ASX ANNOUNCEMENT

6th May 2021

Depth Extension Confirmed at the Reedy South Gold Project

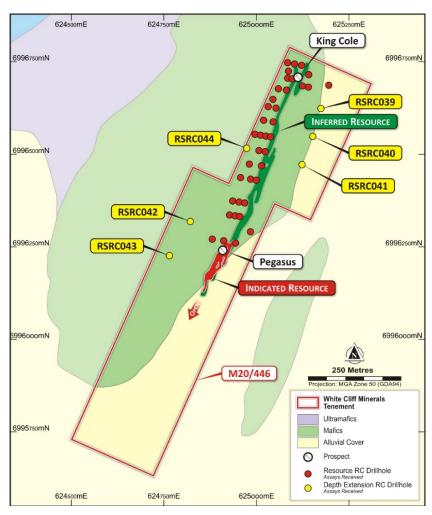
HIGHLIGHTS

- ❖ RC drilling confirms mineralisation associated with the Reedy Shear Zone (RSZ) up to a depth of ~180m downhole.
- Three RC holes collared in the western basaltic unit could not maintain their dip and azimuth and failed to intersect the RSZ as planned.
 - o Drilling aimed to intercept the RSZ between 180-240m downhole.
 - White Cliff is evaluating diamond tails for RC holes on west of RSZ (RC042, RC043 & RC044) to target the zones missed by RC.
- RC holes collared in the eastern ultramafic unit maintained dip and azimuth and intersected deeper mineralisation including:
 - 12m@1.8g/t Au from 160m in RSRC039 (4m composite samples)
 - 4m@0.7g/t Au from 183m in RSRC040
 - 8m@0.68g/t Au from 152m (composites), 1m@0.68g/t Au g/t from 160m (single metre) and 2m@0.76g/t Au from 171m in RSRC041
- Single metre assay results representing anomalous composite intervals are consistent from the first phase of RC drilling.

White Cliff Minerals Limited (**White Cliff** or the **Company**) is pleased to provide further results from reverse circulation (**RC**) drilling at the Company's 100% owned Reedy South Gold Project (the **Project**) near Cue, Western Australia. The 6 hole 1,546m RC program was completed in March 2021.

Commenting on the results, White Cliff Technical Director Ed Mead said: "The results of the deeper RC drill program confirm that the mineralisation at Reedy South extends at depth, with mineralisation intercepted ~40m below the average depth of the November 2020 mineral resource estimate.

"However, drillhole deviation from -60 degrees holes dropping to near -90 degrees (vertical) meant that we did not intersect target zones within the RSZ from the



western side of the RSZ. These 3 RC holes can potentially be used for wedge diamond drillholes which will provide more control on targeting the prospective high-grade shoots that characterise the RSZ.

"We also look forward to assay results of the rock chip and soil sampling programs undertaken over White Cliff's priority prospects within the greater Reedy's South Project area".

Extension Drilling at Pegasus and King Cole

Six deep RC holes for 1,546m were drilled at the Pegasus and King Cole Prospects. The holes were designed to target depth extensions of the known mineralisation and maiden Mineral Resource Estimate. The first three holes (RSRC039, RSRC040 and RSRC041) were collared in the ultramafic unit to the east of the roughly north-south striking Reedy Shear Zone (RSZ). The remaining three holes (RSRC042, RSRC043 and RSRC044 were collared in Basalt to the west of the RSZ.

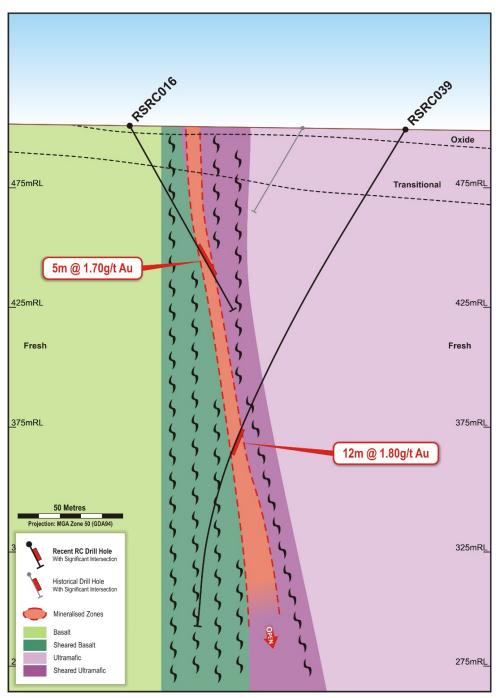
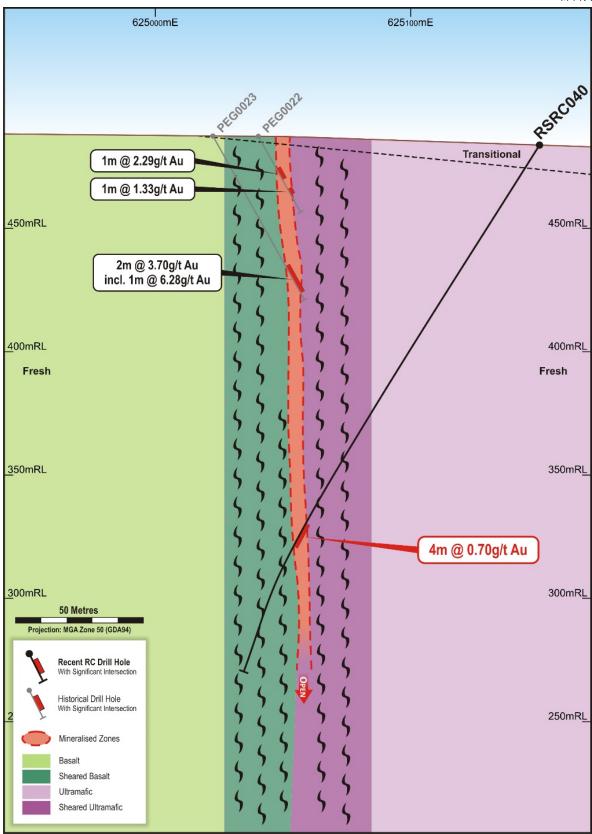
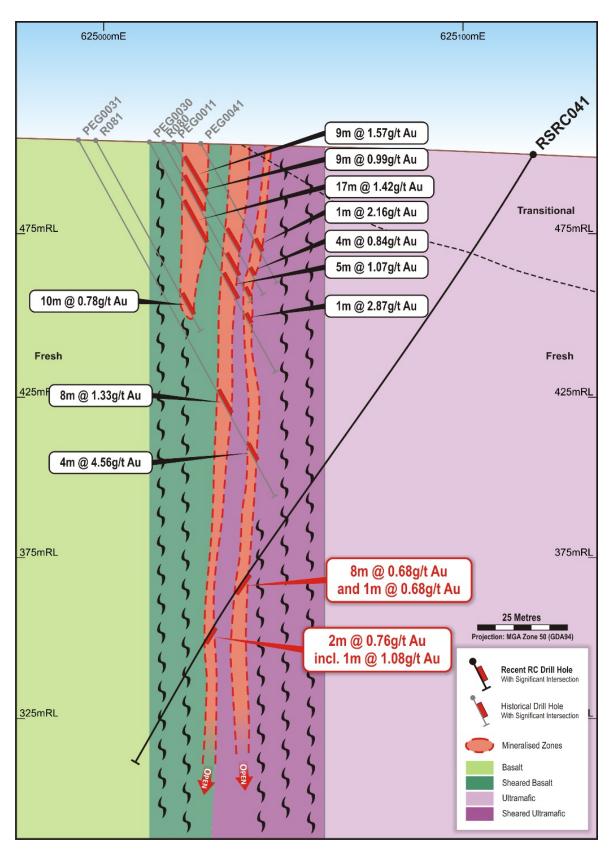
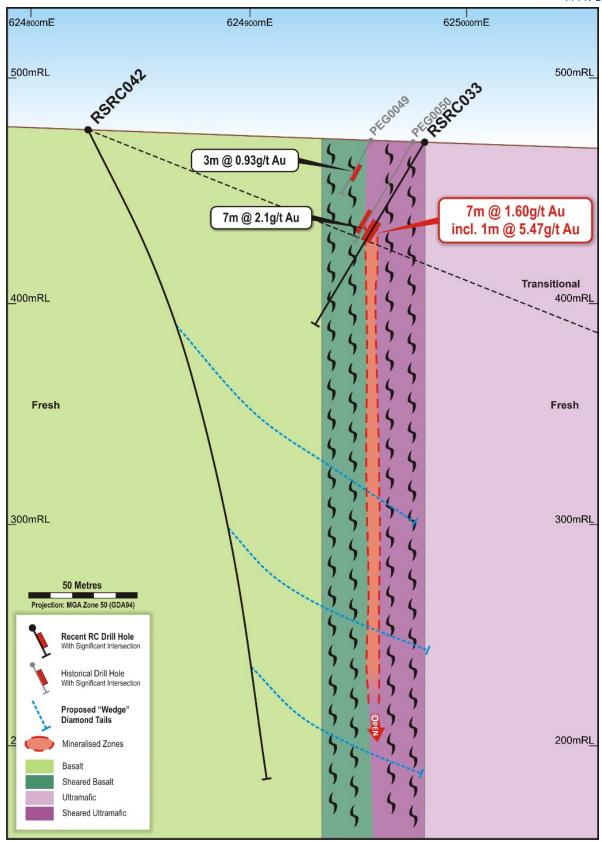


