

Black Cat Syndicate Limited ("**Black Cat**" or "**the Company**") is pleased to announce an update on RC drilling at various early-stage targets within the Kal East Gold Project ("**Kal East**").

HIGHLIGHTS

- Assays from programs at the Majestic, Fingals, and Trojan Mining Centres highlight the potential for Resource growth, along with encouraging results on early-stage targets.
- Discovery drilling results include:
 - o 4m @ 18.40 g/t Au from 96m (21IMRC022) northern extension of Imperial deposit (Majestic)
 - o 8m @ 5.23 g/t Au from 48m (21IMRC002) southern extension of Imperial deposit (Majestic)
 - o 8m @ 2.25 g/t Au from 36m (21IMRC015) new target, Majestic Mining Centre
 - o 2m @ 7.64 g/t Au from 40m (21FRRC016) new target, south of Fingals
 - o 4m @ 5.25 g/t Au from 28m (21FRRC034) new target, south west of Fingals
 - o 7m @ 5.04 g/t Au from 61m (21TNRC001) possible extension of Trojan, south of dolerite dyke
 - o 4m @ 6.67 g/t Au from 84m (21TNRC006) new parallel target, south east of Trojan
- ~75,000m drilled since July 2020 and ~4,500 samples remain outstanding. Black Cat is fully funded to drill a further ~80,000m in 2021.
- RC and diamond drill rigs on site at Majestic, currently testing new targets and the depth extension to the Majestic deposit.

Figure 1: Diamond rig in action at Majestic Mining Centre

Black Cat's Managing Director, Gareth Solly said: "Recent drilling has focused on making discoveries at Kal East. Particularly pleasing are the results north of Imperial including the high-grade 4m @ 18.4 g/t Au. This is the most northerly intersection to date and in an area that historically has not been drilled deep enough. Furthermore, we have seen significant intersections at early-stage targets at Fingals. Importantly, our first drill program at Trojan has already confirmed two exciting targets and indicates that mineralisation extends beyond a dolerite dyke to the south. This demonstrates the potential for growth around our core mining centres."

BLACK CAT SYNDICATE LIMITED (ASX:BC8)

Level 3, 52 Kings Park Road, West Perth WA 6005 PO Box 184, West Perth WA 6872 T: +61 458 007 713 | E: admin@blackcatsyndicate.com.au W: www.blackcatsyndicate.com.au ABN 63 620 896 282

DIRECTORS

Paul Chapman
Gareth SollyNon-Executive Chairman
Managing DirectorPhilip CrutchfieldNon-Executive Director
Non-Executive DirectorLes DavisNon-Executive Director
Non-Executive Director

CORPORATE STRUCTURE

Ordinary shares on issue: 138.7M Market capitalisation: A\$98M (Share price A\$0.71) Cash (post placement): A\$21.6M

Majestic Mining Centre (M25/350, P25/2323) 100%

A 28 hole RC program was completed in April 2021 for 4,840m. The program had several objectives: extend the Imperial Resource at depth; test below the stripped profile north of Imperial; and test early-stage targets within the greater Majestic Mining Centre. Most holes were sampled as 4m composites, with appropriate 1m re-splits submitted for assay and further results expected in June 2021. Recent results include¹:

- 8m @ 5.23 g/t Au from 48m (21IMRC002) southern extension to Imperial
- 1m @ 16.60 g/t Au from 155m (21IMRC002) southern extension to Imperial²
- 5m @ 2.95 g/t Au from 175m (21IMRC002) southern extension to Imperial²
- 1m @ 14.70 g/t Au from 228m (21IMRC002) southern extension to Imperial²
- 1m @ 9.78 g/t Au from 228m (21IMRC003) southern extension to Imperial²
- 4m @ 3.29 g/t Au from 72m (21IMRC005) northern extension to Imperial
- 8m @ 2.25 g/t Au from 36m (21IMRC015) early-stage target, north east of Imperial
- 4m @ 2.92 g/t Au from 20m (21IMRC017) early-stage target, northern extension to Crown
- 4m @ 18.40 g/t Au from 96m (21IMRC022) northern extension to Imperial

These results confirm multiple areas require follow up drilling. Most promising are the results to the north of Imperial, including <u>4m @ 18.40 g/t Au from 96m</u> returned directly north of the current Resource. It is considered that mineralisation has not been adequately tested along strike of Imperial at depth. Both Imperial and Majestic exhibit a stripped profile which deepens to the north. As shown in Figure 2, no holes test the fresh rock to the north of the current Resource.

