

ASX ANNOUNCEMENT

17 May 2021

New Zone at Camel Creek Delivers High Grade Gold Results

HIGHLIGHTS:

- High grade four metre composite results at the Camel Creek Gold Project include:
 - o 56m @ 4.14 g/t Au (CCRC50) from 152 including 20m @ 10.87 g/t Au
 - o 40m @ 2.31 g/t Au (CCRC51) from 160 metres
 - o **36m @ 2.15 g/t Au** (CCRC52) from 128 metres
 - o **12m @ 1.47 g/t Au** (CCRC53) from 152 metres
 - o 24m @ 5.94 g/t Au (CCRC54) from 152 including 8m @ 14.79
 - o 8m @ 3.29 g/t Au (CCRC47) from 112 metres
 - o 8m @ 1.58 g/t Au (CCRC48) from 52 metres
- Results highlight that Camel Creek has potential for a substantial gold project, with results confirming deeper and higher grade mineralisation
- First 24 holes returned with outstanding intersections confirming the potential for the Camel Creek Gold Mine with approximately 24 additional holes for 2600 metres underway
- Anomalous gold encountered in almost every hole establishing strike continuity over 1600 metres

Great Northern Minerals Limited ("Great Northern Minerals" or the **"Company") (ASX:GNM)** is pleased to announce the receipt of the initial four metre composite results from the first batch of assays at Camel Creek from its large ongoing reverse circulation (RC) drilling program.

These results cover the first 24 holes drilled during late April and early May 2021 at Camel Creek for a total of 2876 metres. An additional 24 holes for approximately 2600 metres are currently being drilled with assays results due by the second week of June. The current program is likely to be extended.

The high grades in CCRC50→CCRC54 relate to testing of the Hinge Zone target (refer to ASX release dated 9 September 2020) where deeper drilling in a new untested position has highlighted and outlined a substantial zone of new mineralisation which has now been outlined over 200 metres of strike and extending to at least 180 metres below surface. Although early days, grades and widths appear to be increasing at depth.

CCRC30→CCRC49 were drilled to the north on 40-80 metre centres, initially targeting underneath the previously mined areas. Results in these areas, although narrow are encouraging, as no deep drilling in these areas had previously been completed and this latest drilling has established gold mineralisation extending over 1600 metres of strike. Further deeper drilling in these areas is required.

On completion of this campaign and receipt of final assays GNM will plan a follow up program aimed at testing further strike extensions and down dip continuity to be followed by an initial resource estimate later in the year.

GNM Managing director, Cameron McLean commented on the announcement: "This ongoing drill program has returned the best assay results ever seen at Camel Creek and highlights the excellent

potential for the delineation of a substantial gold resource. The very high grade results in the vicinity of the Hinge Zone target validates the previous work and targeting techniques adopted. Drilling is ongoing and further deep testing of the Camel Creek gold system testing over more than a kilometre is expected to be complete by the end of May 2021."

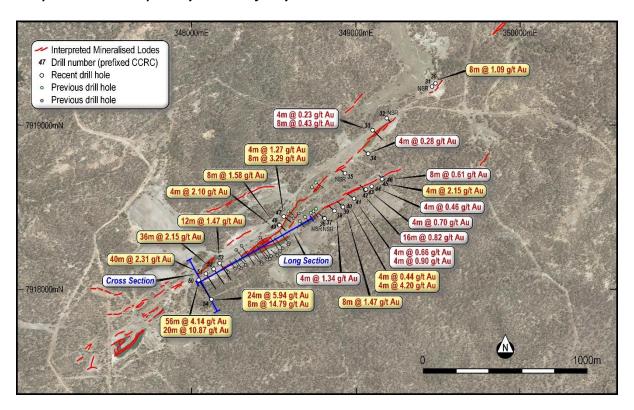


Figure 1: Location plan of the 2021 Camel Creek Drilling on Aerial Imagery

Camel Creek

The first batch of four metre composite assay results from the Camel Creek reverse circulation program have been returned. These results cover the first 24 RC holes for 2876 metres with approximately 24 holes for 2600 metres remaining to be drilled and analysed. The anomalous original one metre samples relating to these 4 metre composites have been collected in the field and submitted to the laboratory for final multielement analysis to accurately define and document the intersections indicated from the four metre composite results. Gold assays for the four metre composite samples provide an indicative distribution of the grades, and all anomalous one metre assays will now be anlaysed for multi-element assays and gold.

