from laboratory analytical reports contained in 17 pages in NTGS Report CR1970/001 and verified with historic cross sections and plans. Significant drill intersections derived from digitising the historic analytical data are shown in Table 1. All drilling results are presented in Table 3.

Table 1: Significant Drill Intersections

Hold Id DDH1 7	AMG East	AMG									A
		North	Depth	Dip	Azimuth	From (m)	To (m)	Drill Length	Cu (%)	Zn (%)	Ag (ppm)
	788,662	7,542,969	173.73	-45	175	6.1	9.1	3	(,,,	(,,,,	1,420
						58.2	69.8	11.6	0.44		
											10
						incl		0.3	4.6		10
						incl		0.3	1.19		
						incl		0.3	10.2		27
						67.1	105.2	38.1		0.14	
DDH 3	788,461	7,542,955	66.44	-90	0	33.5	36.5	3.0	0.18	0.19	2,288
	,	, ,				33.5	63.5	30			455
								3			1,118
DDH 4	788,344	7,542,958	79.24	-75	335	18.3	26.2	7.9			26
						28.4	36.6	8.2			16
						48.8	61.0	12.2		0.14	
						66.1	66.7	0.6	3.5	0.19	22
DDH 5	788,348	7,543,137	66.44	-45	180	43.9	45.4	1.5	0.3		
						46.0	47.8	1.8	1.0		5.6
						incl		0.9	4.7		
						51.5	53.0	1.5	0.6		
						incl		0.3	1.25		10
						55.8	61.9	6.1	0.21		
DDH 6	788,431	7,543,153	144.78	-45	350	25.5	40.0	14.5			7
						71.3	74.7	3.4			30
						68.9	69.5	0.6	0.25		
						98.1	99.0	0.9	0.17		
DDH 7	788,531	7,543,115	153	-45	175	62.2	62.8	0.6	2.1	0.21	9
						71.3	72.8	1.5	4.9		21
						incl		0.9	7.9	0.45	35
DDH 8	788,616	7,543,186	152.4	-45	175	54.9	56.4	1.5	3.2	0.14	12
	,	,				incl		0.6	7.1	0.19	27

Forward Strategy

Eclipse is currently communicating with the Central Land Council to commence negotiation with Traditional Owners for exploration and mining rights over ELA26487.

Subject to approval from the Traditional Owners, Eclipse plans to undertake an airborne EM survey similar to the exploration methods used in the delineation of resources within the Mt Hardy copper field. This will be followed up by further RC drilling in strongly mineralised zones and further infill diamond drilling within the western and central portion of the Exploration Licence area.

Reconnaissance exploration will include the Mt Hardy Prospect No.6 (polymetallic Cu-Pb-Zn-Ag mineralised vein) in the north-western portion of ELA26487. No exploration is known to have been conducted over this prospect area.

Authorised for release by the Board.

Carl Popal Executive Chairman Pedro Kastellorizos

Non-Executive Director

Competent Persons Statement

The information in this report / ASX release that relates to Exploration Results and Exploration Targets is based on information compiled and reviewed by Mr. Pedro Kastellorizos, a Non-Executive Director of Eclipse Metals Ltd. Mr. Kastellorizos, a Member and Chartered Professional of the Australasian Institute of Mining and Metallurgy (the AusIMM) and has sufficient experience relevant to the styles of mineralisation under consideration and to the activity being reported to qualify as a Competent Person as defined in the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr Kastellorizos consents to the inclusion in this report / ASX release of the matters based on information in the form and context in which it appears. Additionally, Mr Kastellorizos confirms that the entity is not aware of any new information or data that materially affects the information contained in the ASX releases referred to in this report.

About Eclipse Metals Ltd (ASX: EPM)

Eclipse Metals Ltd is an Australian exploration company focused on exploring South-western Greenland, Northern Territory and Queensland for multi commodity mineralisation. Eclipse Metals Ltd has an impressive portfolio of assets prospective for cryolite, fluorite, siderite, quartz (high purity silica), REE, gold, platinum group metals, manganese, palladium, vanadium and uranium mineralisation. The Company's mission is to increase shareholders' wealth through capital growth and ultimately dividends. Eclipse Metals Ltd plans to achieve this goal by exploring for and developing viable mineral deposits to generate mining or joint venture incomes.

REFERENCES

The below documents are all classified as open file reports which can be downloaded from the internet

The following references have been cited in this report: -

Fruzzetti, O, 1970: The Rock Hill Copper Prospect Yuendumu, Mount Doreen 250K sheet and area, Northern Territory (NTGS Open File Report CR1970/0001)

Table 2: Diamond Drill Hole Collar Table

Hold Id	AMG East	AMG North	RL	Depth	Dip	Azimuth
DDH 1	788,662	7,542,969	650	173.73	-45	175
DDH 2	788,578	7,542,953	650	75.28	-50	315
DDH 3	788,461	7,542,955	650	66.44	-90	0
DDH 4	788,344	7,542,958	650	79.24	-75	335
DDH 5	788,348	7,543,137	650	66.44	-45	180
DDH 6	788,431	7,543,153	650	144.78	-45	350
DDH 7	788,531	7,543,115	650	153	-45	175
DDH 8	788,616	7,543,186	650	152.4	-45	175

Table 3: Drill Assay (Split Core)

Hole ID	From (m)	To (m)	Cu (ppm)	Pb (Ppm)	Zn (ppm)	Ag (ppm)
DDH 1	8.53	8.84	75	60	50	<2
DDH 1	8.84	9.14	65	<10	47	<2
DDH 1	9.45	9.75	65	<10	61	<2
DDH 1	9.75	10.06	55	<10	61	<2
DDH 1	10.06	10.36	75	<10	61	<2
DDH 1	10.36	10.67	70	<10	64	<2
DDH 1	10.67	10.97	75	<10	61	<2
DDH 1	10.97	11.28	55	<10	65	<2
DDH 1	11.58	11.89	85	<10	65	<2
DDH 1	11.89	12.19	50	<10	69	<2
DDH 1	12.19	12.50	55	<10	61	<2
DDH 1	12.50	12.98	70	<10	53	<2
DDH 1	12.98	13.29	80	<10	55	<2
DDH 1	13.29	13.59	100	<10	58	<2
DDH 1	13.59	13.90	150	<10	45	<2
DDH 1	13.90	14.02	105	<10	69	<2
DDH 1	14.02	14.33	185	<10	55	<2
DDH 1	14.33	14.63	80	<10	62	<2
DDH 1	14.63	14.94	120	<10	67	<2
DDH 1	14.94	15.24	80	<10	69	<2
DDH 1	15.24	15.54	80	<10	67	<2
DDH 1	41.15	41.45	675	20	140	<2
DDH 1	47.55	47.85	95	<10	71	<2
DDH 1	57.61	57.91	50	<10	200	<2
DDH 1	57.91	58.22	375	<10	240	<2
DDH 1	58.22	58.52	46300	30	990	10
DDH 1	58.52	58.83	270	<10	260	<2
DDH 1	58.83	59.13	1470	30	280	<2
DDH 1	64.01	64.31	1045	<10	380	<2
DDH 1	64.31	64.62	575	<10	340	<2
DDH 1	64.62	64.92	290	<10	280	<2
DDH 1	66.14	66.45	11900	40	910	5