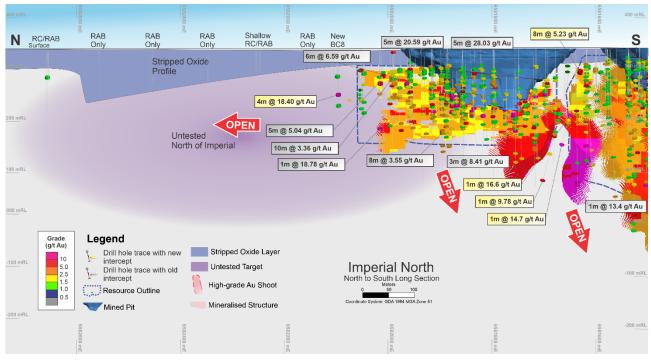


Figure 2: Long Section showing significant potential north of Imperial with no historical holes intersecting fresh rock for 600m north of the current Resource at Imperial

Multiple zones of mineralisation were also successfully intercepted at depth to the south of Imperial. Additionally, new targets returned positive results including the historic gold/copper target 200m south of Majestic³, and further deeper drilling is warranted. The Company intends to drill the untested zone North of Imperial and at depth south of Majestic as part of the 2021 drilling campaign.

¹ All 4m comps unless otherwise stated

² 1m samples

³ Refer ASX announcement 11 March 2021

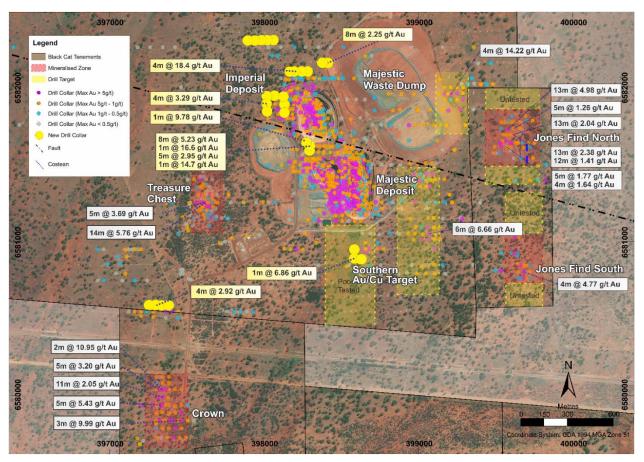


Figure 3: Plan view of recent drilling at the Majestic Mining Centre. Highlights include extensions to the north and south of Imperial and potential discoveries north of Crown and south east of Majestic at the southern Au/Cu target

Figure 4: Aerial view of diamond rig working at Imperial (foreground) and RC rig at Majestic (background)

Fingals Mining Centre (M26/357, M26/148, M26/248 and M26/364) 100%

The Fingals Mining Centre produced ~420,000t @ 2.7 g/t Au for 56,500 oz from multiple open pits in the early 1990's and only limited modern exploration had been undertaken since. The current Resource (2.6Mt @ 1.8 g/t Au for 156,000 oz) is open along strike and at depth.

A 60 hole program for 4,844m was completed in April 2021, focussing on regional exploration within the area. Targets included: follow up of historic drilling results; a poorly tested line of pre-WW1 shafts; and interpreted intersections of prospective structures and lithologies. Assays for 40 holes have been received and results include:

- 4m @ 3.36 g/t Au from 12m (21FRRC016) historic target south of Fingals
- 2m @ 7.64 g/t Au from 40m (21FRRC016) historic target south of Fingals (ended in mineralisation)
- 4m @ 2.99 g/t Au from 52m (21FRRC017) testing historic drilling south of Fingals
- 4m @ 5.25 g/t Au from 28m (21FRRC034) lithological target south west of Fingals
- 8m @ 1.15 g/t Au from 52m (21FRRC024) lithological target south west of Fingals
- 4m @ 3.04 g/t Au from 52m (21FRRC013) one of several lines of shafts south of Fingals
- 4m @ 1.46 g/t Au from 40m (21FRRC007) one of several lines of shafts south of Fingals

These encouraging results indicate that all areas require further drilling. Additionally, several results are associated with altered felsic porphyries which will require drilling and definition.