A full listing of the anomalous intersections (all greater then 0.2 g/t Au) is documented in Table One. The majority of the anomalous intersections are associated with a strong mylonite zone trending north east and in places up to 10 metres in width and extending along strike over the entire area tested. An increase in quartz veining and sulphide content accompanies the anomalous intersections.

This is the largest RC program completed at Camel Creek and has tested the interpreted mineralised zone to a maximum vertical depth of approximately 200 metres. No deep drilling has ever been completed at Camel Creek previously and this systematic program has highlighted the continuity of

the mineralisation underneath the previously mined shallow open pits and demonstrated considerable additional potential. The three dimensional nature of the Camel Creek gold mineralisation is becoming apparent and the more drilling we complete provides additional information and understanding of the distribution of the mineralisation.

The highest grade and thickest intersections have been delivered in the vicinity of the previously interpreted "Hinge Zone" target, where a number of the parallel structures were interpreted to coalesce. No previous mining has been conducted in this area and a plunging ore shoot is interpreted. The location coincides with a contact zone between sandstone and the siltstone/shale mylonite zone.

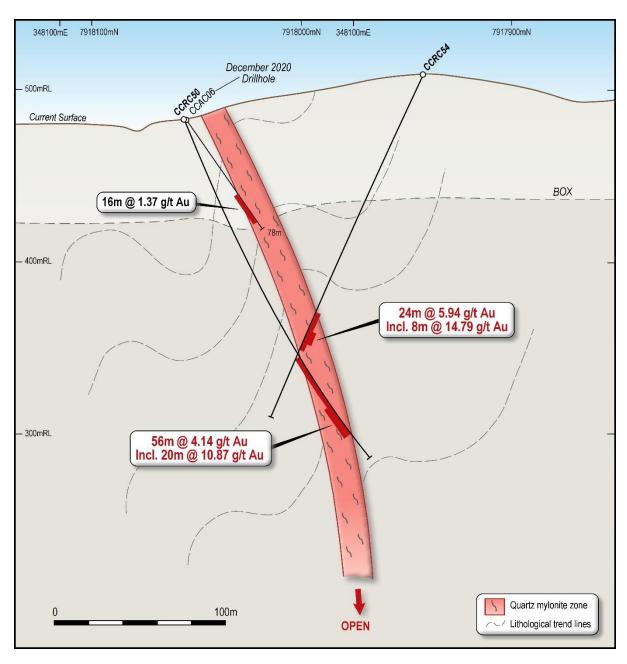


Figure 2: Cross Section CCRC50 and CCRC54

Great Northern Minerals Limited ABN 22 000 002 111 www.greatnorthernminerals.com.au

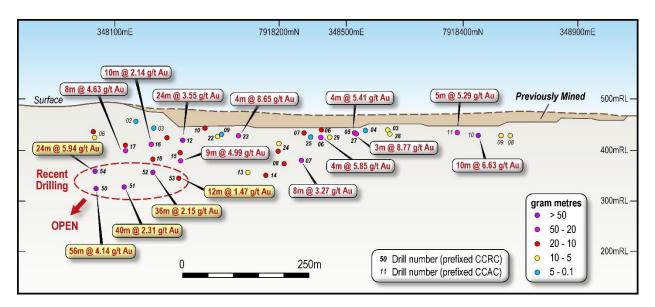


Figure 3: Long Section: Camel Creek

Table One: Four metre composite results:(CCRC30→CCRC54) Camel Creek Gold Project (>0.2 g/t Au)