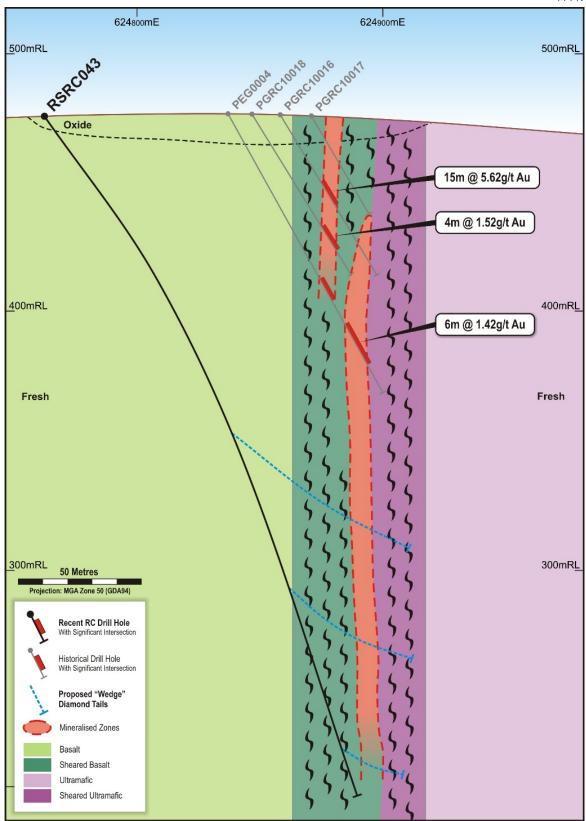
Figure 1: Recent deep drill collar positions designed to test for depth extension of the Pegasus and King Cole mineralisation.


Follow-up Drilling

It became apparent during the drilling program that the intense shearing in the basalt unit to the west of the RSZ, was causing the drillholes to drop dramatically as the hole approached the RSZ. In order to counteract the drop of the holes, it is planned to complete directional diamond drill tails utilising the RC holes to successively target deeper intersections down the RSZ.


Figure 2: RSRC039 intersecting the RSZ and dropping dramatically once entering the basalt unit to the west of the RSZ.


Figure 3: RSRC040 intersecting the RSZ and dropping once entering the basalt unit to the west of the RSZ.


Figure 4: RSRC041 intersecting the RSZ with some drop in dip once entering the basalt unit to the west of the RSZ.

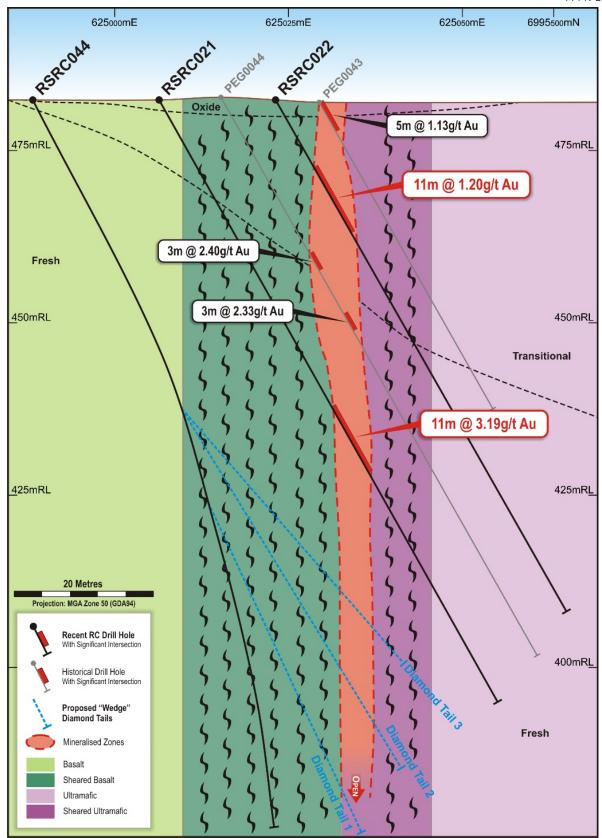

Figure 5: RSRC042 failing to maintain planned dip due to the sheared basalt on the western margin of the RSZ

Figure 6: RSRC043 – An early drop in dip meant the depth capacity of the rig (318m) was reached before the hole could intersect the RSZ.

Figure 7: RSRC044 – Hole dip affected by the intensely sheared basalt unit at the western margin of the RSZ

Single Metre Assaying

A total of 214 single metre samples, representing anomalous composite samples from the first phase of RC drilling have been assayed by ALS Laboratories in Perth for fire assay. A comparison of the results is tabulated below.

Table 2: Single metre sampling of anomalous composite samples from 2020 RC drill program.

Hole_ID	Composite Result	Single metre result
RSRC002	4m@0.71g/t Au	2m@1.3g/t Au from 12m
RSRC003	8m@1.07g/t Au	5m@1.49g/t Au from 50m
RSRC003	16m@1.74g/t Au	14m@1.99g/t Au from 72m; Includes 1m@15.95g/t Au
RSRC005	4m@0.43g/t Au	2m@0.9g/t Au from 16m
RSRC005	8m@0.64g/t Au	6m@0.53g/t Au from 26m
RSRC005	5m@1.54g/t Au	7m@1.42g/t Au from 54m (increased width of intersection)
RSRC011	4m@0.31g/t Au	1m@0.87g/t Au from 45m
RSRC012	4m@0.37g/t Au	1m@0.96g/t Au from 48m
RSRC013	4m@0.34g/t Au	2m@0.69g/t Au from 70m
RSRC015	8m@0.26g/t Au	2m@1.2g/t Au from 75m
RSRC026	4m@0.51g/t Au	2m@1.27g/t Au from 73m
RSRC028	4m@0.3g/t Au	3m@0.41g/t Au from 44m
RSRC030	4m@0.59g/t Au	1m@2.52g/t Au from 75m
RSRC034	4m@1.15g/t Au	2m@2.07g/t Au from 48m
RSRC034	4m@1.02g/t Au	3m@1.44g/t Au from 84m; includes 1m@3.75g/t Au from 84m
RSRC036	4m@0.61g/t Au	3m@0.69g/t Au from 17m; includes 1m@1.28g/t from 17m
RSRC036	4m@0.55g/t Au	2m@1.14g/t Au from 64m
RSRC036	8m@0.88g/t Au	1m@1.69g/t Au from 104m
RSRC038	4m@0.49g/t Au	2m@1.32g/t Au from 161m

Overview of Reedy South

The Project covers 272km² of the highly prospective Cue goldfields, centred on the southern portion of the prolific Reedy Shear Zone, within the Meekatharra-Wydgee greenstone belt.