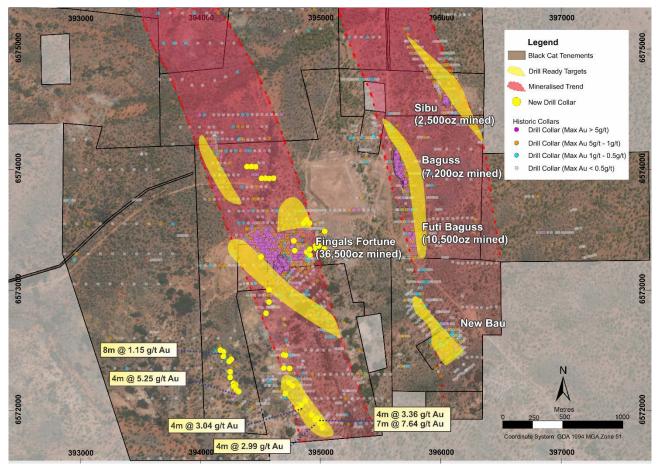


Figure 5: Plan view of recent regional drilling at Fingals Mining Centre (coloured squares) with historic workings mapped (red dots)

Trojan Mining Centre (M25/0104, E25/0571, E25/0558, E25/0526 and P25/2333) 100%

The Trojan Mining Centre is located 10km east of the proposed mill site on mining lease M25/0104. Open pit mining between 2000-2004 extracted 1.97Mt @ 1.97 g/t Au for 125,129oz. Mining ceased when the gold price dropped to US\$400oz and little work has been undertaken since. The current Resource is 2.1Mt @ 1.7 g/t Au for 115,000oz and is open at depth and potentially along strike.

Black Cat commenced its maiden drilling program at Trojan with a 20 hole (2,156m) program as first pass testing of parallel shears. Assays for 14 of holes have been received with two exciting targets identified:

- 7m @ 5.04 g/t Au from 61m (21TNRC001) south along strike of the Trojan deposit
- 4m @ 6.67 g/t Au from 84m (21TNRC006) parallel shear south east of the Trojan deposit⁴

Hole 21TNRC001 is located 300m south of the Trojan deposit and extends historical intersections of <u>4m @</u> <u>7.13g/t Au from 51m (CMM417)</u> and <u>5m @ 4.40g/t Au from 63m (TEXRC010)</u>. This area lies south of a cross cutting dolerite dyke which in the past has been interpreted to close off the Trojan deposit. The intercept is located on the Trojan shear along the stratigraphic contact between an andesite and the felsic unit (which hosts the Trojan deposit to the north). Additional drilling is being planned to extend and further test the mineralisation south of the dolerite dyke.

Hole 21TNRC006 is located on an interpreted parallel shear ~1km to the south east of the Trojan deposit. This intercept occurs within fresh andesitic rock, 50m south of a historical intercept of <u>1m @ 2.67 g/t Au from 96m</u> (CMM499). This area will also be subject to follow up drilling.

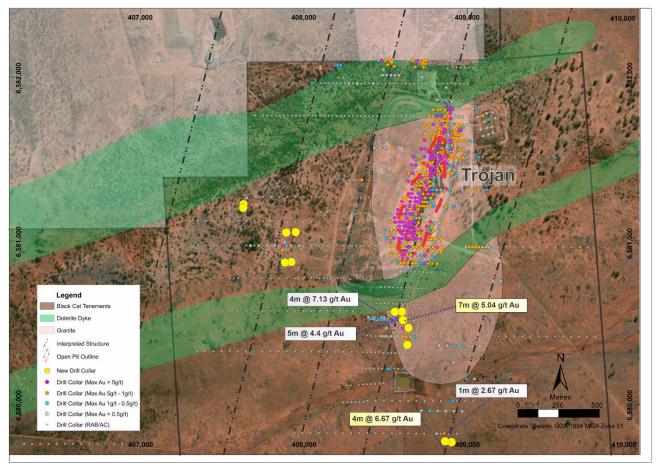


Figure 6: Plan view at Trojan Mining Centre. Results highlight the possible extension of Trojan to the south of the dolerite dyke (green) and a possible parallel deposit to the south east of Trojan

⁴ 4m comp

PLANNED DRILLING

Black Cat's ongoing drilling program is progressing well with ~75,000m drilled from 1 July 2020 to mid-May 2021. RC drilling has recently focussed on upgrading Inferred Resources to Indicated, as well as testing regional targets. Black Cat intends to drill, report and update Resources on an ongoing basis.