Hole	East	North	RL	Dip	Azimuth	Final Depth	From	То	Intersection
CCRC30	349483	7919254	458	-55	140	95	68	76	8 m @ 1.09 g/t Au
CCRC31	349465	7919236	458	-55	140	83			NSR
CCRC32	349187	7919041	458	-55	130	119			NSR
CCRC33	349101	7918971	458	-55	130	125	92	96	4 m @ 0.23 g/t Au
CCRC33						and	104	112	8 m @ 0.43 g/t Au
CCRC34	349074	7918824	458	-55	310	66	48	52	4 m @ 0.28 g/t Au
CCRC35	348933	7918705	458	-60	310	77			NSR
CCRC36	348806	7918438	458	-55	310	83			NSR
CCRC37	348808	7918436	458	-70	310	101			NSR
CCRC38	348870	7918476	460	-55	310	77	64	68	4 m @ 1.34 g/t Au
CCRC39	348918	7918505	486	-55	310	77	56	64	8 m @ 1.47 g/t Au
CCRC40	348919	7918502	485	-70	310	95	60	64	4 m @ 0.44 g/t Au
CCRC40						and	80	84	4 m @ 4.20 g/t Au
CCRC41	348988	7918551	484	-55	310	77	56	60	4 m @ 0.66 g/t Au
CCRC41						and	64	68	4 m @ 0.90 g/t Au
CCRC42	349059	7918607	472	-55	305	59	36	52	16 m @ 0.82 g/t Au
CCRC43	349058	7918604	472	-70	305	101	64	68	4 m @ 0.70 g/t Au
CCRC43						and	80	92	12 m @ 0.31 g/t Au
CCRC44	349095	7918626	469	-55	305	65	44	48	4 m @ 0.46 g/t Au
CCRC45	349164	7918673	472	-55	310	53	20	24	4 m @ 2.15 g/t Au
CCRC46	349161	7918672	478	-70	310	53	36	44	8 m @ 0.61 g/t Au
CCRC47	348560	7918443	476	-65	123	131	96	100	4 m @ 1.27 g/t Au
CCRC47						and	112	120	8m @ 3.29 g/t Au
CCRC48	348534	7918392	476	-55	120	89	52	60	8 m @ 1.58 g/t Au
CCRC49	348530	7918395	482	-65	130	101	84	88	4 m @ 2.10 g/t Au
CCRC50	348043	7918057	485	-65	140	227	152	208	56 m @ 4.14 g/t Au
CCRC51	348087	7918096	490	-65	140	238	160	200	40 m @ 2.31 g/t Au
CCRC52	348132	7918125	488	-65	140	224	128	164	36m @ 2.15 g/t Au
CCRC53	348169	7918160	486	-65	140	242	152	164	12 m @ 1.47 g/t Au
CCRC54	348119	7917939	515	-65	320	218	152	176	24 m@ 5.94 g/t Au

Great Northern Minerals Limited ABN 22 000 002 111 www.greatnorthernminerals.com.au

This is the third RC drilling program completed by GNM at Camel Creek (refer to ASX announcements dated 9 September 2020 and 24 January 2021 respectively) with drilling now extending over 1600 metres of potential strike extent and providing confidence in the extent of the gold mineralisation so far defined.

The first program conducted in August 2020 drilled 18 holes of RC drilling for 2516 metres with numerous high grade intersections being returned and highlighted the potential of the Hinge Zone target for additional mineralisation in this area.

The second program was conducted in December 2020 with 4 aircore holes for 285 metres and 11 slimline (4 inch) RC holes for 805 metres being drilled. This program also successfully tested and extended the mineralisation existing underneath the previously mined shallow open pits. A summary of the 2020 results and appropriate plans and sections are presented below.

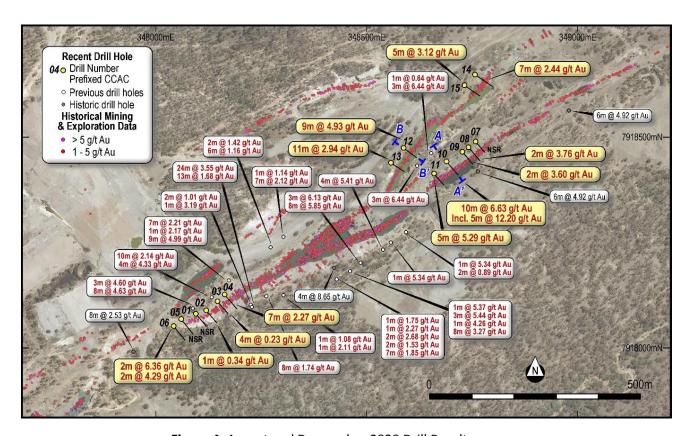


Figure 4: August and Decemeber 2020 Drill Results

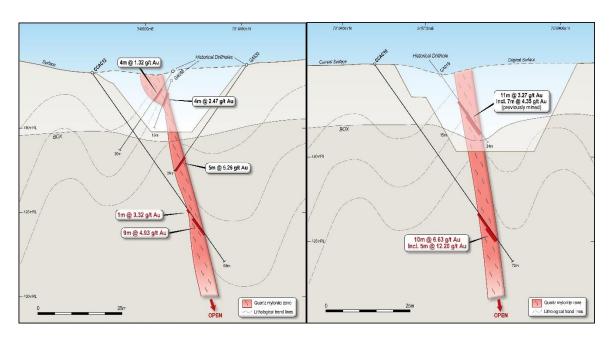


Figure 5: Cross Section CCAC12

Figure 6: Cross Section CCAC10

Table Two: August and Decemeber 2020 Camel Creek Project Drill Results (>0.2 g/t Au)