Hole ID	From (m)	To (m)	Cu (ppm)	Pb (Ppm)	Zn (ppm)	Ag (ppm)
DDH 1	66.45	66.75	1575	<10	1890	<2
DDH 1	69.49	69.80	102000	60	700	27
DDH 1	78.64	78.94	825	<10	100	<2
DDH 1	92.66	92.96	135	<10	42	<2
DDH 1	92.96	93.27	100	<10	38	<2
DDH 1	93.27	93.57	115	<10	40	<2
DDH 1	93.88	94.18	65	<10	45	<2
DDH 1	94.18	94.49	80	<10	35	<2
DDH 1	95.10	95.40	60	<10	35	<2
DDH 1	95.40	95.71	50	<10	37	<2
DDH 1	97.84	98.15	50	<10	40	<2
DDH 1	98.15	98.45	20	<10	25	<2
DDH 1	98.45	98.76	50	<10	30	<2
DDH 1	98.76	99.06	65	<10	24	<2
DDH 1	99.06	99.36	80	<10	27	<2
DDH 1	99.36	99.67	80	<10	27	<2
DDH 1	99.67	99.97	100	<10	65	<2
DDH 1	99.97	100.28	90	<10	55	<2
DDH 1	100.28	100.58	60	<10	65	<2
DDH 1	100.58	100.89	80	<10	73	<2
DDH 1	100.89	101.19	75	<10	67	<2
DDH 1	101.19	101.50	80	<10	65	<2
DDH 1	101.50	101.80	285	<10	85	<2
DDH 1	101.80	102.11	80	<10	87	<2
DDH 1	102.11	102.41	65	<10	67	<2
DDH 1	103.02	103.33	60	<10	52	<2
DDH 1	105.16	105.46	50	<10	61	<2
DDH 1	105.46	105.77	20	<10	78	<2
DDH 1	108.51	108.81	50	<10	55	<2
DDH 1	108.81	109.12	40	<10	63	<2
DDH 1	109.12	109.42	50	<10	65	<2
DDH 1	109.42	109.73	15	<10	71	<2
DDH 1	117.35	117.65	65	<10	67	<2
DDH 1	115.82	117.96	65	<10 <10	63	<2
DDH 1 DDH 1	117.96 118.26	118.26 118.57	60 50	<10	63 61	<2 <2
DDH 1	118.57	118.87	10	<10	69	<2
DDH 1	135.94	136.25	<5	<10	30	<2
DDH 1	136.25	136.55	<5 <5	10	28	<2
DDH 1	136.55	136.86	5	<10	45	<2
DDH 1	137.16	137.46	80	<10	97	<2
DDH 1	137.46	137.77	50	<10	58	<2
DDH 1	137.77	138.07	50	<10	55	<2
DDH 1	138.07	138.38	55	<10	49	<2
DDH 1	138.38	138.68	70	<10	42	<2
DDH 1	138.68	138.99	55	<10	35	<2

Hole ID	From (m)	To (m)	Cu (ppm)	Pb (Ppm)	Zn (ppm)	Ag (ppm)
DDH 1	138.99	139.29	50	<10	38	<2
DDH 1	139.29	139.60	55	<10	47	<2
DDH 1	139.60	139.90	55	<10	38	<2
DDH 1	139.90	140.21	65	<10	42	<2
DDH 1	140.21	140.51	70	<10	43	<2
DDH 1	140.51	140.82	55	<10	37	<2
DDH 1	140.82	141.12	85	<10	42	<2
DDH 1	141.12	141.43	165	<10	40	<2
DDH 1	141.43	141.73	75	<10	50	<2
DDH 1	141.73	142.04	65	<10	52	<2
DDH 1	142.04	142.34	55	<10	31	<2
DDH 1	142.34	142.65	35	<10	25	<2
DDH 1	142.65	142.95	55	<10	31	<2
DDH 1	142.95	143.26	55	<10	38	<2
DDH 1	143.26	143.56	65	<10	31	<2
DDH 1	143.56	143.87	50	<10	38	<2
DDH 1	143.87	144.17	50	<10	37	<2
DDH 1	144.17	144.48	70	<10	40	<2
DDH 1	144.66	144.78	65	<10	73	14
DDH 1	144.96	145.08	55	<10	73	<2
DDH 1	145.08	145.39	60	10	61	<2
DDH 1	145.39	145.69	50	<10	65	<2
DDH 1	145.69	146.00	50	<10	60	<2
DDH 1	145.69	146.00	60	<10	61	<2
DDH 1	146.00	146.30	45	<10	63	<2
DDH 1	146.30	146.61	70	<10	47	<2
DDH 1	146.61	146.91	65	<10	28	<2
DDH 1	164.90	165.20	460	40	1250	<2
DDH 1	165.20	165.51	4620	20	1900	2
DDH 1	168.86	169.16	40	<10	47	<2
DDH 1	169.16	169.47	90	<10	99	<2
DDH 1	169.47	169.77	275	10	84	<2
DDH 2	170.08	170.38	140	20	86	<2
DDH 2	16.46	16.76	55	<10	43	10
DDH 2	16.76	17.07	55	<10	56	<2
DDH 2	21.34	21.64	50	<10	58	<2
DDH 2	22.25	22.56	45	<10	55	<2
DDH 2	22.56	22.86	55	10	73	<2
DDH 2	22.86	23.16	55	10	60	<2
DDH 2	23.16	23.47	50	10	81	<2
DDH 2	23.47	23.77	<5	<10	94	<2
DDH 2	23.77	24.08	50	<10	25	<2
DDH 2	24.38	24.69	25	10	26	<2
DDH 2	24.69	24.99	55	20	26	<2
DDH 2	24.99	25.30	80	<10	45	<2
DDH 2	25.30	25.60	65	<10	63	<2