The Project comprises one granted mining lease (M20/446) covering the historic underground workings of Pegasus and King Cole, a granted exploration and prospecting license (E20/938 & P20/2289) and four exploration license applications (E20/969, E20/971, E20/972 & E20/974). The Project is situated 40km north of Cue, via the Great Northern Highway and is 80km south of Meekatharra.

White Cliff declared a maiden MRE of **779,000 tonnes at 1.7 g/t Au** for **42,400 ounces of gold** (refer announcement dated 29 October 2020). With the style and controls of mineralisation similar to the Triton-South Emu goldmine immediately north of the Project, White Cliff believe there is scope to substantially grow the resource at Reedy South through drilling at depth and along strike.

This announcement has been approved by the Board of White Cliff Minerals Limited.

Further Information:

Dan Smith Nicholas Ong

Director & Company Secretary

+61 8 9486 4036 +61 8 9486 4036

Competent Persons Statement

The Information in this report that relates to exploration results, mineral resources or ore reserves is based on information compiled by Mr Edward Mead, who is a Member of the Australian Institute of Mining and Metallurgy. Mr Mead is a director of the company. Mr Mead has sufficient experience which is relevant to the style of mineralisation and type of deposits under consideration and to the activity that he is undertaking to qualify as a Competent Person as defined in the 2012 edition of the `Australian Code for Reporting Exploration Results, Mineral Resources and Ore Reserves' (the JORC Code). Mr Mead consents to the inclusion of this information in the form and context in which it appears in this report.

Forward Looking Information

This announcement contains forward looking statements concerning the Company. Forward-looking statements are not statements of historical fact and actual events and results may differ materially from those described in the forward-looking statements as a result of a variety of risks, uncertainties and other factors. Forward-looking statements are inherently subject to business, economic, competitive, political and social uncertainties and contingencies. Many factors could cause the Company's actual results to differ materially from those expressed or implied in any forward-looking information provided by the Company, or on behalf of the Company. Such factors include, among other things, risks relating to additional funding requirements, metal prices, exploration, development and operating risks, competition, production risks, regulatory restrictions, including environmental regulation and liability and potential title disputes. Forward looking

statements in this announcement are based on the Company's beliefs, opinions and estimates of the Company as of the dates the forward-looking statements are made, and no obligation is assumed to update forward looking statements if these beliefs, opinions and estimates should change or to reflect other future developments. Although management believes that the assumptions made by the Company and the expectations represented by such information are reasonable, there can be no assurance that the forward-looking information will prove to be accurate. Forward-looking information involves known and unknown risks, uncertainties, and other factors which may cause the actual results, performance or achievements of the Company to be materially different from any anticipated future results, performance or achievements expressed or implied by such forward-looking information. Such factors include, among others, the actual market price of commodities, the actual results of future exploration, changes in project parameters as plans continue to be evaluated, as well as those factors disclosed in the Company's publicly filed announcements. Readers should not place undue reliance on forward-looking information.

The Company does not undertake to update any forward-looking information, except in accordance with applicable securities laws. No representation, warranty or undertaking, express or implied, is given or made by the Company that the occurrence of the events expressed or implied in any forward-looking statements in this announcement will actually occur.

Table 1: Drilling Collars for the 6 deeper RC drill holes at the Reedy South Gold Project

Hole_ID	Hole_Type	MGA_North	MGA_East	Dip	Azimuth	Depth (m)
RSRC039	RC	6996623	625168	-60	280	252
RSRC040	RC	6996547	625152	-60	280	246
RSRC041	RC	6996470	625121	-60	280	210
RSRC042	RC	6996316	624824	-60	100	322
RSRC043	RC	6996225	624763	-50	100	318
RSRC044	RC	6996522	624970	-60	100	198

Table 2: Assay Data from 6 hole deeper RC drilling at the Reedy South Gold Project

Hole_ID	mFrom	mTo	Au_ppm
RSRC039	0	4	0.02
RSRC039	4	8	-0.01
RSRC039	8	12	0.04
RSRC039	12	16	0.01
RSRC039	16	20	0.01
RSRC039	20	24	0.05
RSRC039	24	28	0.05
RSRC039	28	32	-0.01
RSRC039	32	36	-0.01
RSRC039	36	40	-0.01
RSRC039	40	44	-0.01
RSRC039	44	48	-0.01
RSRC039	48	52	0.02
RSRC039	52	56	0.01
RSRC039	56	60	0.01
RSRC039	60	64	-0.01

			MINE
RSRC039	64	68	-0.01
RSRC039	68	72	-0.01
RSRC039	72	76	0.05
RSRC039	76	80	0.08
RSRC039	80	84	-0.01
RSRC039	84	88	-0.01
RSRC039	88	92	0.12
RSRC039	92	96	-0.01
RSRC039	96	100	0.14
RSRC039	100	104	0.01
RSRC039	104	108	0.01
RSRC039	108	112	0.08
RSRC039	112	116	0.04
RSRC039	116	120	0.03
RSRC039	120	124	0.02
RSRC039	124	128	0.07
RSRC039	128	132	0.07
RSRC039	132	136	0.06
RSRC039	136	140	0.05
RSRC039	140	144	0.03
RSRC039	144	148	0.01
RSRC039 RSRC039	148 152	152 156	0.05
RSRC039	156	160	0.1 0.19
RSRC039	160	164	1.11
RSRC039	164	168	2.43
RSRC039	168	172	1.88
RSRC039	172	176	0.28
RSRC039	176	180	0.19
RSRC039	180	184	0.08
RSRC039	184	188	0.01
RSRC039	188	192	0.01
RSRC039	192	193	0.02
RSRC039	193	194	0.01
RSRC039	194	195	-0.01
RSRC039	195	196	-0.01
RSRC039	196	197	-0.01
RSRC039	197	198	-0.01
RSRC039	198	199	-0.01
RSRC039	199	200	0.01
RSRC039	200	201	0.01
RSRC039	201	202	0.01
RSRC039	202	203	0.01
RSRC039	203	204	0.02
RSRC039	204	205	0.03
RSRC039	205	206	0.02
RSRC039	206	207	0.01
RSRC039	207	208	0.01
RSRC039	208	209	0.01
RSRC039	209	210	0.01
RSRC039	210	211	0.01
RSRC039	211	212	-0.01
RSRC039	212	213	0.01
RSRC039	213	214	0.01
RSRC039	214	215	0.02
RSRC039	215	216	0.03
RSRC039	216	217	0.01