Hole	East	North	RL	Dip	Azimuth	Depth	From	То	Intersection
CCRC01	348652	7918461	471	-55	305	78	6	7	1 m @ 0.64 g/t Au
CCRC01	340032	7310401	7/1	33	303	70	50	53	3 m @ 6.44 g/t Au
CCRC02	348617	7918433	468	-55	303	80	37	40	3 m @ 4.45 g/t Au
CCRC03	348590	7918433	478	-55	320	160	50	51	1 m @ 5.34 g/t Au
CCRC03	340330	7310270	470	-33	320	100	140	142	2 m @ 0.89 g/t Au
CCRC04	348556	7918250	482	-55	320	155	55	56	1 m @ 1.54 g/t Au
CCRC05	348538	7918234	487	-50	332	173	63	67	4 m @ 5.41 g/t Au
CCRC06	348484	7918202	491	-55	320	167	69	72	3 m @ 6.13 g/t Au
CCRC06	340404	7310202	431	-33	320	107	88	92	4 m @ 5.85 g/t Au
CCRC07	348458	7918183	492	-55	320	167	70	71	1 m @ 5.37 g/t Au
CCRC07	340430	7310103	432	-33	320	107	81	84	3 m @ 5.44 g/t Au
CCRC07							101	102	1 m @ 4.26 g/t Au
CCRC07							147	155	8 m @ 3.27 g/t Au
CCRC08	348428	7918163	494	-55	320	167	79	80	1 m @ 1.75 g/t Au
CCRC08	340420	7310103	434	-33	320	107	85	86	1 m @ 2.27 g/t Au
CCRC08							89 89	91	2 m @ 2.68 g/t Au
CCRC08							102	104	2 m @ 1.53 g/t Au
CCRC08							147	154	
CCRC09	348300	7918128	480	-55	320	125	44	45	7 m @ 1.85 g/t Au 1 m @ 1.08 g/t Au
CCRC09	346300	7910120	460	-33	320	123			
CCRC10	348263	7010124	470		220	107	61	62	1 m @ 2.11 g/t Au
CCRC10	348203	7918124	478	-55	320	107	34 41	35 49	1 m @ 1.46 g/t Au
	240221	7010106	401		220	C.E.			8 m @ 1.74 g/t Au
CCRC11	348221	7918106	481	-55	320	65	38	40	2 m @ 1.01 g/t Au
CCRC11	240222	7010102	401	00	220	125	43	44	1 m @ 3.19 g/t Au
CCRC12	348223	7918103	481	-80	320	125	58	82	24 m @ 3.55 g/t Au
CCRC12	240271	7040330	476	F0	140	101	95	108	13 m @ 1.68 g/t Au
CCRC13	348271	7918239	476	-50	140	191	94	96	2 m @ 1.42 g/t Au
CCRC13	240202	7040265	474	F0	110	407	163	169	6 m @ 1.16 g/t Au
CCRC14	348303	7918265	474	-50	140	197	88	89	1 m @ 1.14 g/t Au
CCRC14	240172	7019160	477		140	127	168	175	7 m @ 2.12 g/t Au
CCRC15	348172	7918160	477	-55	140	137	89	96	7 m @ 2.21 g/t Au
CCRC15							100	101	1 m @ 2.17 g/t Au
CCRC15	240122	7010122	400		140	121	109	118	9 m @ 4.99 g/t Au
CCRC16	348133	7918122	480	-55	140	131	69	79	10 m @ 2.14 g/t Au
CCRC16	240007	7019006	404		140	1.40	111	115	4 m @ 4.33 g/t Au
CCRC17	348087	7918096	484	-55	140	149	76	79	3 m @ 4.60 g/t Au
CCRC17	247675	7017610	404	F0	220	1.42	85	93	8 m @ 4.63 g/t Au
CCRC18	347675	7917619	484	-50	320	143	101	103	2 m @ 0.97 g/t Au
CCA CO1	240005	7040003	404		140	CO			NCD
CCAC01	348095	7918082	484	-55	140	68	24	22	NSR
CCAC02	348119	7918091	483	-55	140	68	31	32	1 m @ 0.34 g/t Au
CCAC03	348146	7918112	482	-55	140	68	44	48	4 m @ 0.23 g/t Au
CCAC04	348163	7918128	481	-55	140	81	61	74	13 m @ 1.41 g/t Au 7 m @ 2.27 g/t Au
CCAC04	240000	7010070	402		140	including	61	68	0 0.
CCAC05	348060	7918070	482	-55	140	81	F2	Γ4	NSR
CCAC06	348042	7918053	481	-55	140	76	52	54	2 m @ 6.36 g/t Au
CCAC06	240750	7010400	470		140	including	67	69	2 m @ 4.29 g/t Au
CCAC07	348758	7918489	479	-55	140	60	F0	60	NSR
CCAC08	348741	7918475	478	-55	140	72	58	60	2 m @ 3.76 g/t Au
CCAC09	348727	7918465	480	-55	140	74	60	62	2 m @ 3.60 g/t Au
CCAC10	348689	7918442	478	-55	140	72	54	64	10 m @ 6.63 g/t Au
CCAC10	240050	7010414	470		1.40	including	59	64	5 m @ 12.20 g/t Au
CCAC11	348659	7918414	476	-55	140	66	47	52	5 m @ 5.29 g/t Au
CCAC12	348587	7918474	466	-55	125	68	49	58	9 m @ 4.93 g/t Au
CCAC13	348558	7918439	473	-55	125	68	28	36	8 m @ 0.59 g/t Au
CCAC13					1	in almitte	40	57	17 m @ 2.19 g/t Au
CCAC13	240757	7010040	477		125	including	46	57	11 m @ 2.94 g/t Au
CCAC14	348757	7918648	477	-55	125	90	76	83	7 m @ 2.44 g/t Au
CCAC15	348732	7918622	473	-55	125	78	74	79	5 m @ 3.12 g/t Au