Hole ID	From (m)	To (m)	Cu (ppm)	Pb (Ppm)	Zn (ppm)	Ag (ppm)
DDH 2	25.60	25.91	55	10	60	<2
DDH 2	25.91	26.21	75	10	60	<2
DDH 2	26.21	26.52	15	<10	69	<2
DDH 2	26.52	26.82	525	<10	71	<2
DDH 2	26.82	27.13	30	10	55	<2
DDH 2	27.13	27.43	35	<10	29	<2
DDH 2	27.43	27.74	80	<10	51	<2
DDH 2	27.74	28.04	75	10	56	<2
DDH 2	28.04	28.35	60	<10	69	<2
DDH 2	28.35	28.65	65	<10	71	<2
DDH 2	28.65	28.96	55	<10	63	<2
DDH 2	28.96	29.26	70	<10	102	<2
DDH 2	29.26	29.57	80	<10	58	<2
DDH 2	29.57	29.87	25	<10	71	<2
DDH 2	29.87	30.18	30	<10	40	<2
DDH 2	30.18	30.48	60	10	36	<2
DDH 2	30.48	30.78	100	<10	29	<2
DDH 2	30.78	31.09	140	10	56	<2
DDH 2	31.09	31.39	90	10	71	<2
DDH 2	31.39	31.70	75	10	86	<2
DDH 2	31.70	32.00	85	10	73	<2
DDH 2	32.00	32.31	75	20	79	<2
DDH 2	32.31	32.61	75	30	98	<2
DDH 2	32.61	32.92	85	40	90	<2
DDH 2	32.92	33.22	95	40	88	<2
DDH 2	33.22	33.53	75	40	95	<2
DDH 2	33.53	33.83	65	30	85	<2
DDH 2	33.83	34.14	70	40	90	<2
DDH 2	34.14	34.44	65	30	64	<2
DDH 2	34.44	34.75	55	30	78	<2
DDH 2	35.05	35.36	65	10	46	<2
DDH 2	35.36	35.66	65	10	51	<2
DDH 2	35.66	35.97	65	30	90	<2
DDH 2	35.97	36.27	95	30	62	<2
DDH 2	36.27	36.58	10	10	51	<2
DDH 2	36.58	36.88	65	30	90	<2
DDH 2	36.88	37.19	20	40	78	<2
DDH 2	37.19	37.49	35	30	56	<2
DDH 2	37.49	37.80	80	30	64	<2
DDH 2	37.80	38.10	45	10	51	<2
DDH 2	38.10	38.40	85	10	78	<2
DDH 2	38.40	38.71	70	30	76	<2
DDH 2	38.71	39.01	85	30	70	<2
DDH 2	39.01	39.32	25	10	100	<2
DDH 2	39.32	39.62	80	10	110	<2
DDH 2	39.93	40.23	75	10	100	<2

Hole ID	From (m)	To (m)	Cu (ppm)	Pb (Ppm)	Zn (ppm)	Ag (ppm)
DDH 2	40.23	40.54	265	30	60	<2
DDH 2	40.54	40.84	20	30	68	<2
DDH 2	40.84	41.15	10	30	54	<2
DDH 2	41.15	41.45	10	10	30	<2
DDH 2	41.45	41.76	5	10	60	<2
DDH 2	41.76	42.06	<5	30	78	<2
DDH 2	42.06	42.37	5	10	66	<2
DDH 2	42.37	42.67	10	10	60	<2
DDH 2	45.72	46.02	110	30	90	<2
DDH 2	46.02	46.33	160	30	51	<2
DDH 2	46.33	46.63	90	30	42	<2
DDH 2	46.63	46.94	100	10	53	<2
DDH 2	46.94	47.24	100	10	68	<2
DDH 2	47.24	47.55	100	30	49	<2
DDH 2	47.55	47.85	90	<10	414	<2
DDH 2	47.85	48.16	80	10	74	<2
DDH 2	48.16	48.46	140	10	93	<2
DDH 2	48.46	48.77	120	10	83	<2
DDH 2	48.77	49.07	85	10	90	<2
DDH 2	49.07	49.38	160	10	120	<2
DDH 2	58.52	58.83	150	10	330	<2
DDH 2	58.83	59.13	85	10	100	<2
DDH 2	59.13	59.44	70	10	78	<2
DDH 2	59.44	59.74	70	10	83	<2
DDH 2	59.74	60.05	55	10	120	<2
DDH 2	60.66	60.96	85	10	70	<2
DDH 2	60.96	61.26	75	10	62	<2
DDH 2	61.26	61.57	150	10	53	<2
DDH 2	61.57	61.87	80	<10	76	<2
DDH 2	61.87	62.18	70	10	68	<2
DDH 2	62.18	62.48	50	10	62	<2
DDH 2	62.48	62.79	45	10	41	<2
DDH 2	63.09	63.40	45	10	47	<2
DDH 2	63.40	63.70	55	10	68	<2
DDH 2	63.70	64.01	80	10	190	<2
DDH 2	64.01	64.31	45	10	170	<2
DDH 2	64.31	64.62	145	10	100	<2
DDH 2	64.92	65.23	250	10	60	<2
DDH 2	65.23	65.53	95	10	54	<2
DDH 2	65.53	65.84	95	10	70	<2
DDH 2	65.84	66.14	85	10	62	<2
DDH 2	66.14	66.63	70	10	36	<2
DDH 2	66.63	67.06	55	10	66	<2
DDH 2	67.06	67.36	60	<10	58	<2
DDH 2	67.36	67.67	130	<10	80	<2
DDH 2	67.67	67.97	95	<10	58	<2

Hole ID	From (m)	To (m)	Cu (ppm)	Pb (Ppm)	Zn (ppm)	Ag (ppm)
DDH 2	67.97	68.28	90	<10	68	<2
DDH 2	68.28	68.58	60	<10	60	<2
DDH 2	68.88	69.19	135	<10	54	<2
DDH 2	69.19	69.49	70	<10	49	<2
DDH 2	69.49	69.80	70	<10	39	<2
DDH 2	69.80	70.10	75	<10	57	<2
DDH 2	70.10	70.29	85	<10	47	<2
DDH 2	70.29	70.59	75	<10	68	<2
DDH 2	70.59	71.02	140	<10	90	<2
DDH 2	71.02	71.32	20	<10	85	<2
DDH 2	71.32	71.63	10	10	120	<2
DDH 2	71.63	71.93	10	<10	150	<2
DDH 2	71.93	72.24	15	<10	62	<2
DDH 2	72.54	72.85	10	10	42	<2
DDH 2	72.85	73.15	140	<10	200	<2
DDH 2	73.15	73.46	5	<10	83	<2
DDH 2	73.46	73.76	5	<10	60	<2
DDH 2	73.76	74.07	5	<10	47	<2
DDH 2	74.07	74.37	5	<10	49	<2
DDH 2	74.37	74.68	5	<10	32	<2
DDH 2	74.68	74.98	10	10	26	<2
DDH 2	34.75	35.05	65	10	42	<2
DDH 3	37.80	38.40	360	<10	41	<2
DDH 3	39.20	39.50	1793	115	340	<2
DDH 3	45.42	46.02	50	35	130	<2
DDH 3	48.77	49.07	2450	35	150	<2
DDH 3	49.07	49.38	2275	35	160	<2
DDH 3	51.51	51.82	98	10	120	<2
DDH 3	53.34	53.64	5985	35	140	<2
DDH 3	53.64	53.95	7350	35	210	2
DDH 3	53.95	54.25	1260	35	140	<2
DDH 3	56.39	56.39	65	10	140	<2
DDH 3	56.69	56.69	32	10	130	<2
DDH 3	58.52	58.83	60	10	54	<2
DDH 3	59.31 61.26	59.31 61.57	36 20	10 35	48 160	<2 <2
DDH 3	66.75	67.06	25	35	92	<2
DDH 3	26.21	26.52	80	35	92 85	<2
DDH 4	26.52	26.82	725	50	98	<2
DDH 4	26.82	27.13	60	35	110	<2
DDH 4	27.13	27.43	185	35	78	<2
DDH 4	27.43	27.74	100	35	80	<2
DDH 4	27.74	28.04	120	35	120	<2
DDH 4	28.04	28.35	80	40	180	<2
DDH 4	57.61	57.91	950	35	260	<2
DDH 4	57.91	58.22	3740	35	355	<2
30.1.7	37.31	30.22	37.10	. 55	. 555	