			MINE
RSRC039	217	218	0.01
RSRC039	218	219	0.02
RSRC039	219	220	0.02
RSRC039	220	221	0.01
RSRC039	221	222	-0.01
RSRC039	222	223	0.01
RSRC039	223	224	-0.01
RSRC039	224	225	-0.01
RSRC039	225	226	-0.01
RSRC039	226	227	-0.01
RSRC039	227	228	-0.01
RSRC039	228	229	-0.01
RSRC039	229	230	-0.01
RSRC039	230	231	-0.01
RSRC039	231	232	0.01
RSRC039	232	233	-0.01
RSRC039	233	234	0.01
RSRC039	234	235	-0.01
RSRC039	235	236	-0.01
RSRC039	236	237	-0.01
RSRC039	237	238	0.01
RSRC039	238	239	-0.01
RSRC039	239	240	-0.01
RSRC039	240	241	-0.01
RSRC039	241	242	-0.01
RSRC039	242	243	-0.01
RSRC039	243	244	0.01
RSRC039	244	245	0.01
RSRC039	245	246	0.01
RSRC039	246	247	0.01
RSRC039	247	248	0.01
RSRC039	248	249	0.01
RSRC039	249	250	0.01
RSRC039	250	251	0.01
RSRC039	251	252	0.01
RSRC040	0	4	0.01
RSRC040	4	8	0.01
RSRC040	8	12	-0.01
RSRC040	12	16	0.01
RSRC040	16	20	-0.01
RSRC040	20	24	-0.01
RSRC040	24	28	-0.01
RSRC040	28	32	-0.01
RSRC040	32	36	-0.01
RSRC040	36	40	-0.01
RSRC040	40	44	-0.01
RSRC040	44	48	0.01
RSRC040	48	52	0.01
RSRC040	52	56	-0.01
RSRC040	56	60	-0.01
RSRC040	60	64	-0.01
RSRC040	64	68	-0.01
RSRC040	68	72	0.01
RSRC040	72	76	-0.01
RSRC040	76	80	-0.01
RSRC040	80	84	-0.01
RSRC040	84	88	-0.01

			MINE
RSRC040	88	92	-0.01
RSRC040	92	96	0.01
RSRC040	96	100	0.01
RSRC040	100	104	0.01
RSRC040	104	108	0.03
RSRC040	108	112	0.02
RSRC040	112	116	-0.01
RSRC040	116	120	0.01
RSRC040	120	124	-0.01
RSRC040	124	128	-0.01
RSRC040	128	132	0.16
RSRC040	132	136	0.01
RSRC040	136	140	0.01
RSRC040	140	144	0.02
RSRC040	144	148	0.01
RSRC040	148	152	0.04
RSRC040	152	156	0.1
RSRC040	156	160	0.16
RSRC040	160	164	0.29
RSRC040	164	168	0.1
RSRC040	168	172	0.06
RSRC040	172	176	0.19
RSRC040	176	177	0.07
RSRC040	177	178	0.16
RSRC040	178	179	0.27
RSRC040	179	180	0.06
RSRC040	180	181	0.02
RSRC040	181	182	0.05
RSRC040	182	183	0.13
RSRC040	183	184	0.67
RSRC040	184	185	0.77
RSRC040	185	186	0.79
RSRC040	186	187	0.58
RSRC040	187	188	0.2
RSRC040	188	192	0.13
RSRC040	192	196	0.15
RSRC040	196	200	0.03
RSRC040	200	204	0.03
RSRC040	204	208	0.03
RSRC040	208	212	0.05
RSRC040	212	216	0.03
RSRC040	216	220	0.01
RSRC040	220	224	0.01
RSRC040	224	228	0.02
RSRC040	228	232	0.02
RSRC040	232	236	0.01
RSRC040	236	240	0.01
RSRC040	240	244	0.02
RSRC040	244	246	0.02
RSRC041	0	4	0.04
RSRC041	4	8	0.01
RSRC041	8	12	-0.01
RSRC041	12	16	0.01
RSRC041	16	20	0.01
RSRC041	20	24	0.03
RSRC041	24	28	0.01
RSRC041	28	32	-0.01
	-		

			MINE
RSRC041	32	36	0.01
RSRC041	36	40	0.01
RSRC041	40	44	0.01
RSRC041	44	48	0.01
RSRC041	48	52	0.01
RSRC041	52	56	0.02
RSRC041	56	60	0.01
RSRC041	60	64	0.02
RSRC041	64	68	-0.01
RSRC041	68	72	0.01
RSRC041	72	76	0.01
RSRC041	76	80	0.01
RSRC041	80	84	0.01
RSRC041	84	88	0.02
RSRC041	88	92	0.02
RSRC041	92	96	0.01
RSRC041	96	100	-0.01
RSRC041	100	104	0.02
RSRC041	104	108	0.01
RSRC041	108	112	0.01
RSRC041	112	116	0.01
RSRC041	116	120	0.01
RSRC041	120	124	0.01
RSRC041	124	128	0.04
RSRC041	128	132	0.02
RSRC041	132	136	0.04
RSRC041	136	140	-0.01
RSRC041	140	144	0.01
RSRC041	144	148	-0.01
RSRC041	148	152	0.05
RSRC041	152	156	0.74
RSRC041	156	160	0.5
RSRC041	160	161	0.68
RSRC041	161	162	0.08
RSRC041	162	163	0.29
RSRC041	163	164	0.05
RSRC041	164	165	0.05
RSRC041	165	166	0.05
RSRC041	166	167	0.03
RSRC041	167	168	0.17
RSRC041	168	169	0.06
RSRC041	169	170	0.12
RSRC041	170	171	0.11
RSRC041	171	172	1.08
RSRC041	172	173	0.44
RSRC041	173	174	0.1
RSRC041	174	175	0.06
RSRC041	175	176	0.01
RSRC041	176	177	0.01
RSRC041	177	178	0.05
RSRC041	178	179	0.02
RSRC041	179	180	0.02
RSRC041	180	184	0.04
RSRC041	184	188	0.03
RSRC041	188	192	0.04
RSRC041	192	196	0.04
RSRC041	196	200	0.02
	•		

			MINE
RSRC041	200	204	0.02
RSRC041	204	208	0.01
RSRC041	208	210	0.01
RSRC042	0	4	-0.01
RSRC042	4	8	-0.01
RSRC042	8	12	-0.01
RSRC042	12	16	-0.01
RSRC042	16	20	-0.01
RSRC042	20	24	-0.01
RSRC042	24	28	0.01
RSRC042	28	32	-0.01
RSRC042	32	36	-0.01
RSRC042	36	40	-0.01
RSRC042	40	44	-0.01
RSRC042	44	48	-0.01
RSRC042	48	52	-0.01
RSRC042	52	56	-0.01
RSRC042	56	60	0.01
RSRC042	60	64	0.02
RSRC042	64	68	0.08
RSRC042	68	72	-0.01
RSRC042	72	76	-0.01
RSRC042	76	80	-0.01
RSRC042	80	84	0.01
RSRC042	84	88	0.01
RSRC042	88	92	-0.01
RSRC042	92	96	-0.01
RSRC042	96	100	-0.01
RSRC042	100	104	-0.01
RSRC042	104	108	-0.01
RSRC042	108	112	-0.01
RSRC042	112	116	-0.01
RSRC042	116	120	0.01
RSRC042	120	124	-0.01
RSRC042	124	128	0.01
RSRC042	128	132	0.01
RSRC042	132	136	0.01
RSRC042	136	140	0.01
RSRC042	140	144	-0.01
RSRC042	144	148	0.03
RSRC042	148	152	0.01
RSRC042	152	156	0.01
RSRC042	156	160	0.02
RSRC042	160	164	0.01
RSRC042	164	168	0.01
RSRC042	168	172	0.01
RSRC042	172	176	0.01
RSRC042	176	180	0.01
RSRC042	180	184	0.01
RSRC042	184	188	0.01
RSRC042	188	192	0.02
RSRC042	192	196	0.01
RSRC042	196	200	0.01
RSRC042	200	204	-0.01
RSRC042	204	208	0.01
RSRC042	208	212	0.02
RSRC042	212	216	0.02