Great Northern Minerals Limited ABN 22 000 002 111 www.greatnorthernminerals.com.au

This announcement has been authorised for release to the market by the Board or Directors of Great Northern Minerals Limited.

ENDS

For more information please contact:

Managing Director
Cameron McLean
+61 8 6214 0148
info@greatnorthernminerals.com.au

Investor Relations
Peter Taylor, NWR Communications
+61 412 036 231

About Great Northern Minerals Limited

Great Northern Minerals Limited is an ASX-listed gold focused explorer. The Company's key North Queensland Gold Projects include the Golden Cup, Camel Creek and Big Rush Gold Mines in North Queensland. The historic mines ceased operation in the 1990's after production of over 150,000 oz at an average grade of 1.91g/t Au. Great Northern Minerals aims to extend known mineralisation and develop a significant gold resource in North Queensland.

Competent Persons Statement

The information in this report that relates to Exploration Results is based on information compiled under the supervision of Simon Coxhell, the Technical Director of Great Northern Minerals Limited. Mr Coxhell is a member of the Australasian Institute of Mining and Metallurgy and has sufficient experience of relevance to the styles of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves." Mr Coxhell consents to the inclusion in this report of the matters based on his information in the form and context in which they appear.

Section 1 JORC Code, 2012 Edition - Sampling Techniques and Data

Criteria	ORC Code, 2012 Edition - Sampling Ted JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information. 	 Drilling reported is angled Reverse Circulation (RC) drilling. Sampling consists of four metre composite split samples. Sample weights were approximately 3kg of material. The full sample was pulverised. Fire Assaying (gold only) was completed using a 50 g charge. One metre samples related to the anomalous 4 metre results will now be individually anlaysed for a multielement suite, via ICP and individual fire assays for gold. Assaying was completed at Intertek Ltd.'s assay laboratory in Townsville.
Drilling techniques	 Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 All drilling at Camel Creek was angled Reverse Circulation drilling using a face sampling hammer. (150mm)
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Sample recoveries were assessed visually and appeared to be consistent throughout drill holes. All samples were dry. No measures needed to be taken. No sample bias believed to occur.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 Geological logging of colour, weathering, lithology, alteration and mineralisation has been undertaken. RC is considered both qualitative and quantitative in nature. The total length of the RC holes were logged.

Great Northern Minerals Limited ABN 22 000 002 111 www.greatnorthernminerals.com.au

Criteria	JORC Code explanation	Commentary
Sub- sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 Drilling was RC not core drilling. 1m samples were collected straight from the drill rig cyclone and splitter. Representative 4 metre composite samples were collected by a standard systematic quantity from every individual metre sample and composited. Sampling is considered representative. Internal laboratory standards used. No duplicates taken at this stage. 3kg sample size considered appropriate for the grain size of the sedimentary rock units sampled.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established. 	 The assaying work was Fire Assay (50g) which is industry standard assay technique for gold mineralisation. No instruments reported. Laboratory standards utilised.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Historic mining within 40m also recorded gold mineralisation although thickness and grade varies yet this is believed to represent the changing nature of this style of mineralisation. No twin holes were drilled, All previous drilling in shallow zones. Data was collected on paper and entered into an Excel Worksheet. No adjustments to assay results.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Coordinates located by hand held Garmin GPS. Co-ordinates are recorded in GDA94 zone 55. Control considered to be good.(+/- 2 metres)
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity 	 Drilling was on nominal 40 metre centres. Data spacing is believed sufficient to establish geological and grade continuity.