Hole ID	From (m)	To (m)	Cu (ppm)	Pb (Ppm)	Zn (ppm)	Ag (ppm)
DDH 4	58.22	58.52	7560	35	200	<2
DDH 4	58.52	58.83	155	35	210	2
DDH 4	66.14	66.45	55125	35	2025	<2
DDH 4	66.45	66.75	15125	40	1300	22
DDH 4	66.75	67.06	625	40	160	4
DDH 4	67.06	67.36	2520	40	435	<2
DDH 5	39.32	39.62	900	130	230	<2
DDH 5	39.62	39.93	210	130	220	<2
DDH 5	39.93	40.23	2800	50	150	<2
DDH 5	40.23	40.54	275	50	200	<2
DDH 5	40.54	40.84	150	340	260	<2
DDH 5	40.84	41.15	105	130	190	<2
DDH 5	42.06	42.37	295	40	180	<2
DDH 5	42.37	42.67	700	60	260	<2
DDH 5	42.67	42.98	300	40	280	<2
DDH 5	42.98	43.28	320	30	190	<2
DDH 5	43.28	43.59	350	30	200	<2
DDH 5	43.59	43.89	400	40	250	<2
DDH 5	43.89	44.20	5200	30	680	6
DDH 5	44.20	44.50	3800	30	350	2
DDH 5	44.50	44.81	1600	30	520	<2
DDH 5	44.81	45.11	1800	30	890	<2
DDH 5	45.11	45.42	1300	40	1200	<2
DDH 5	45.42	45.72	445	30	600	<2
DDH 5	45.72	46.02	150	70	480	<2
DDH 5	46.02	46.33	2300	110	1150	<2
DDH 5	46.33	46.63	7800	520	740	8
DDH 5	46.63	46.94	10000	160	110	4
DDH 5	46.94	47.24	24750	310	760	12
DDH 5	47.24	47.55	12225	420	190	4
DDH 5	47.55	47.85	2700	60	570	<2
DDH 5	48.16	48.46	4100	80	3680	6
DDH 5	51.51	51.82	1600	70	305	<2
DDH 5	51.82	52.12	7700	50	280	6
DDH 5	52.12	52.43	2200	70	200	<2
DDH 5	52.43	52.73	4100	30	420	<2
DDH 5	52.73	53.04	12500	30	1350	10
DDH 5	53.04	53.34	280	30	170	<2
DDH 5	53.34	53.64	60	30	160	<2
DDH 5	53.64	53.95	1300	50	305	<2
DDH 5	55.78	56.08	1300	50	306	<2
DDH 5	56.08	56.39	4400	50	440	4
DDH 5	56.69	57.00	2400	30	170	<2
DDH 5	57.00	57.30	3900	30	410	2
DDH 5	57.30	57.91	2100	40	250	2
DDH 5	57.91	58.22	900	40	305	<2

Hole ID	From (m)	To (m)	Cu (ppm)	Pb (Ppm)	Zn (ppm)	Ag (ppm)
DDH 5	58.22	58.52	1900	40	330	2
DDH 5	58.52	58.83	1900	30	290	2
DDH 5	58.83	59.13	1800	40	450	<2
DDH 5	59.13	59.44	1200	480	320	<2
DDH 5	59.44	59.74	280	60	340	<2
DDH 5	59.74	60.05	1800	40	355	<2
DDH 5	60.05	60.35	3000	40	610	2
DDH 5	60.35	60.66	425	30	420	<2
DDH 5	60.66	60.96	80	30	305	<2
DDH 5	60.96	61.26	7400	40	650	2
DDH 5	61.26	61.57	3500	50	200	2
DDH 5	61.57	61.87	80	60	280	<2
DDH 5	64.01	64.31	2400	50	140	<2
DDH 6	40.11	40.54	270	<10	65	<2
DDH 6	40.54	40.84	85	10	75	<2
DDH 6	40.84	41.03	90	10	80	<2
DDH 6	41.03	41.15	105	<10	94	<2
DDH 6	41.15	41.45	85	20	73	<2
DDH 6	41.45	41.76	80	10	73	<2
DDH 6	41.76	42.06	90	<10	81	<2
DDH 6	42.06	426.11	95	10	110	<2
DDH 6	42.37	42.67	70	10	63	<2
DDH 6	42.67	42.98	115	10	73	<2
DDH 6	42.98	43.28	70	<10	745	<2
DDH 6	58.83	59.13	130	10	75	<2
DDH 6	59.13	59.44	115	10	73	<2
DDH 6	59.44	59.74	95	10	73	<2
DDH 6	59.74	60.05	95	<10	86	<2
DDH 6	68.28	68.58	190	60	290	<2
DDH 6	68.58	68.88	600	20	370	<2
DDH 6	68.88	69.19	3100	20	680	<2
DDH 6	69.19	69.49	1900	20	305	<2
DDH 6	69.49	69.80	50	20	120	<2
DDH 6	69.80	70.10	100	30	230	<2
DDH 6	70.10	70.41	1100	30	620	<2
DDH 6	70.41	70.71	1200	20	330	<2
DDH 6	98.15	98.45	1900	10	550	<2
DDH 6	98.45	98.76	15	10	99	<2
DDH 6	98.76	99.06	3100	10	170	<2
DDH 6	99.06	99.36	400	10	160	<2
DDH 6	107.29	107.59	600	30	340	<2
DDH 6	107.59	107.90	215	30	150	<2
DDH 6	107.90	108.20	5	20	120	<2
DDH 6	108.20	108.51	1600	10	420	<2
DDH 6	108.51	108.81	325	10	150	<2
DDH 6	108.81	109.12	650	10	230	<2

