

22 April 2021

<u>RC Drilling programs to Commence at Colina2 Gold</u> <u>Discovery and Llahuin Copper-Gold Project</u>

- New rockchip results from Llahuin Project: 27m @0.53g/tAu and 0.28% Cu confirming the magnetic interpretation of new porphyry gold-copper target;
- RC drilling program at Llahuin to drill new gold-copper targets to increase the current resources of 149mt @ 0.41% CuEq focussing on near surface mineralisation <250m depth;</p>
- Maiden RC drilling program at Colina2 gold discovery 8km NW of Llahuin incl following up on recent rock chips to 17g/t gold

Southern Hemisphere Mining Limited ("Southern Hemisphere", "SUH" or "the Company") (ASX: SUH) advises that the Company is commencing an RC drilling exploration program at the 100% owned Llahuin Copper-Gold Project and the recent Colina2 Gold Project discovery in Chile which are shown in figure 1 below.

Chairman Mark Stowell commented "The sampling results confirmation of our team's interpretation of the Mag-3 anomaly porphyry gold-copper target is a major technical breakthrough on this large mineralised system, and we look forward to drilling it".

Figure 1 Llahuin/Colina2 Chile location map

Recent Exploration Activities Results:

Llahuin Project

A 146 sample rockchip program was completed during February 2021 over accessable areas of outcrop in the Llahuin Project area. The sampling program tested areas in the project area not previously sampled for near surface gold and copper.

Significant results from this program are presented below showing a zone of quartz-limonite stockwork veining intersecting strongly sericite altered quartz-diorite in the top part of a magnetic anomaly Mag-3.

Importantly, the mineralization is still open, but largely concealed under alluvial cover outside the area sampled. The previously aquired ground magnetic data shows ring structures which are interpreted to be potential porphyry targets.

The recent sampling has confirmed this interpretation, so RC drilling at this and other targets is commencing to test for higher grade near surface gold and copper.

Trench ID	From	То	m intersection	Gold g/t	Copper Grade
Mag3 Anomaly	0	27	27	0.53	0.28

Table A: Significant Gold/Copper results for the Llahuin Rockchip Sampling Program 2021

Figure 2 Sampled zone of quartz-limonite stockwork veining intersecting strongly sericite altered quartz-diorite.

Figure 3 Llahuin magnetics showing current rockchip locations (triangles) and planned RC pdrilling (crosses)

Colina2 Project

The maiden RC drilling program at the Colina2 gold discovery is commencing first. Colina2 is located 8km to the NW of the Llahuin Project. Previously reported results showed gold grades up to 12.8g/t Au from trenching, (ASX release 18/11/2020) with a new rockchip in the southern part of the tenement returning 17g/t Au. Significant results from the Colina rockchips are presented in Table 2 below.

Table 2 Colina2 Significant	Rockchip	Results
-----------------------------	----------	---------

SAMPLE	Au ppm	Ag ppm	Cu %
M-1	17	19.35	0.11
M-11	0.39	0.76	0.12

Figure 4. Aerial view of the company's Llahuin Cu-Au-Mo resources and Colina2 proximal to Pucobre's El Espino IOCG development 8km West.

Results will be reported at the completion of drilling and assaying of each project.

Approved for and on behalf of the Board of Directors

M Stowell - Chairman

CONTACTS:

For further information on this update or the Company generally, please visit our website at <u>www.shmining.com.au</u> or contact the company :

<u>cosec@shmining.com.au</u> Telephone: +61 8 6144 0590

BACKGROUND INFORMATION ON SOUTHERN HEMISPHERE MINING:

Southern Hemisphere Mining Limited is an experienced minerals explorer in Chile, South America. Chile is the world's leading copper producing country and one of the most prospective regions of the world for major new copper discoveries. The Company's projects include the Llahuin Porphyry Copper-Gold Project, the recently identified Colina 2 Gold prospect nearby, and the Los Pumas Manganese Project all of which were discovered by the Company.