			MINE
RSRC042	216	220	0.03
RSRC042	220	224	0.01
RSRC042	224	228	0.01
RSRC042	228	232	0.01
RSRC042	232	236	0.01
RSRC042	236	240	0.01
RSRC042	240	244	0.01
RSRC042	244	245	0.02
RSRC042	245	246	0.01
RSRC042	246	247	0.01
RSRC042	247	248	0.01
RSRC042	248	249	0.01
RSRC042	249	250	0.01
RSRC042	250	251	0.01
RSRC042	251	252	0.01
RSRC042	252	253	0.01
RSRC042	253	254	0.01
RSRC042	254	255	0.01
RSRC042	255	256	0.01
RSRC042	256	260	-0.01
RSRC042	260	264	0.07
RSRC042	264	268	0.02
RSRC042	268	272	0.01
RSRC042	272	273	0.01
RSRC042	273	274	0.02
	274	275	0.02
RSRC042	275	276	0.01
RSRC042		277	
RSRC042	276		0.04
RSRC042	277	278	0.02
RSRC042	278	279	0.02
RSRC042	279	280	0.02
RSRC042	280	284	0.02
RSRC042	284	288	0.01
RSRC042	288	292	0.01
RSRC042	292	293	0.01
RSRC042	293	294	0.01
RSRC042	294	295	0.01
RSRC042	295	296	0.01
RSRC042	296	297	0.01
RSRC042	297	298	0.01
RSRC042	298	299	0.03
RSRC042	299	300	0.01
RSRC042	300	301	0.01
RSRC042	301	302	0.01
RSRC042	302	303	0.01
RSRC042	303	304	0.01
RSRC042	304	305	0.01
RSRC042	305	306	0.01
RSRC042	306	310	0.01
RSRC042	310	314	0.01
RSRC042	314	318	0.01
RSRC042	318	322	0.02
RSRC043	0	4	0.03
RSRC043	4	8	0.01
RSRC043	8	12	0.01
RSRC043	12	16	0.01
RSRC043	16	20	0.01

			MINE
RSRC043	20	24	0.01
RSRC043	24	28	0.03
RSRC043	28	32	0.01
RSRC043	32	36	0.01
RSRC043	36	40	-0.01
RSRC043	40	44	0.01
RSRC043	44	48	0.02
RSRC043	48	52	0.05
RSRC043	52	53	0.01
RSRC043	53	54	0.02
RSRC043	54	55	0.02
RSRC043	55	56	0.01
RSRC043	56	57	0.01
RSRC043	57	58	0.01
RSRC043	58	59	-0.01
RSRC043	59	60	-0.01
RSRC043	60	64	0.01
RSRC043	64	68	-0.01
RSRC043	68	72	-0.01
RSRC043	72	76	-0.01
RSRC043	76	80	-0.01
RSRC043	80	84	-0.01
RSRC043	84	88	
RSRC043	88	92	0.01 0.01
	92	96	
RSRC043			0.03
RSRC043	96	100	0.01
RSRC043	100	104	0.11
RSRC043	104	108	0.01
RSRC043	108	112	0.01
RSRC043	112	116	0.01
RSRC043	116	120	0.03
RSRC043	120	124	0.03
RSRC043	124	128	0.02
RSRC043	128	132	-0.01
RSRC043	132	136	-0.01
RSRC043	136	140	0.04
RSRC043	140	141	0.01
RSRC043	141	142	0.01
RSRC043	142	143	0.02
RSRC043	143	144	0.02
RSRC043	144	145	0.02
RSRC043	145	146	0.01
RSRC043	146	147	0.01
RSRC043	147	148	-0.01
RSRC043	148	149	0.02
RSRC043	149	150	0.03
RSRC043	150	151	-0.01
RSRC043	151	152	-0.01
RSRC043	152	156	0.03
RSRC043	156	160	-0.01
RSRC043	160	164	-0.01
RSRC043	164	168	0.01
RSRC043	168	172	0.03
RSRC043	172	176	0.02
RSRC043	176	180	0.03
RSRC043	180	184	0.01
RSRC043	184	188	0.01
		•	

			MINE
RSRC043	188	192	0.01
RSRC043	192	196	-0.01
RSRC043	196	200	0.01
RSRC043	200	201	0.01
RSRC043	201	202	-0.01
RSRC043	202	203	-0.01
RSRC043	203	204	0.02
RSRC043	204	205	0.02
RSRC043	205	206	0.02
RSRC043	206	207	0.02
RSRC043	207	208	0.02
RSRC043	208	209	0.01
RSRC043	209	210	0.05
RSRC043	210	211	0.02
RSRC043	211	212	0.02
RSRC043	212	213	0.1
RSRC043	213	214	0.02
RSRC043	214	215	0.01
RSRC043	215	216	0.01
RSRC043	216	217	0.02
RSRC043	217	218	0.01
RSRC043	218	219	0.01
RSRC043	219	220	0.01
RSRC043	220	221	0.02
RSRC043	221	222	0.01
RSRC043	222	223	0.01
RSRC043	223	224	0.01
RSRC043	224	225	-0.01
RSRC043	225	226	0.04
RSRC043	226	228	-0.01
RSRC043	228	232	0.01
RSRC043	232	236	0.02
RSRC043	236	240	0.01
RSRC043	240	244	0.03
RSRC043	244	245	-0.01
RSRC043	245	246	0.01
RSRC043	246	247	0.01
RSRC043	247	248	-0.01
RSRC043	248	249	-0.01
RSRC043	249	250	0.06
RSRC043	250	251	0.01
RSRC043	251	252	0.01
RSRC043	252	256	0.01
RSRC043	256	260	-0.01
RSRC043	260	261	0.01
RSRC043	261	262	0.01
RSRC043	262	263	-0.01
RSRC043	263	264	-0.01
RSRC043	264	265	0.01
RSRC043	265	266	0.02
RSRC043	266	267	0.01
RSRC043	267	268	-0.01
RSRC043	268	272	0.03
RSRC043	272	276	-0.01
RSRC043	276	280	-0.01
RSRC043	280	284	0.02
RSRC043	284	288	0.03

			MINE
RSRC043	288	292	0.05
RSRC043	292	296	0.03
RSRC043	296	300	0.11
RSRC043	300	304	0.06
RSRC043	304	308	0.03
RSRC043	308	312	0.01
RSRC043	312	316	0.02
RSRC043	316	318	0.02
RSRC044	0	4	-0.01
RSRC044	4	8	-0.01
RSRC044	8	12	0.01
RSRC044	12	16	-0.01
RSRC044	16	20	0.01
RSRC044	20	24	-0.01
RSRC044	24	28	0.01
RSRC044	28	32	0.01
RSRC044	32	36	0.02
RSRC044	36	40	0.01
RSRC044	40	44	0.01
RSRC044	44	48	-0.01
RSRC044	48	52	0.01
RSRC044	52	56	0.08
RSRC044	56	60	0.01
RSRC044	60	64	0.01
RSRC044	64	68	0.01
	68	72	
RSRC044	72	76	0.01
RSRC044	76		0.01
RSRC044		80	0.01
RSRC044	80	84	0.01
RSRC044	84	88	0.01
RSRC044	88	92	0.01
RSRC044	92	96	0.01
RSRC044	96	100	0.01
RSRC044	100	104	0.01
RSRC044	104	108	0.02
RSRC044	108	112	0.02
RSRC044	112	116	0.03
RSRC044	116	120	0.03
RSRC044	120	124	0.02
RSRC044	124	128	0.01
RSRC044	128	132	0.01
RSRC044	132	136	0.01
RSRC044	136	140	0.01
RSRC044	140	144	0.03
RSRC044	144	148	0.02
RSRC044	148	152	0.02
RSRC044	152	156	0.02
RSRC044	156	160	0.04
RSRC044	160	164	0.04
RSRC044	164	168	0.04
RSRC044	168	169	0.01
RSRC044	169	170	0.01
RSRC044	170	171	0.01
RSRC044	171	172	0.02
RSRC044	172	173	0.17
RSRC044	173	174	0.02
RSRC044	174	175	0.02