DDH 6 109.12 109.42 10 10 105 <2	Hole ID	From (m)	To (m)	Cu (ppm)	Pb (Ppm)	Zn (ppm)	Ag (ppm)
DDH6							
DDH 6 115.52 115.82 95 10 73 <2 DDH 6 115.82 116.13 65 <10							
DDH 6 115.82 116.13 65 <10 71 <2 DDH 6 116.13 116.43 90 <10							
DDH 6 116.13 116.43 90 <10 58 <2 DDH 6 116.43 116.74 70 <10							
DDH 6 116.43 116.74 70 <10 65 <2 DDH 6 116.74 117.04 85 <10							
DDH 6 116.74 117.04 85 <10 65 <2 DDH 6 117.04 117.35 85 <10							
DDH 6 117.04 117.35 85 <10 46 <2 DDH 6 117.35 117.65 95 <10		116.74	117.04	85			
DDH 6 117.35 117.65 95 <10 45 <2 DDH 6 117.65 117.96 100 <10			117.35	85	<10		<2
DDH 6 117.65 117.96 100 <10 39 <2 DDH 6 117.96 118.26 20 <10		117.35	117.65	95	<10	45	<2
DDH 6 118.26 118.57 5 <10 50 <2 DDH 6 118.57 118.87 115 <10	DDH 6			100	<10	39	<2
DDH 6 118.57 118.87 115 <10 51 <2 DDH 6 118.87 119.18 85 <10	DDH 6	117.96	118.26	20	<10	54	<2
DDH 6 118.87 119.18 85 <10 40 <2 DDH 6 119.18 119.48 15 <10	DDH 6	118.26	118.57	5	<10	50	<2
DDH 6 119.18 119.48 15 <10 48 <2 DDH 6 119.48 119.79 65 <10	DDH 6	118.57	118.87	115	<10	51	<2
DDH 6 119.48 119.79 65 <10 42 <2 DDH 6 119.79 120.09 70 <20	DDH 6	118.87	119.18	85	<10	40	<2
DDH 6 119.79 120.09 70 <20 42 <2 DDH 6 120.09 120.40 70 <20	DDH 6	119.18	119.48	15	<10	48	<2
DDH 6 120.09 120.40 70 <20 27 <2 DDH 6 120.40 120.70 85 <20	DDH 6	119.48	119.79	65	<10	42	<2
DDH 6 120.40 120.70 85 <20 44 <2 DDH 6 120.70 121.01 70 <20	DDH 6	119.79	120.09	70	<20	42	<2
DDH 6 120.70 121.01 70 <20 62 <2 DDH 6 121.01 121.31 100 <20	DDH 6	120.09	120.40	70	<20	27	<2
DDH 6 121.01 121.31 100 <20 37 <2 DDH 6 121.31 121.62 55 <20	DDH 6	120.40	120.70	85	<20	44	<2
DDH 6 121.31 121.62 55 <20 45 <2 DDH 6 121.62 121.92 70 <20	DDH 6	120.70	121.01	70	<20	62	<2
DDH 6 121.62 121.92 70 <20 36 <2 DDH 6 121.92 122.22 0.6 <20	DDH 6	121.01	121.31	100	<20	37	<2
DDH 6 121.92 122.22 0.6 <20 47 <2 DDH 6 122.22 122.53 65 <20	DDH 6	121.31	121.62	55	<20	45	<2
DDH 6 122.22 122.53 65 <20 47 <2 DDH 6 122.53 122.83 60 <20	DDH 6	121.62	121.92	70	<20	36	<2
DDH 6 122.53 122.83 60 <20	DDH 6	121.92	122.22	0.6	<20	47	<2
DDH 6 122.83 123.14 85 <20 37 <2 DDH 6 123.14 123.44 40 <20	DDH 6	122.22	122.53	65	<20	47	<2
DDH 6 123.14 123.44 40 <20 39 <2 DDH 6 123.44 123.75 5 <20	DDH 6	122.53	122.83	60	<20	34	<2
DDH 6 123.44 123.75 5 <20 42 <2 DDH 6 123.75 124.05 100 <20	DDH 6	122.83	123.14	85	<20	37	<2
DDH 6 123.75 124.05 100 <20 45 <2 DDH 6 124.05 124.36 70 <20	DDH 6	123.14	123.44		<20		
DDH 6 124.05 124.36 70 <20 39 <2 DDH 6 124.36 124.66 65 <20	DDH 6	123.44					
DDH 6 124.36 124.66 65 <20 29 <2 DDH 6 124.66 124.97 65 <20							
DDH 6 124.66 124.97 65 <20 42 <2 DDH 6 124.97 125.27 70 <20							
DDH 6 124.97 125.27 70 <20 31 <2 DDH 6 125.27 125.58 5 <20							
DDH 6 125.27 125.58 5 <20 70 <2 DDH 6 125.58 125.88 90 <20							
DDH 6 125.58 125.88 90 <20							
DDH 6 125.88 126.19 25 <20 95 <2 DDH 6 126.19 126.49 25 <20							
DDH 6 126.19 126.49 25 <20 160 <2 DDH 6 126.49 126.80 20 <20							
DDH 6 126.49 126.80 20 <20 49 <2 DDH 6 126.80 127.10 110 <20							
DDH 6 126.80 127.10 110 <20 80 <2 DDH 7 61.87 62.18 200 <20							
DDH 7 61.87 62.18 200 <20 200 <2 DDH 7 62.18 62.48 29150 <20							
DDH 7 62.18 62.48 29150 <20							
DDH 7 62.48 62.79 30800 <20 2420 10 DDH 7 62.79 63.09 1550 180 600 <2							
DDH 7 62.79 63.09 1550 180 600 <2							
	DDH 7	70.71	71.02	25	20	230	<2
DDH 7 71.02 71.32 65 20 220 <2							

Hole ID	From (m)	To (m)	Cu (ppm)	Pb (Ppm)	Zn (ppm)	Ag (ppm)
DDH 7	71.32	71.63	7900	<20	380	<2
DDH 7	71.63	71.93	2250	<20	1020	<2
DDH 7	71.93	72.24	65100	20	8610	30
DDH 7	72.24	72.54	73500	20	1680	34
DDH 7	72.54	72.85	98700	20	3150	40
DDH 7	72.85	73.15	125	<20	230	<2
DDH 7	103.33	103.63	150	<20	49	<2
DDH 7	103.63	103.94	100	<20	39	<2
DDH 7	106.07	106.38	90	<20	34	<2
DDH 7	106.38	106.68	80	<20	37	<2
DDH 7	107.59	107.59	70	<20	47	<2
DDH 7	107.59	107.90	60	<20	34	<2
DDH 7	108.20	108.51	60	<20	31	<2
DDH 7	108.51	108.81	85	<20	30	<2
DDH 7	111.86	112.47	80	<20	54	<2
DDH 7	112.17	112.47	95	20	54	<2
DDH 7	112.47	112.78	60	<20	52	<2
DDH 7	121.62	121.92	50	<20	60	<2
DDH 7	121.92	122.22	65	<20	60	<2
DDH 7	144.78	145.08	90	<20	49	<2
DDH 7	146.91	147.22	25	<20	31	<2
DDH 7	147.22	147.52	70	<20	49	<2
DDH 7	147.52	147.83	75	<20	52	<2
DDH 7	147.83	148.13	65	<20	34	<2
DDH 7	148.13	148.44	55	<20	52	<2
DDH 7	149.05	149.35	60	<20	34	<2
DDH 7	149.35	149.66	50	<20	34	<2
DDH 7	149.66	149.96	50	<20	34	<2
DDH 7	149.96	150.27	75	20	49	<2
DDH 7	150.27	150.57	55	<20	80	<2
DDH 7	150.57	150.88	60	10	48	<2
DDH 7	150.88	151.18	55	10	53	<2
DDH 7	151.18	151.49	60	10	53	<2
DDH 7	151.49	151.79	70	10	49	<2
DDH 7	151.79	152.10	65	10	65	<2
DDH 7	152.10	152.40	70	10	70	<2
DDH 8	30.18	30.48	1000	10	180	<2
DDH 8	30.48	30.78	850	10	240	<2
DDH 8	30.78	31.09	15	10	83	<2
DDH 8	31.09	31.39	50	10	190	<2
DDH 8	32.49	32.92	10	10	66	<2
DDH 8	32.92	33.22	4400	10	180	<2
DDH 8	33.22	33.53	500	10	120	<2
DDH 8	54.86	55.17	98700	40	2400	36
DDH 8	55.17	55.47	44100	30	1320	18
DDH 8	55.47	55.78	3100	10	1400	2