Llahuin Copper Project: Total Measured and Indicated Resources - JORC (2004) Compliant. As announced to the market on 18 August 2013.

Resource (at 0.28% Cu Equiv cut- off)	Tonnes Millions	Cu %	Au g/t	Mo %	Cu Equiv*
Measured	112	0.31	0.12	0.008	0.42
Indicated	37	0.23	0.14	0.007	0.37
Measured plus Indicated	149	0.29	0.12	0.008	0.41
Inferred	20	0.20	0.19	0.005	0.36

Note: ***Copper Equivalent ("Cu Equiv"):** The copper equivalent calculations represent the total metal value for each metal, multiplied by the conversion factor, summed and expressed in equivalent copper percentage. These results are exploration results only and no allowance is made for recovery losses that may occur should mining eventually result. It is the Company's opinion that elements considered have a reasonable potential to be recovered as evidenced in similar multi-commodity natured mines. Copper equivalent conversion factors and long-term price assumptions used are stated below:

Copper Equivalent Formula= Cu % + Au (g/t) x 0.72662 + Mo % x 4.412 Price Assumptions- Cu (\$3.40/lb), Au (\$1,700/oz), Mo (\$15/lb)

Los Pumas Manganese Project: Total Measured and Indicated Resources - JORC (2004) Compliant. As announced to the market on 25 March 2011.

Resource (at 4% Mn cut-off)	Tonnes Millions	Mn %	SiO ₂ %	Fe ₂ O ₃ %	AI %	К%	Р%
Measured	5.27	7.39	57.85	2.78	5.62	2.88	0.05
Indicated	13.06	7.65	55	2.96	5.64	2.92	0.05
Measured plus Indicated	18.34	7.58	55.82	2.91	5.62	2.91	0.05
Inferred Total	5.39 23.73	8.59 7.81	51.44	2.72	5.49	2.69	0.06

Metallurgical studies have demonstrated greater than 38% Mn concentrates are achievable by DMS with low impurities and high silica product.

In relation to the above resources, the Company confirms that it is not aware of any new information or data that materially affects the information in the announcements, and all material assumptions and technical parameters in the announcements underpinning the estimates in the relevant market announcement continue to apply and have not materially changed.

COMPETENT PERSON / QUALIFIED PERSON STATEMENT:

The information in this report that relates to copper and gold exploration results for the Company's Projects is based on information compiled by Mr Adam Anderson, who is a Member of The Australasian Institute of Mining and Metallurgy and The Australian Institute of Geoscientists. Mr Anderson has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration, and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr Anderson is a consultant for the Company and consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

For further information, please refer to the Technical Reports and News Releases on the Company's website at www.shmining.com.au.