175	176	0.02
176	177	0.01
177	178	0.01
178	179	0.04
179	180	0.02
180	181	0.03
181	182	0.04
182	183	0.03
183	184	0.04
184	185	0.04
185	186	0.01
186	187	0.03
187	188	0.06
188	189	0.03
189	190	0.03
190	191	0.04
191	192	0.07
192	193	0.05
193	194	0.05
194	195	0.07
195	196	0.03
196	197	0.02
197	198	0.03
	176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196	176 177 177 178 178 179 179 180 180 181 181 182 182 183 183 184 184 185 185 186 186 187 187 188 188 189 189 190 190 191 191 192 192 193 194 195 195 196 196 197

Table 3: Assay Data from RC drilling at the Reedy South Gold Project (1m splits)

Hole_ID	mFrom	mTo	Sample_type	Au_ppm
RSRC002	8	9	1m_Split	0.02
RSRC002	9	10	1m_Split	0.16
RSRC002	10	11	1m_Split	0.28
RSRC002	11	12	1m_Split	0.68
RSRC002	12	13	1m_Split	0.89
RSRC002	13	14	1m_Split	1.7
RSRC002	14	15	1m_Split	0.1
RSRC002	15	16	1m_Split	0.04
RSRC002	16	17	1m_Split	0.11
RSRC002	17	18	1m_Split	0.08
RSRC002	18	19	1m_Split	0.06
RSRC002	19	20	1m_Split	0.23
RSRC002	20	21	1m_Split	0.39
RSRC002	21	22	1m_Split	0.32
RSRC002	22	23	1m_Split	0.37
RSRC002	23	24	1m_Split	0.19
RSRC003	44	45	1m_Split	0.01
RSRC003	45	46	1m_Split	0.02
RSRC003	46	47	1m_Split	0.02
RSRC003	47	48	1m_Split	-0.01
RSRC003	48	49	1m_Split	0.03
RSRC003	49	50	1m_Split	0.19
RSRC003	50	51	1m_Split	2.78
RSRC003	51	52	1m_Split	1.75
RSRC003	52	53	1m_Split	0.29

Hole_ID	mFrom	mTo	Sample_type	Au_ppm
RSRC003	53	54	1m_Split	0.98
RSRC003	54	55	1m_Split	1.64
RSRC003	55	56	1m_Split	0.13
RSRC003	56	57	1m_Split	0.18
RSRC003	57	58	1m_Split	0.11
RSRC003	58	59	1m_Split	0.11
RSRC003	59	60	1m_Split	0.09
RSRC003	60	61	1m_Split	0.03
RSRC003	61	62	1m_Split	0.04
RSRC003	62	63		0.06
	63		1m_Split	
RSRC003		64	1m_Split	0.12
RSRC003	64	65	1m_Split	0.08
RSRC003	65	66	1m_Split	0.1
RSRC003	66	67	1m_Split	0.08
RSRC003	67	68	1m_Split	0.09
RSRC003	68	69	1m_Split	0.03
RSRC003	69	70	1m_Split	0.08
RSRC003	70	71	1m_Split	0.02
RSRC003	71	72	1m_Split	0.01
RSRC003	72	73	1m_Split	0.51
RSRC003	73	74	1m_Split	1.92
RSRC003	74	75	1m_Split	0.89
RSRC003	75	76	1m_Split	4.12
RSRC003	76	77	1m_Split	0.34
RSRC003	77	78	1m_Split	0.67
RSRC003	78	79	1m_Split	0.25
RSRC003	79	80	1m_Split	0.08
RSRC003	80	81	1m_Split	0.5
RSRC003	81	82	1m_Split	15.95
RSRC003	82	83	1m_Split	0.26
RSRC003	83	84	1m_Split	0.26
RSRC003	84	85	1m_Split	1.62
RSRC003	85	86	1m_Split	0.5
RSRC003	86	87	1m_Split	0.3
RSRC003	87	88	1m_Split	0.03
RSRC003	88	89	1m_Split	0.02
RSRC003	89	90	1m_Split	0.07
RSRC003	90	91	1m_Split	0.03
RSRC003	91	92	1m_Split	0.04
RSRC005	16	17	1m_Split	1
RSRC005	17	18	1m_Split	0.87
RSRC005	18	19	1m_Split	0.35
RSRC005	19	20	1m_Split	0.09
RSRC005	20	21	1m_Split	0.17
RSRC005	21	22	1m_Split	0.1
RSRC005	22	23	1m_Split	0.05
RSRC005	23	24	1m_Split	0.06
RSRC005	24	25	1m_Split	0.02
RSRC005	25	26	1m_Split	0.17
RSRC005	26	27	1m_Split	1.39
RSRC005	27	28	1m_Split	0.28
RSRC005	28	29	1m_Split	0.33
	20		z.n_opiic	3.33

Hole_ID mFrom mTo Sample_type Au_ RSRC005 29 30 1m_Split 0.0 RSRC005 30 31 1m_Split 0.0 RSRC005 31 32 1m_Split 0.0 RSRC005 52 53 1m_Split 0.0 RSRC005 53 54 1m_Split 0.0 RSRC005 54 55 1m_Split 0.0 RSRC005 55 56 1m_Split 0.0 RSRC006 16 17 1m_Split 0.0 RSRC006 17 18 1m_Split 0.0 RSRC006 18 19 1m_Split 0.0	03 76 38 01 09 63
RSRC005 30 31 1m_Split 0.3 RSRC005 31 32 1m_Split 0.3 RSRC005 52 53 1m_Split 0.0 RSRC005 53 54 1m_Split 0.0 RSRC005 54 55 1m_Split 0.0 RSRC005 55 56 1m_Split 1.9 RSRC006 16 17 1m_Split 0.0 RSRC006 17 18 1m_Split 0.0	76 38 01 09 53
RSRC005 31 32 1m_Split 0.3 RSRC005 52 53 1m_Split 0.0 RSRC005 53 54 1m_Split 0.0 RSRC005 54 55 1m_Split 0.0 RSRC005 55 56 1m_Split 1.1 RSRC006 16 17 1m_Split 0.0 RSRC006 17 18 1m_Split 0.0	38 01 09 63 59
RSRC005 52 53 1m_Split 0.0 RSRC005 53 54 1m_Split 0.0 RSRC005 54 55 1m_Split 0.0 RSRC005 55 56 1m_Split 1.0 RSRC006 16 17 1m_Split 0.0 RSRC006 17 18 1m_Split 0.0	01 09 63 59
RSRC005 53 54 1m_Split 0.0 RSRC005 54 55 1m_Split 0.0 RSRC005 55 56 1m_Split 1.1 RSRC006 16 17 1m_Split 0.0 RSRC006 17 18 1m_Split 0.0	09 53 59
RSRC005 54 55 1m_Split 0.6 RSRC005 55 56 1m_Split 1.1 RSRC006 16 17 1m_Split 0.6 RSRC006 17 18 1m_Split 0.6	53 59
RSRC005 55 56 1m_Split 1.! RSRC006 16 17 1m_Split 0.0 RSRC006 17 18 1m_Split 0.0	59
RSRC006 16 17 1m_Split 0.0 RSRC006 17 18 1m_Split 0.0	
RSRC006 17 18 1m_Split 0.0	ıu
RSRC006 19 20 1m_Split 0.3	
RSRC010 68 69 1m_Split 0.0	
RSRC010 69 70 1m_Split 0.0	
RSRC010 71 72 1m_Split 0.3 RSRC011 40 41 1m Split 0.4	
RSRC011 42 43 1m_Split 0.3	
RSRC011 43 44 1m_Split 0.4	
RSRC011 44 45 1m_Split 0.0	
RSRC011 45 46 1m_Split 0.8	
RSRC011 46 47 1m_Split 0.2	
RSRC011 47 48 1m_Split 0.3	
RSRC011 48 49 1m_Split 0.5	
RSRC011 49 50 1m_Split 0.2	
RSRC011 50 51 1m_Split 0.0	
RSRC011 51 52 1m_Split 0.0	
RSRC012 46 47 1m_Split 0.0	
RSRC012 47 48 1m_Split 0.:	
RSRC012 48 49 1m_Split 0. 9	
RSRC012 49 50 1m_Split 0.	
RSRC012 70 71 1m_Split 0.:	
RSRC012 71 72 1m_Split 0.3	
RSRC012 72 73 1m_Split 0.2	
RSRC012 73 74 1m_Split 0.:	
RSRC012 74 75 1m_Split 0.3	31
RSRC012 75 76 1m_Split 0.	1
RSRC012 76 77 1m_Split 0.	1
RSRC012 77 78 1m_Split 0.	1
RSRC013 68 69 1m_Split 0.3	33
RSRC013 69 70 1m_Split 0.:	13
RSRC013 70 71 1m_Split 0.8	35
RSRC013 71 72 1m_Split 0.5	53
RSRC015 72 73 1m_Split 0.0)9
RSRC015 73 74 1m_Split 0.0)7
RSRC015 74 75 1m_Split 0.0	06
RSRC015 75 76 1m_Split 2.0	
RSRC015 76 77 1m_Split 0.4	16
RSRC015 77 78 1m_Split 0.0	08
RSRC015 78 79 1m_Split 0.0	
RSRC015 79 80 1m_Split 0.0	
RSRC026 60 61 1m_Split 0.0	