Great Northern Minerals Limited ABN 22 000 002 111 www.greatnorthernminerals.com.au

Criteria	JORC Code explanation	Commentary
	 appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 One metre samples and composited samples were taken. Assay results reported are all 4 metre composite samples.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	The attitude of the lithological units is predominantly believed to be NE striking and dipping at a moderate angle towards the southeast. Drilling was generally perpendicular to the considered lithology orientation with holes drilled at azimuths of 130 and 310 degrees at dip angles between -50 to -75 degrees. Due to locally varying intersection angles between drillholes and lithological units all results will be defined as downhole widths. True widths of the mineralised zones are interpreted as between 2-10 metres true thickness No drilling orientation and sampling bias has been recognised at this time and it is not considered to have introduced a sampling bias.
Sample security	 The measures taken to ensure sample security. 	 Samples taken by qualified staff and delivered to assay laboratory by company representatives.
Audits or reviews	 The results of any audits or reviews of sampling techniques and data. 	No audits or reviews completed.

Section 2 JORC Code, 2012 Edition - Reporting of Exploration Results

Criteria		JORC Code explanation		Commentary
Mineral tenement and land tenure status	•	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	•	Mining Leases are held by Golden Ant Mining Pty Ltd, a 100% owned subsidiary of Great Northern Minerals Limited. The Mining Lease is granted.
Exploration by other parties	•	Acknowledgment and appraisal of exploration by other parties.	•	The Camel Creek Gold Mine has been the subject of substantial previous exploration, shallow resource definition drilling and mining operations. Lynch Mining first recognized gold mineralization in the Camel Creek area in 1986 and mined the shallow oxide portion of the deposit and treated via a heap leach operation. Great Northern Minerals Ltd (previously Greenpower Energy Ltd acquired the final interest in the project in August 2020).
Geology	•	Deposit type, geological setting and style of mineralisation.	•	The gold mineralisation at Camel Creek is located within the generally tightly folded

Great Northern Minerals Limited ABN 22 000 002 111 www.greatnorthernminerals.com.au

Criteria	JORC Code explanation	Commentary
		sediments of the early Devonian age Kangaroo Hills Formation which is characterised by a varying assemblage comprising sandstone, mudstone and lesser tuff.
		The area is traversed by a major north west/south east structural corridor paralleling the Sybil Graben, with many of the numerous basaltic, andesitic and rhyolitic dykes of the region sharing a similar trend. The region has undergone three significant periods of deformation with gold mineralisation introduced during at least four different phases, resulting in a complex mineralogical history. Gold is strongly associated with quartz veining.and arsenopyrite and stibnite.
Drill hole • Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: • easting and northing of the drill hole collar • elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar • dip and azimuth of the hole • down hole length and interception depth • hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	Refer to Table One of this ASX Announcement which provides easting and northing of the drill collars, dip, azimuth and end of hole depths.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 The drill intercepts reported in Table One are on a length weighted basis. No high-grade cuts have been applied to the tabled intersections. Based on the 4 metre composite results, all anomalous results greater than 0.2 g/t Au have been reported No metal equivalents are used or presented.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known'). 	the structure by angled RC at -55° to -75° into structures dipping at 80 degrees to the south east. • Due to locally varying intersection angles between drill holes and lithological units all results will be

Great Northern Minerals Limited ABN 22 000 002 111 www.greatnorthernminerals.com.au

Criteria	JORC Code explanation	Commentary
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	 Maps and sections are presented in the announcement.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	 The accompanying document is considered to represent a balanced report.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples — size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	 The Camel Creek Gold Project has been the subject of substantial previous exploration, resource definition drilling and mining operations. Anomalous antimony and arsenic vales have been indicated from portable XRF results, and metallurgical test work is planned.
Further work	 The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Further work will include; Drill testing for extensions to the known mineralization, mostly down dip and down plunge. Metallurgical test work to determine the most appropriate process route for potential gold recovery.