Table 1

SampleID	Easting	Northing	RL	Grid	Project	Prospect	Tenement
LC1	307423	6529170	1485	PSAD_19S	Llahuin	Ferrocarril	Amapola 1
LC2	307422	6529170	1485	PSAD_19S	Llahuin	Ferrocarril	Amapola 1
LC3	307422	6529171	1485	PSAD_19S	Llahuin	Ferrocarril	Amapola 1
LC4	307421	6529172	1486	PSAD_19S	Llahuin	Ferrocarril	Amapola 1
LC5	307420	6529173	1486	PSAD_19S	Llahuin	Ferrocarril	Amapola 1
LC6	307419	6529174	1486	PSAD_19S	Llahuin	Ferrocarril	Amapola 1
LC7	307418	6529174	1486	PSAD_19S	Llahuin	Ferrocarril	Amapola 1
LC8	307419	6529175	1486	PSAD_19S	Llahuin	Ferrocarril	Amapola 1
LC9	307418	6529175	1486	PSAD_19S	Llahuin	Ferrocarril	Amapola 1
LC10	307417	6529176	1487	PSAD_19S	Llahuin	Ferrocarril	Amapola 1
LC11	307412	6529184	1488	PSAD_19S	Llahuin	Ferrocarril	Amapola 1
LC12	307412	6529185	1488	PSAD_19S	Llahuin	Ferrocarril	Amapola 1
LC13	307412	6529186	1488	PSAD_19S	Llahuin	Ferrocarril	Amapola 1
LC14	307411	6529187	1489	PSAD_19S	Llahuin	Ferrocarril	Amapola 1
LC15	307410	6529188	1489	PSAD_19S	Llahuin	Ferrocarril	Amapola 1
LC16	307410	6529189	1489	PSAD_19S	Llahuin	Ferrocarril	Amapola 1
LC17	307410	6529190	1489	PSAD_19S	Llahuin	Ferrocarril	Amapola 1
LC18	307409	6529191	1489	PSAD_19S	Llahuin	Ferrocarril	Amapola 1
LC19	307409	6529191	1489	PSAD_19S	Llahuin	Ferrocarril	Amapola 1
LC21	307408	6529192	1490	PSAD_19S	Llahuin	Ferrocarril	Amapola 1
LC22	307407	6529193	1490	PSAD_19S	Llahuin	Ferrocarril	Amapola 1
LC23	307406	6529195	1490	PSAD_19S	Llahuin	Ferrocarril	Amapola 1
LC24	307406	6529197	1490	PSAD_19S	Llahuin	Ferrocarril	Amapola 1
LC25	307405	6529199	1490	PSAD_19S	Llahuin	Ferrocarril	Amapola 1
LC26	307395	6529227	1493	PSAD_19S	Llahuin	Ferrocarril	Amapola 1
LC27	307395	6529228	1493	PSAD_19S	Llahuin	Ferrocarril	Amapola 1
LC28	307394	6529230	1494	PSAD_19S	Llahuin	Ferrocarril	Amapola 1
LC29	307393	6529233	1494	PSAD_19S	Llahuin	Ferrocarril	Amapola 1
LC30	307393	6529234	1494	PSAD_19S	Llahuin	Ferrocarril	Amapola 1
LC31	307391	6529235	1494	PSAD_19S	Llahuin	Ferrocarril	Amapola 1
LC32	307392	6529237	1494	PSAD_19S	Llahuin	Ferrocarril	Amapola 1
LC33	307393	6529238	1494	PSAD_19S	Llahuin	Ferrocarril	Amapola 1
LC53	307094	6529297	1621	PSAD_19S	Llahuin	Ferrocarril	Amapola 1
LC54	307091	6529298	1623	PSAD_19S	Llahuin	Ferrocarril	Amapola 1
LC55	307091	6529299	1623	PSAD_19S	Llahuin	Ferrocarril	Amapola 1
LC56	307090	6529299	1623	PSAD_19S	Llahuin	Ferrocarril	Amapola 1
LC57	307089	6529299	1624	PSAD_19S	Llahuin	Ferrocarril	Amapola 1
LC58	307088	6529300	1625	PSAD_19S	Llahuin	Ferrocarril	Amapola 1
LC59	307088	6529300	1625	PSAD_19S	Llahuin	Ferrocarril	Amapola 1
LC61	307047	6529248	1656	PSAD_19S	Llahuin	Ferrocarril	Amapola 1
LC62	307046	6529247	1657	PSAD_19S	Llahuin	Ferrocarril	Amapola 1
LC63	307045	6529248	1657	PSAD_19S	Llahuin	Ferrocarril	Amapola 1
LC64	307043	6529247	1658	PSAD_19S	Llahuin	Ferrocarril	Amapola 1
LC65	307043	6529248	1658	PSAD_19S	Llahuin	Ferrocarril	Amapola 1
LC66	307041	6529247	1659	PSAD_19S	Llahuin	Ferrocarril	Amapola 1
LC67	307041	6529248	1659	PSAD_19S	Llahuin	Ferrocarril	Amapola 1
LC68	307041	6529250	1659	PSAD_19S	Llahuin	Ferrocarril	Amapola 1