Black Cat is fully funded to drill a further ~80,000m in 2021 focussed on Resource growth, Reserve definition and discovery potential across Kal East.

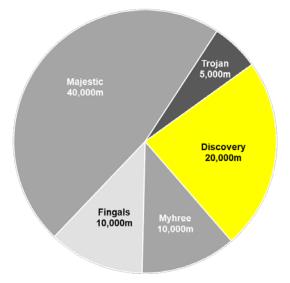


Chart 1: Black Cat's planned drilling by location through to the end of 2021

RC and diamond drilling activity will focus on the following programs through to the end of 2021:

- Majestic Mining Centre: Resource extensions, infill drilling, and infrastructure sterilisation;
- Fingals Mining Centre: Resource extensions and infill drilling of the planned open pit;
- Myhree Mining Centre: Grade control and infrastructure sterilisation;
- Trojan Mining Centre: Resource extension and discovery follow up;
- Other Areas: Resource infill and extension as well as exploration drilling at Rowe's Find, Bulong, Black Hills and Wombola.

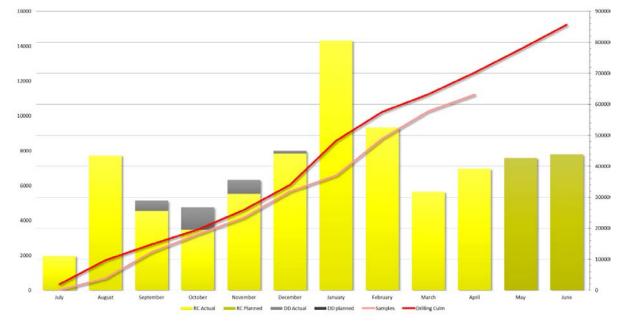


Chart 2: Black Cat's drilling plan with progress on drill metres and assay samples results showing a steady reduction in assay backlogs

RECENT AND PLANNED ACTIVITIES

Upcoming activities include:

Planned Activities	May 21	Jun 21	Jul 21	Aug 21	Sep 21	Oct 21
RC drilling						
Mining & processing plant approvals						
Processing facility engineering and design						
Milling facility acquisition and relocation						
Updated Resources						
Quarterly reports						
Ongoing acquisition of major equipment components (e.g. crusher)						
Presentation at 121 Mining Investment EMEA conference						
General Meeting of Shareholders 17 June 2021						
Presentation at Noosa Mining & Exploration Investor Conference						
Exhibiting at Diggers and Dealers, Kalgoorlie						
Annual Financial Statements						

For further information, please contact:

Gareth Solly

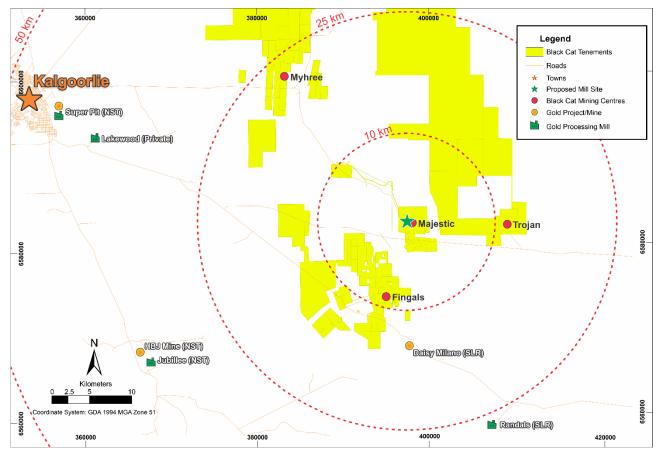
Managing Director

+61 458 007 713

admin@blackcatsyndicate.com.au

This announcement has been approved for release by the Board of Black Cat Syndicate Limited.