Hole ID	From (m)	To (m)	Cu (ppm)	Pb (Ppm)	Zn (ppm)	Ag (ppm)
DDH 8	55.78	56.08	11000	20	1600	4
DDH 8	56.08	56.39	3900	10	470	<2
DDH 8	56.39	56.69	225	10	240	<2
DDH 8	61.26	61.57	75	10	130	<2
DDH 8	61.57	61.87	135	30	170	<2
DDH 8	61.87	62.18	500	10	210	<2
DDH 8	62.18	62.48	30	20	190	<2
DDH 8	70.10	70.41	85	<10	65	<2
DDH 8	92.84	93.27	235	20	88	<2
DDH 8	93.27	93.57	195	30	100	<2
DDH 8	93.57	93.88	400	20	88	<2
DDH 8	94.18	94.49	100	10	70	<2
DDH 8	94.49	94.79	115	10	74	<2
DDH 8	95.10	95.40	120	10	76	<2
DDH 8	95.40	95.71	105	10	54	<2
DDH 8	97.72	98.15	80	10	631	<2
DDH 8	99.24	99.67	105	<10	59	<2
DDH 8	99.97	100.46	90	20	65	<2
DDH 8	103.63	104.12	90	10	419	<2
DDH 8	104.55	104.85	65	20	65	<2
DDH 8	104.85	105.16	75	10	66	<2
DDH 8	105.77	106.07	75	10	65	<2
DDH 8	114.00	114.60	45	20	76	<2
DDH 8	114.60	115.21	45	20	76	<2
DDH 8	137.77	138.07	120	10	74	<2
DDH 8	138.07	138.38	90	10	57	<2
DDH 8	138.38	138.68	70	<10	40	<2
DDH 8	138.68	138.99	85	20	46	<2
DDH 8	138.99	139.29	80	10	54	<2
DDH 8	140.21	140.51	90	10	46	<2
DDH 8	140.51	140.82	55	10	46	<2
DDH 8	140.82	141.12	60	10	42	<2
DDH 8	141.12	141.43	45	10	20	<2
DDH 8	141.43	141.91	110	<10	42	<2
DDH 8	142.65	142.95	55	10	54	<2
DDH 8	142.95	143.26	70	10	61	<2
DDH 8	145.39	145.69	80	10	44	<2

Drill Assay (Scraped Core)

Hole ID	From (m)	To (m)	Cu (ppm)	Pb (Ppm)	Zn (ppm)	Ag (ppm)
DDH 1	0.00	3.05	55	<10	56	<2
DDH 1	3.05	6.10	70	<10	79	<2
DDH 1	6.10	9.14	270	30	620	1420
DDH 1	9.14	12.19	320	130	185	I.S.
DDH 1	15.24	18.29	50	20	110	12
DDH 1	18.29	21.34	50	20	110	4

Hole ID	From (m)	To (m)	Cu (ppm)	Pb (Ppm)	Zn (ppm)	Ag (ppm)
DDH 1	21.34	24.38	45	20	130	I.S.
DDH 1	24.38	27.43	65	30	260	32
DDH 1	27.43	30.48	195	140	250	26
DDH 1	30.48	33.53	295	280	280	2
DDH 1	33.53	36.58	75	30	170	2
DDH 1	36.58	39.62	40	30	200	8
DDH 1	39.62	42.67	140	40	170	I.S.
DDH 1	42.67	45.72	25	20	160	12
DDH 1	45.72	48.77	25	20	150	<2
DDH 1	48.77	51.82	50	20	140	I.S.
DDH 1	51.82	54.86	55	50	96	<2
DDH 1	60.96	64.01	135	40	940	I.S.
DDH 1	64.92	67.06	37	10	270	I.S.
DDH 1	67.06	70.10	430	40	1950	I.S.
DDH 1	70.10	73.15	460	20	1200	I.S.
DDH 1	73.15	76.20	200	10	1460	I.S.
DDH 1	76.20	79.25	130	20	870	I.S.
DDH 1	79.25	82.30	205	50	2000	I.S.
DDH 1	82.30	85.34	165	20	1750	I.S.
DDH 1	85.34	88.39	125	30	1300	I.S.
DDH 1	88.39	91.44	85	10	1150	I.S.
DDH 1	91.44	96.93	160	<40	1830	I.S.
DDH 1	103.33	105.16	180	<40	3500	I.S.
DDH 1	106.07	108.51	85	20	510	I.S.
DDH 1	109.73	112.78	65	40	530	<2
DDH 1	112.78	115.82	25	10	80	I.S.
DDH 1	118.87	121.92	16	<10	81	<2
DDH 1	121.92	124.97	35	10	260	<2
DDH 1	126.49	129.54	35	20	120	<2
DDH 1	129.54	132.59	30	20	90	<2
DDH 1	132.59	135.64	40	20	1850	I.S.
DDH 1	137.16	140.21	85	20	1330	
DDH 1	149.35	152.40	110	<20	2100	
DDH 1	152.40	155.45	105	<20	1750	
DDH 1	155.45	158.50	75	20	1100	
DDH 1	158.50	161.54	35	20	970	
DDH 1	164.59	167.64	1890	30	780	
DDH 1	167.64	170.69	100	20	690	
DDH 1	172.21	173.74	70	<10	81	I.S.
DDH 2	0.00	3.05	110	10	44	<2
DDH 2	3.05	6.10	15	<10	25	<2
DDH 2	6.10	9.14	30	10	83	<2
DDH 2	9.14	12.19	75	10	67	<2
DDH 2	12.19	15.24	85	40	80	<2
DDH 2	15.24	18.29	132	40	90	<2
DDH 2	18.29	21.34	85	35	67	4

Hole ID	From (m)	To (m)	Cu (ppm)	Pb (Ppm)	Zn (ppm)	Ag (ppm)
DDH 2	42.67	45.72	25	35	90	<2
DDH 2	45.72	48.77	20	35	200	<2
DDH 2	48.77	51.82	50	40	355	<2
DDH 2	51.82	54.86	17	10	130	<2
DDH 2	54.86	57.91	470	10	105	<2
DDH 3	3.05	6.10	45	35	87	<2
DDH 3	6.10	9.14	60	50	180	2
DDH 3	9.14	12.19	20	40	130	<2
DDH 3	12.19	15.24	25	40	90	2
DDH 3	15.24	18.29	45	80	67	24
DDH 3	18.29	21.34	50	80	83	30
DDH 3	21.34	24.38	18	40	76	<2
DDH 3	24.38	27.43	18	40	210	2
DDH 3	27.43	30.48	18	35	120	2
DDH 3	30.48	33.53	132	220	100	I.S.
DDH 3	33.53	36.58	1850	80	1900	2288
DDH 3	36.58	42.67	125	50	270	258
DDH 3	42.67	45.72	32	50	130	40
DDH 3	45.72	48.77	25	35	110	11
DDH 3	48.77	51.82	50	10	130	34
DDH 3	51.82	54.86	600	35	130	32
DDH 3	54.86	57.91	125	40	215	258
DDH 3	57.91	60.96	435	40	505	1118
DDH 3	60.96	64.01	85	50	180	252
DDH 3	64.01	67.06	58	40	105	I.S.
DDH 4	0.00	3.05	75	10	28	<2
DDH 4	3.05	6.10	45	10	48	<2
DDH 4	6.10	9.14	50	35	71	4
DDH 4	9.14	12.19	85	10	76	2
DDH 4	12.19	15.24	65	35	83	2
DDH 4	15.24	18.29	60	35	98	4
DDH 4	18.29	21.34	115	10	105	20
DDH 4	21.34	24.38	75	10	95	37
DDH 4	24.38	26.21	32	10	95	20
DDH 4	28.35	30.48	70	10	120	11
DDH 4	30.48	33.53	80	10	200	14
DDH 4	33.53	36.58	70	35	490	28
DDH 4	36.58	39.62	75	10	735	4
DDH 4	39.62	42.67	45	35	210	2
DDH 4	42.67	45.72	120	35	370	2
DDH 4	45.72	48.77	70	35	305	<2
DDH 4	48.77	51.82	70	35	1300	<2
DDH 4	51.82	54.86	65	40	1515	<2
DDH 4	54.86	57.91	445	40	1350	<2
DDH 4	58.83	60.96	110	50	1515	I.S.
DDH 4	60.96	64.01	155	40	940	<2