SampleID	Easting	Northing	RL	Grid	Project	Prospect	Tenement
LC69	307039	6529248	1660	PSAD_19S	Llahuin	Ferrocarril	Amapola 1
LC70	307038	6529248	1661	PSAD_19S	Llahuin	Ferrocarril	Amapola 1
LC71	307037	6529248	1661	PSAD_19S	Llahuin	Ferrocarril	Amapola 1
LC72	307036	6529250	1661	PSAD_19S	Llahuin	Ferrocarril	Amapola 1
LC73	307035	6529250	1662	PSAD_19S	Llahuin	Ferrocarril	Amapola 1
LC74	307035	6529251	1662	PSAD_19S	Llahuin	Ferrocarril	Amapola 1
LC75	307033	6529252	1662	PSAD_19S	Llahuin	Ferrocarril	Amapola 1
LC76	307034	6529253	1662	PSAD_19S	Llahuin	Ferrocarril	Amapola 1
LC77	307034	6529254	1662	PSAD_19S	Llahuin	Ferrocarril	Amapola 1
LC78	307033	6529254	1662	PSAD_19S	Llahuin	Ferrocarril	Amapola 1
LC79	307033	6529254	1662	PSAD_19S	Llahuin	Ferrocarril	Amapola 1
LC81	307033	6529256	1662	PSAD_19S	Llahuin	Ferrocarril	Amapola 1
LC135	307552	6531477	1315	PSAD_19S	Llahuin	Cerro de Oro	Amapola 4
LC136	307551	6531477	1315	PSAD_19S	Llahuin	Cerro de Oro	Amapola 4
LC137	307550	6531478	1315	PSAD_19S	Llahuin	Cerro de Oro	Amapola 4
LC138	307551	6531477	1315	PSAD_19S	Llahuin	Cerro de Oro	Amapola 4
LC139	307551	6531477	1315	PSAD_19S	Llahuin	Cerro de Oro	Amapola 4
LC141	307551	6531478	1315	PSAD_19S	Llahuin	Cerro de Oro	Amapola 4
LC142	307551	6531481	1315	PSAD_19S	Llahuin	Cerro de Oro	Amapola 4
LC143	307552	6531482	1315	PSAD_19S	Llahuin	Cerro de Oro	Amapola 4
LC144	307552	6531481	1315	PSAD_19S	Llahuin	Cerro de Oro	Amapola 4
LC145	307550	6531483	1315	PSAD_19S	Llahuin	Cerro de Oro	Amapola 4
LC146	307549	6531484	1315	PSAD_19S	Llahuin	Cerro de Oro	Amapola 4
LC147	307549	6531485	1315	PSAD_19S	Llahuin	Cerro de Oro	Amapola 4
LC148	307548	6531484	1315	PSAD_19S	Llahuin	Cerro de Oro	Amapola 4
LC149	307549	6531487	1315	PSAD_19S	Llahuin	Cerro de Oro	Amapola 4
LC150	307548	6531487	1315	PSAD_19S	Llahuin	Cerro de Oro	Amapola 4
LC151	307548	6531489	1314	PSAD_19S	Llahuin	Cerro de Oro	Amapola 4
LC152	307547	6531489	1314	PSAD_19S	Llahuin	Cerro de Oro	Amapola 4
LC153	307546	6531490	1314	PSAD_19S	Llahuin	Cerro de Oro	Amapola 4
LC154	307545	6531490	1314	PSAD_19S	Llahuin	Cerro de Oro	Amapola 4
LC155	307133	6530740	1413	PSAD_19S	Llahuin	Mag Anomaly 3	Amapola 1
LC156	307135	6530739	1412	PSAD_19S	Llahuin	Mag Anomaly 3	Amapola 1
LC157	307135	6530739	1412	PSAD_19S	Llahuin	Mag Anomaly 3	Amapola 1
LC158	307135	6530738	1412	PSAD_19S	Llahuin	Mag Anomaly 3	Amapola 1
LC159	307135	6530738	1412	PSAD_19S	Llahuin	Mag Anomaly 3	Amapola 1
LC161	307135	6530734	1410	PSAD_19S	Llahuin	Mag Anomaly 3	Amapola 1
LC162	307134	6530734	1410	PSAD_19S	Llahuin	Mag Anomaly 3	Amapola 1
LC163	307134	6530734	1410	PSAD_19S	Llahuin	Mag Anomaly 3	Amapola 1
LC164	307134	6530732	1410	PSAD_19S	Llahuin	Mag Anomaly 3	Amapola 1
LC165	307132	6530732	1410	PSAD_19S	Llahuin	Mag Anomaly 3	Amapola 1
LC166	307132	6530732	1410	PSAD_19S	Llahuin	Mag Anomaly 3	Amapola 1
LC167	307130	6530731	1411	PSAD_19S	Llahuin	Mag Anomaly 3	Amapola 1
LC168	307131	6530730	1411	PSAD_19S	Llahuin	Mag Anomaly 3	Amapola 1
LC169	307128	6530729	1412	PSAD_19S	Llahuin	Mag Anomaly 3	Amapola 1
LC170	307128	6530730	1411	PSAD_19S	Llahuin	Mag Anomaly 3	Amapola 1
LC171	307128	6530728	1412	PSAD_19S	Llahuin	Mag Anomaly 3	Amapola 1
LC172	307127	6530727	1412	PSAD_19S	Llahuin	Mag Anomaly 3	Amapola 1
LC173	307126	6530727	1412	PSAD_19S	Llahuin	Mag Anomaly 3	Amapola 1