ABOUT BLACK CAT SYNDICATE (ASX: BC8)


Black Cat's Kal East Gold Project comprises 756km² of highly prospective tenements to the east of the world class mining centre of Kalgoorlie, WA. Kal East contains a combined JORC 2012 Mineral Resource of 14.3Mt @ 2.2 g/t Au for 1,025,000oz which are mainly located in the Myhree, Majestic, Fingals and Trojan Mining Centres.

Black Cat plans to construct a central processing facility near the Majestic Mining Centre, ~50kms east of Kalgoorlie. This location is well suited for a processing facility and sits within a short haulage distance of the bulk of Black Cat's Resources. The processing facility will be a traditional Carbon-In-Leach gold plant which is ideally suited to Black Cat's Resources as well as to third party free milling ores located around Kalgoorlie.

Black Cat is well advanced on securing key long lead time items. High quality used grinding mills and associated infrastructure have already been purchased and will be refurbished and relocated to the Majestic Mining Centre during 2021. Other key components have also been identified for procurement and Black Cat intends to secure all items needed to allow production to commence in the second half of 2022.

Black Cat's extensive ground position contains a pipeline of projects spanning from exploration targets on new greenstone belts, Resource extensions around historic workings and study work for the definition of maiden Ore Reserves.

Black Cat is actively growing and increasing confidence in the current Resource with an ongoing drilling program underway and delivering results.

Regional map of Kalgoorlie showing the location of the Kal East Gold Project as well as nearby infrastructure

TABLE 1: DRILL RESULTS - All significant intercepts are reported at 1 g/t Au cut; maximum of 1m continuous internal dilution.

MAJESTIC R	EGIONAL RC	DRILLING – Ma	rch/April 2	021				Downł	ole
Hole_ID	MGA_East	MGA_North	RL	Dip	Azimuth	From (m)	To (m)	Interval (m)	Au Grade (g/t)
21IMRC001	398281	6581594	336	-60	90	48	52	4	1.04
211101110001	390201	0301394	330	-00	90	168	169	1	2.49
						48	56	8	5.23
						155	156	1	16.6
21IMRC002	398284	6581624	336	-60	90	168	169	1	1.5
						175	180	5	2.95
						228	229	1	14.7
						142	143	1	1.08
						146	147	1	1.2
						158	159	1	1.24
						163	164	1	2.73
21IMRC003	398261	6581645	336	-60	90	184	185	1	1.12
						191	192	1	4.04
						195	196	1	6.94
						235	236	1	1.67
						297	298	1	9.78
21IMRC004	398056	6581945	336	-60	90	108	112	4	1.93
						72	76	4	3.29
21IMRC005	398007	6581943	336	-60	90	214	215	1	1.1
						235	238	3	2
						216	218	2	2.01
21IMRC006	398006	6581894	336	-60	90	226	227	1	1.37
						264	266	2	2.2
21IMRC007	398009	6581845	336	-60	90	148	152	4	1.69
21111100001				00		229	231	2	2
21IMRC008	398117.147	6581845.161	335.92	-60	96				No Significant Intercept
21IMRC009	398120	6581890	336	-60	90	40	48	8	1.23
						217	219	2	4.14
21IMRC010	398114	6581940	335	-60	90	52	56	4	1.85
21IMRC011	398617.809	6580901.777	340.06	-61	96				No Significant Intercept
21IMRC012	398569	6580901	340	-60	90	120	121	1	6.86
2111110012			070	00		140	141	1	1.2
21IMRC013	398566.572	6580956.323	339.618	-61	92				No Significant Intercept
21IMRC014	397367.892	6580601.133	347.234	-61	95				No Significant Intercept
21IMRC015	398399	6582156	333	-60	90	36	44	8	2.25
21IMRC016	397332	6580600	347	-60	<u></u>	40	44	4	1.16
21111111111111111	331332	000000	547	-00	60 90	60	64	4	1.24