Hole_ID	mFrom	mTo	Sample_type	Au_ppm
RSRC026	61	62	1m_Split	0.03
RSRC026	62	63	1m_Split	0.03
RSRC026	63	64	1m_Split	0.02
RSRC026	72	73	1m_Split	0.01
RSRC026	73	74	1m_Split	1
RSRC026	74	75	1m_Split	1.53
RSRC026	75	76	1m_Split	0.09
RSRC028	40	41	1m_Split	0.1
RSRC028	41	42	1m_Split	0.11
RSRC028	42	43	1m_Split	0.03
RSRC028	43	44		0.03
RSRC028	43	45		0.42
	45	46	1m_Split	
RSRC028			1m_Split	0.4
RSRC028	46	47	1m_Split	0.42
RSRC028	47	48	1m_Split	0.05
RSRC030	72	73	1m_Split	0.04
RSRC030	73	74	1m_Split	0.02
RSRC030	74	75	1m_Split	0.03
RSRC030	75	76	1m_Split	2.52
RSRC031	52	53	1m_Split	0.05
RSRC031	53	54	1m_Split	0.15
RSRC031	54	55	1m_Split	0.38
RSRC031	55	56	1m_Split	0.08
RSRC034	48	49	1m_Split	2.15
RSRC034	49	50	1m_Split	1.98
RSRC034	50	51	1m_Split	0.04
RSRC034	51	52	1m_Split	0.1
RSRC034	52	53	1m_Split	0.09
RSRC034	53	54	1m_Split	0.02
RSRC034	54	55	1m_Split	0.02
RSRC034	55	56	1m_Split	0.28
RSRC034	56	57	1m_Split	0.26
RSRC034	57	58	1m_Split	0.29
RSRC034	58	59	1m_Split	0.04
RSRC034	59	60	1m_Split	0.03
RSRC034	80	81	1m_Split	0.07
RSRC034	81	82	1m_Split	0.01
RSRC034	82	83	1m_Split	0.03
RSRC034	83	84	1m_Split	0.09
RSRC034	84	85	1m_Split	3.75
RSRC034	85	86	1m_Split	0.31
RSRC034	86	87	1m_Split	0.26
RSRC034	87	88	1m_Split	0.02
RSRC034	88	89	1m_Split	0.02
RSRC034	89	90	1m_Split	0.04
RSRC034	90	91	1m_Split	0.05
RSRC034	91	92	1m_Split	0.01
RSRC036	16	17	1m_Split	0.25
RSRC036	17	18	1m_Split	1.28
RSRC036	18	19	1m_Split	0.18
RSRC036	19	20	1m_Split	0.63
RSRC036	60	61	1m_Split	0.05
1.0.1.0000	- 50	01	III_Spiic	0.05

Hole_ID	mFrom	mTo	Sample_type	Au_ppm
RSRC036	61	62	1m_Split	0.01
RSRC036	62	63	1m_Split	0.02
RSRC036	63	64	1m_Split	0.01
RSRC036	64	65	1m_Split	1.32
RSRC036	65	66	1m_Split	0.96
RSRC036	66	67	1m_Split	0.16
RSRC036	67	68	1m_Split	0.05
RSRC038	96	97	1m_Split	0.11
RSRC038	97	98	1m_Split	0.03
RSRC038	98	99	1m_Split	0.3
RSRC038	99	100	1m_Split	0.41
RSRC038	100	101	1m_Split	0.02
RSRC038	101	102	1m_Split	0.01
RSRC038	102	103	1m_Split	0.04
RSRC038	103	104	1m_Split	0.05
RSRC038	104	105	1m_Split	1.69
RSRC038	105	106	1m_Split	0.19
RSRC038	106	107	1m_Split	0.04
RSRC038	107	108	1m_Split	0.1
RSRC038	108	109	1m_Split	0.11
RSRC038	109	110	1m_Split	0.04
RSRC038	110	111	1m_Split	0.89
RSRC038	111	112	1m_Split	0.25
RSRC038	112	113	1m_Split	0.09
RSRC038	113	114	1m_Split	0.11
RSRC038	160	161	1m_Split	0.27
RSRC038	161	162	1m_Split	2.19
RSRC038	162	163	1m_Split	0.45
RSRC038	163	164	1m_Split	0.12
RSRC038	164	165	1m_Split	0.02
RSRC038	165	166	1m_Split	0.02
RSRC038	166	167	1m_Split	0.09
RSRC038	167	168	1m_Split	0.2

APPENDIX 1.

The following Tables are provided to ensure compliance with the JORC Code (2012 Edition) requirements for the reporting of Exploration Results at the Reedy South Project.

Section 1: Sampling Techniques and Data

(Criteria in this section applies to all succeeding sections)

Criteria	JORC Code explanation	Commentary
Sampling techniques	Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample	Every metre drilled was sampled at the drill rig using a rig mounted static cone splitter to collect 2 – 3kg sub samples. 4m composites through the geologically determined non-mineralised zones were collected using the pipe/spear method of sampling the coarse reject sample collected in standard green bags, which remain at the drill site.
	representivity and the appropriate calibration of any measurement tools or systems used.	Standard reference material, sample duplicates were automatically collected at 25m sample intervals from the cone splitter Where a duplicate, produced from the cone splitter, wasn't sampled due to it being in a non-mineralised zone, a 4m composite field duplicate was obtained using the pipe/spear method from the sample reject bag. This method maintained a ~25m duplicate and standard insertion rate throughout the entire program.
	Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg' reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.	A combination of 1m split for geologically identified mineralised zones and 4m composite samples for geologically identified waste zones were sent to the laboratory for crushing, splitting and analysis. Analysis was undertaken by ALS laboratories (Perth) for gold assay by 50g fire assay.
Drilling techniques	Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic etc) and details (e.g. core diameter, triple of standard tube, depth of diamond tails, face-sampling bit or other type, whether core is orientated and if so, by what method, etc).	RSRC0039 to RSRC044 were completed by reverse circulation drilling techniques using a standard 5.5 inch (143mm) diameter bit. A face sampling down hole hammer was used at all times using a bit retention system.
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed.	Drill recovery was routinely recorded via estimation of the comparative percentage of the volume of the sample bag by the company geologist. The sample recovery was deemed adequate for representative assays.
	Measures taken to maximise sample recovery and ensure representative nature of the samples.	A qualitative estimate of sample weight was undertaken to ensure consistency of sample size and to monitor sample recoveries at the time of drilling.
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	Drill sample recovery and quality is considered to be adequate for the drilling technique employed.

Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	mineralisation and weathering
	Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.	Lithology codes have been interpreted by a geologist for consistency across the project.

Criteria	JORC Code explanation	Commentary
	The total length and percentage of the relevant intersections logged.	Veining and mineralisation noted in lithological logs
Sub-sampling techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or all core taken.	A sub sample from the RC drill rig of approximately 2-4kg was taken from the sample splitter off the cyclone.
Sumple preparation	If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.	For holes drilled by Homestake, Murchison Mining and St Barbara samples were pulverised to 85% passing 75 microns. From this a 50g charge was taken for fire assay with AAS finish. These assaying techniques are
	For all sample types, the nature, quality and appropriatenessofthe sample preparation technique.	considered appropriate for this style of mineralisation.
	Quality control procedures adopted for all sub- sampling stages to maximise representivity of samples.	No QAQC data is available for prior drilling campaigns by Wakefield.
	Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second- half sampling.	The use of fire assay with 50g charge for all RC drilling provides a level of confidence in the assay database. The sampling and assaying in considered representative of the in-situ material.
	Whether sample sizes are appropriate to the grain size of the material being sampled.	The sample size of 2-4 kilograms is appropriate and representative of the grain size and mineralisation style of the deposit.
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF	ALS (Perth) were used for all analysis of drill samples submitted by Artemis. The laboratory techniques below are for all samples submitted to ALS and are considered appropriate for the style of mineralisation defined within the Carlow Castle Project area: Samples above 3Kg riffle split. Pulverise to 95% passing 75 microns 50-gram Fire Assay (Au-AA26) with ICP finish - Au. 4 Acid Digest ICP-AES Finish (ME-ICP61) – Ag, Al, As, Ba, Be, Bi, Ca, Cd, Co, Cr, Cu, Fe, Ga, K, La, Mg, Mn, Mo, Na, Ni, P, Pb, S, Sb, Sc, Sr, Th, Ti, Tl, U, V, W, Zn. Ore Grade 4 Acid Digest ICP-AES Finish (ME-OG62) Standards were used for external laboratory checks by WCN. Duplicates were used for external laboratory checks by WCN.
	For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	
	Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.	
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel.	Several drilling campaigns have been conducted at South Reedy since 1984. These campaigns with subsequent infill drilling provide verification of the significant intersections as they have been repeated along strike at distances as close as 10m.

Criteria	JORC Code explanation	Commentary
	The use of twinned holes.	No twinned holes were drilled but several holes are in close proximity to each other illustrating continuity of mineralisation.
	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	Electronic data capture, storage and transfer as .csv. Routine QC checks performed by contractor and independent geophysical consultant. Data were found to be of high quality and in accordance with contract specifications. Laboratory standards and blank samples were inserted at regular intervals and some duplicate samples were taken for QC checks.
	Discuss any adjustment to assay data.	No adjustments were made to assay data.
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control.	A Garmin GPSMap62 hand-held GPS was used to set out the planned drill holes. Hole collars were surveyed at the end of the program by Murchison Surveys using a Trimble R6 RTK GPS with a horizontal accuracy of +/- 0.03m and Vertical accuracy of +/- 0.05m. Utilising survey control points from the previous survey of RC collars completed by
		Murchison Surveys. MGA94 Zone 50 co-ordinates.

Criteria	JORC Code explanation	Commentary
Data spacing and distribution	Data spacing for reporting of Exploration Results.	Collar information or the reported holes is provided. Rockchip samples were randomly collected and were appropriate given the objectives of the program.
	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	Intercepts given are downhole widths with the true widths not determined.
	Whether sample compositing has been applied.	Single metre sampling used within visual mineralised zones.
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	Drill holes have generally been drilled perpendicular to the general strike and dip of the orebody. Holes in this announcement have been collared with lease boundary restrictions so have interested the ore-zone at an oblique angle.
	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	
Sample security	The measures taken to ensure sample security.	Sample security measures for historical drilling are unknown. The chain of custody is managed by the supervising geologist who places calico sample bags in cable—tied green mining bags. Up to 5 calico sample bags were placed in each green bag. The number of calicos in each bag was dictated by the combined weight for OHS reasons.
		Each sack is clearly labelled with: o White Cliff Minerals Ltd

Criteria	JORC Code explanation	Commentary
		Address of laboratorySample range
		Samples were delivered by Whitecliff personnel to the transport company in Cue
		The transport company then delivered the samples directly to the ALS laboratory.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	QA/QC data from the metallurgical testwork provides a high confidence in the recent RC drilling's assay data.
		Historical data has been extensively reviewed.
		Data is validated upon up-loading into the master database. Any validation issues identified are investigated prior to reporting of results.

Section 2: Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	South Reedy is located on M20/446, registered in the name of Harley Sears (50%) and Wakeford Holdings (50%). White Cliff Minerals Ltd has purchased the tenement from the registered holders as announced to the ASX on 8 October 2020. There are no known impediments to the future exploration or mining of this deposit.
	The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in thearea.	Minimum expenditure requirement of \$10,000 per annum has been met for the current reporting period
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	Historical exploration has been conducted by Homestake Australia Ltd, St Barbara Ltd, Wakeford Holdings and Murchison Mining Pty Ltd. A total of 117 RC holes for 7,182m has been drilled. Data was compiled from WAMEX reports.
Geology	Deposit type, geological setting and style of mineralisation.	Mineralisation in the Mining Lease is hosted by the Reedy Shear Zone (RSZ) localised by a disconformable contact between two greenstone groups. Anastomosing structures develop within the RSZ focusing fluid migration and Au mineralisation. Strong potassic-silicic-pyritic alteration is associated with gold mineralisation localised within the footwall and hanging contacts of the 20m wide sub-vertical RSZ. Linear zones of more intense deformation appear to be important in the localisation of gold mineralisation within ultramafic zones often adjacent to mineralisation. Minor bucky quartz veining intrudes the shear and appears to run parallel to the shear zone.
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:	A summary of all exploration drilling and sampling is contained in tabulated data within this announcement.
	 easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. 	Downhole surveys were captured using an Axis Mining Technologies - North seeking Gyro – (Champ Navigator) https://axisminetech.com/wp-content/uploads/2019/12/Axis-Champ-Navigator-Specification_English.pdf
	If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg. cutting of high grades) and cut-off grades are usually Material and should be stated.	Intersections have been calculated generally using a 1g/t cut off and internal waste of up to 2m thickness with total intercepts greater than 1g/t. No upper cut off has been applied to intersections or samples.

<u></u>		MINERALS
Criteria	JORC Code explanation	Commentary
	Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	Only relevant elements (gold) are reported here. However, the samples underwent multi element assay as industry standard.
	The assumptions used for any reporting of metal equivalent values should be clearly stated.	No metal equivalent values are being used.
Relationship between mineralisation widths and intercept lengths	These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').	Reported intersection widths are generally greater than true widths by about 20% however this does vary within the deposit. Holes have generally been drilled perpendicular to strike. The orebody is sub-vertical with most holes drilled at -60° from horizontal.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drillhole collar locations and appropriate sectional views.	Location maps and drill cross sections are included in the body of this announcement.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	The reporting of exploration results is considered balanced by the competent person. The locations of the drill holes are included in this release.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	The Company's technical consultants are continuing to review available historical data, and WAMEX data over all WCN controlled tenements in the RSZ area.
Further work	The nature and scale of planned further work (eg. tests for lateral extensions or depth extensions or large-scale stepout drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	Following the update of the Maiden MRE utilizing these drilling results discussed in this announcement, directional diamond drilling will be called upon to intersect the deeper RSZ hosted mineralisation which the latest round of drilling failed to intersect.