SampleID	Easting	Northing	RL	Grid	Project	Prospect	Tenement
LC174	307127	6530726	1413	PSAD_19S	Llahuin	Mag Anomaly 3	Amapola 1
LC175	307125	6530726	1413	PSAD_19S	Llahuin	Mag Anomaly 3	Amapola 1
LC176	307125	6530725	1413	PSAD_19S	Llahuin	Mag Anomaly 3	Amapola 1
LC177	307125	6530724	1414	PSAD_19S	Llahuin	Mag Anomaly 3	Amapola 1
LC178	307125	6530723	1414	PSAD_19S	Llahuin	Mag Anomaly 3	Amapola 1
LC179	307125	6530723	1414	PSAD_19S	Llahuin	Mag Anomaly 3	Amapola 1
LC181	307127	6530721	1414	PSAD_19S	Llahuin	Mag Anomaly 3	Amapola 1
LC182	307125	6530720	1415	PSAD_19S	Llahuin	Mag Anomaly 3	Amapola 1
LC183	307125	6530720	1415	PSAD_19S	Llahuin	Mag Anomaly 3	Amapola 1
LC184	307123	6530719	1416	PSAD_19S	Llahuin	Mag Anomaly 3	Amapola 1
LC185	307123	6530718	1416	PSAD_19S	Llahuin	Mag Anomaly 3	Amapola 1
LC186	307339	6532593	1281	PSAD_19S	Llahuin	Cent Porphyry	Amapola 3
LC187	307340	6532591	1281	PSAD_19S	Llahuin	Cent Porphyry	Amapola 3
LC188	307341	6532591	1281	PSAD_19S	Llahuin	Cent Porphyry	Amapola 3
LC189	307342	6532593	1281	PSAD_19S	Llahuin	Cent Porphyry	Amapola 3
LC190	307344	6532590	1281	PSAD_19S	Llahuin	Cent Porphyry	Amapola 3
LC191	307343	6532589	1281	PSAD_19S	Llahuin	Cent Porphyry	Amapola 3
LC192	307343	6532588	1281	PSAD_19S	Llahuin	Cent Porphyry	Amapola 3
LC193	307344	6532587	1281	PSAD_19S	Llahuin	Cent Porphyry	Amapola 3
LC194	307344	6532588	1281	PSAD_19S	Llahuin	Cent Porphyry	Amapola 3
LC195	307346	6532586	1281	PSAD_19S	Llahuin	Cent Porphyry	Amapola 3
LC196	307345	6532586	1281	PSAD_19S	Llahuin	Cent Porphyry	Amapola 3
LC197	307346	6532584	1281	PSAD_19S	Llahuin	Cent Porphyry	Amapola 3
LC198	307487	6532119	1294	PSAD_19S	Llahuin	Cent Porphyry	Amapola 3
LC199	307487	6532119	1294	PSAD_19S	Llahuin	Cent Porphyry	Amapola 3
LC201	307485	6532117	1294	PSAD_19S	Llahuin	Cent Porphyry	Amapola 3
LC202	307483	6532118	1294	PSAD_19S	Llahuin	Cent Porphyry	Amapola 3
LC203	307483	6532116	1295	PSAD_19S	Llahuin	Cent Porphyry	Amapola 3
LC204	307481	6532117	1294	PSAD_19S	Llahuin	Cent Porphyry	Amapola 3
LC205	307479	6532118	1294	PSAD_19S	Llahuin	Cent Porphyry	Amapola 3
LC206	307479	6532116	1294	PSAD_19S	Llahuin	Cent Porphyry	Amapola 3
LC207	307478	6532116	1294	PSAD_19S	Llahuin	Cent Porphyry	Amapola 3
LC208	307478	6532116	1294	PSAD_19S	Llahuin	Cent Porphyry	Amapola 3
LC209	307476	6532116	1294	PSAD_19S	Llahuin	Cent Porphyry	Amapola 3
LC210	307477	6532115	1294	PSAD_19S	Llahuin	Cent Porphyry	Amapola 3
LC211	307476	6532115	1294	PSAD_19S	Llahuin	Cent Porphyry	Amapola 3
LC212	307474	6532115	1294	PSAD_19S	Llahuin	Cent Porphyry	Amapola 3
LC213	307474	6532114	1294	PSAD_19S	Llahuin	Cent Porphyry	Amapola 3
LC214	307472	6532116	1294	PSAD_19S	Llahuin	Cent Porphyry	Amapola 3
LC215	307470	6532115	1294	PSAD_19S	Llahuin	Cent Porphyry	Amapola 3
LC216	307468	6532115	1294	PSAD_19S	Llahuin	Cent Porphyry	Amapola 3
LC217	307468	6532115	1294	PSAD_19S	Llahuin	Cent Porphyry	Amapola 3
LC218	307466	6532114	1294	PSAD_19S	Llahuin	Cent Porphyry	Amapola 3
LC219	307466	6532114	1294	PSAD_19S	Llahuin	Cent Porphyry	Amapola 3
LC221	307466	6532115	1294	PSAD_19S	Llahuin	Cent Porphyry	Amapola 3
LC222	307466	6532116	1294	PSAD_19S	Llahuin	Cent Porphyry	Amapola 3
LC223	307465	6532114	1294	PSAD_19S	Llahuin	Cent Porphyry	Amapola 3
LC224	307464	6532114	1294	PSAD_19S	Llahuin	Cent Porphyry	Amapola 3
LC225	307463	6532114	1295	PSAD_19S	Llahuin	Cent Porphyry	Amapola 3