Hole ID	From (m)	To (m)	Cu (ppm)	Pb (Ppm)	Zn (ppm)	Ag (ppm)
DDH 4	64.01	66.14	750	40	680	<2
DDH 4	67.67	70.10	92	35	795	2
DDH 4	70.10	73.15	60	40	755	I.S.
DDH 4	73.15	76.20	60	40	820	I.S.
DDH 4	76.20	79.25	45	40	590	<2
DDH 5	0.00	3.05	55	30	180	<2
DDH 5	3.05	6.10	25	40	160	<2
DDH 5	6.10	9.14	10	20	160	<2
DDH 5	9.14	12.19	75	20	120	<2
DDH 5	12.19	15.24	10	10	70	<2
DDH 5	15.24	18.29	95	10	90	<2
DDH 5	18.29	21.34	10	10	110	<2
DDH 5	21.34	24.38	20	30	200	<2
DDH 5	24.38	27.43	40	110	270	30
DDH 5	27.43	30.48	30	130	220	<2
DDH 5	30.48	33.53	30	50	160	6
DDH 5	33.53	36.58	75	50	210	2
DDH 5	36.58	39.62	70	50	220	<2
DDH 5	41.15	42.06	75	50	180	12
DDH 5	50.29	51.51	520	0.5	290	<2
DDH 5	53.95	55.17	115	20	370	52
DDH 5	55.47	55.78	195	110	330	I.S.
DDH 5	56.39	56.69	800	100	1350	2
DDH 5	61.87	64.01	80	60	740	<2
DDH 5	64.31	66.63	70	160	890	<2
DDH 6	25.48	28.22	145	30	720	14
DDH 6	28.22	32.31	90	20	220	6
DDH 6	32.31	35.36	105	20	110	2
DDH 6	35.36	38.71	115	30	200	6
DDH 6	38.71	39.93	117	30	250	15
DDH 6	48.16	48.77	55	50	130	14
DDH 6	50.90	51.51	3.5	30	105	12
DDH 6	54.25	55.17	50	30	115	8
DDH 6	61.87	62.48	40	20	130	6
DDH 6	64.92	65.84	45	20	150	6
DDH 6	71.32	74.68	110	30	180	30
DDH 6	85.34	85.95	180	45	900	15
DDH 6 DDH 7	91.44	92.35 9.45	180 60	35 40	500 350	15 2
DDH 7	10.06	10.36	300			<2
DDH 7	11.28	11.58	290	<20 90	95 1650	1.S.
DDH 7	12.50	12.80	120	80	680	1.S.
DDH 7	14.94	15.24	95	55	1800	1.S.
DDH 7	21.34	21.64	95	40	1020	1.S.
DDH 7	24.69	24.99	55	20	2420	2
DDH 7	32.92	33.22	40	40	460	<2
ווטט /	32.32	JJ.44	1 70	1 70	700	1 72

Hole ID	From (m)	To (m)	Cu (ppm)	Pb (Ppm)	Zn (ppm)	Ag (ppm)
DDH 7	36.58	36.88	0.2	<20	110	<2
DDH 7	38.10	38.71	65	20	1760	I.S.
DDH 7	46.63	46.94	60	20	2550	I.S.
DDH 7	55.47	55.78	30	20	340	I.S.
DDH 7	58.52	58.83	50	20	400	<2
DDH 7	599.54	60.66	80	<20	260	2
DDH 7	60.96	61.26	75	20	300	<2
DDH 7	63.09	63.40	180	40	490	4
DDH 7	64.31	64.62	150	40	410	I.S.
DDH 7	70.10	70.41	460	40	540	<2
DDH 7	74.68	74.98	130	<20	320	<2
DDH 7	78.33	78.64	85	<20	200	12
DDH 7	84.73	85.04	150	20	710	I.S.
DDH 7	96.32	96.93	340	20	540	4
DDH 7	97.23	97.54	1000	20	560	I.S.
DDH 7	99.67	99.97	155	20	490	I.S.
DDH 7	125.88	126.19	35	40	920	8
DDH 7	130.15	130.45	50	20	650	I.S.
DDH 7	134.42	134.72	35	20	340	I.S.
DDH 8	37.19	37.80	850	60	400	6
DDH 8	38.40	39.01	110	60	680	<2
DDH 8	39.62	40.23	100	50	1050	I.S.
DDH 8	42.37	42.98	115	60	320	I.S.
DDH 8	47.85	49.07	282	40	430	I.S.
DDH 8	49.68	50.29	154	50	390	I.S.
DDH 8	53.34	53.95	280	50	350	<2
DDH 8	57.00	57.61	290	40	1050	<2
DDH 8	59.74	60.35	235	40	800	I.S.
DDH 8	66.45	67.67	120	40	710	2
DDH 8	70.71	71.32	110	30	350	I.S.
DDH 8	74.37	74.98	100	30	270	16
DDH 8	76.81	77.11	649	60	519	I.S.
DDH 8	78.94	79.25	154	60	784	I.S.
DDH 8	82.91	83.52	55	20	130	<2
DDH 8	87.48	88.09	90	30	590	<2
DDH 8	108.81	109.42	40	10	1150	6
DDH 8	118.87	119.48	70	50	3160	I.S.
DDH 8	119.79	120.40	90	30	950	4
DDH 8	123.44	124.05	40	20	1150	<2
DDH 8	131.67	132.28	45	30	2310	I.S.
DDH 8	133.50	133.81	45	40	1100	I.S.
DDH 8	143.56	144.17	74	80	1220	I.S.
DDH 8	146.00	147.22	60	60	2650	I.S.
DDH 8	151.49	151.79	25	40	1300	I.S.