SampleID	Easting	Northing	RL	Grid	Project	Prospect	Tenement
LC226	307463	6532113	1295	PSAD_19S	Llahuin	Cent Porphyry	Amapola 3
M-1	298663	6535866	1406	PSAD_19S	Colina2	Colina2	Colina 1/30
M-2	298683	6535867	1409	PSAD_19S	Colina2	Colina2	Colina 1/30
M-3	298598	6535812	1448	PSAD_19S	Colina2	Colina2	Colina 1/30
M-4	298552	6535851	1426	PSAD_19S	Colina2	Colina2	Colina 1/30
M-5	299277	6536920	1263	PSAD_19S	Colina2	Colina2	Colina 1/30
M-6	299258	6536901	1263	PSAD_19S	Colina2	Colina2	Colina 1/30
M-7	299266	6536901	1263	PSAD_19S	Colina2	Colina2	Colina 1/30
M-8	299282	6536879	1267	PSAD_19S	Colina2	Colina2	Colina 1/30
M-10	299496	6536089	1341	PSAD_19S	Colina2	Colina2	Colina 1/30
M-11	299455	6536178	1334	PSAD_19S	Colina2	Colina2	Colina 1/30
M-12	299443	6536179	1331	PSAD_19S	Colina2	Colina2	Colina 1/30
M-13	299415	6536280	1310	PSAD_19S	Colina2	Colina2	Colina 1/30
M-14	299395	6536313	1304	PSAD_19S	Colina2	Colina2	Colina 1/30
M-15	299375	6536350	1297	PSAD_19S	Colina2	Colina2	Colina 1/30
M-16	299376	6536395	1292	PSAD_19S	Colina2	Colina2	Colina 1/30
M-17	299363	6536308	1300	PSAD_19S	Colina2	Colina2	Colina 1/30

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 Rock grab samples collected on one metre intervals from the wall of the outcrop or exposure. Approximately 3kg (average) of material was collected per sample. The entire sample is then crushed to <3mm and a 2kg coarse crusher split is taken for pulverizing to produce a 30gram charge for gold Fire Assay with an AA finish and for multi-elements by ICPMS/OES.
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	No drilling reported
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	Not Applicable
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 The samples were geologically logged on site and photographs of each sample location were provided.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the arain size of the material being sampled. 	 Field duplicates were collected approx. every 20m and compare well to the original sample values.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 The assay technique utilized is "industry Standard" 30gram fire assay with AA finish for gold which is total digestion technique and multi-elements are analysed by a combination of ICPMS and ICPOES techniques. Appropriate industry standard CRM' s was inserted into the sample stream at a rate of approx. 1:20 samples. Again this is industry standard procedure.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. 	 Not possible due to COVID travel restrictions but photos and videos of the sampled zones and samples are sufficient documentary evidence.

Criteria	JORC Code explanation	Commentary
	Discuss any adjustment to assay data.	 Data was entered into excel spreadsheet and then plotted in Micromine. Database is currently being constructed.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Handheld GPS coordinates in UTM PSAD56 Zone19S.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 1m long samples . Not applicable.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 The sampling was done perpendicular to the interpreted strike of the mineralisation to reduce sampling bias.
Sample security	• The measures taken to ensure sample security.	 Samples were collected by a qualified consulting geologist who then delivered all the samples to the lab himself. Competent Person Reg No 0336.
Audits or reviews	• The results of any audits or reviews of sampling techniques and data.	 No external audits or reviews were conducted.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The Llahuin Project is 100% owned by SUH. Colina2 is 100% owned by SUH. Minera Fuega Limitada holds a 1.5%NSR Royalty. The security of tenure is considered good as the licences are 100% owned by SUH. State Royalties are applicable on all projects.
Exploration done by other parties	• Acknowledgment and appraisal of exploration by other parties.	 Previous drilling on the licence by prior owners and SUH has been done to industry standard.
Geology	• Deposit type, geological setting and style of mineralisation.	 Exploration is targeting porphyry style-gold-copper hosted in Miocene intrusives (quartz diorites) at Llahuin and epithermal style gold+-copper at Colina2.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. 	 Drilling not being reported in the release.

Criteria	JORC Code explanation	Commentary
	 If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 No data aggregation methods have been used. No metal equivalents have been used.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	• Not applicable.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	Appropriate maps have been included.
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	 A range of gold grades were included in the release
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	Not applicable.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 RC and Diamond drilling is planned Drilling is planned to test the downdip and along strike extent of the mineralisation discovered to date