Appendix C

JORC Code, 2012 Edition – Table 1 report

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections)

Criteria	JORC Code explanation	Commentary
Sampling techniques	Nature and quality of sampling (eg cut channels, random chips, or specific	Diamond drilling completed within ELA26487 includes holes for 912m of drilling (refer to Table 2).
	specialised industry standard measurement tools appropriate to the minerals under	Sampling intervals were based on Cu, Pb, Zn, and Ag present within the core – intervals ranged from 0.2m to 5.5m.
	investigation, such as down hole gamma	0.2.11 to 3.3.11.
	sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.	All information regarding the Project has been downloaded from the Geological Survey of Northern Territory
	Include reference to measures taken to	Drill samples were analysed for Cu, Pb, Zn, and Ag. Assays results are given as a ppm.
	ensure sample representivity and the appropriate calibration of any	
	measurement tools or systems used. Aspects of the determination of	
	mineralisation that are Material to the	
	Public Report.	
	In cases where 'industry standard' work	
	has been done this would be relatively simple (eg 'reverse circulation drilling was	
	used to obtain 1 m samples from which 3	
	kg was pulverised to produce a 30 g charge	
	for fire assay'). In other cases more	
	explanation may be required, such as	
	where there is coarse gold that has	
	inherent sampling problems. Unusual	

ECLIPSE METALS LTD

Criteria	JORC Code explanation	Commentary
	commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.	
Drilling	Drill type (eg core, reverse circulation,	All information sourced from the literature has stated 912m Diamond drilling was completed. No
techniques	open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	further details of the drilling methods have been identified in the historic data. From the information reviewed there was no information regarding core orientated or down hole surveys taken during drilling programs. The Core is still available in Alice Springs within the NTGS core facility.
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed.	No information has been provided if the drilled metres were weighted with no sample recovery numbers given within the reports.
	Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	No sample recovery/sample data – yet to be determined. Relationship between sample recovery and grade is unknown – no information has been stated within the historical reports.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining	Detailed geological logs were completed for all drill holes. The geological logs appear to be relatively qualitative and quantitative in nature.
	studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged.	No photos were available in the reports.
Sub-sampling techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or all core taken.	The core drilling was sawn into half sections during this programme. No details have been provided of the sub-sampling or sample preparation methods. Based on the absence of data, no comment

on-core, whether riffled, tube sampled,	
and the state of t	can be made on the appropriateness of the sample preparation techniques historically undertaken.
ary split, etc and whether sampled wet lry.	No evidence of control/procedures adopted for sub-sampling stages.
all sample types, the nature, quality	
appropriateness of the sample	No Specific Gravity measures were also taken.
•	No duplicate samples have been stated within historical reporting or whether the samples are
-sampling stages to maximise	appropriate for the material sampled
ults for field duplicate/second-half	
npling.	
ether sample sizes are appropriate to	
,	All assaying and determination of base metal content was carried out by AMDEL Laboratories in
	Adelaide. Internal company quality control assurance has not been documented within the reports.
d and whether the technique is	, quantities () quan
sidered partial or total.	No information has been supplied regarding duplicates and laboratory checks.
geophysical tools, spectrometers,	
• •	No information provided regarding quality control procedures adopted by the exploration company.
5	
•	
lied and their derivation, etc.	
ure of quality control procedures	
Ir a look seemed to the seemed	appropriateness of the sample aration technique. If y control procedures adopted for all sampling stages to maximise essentivity of samples. Is sures taken to ensure that the coling is representative of the in situ erial collected, including for instance its for field duplicate/second-half coling. Ither sample sizes are appropriate to arain size of the material being coled. In ature, quality and appropriateness of assaying and laboratory procedures and whether the technique is idered partial or total. Interest used in determining the content of the sample size including instrument make and the sel, reading times, calibrations factors ided and their derivation, etc.

Criteria	JORC Code explanation	Commentary
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel.	Based on historical results reported, verification of significant intersections has been completed as per Table 1 of the announcement
	The use of twinned holes. Documentation of primary data, data entry	There is no evidence of twinned holes in the project area.
	procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data.	Documentation of primary data, data entry procedures, data verification protocols have been completed.
	, ,	Historical data was sourced from reports lodged to the Northern Territory Geological Survey.
		Drillhole collar positions digitised and checked on historic drill plans
		Location and values of analytical data verified on historic cross sections and lab reports
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole	All drill holes collars were reported as being located on an AMG and local grid system.
	surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control	The Northern Territory Geological Survey information has captured all the drill hole positions and uploaded all the data onto the database known as STRIKE for download from the website
Data spacing and distribut	Data spacing for reporting of Exploration Results.	Drill Holes spacing varied from 90 to 100m over two fence-lines
	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity	Data spacings and distribution at this stage are not satisfactory for estimation of a Mineral Resource or Ore Reserve, as the quality of the drill hole data precludes its use for these estimations.
	appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	Sample compositing has been applied as copper, lead, zinc and silver have been assayed in the same drill intervals.
	Whether sample compositing has been applied.	
Orientation of data in relat	Whether the orientation of sampling	Holes were drilled vertically or at an angle ranging from -45°, -50° or -75° to obtain geological
to geological structure	achieves unbiased sampling of possible structures and the extent to which this is	information (refer table of collar details)

Criteria	JORC Code explanation	Commentary
	known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	No information is known if the drill sampling in the historic campaigns has introduced any significant bias.
Sample security	The measures taken to ensure sample security.	No information relating to the sample security have been identified.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	No details observed on any previous sampling reviews or audits. Its assumed that industry standard practices and procedure were implemented at that time.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section)

enteria listea in the prece	unig section also apply to this section)	
Criteria	JORC Code explanation	Commentary
Mineral tenement and	Type, reference name/number, location and ownership	ELA26487 is 100% held by Eclipse Metals Limited via its wholly owned subsidiary
land tenure status	including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties,	Whitvista Pty Ltd. ELA26487 has an area of 320 graticular sub-blocks.
	native title interests, historical sites, wilderness or national park and environmental settings.	No current security over the tenure
	The security of the tenure held at the time of reporting along	
	with any known impediments to obtaining a licence to operate in the area.	
Exploration done by	Acknowledgment and appraisal of exploration by other	NTGS Open File Report No. CR1970/0001
other parties	parties.	In 1970, Northern Territory Mines Branch conducted mineral exploration within the Rock Hill Copper Mineral Field. Drilling took place after mapping and sampling of the prospect area, in which the drilling was designed to test the downward extent of the rich copper grades exposed in the existing shallow workings.

Criteria	JORC Code explanation	Commentary
Geology	Deposit type, geological setting and style of mineralisation.	Shear Hosted polymetallic Deposits
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: o easting and northing of the drill hole collar o elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar o dip and azimuth of the hole o down hole length and interception depth o hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	The drill hole information has been inserted and tubulated within the document for the drill holes reported.
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated.	No metal equivalent grades have been sourced from historic reports.
Relationship between mineralisation widths and intercept lengths	These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg	All drill holes intersect the mineralisation at an angle, thus, the intersections are close to true width. Interval widths have been reported in Table 3 and summary table has been documented in Table 1 of the ASX release.

Criteria	JORC Code explanation	Commentary
	'down hole length, true width not known').	
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	All grades have been included including the lower grades and significant intersections reported within the release document.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	The assay results have been sourced from the historical reports and have been substantially documented.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	,
Further work	The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale stepout drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	Once granted tenure has approved, Eclipse Metals will undertake further shallow and deep drilling to test the surface and potential depth of the copper, lead, zinc and silver mineralisation. There are also large areas of untested ground which will be targeted with shallow drilling.