						20	24	4	2.92
21IMRC017	397293	6580602	348	-60	90	72	76	4	1.63
						92	96	4	1.17
21IMRC018	397251	6580601	348	-60	90	68	72	4	1.75
21IMRC019	398363	6582157	333	-60	90	104	108	4	1.05
21IMRC020	398269.26	6582100.936	333.843	-60	45				No Significant Intercept
21IMRC021	398230	6582101	334	-60	90	96	100	4	2.64
	200404	0500404	224	00	00	96	100	4	18.4
21IMRC022	398184	6582101	334	-60	90	120	124	4	1.46
21IMRC023	398154	6582100	334	-60	90	56	60	4	1.34
21IMRC024	398048.917	6582302.511	333.932	-60	93				No Significant Intercept
21IMRC025	398010	6582302	334	-60	90	24	28	4	1.45
21IMRC026	397972	6582302	335	-60	90	32	36	4	1.04
21IMRC027	397929	6582300	335	-60	90	48	52	4	2.1
21IMRC028	397890.059	6582301.741	335.449	-61	90				No Significant Intercept
21IMRC029	388456	6581563	339.5	-55	120				Awaiting Results
21IMRC030	398376	6581564	339.3	-54	131				Awaiting Results

FINGALS FO			– March/A	opril 2021				Downh	ole
Hole_ID	MGA_East	MGA_North	RL	Dip	Azimuth	From (m)	To (m)	Interval (m)	Au Grade (g/t)
21FIRC089	395051	6573401	397	-60	90	10	11	1	9
21FIRC090	395048	6573350	394.7	-59.1	88.81				No Significant Intercept
						48	51	3	3.53
21FIRC091	394972	6573377	395	-60	90	55	60	5	1.85
						62	63	1	1.83
21FIRC092	394976	6573354	394.3	-60.38	83.55				No Significant Intercept
21FIRC093	394898	6573323	396	-60	90	58	59	1	1.27
21FIRC094	394793	6573336	395.4	-89.14	155.19				No Significant Intercept
						34	35	1	1.08
						47	48	1	3.09
21FIRC095	394921	6573572	399	-60	90	51	53	2	1.13
						70	73	3	3.12
						20	21	1	1.85
	004070	0570574	000	00	00	25	26	1	5.96
21FIRC096	394870	6573571	399	-60	90	50	51	1	1.15
						69	71	2	1.94
						140	141	1	1.02
						146	147	1	1.35
045100007	004570	0570000	202	<u> </u>	00	149	150	1	2.69
21FIRC097	394573	6572999	392	-60	90	158	159	1	2.36
						166	167	1	1.23
						179	180	1	1.29
						52	53	1	3.57
21FIRC098	394573	6572895	392	-60	90	144	147	3	1.65
						210	211	1	1.06
						168	169	1	4.66
21EIBC000	201517	6572799	204	60	00	251	252	1	1
21FIRC099	394547	0012199	394	-60	90	264	268	4	3.41
						279	280	1	1.37
						102	103	1	2.1
						114	115	1	1.53
21FIRC100	394504	6573282	397	-60	90	122	123	1	6.33
						131 139	132 141	1 2	4.73 2.15
21FIRC101	394785	6573420	395	-60	90	139	21	2	1.12
217180101	J94105	0073420	১৪১	-00	90				
21FIRC102	394895	6573600	400	-60	90	22 27	23 33	1 6	2.52 1.11
211 110 102	001000	00,0000	100	50		72	55 74	2	2.27
1									

						75	76	1	2.11
						83	84	1	1.08
21FIRC103	395050.588	6573501.655	402.375	-61.27	92.99				No Significant Intercept
21FIRC104	394996.233	6573398.64	396.361	-61.39	90.05				Awaiting Results
21FIRC105	394999	6573376	396	-60	90	15	18	3	1.61
21FIRC106	394923	6573348	395	-60	90	53	54	1	1.02
21FIRC107	394925	6573297	394	-60	90	13	14	1	10.1
ZIFIRC107	394925	0373297	394	-00	90	40	44	4	1.46
21FIRC108	395048.717	6573295.841	394.23	-60.32	87.17				No Significant Intercept

FINGALS REGIO	ONAL RC DRIL	LING — March/A	April 20	21				Downh	ole
Hole_ID	MGA_East	MGA_North	RL	Dip	Azimuth	From (m)	To (m)	Interval (m)	Au Grade (g/t)
21FRRC001	394723	6572400	391	-60	91				Awaiting Results
21FRRC002	394675	6572396	391	-61	93				Awaiting Results
21FRRC003	394625	6572401	391	-61	90				Awaiting Results
21FRRC004	394573	6572400	391	-61	81				Awaiting Results
21FRRC005	394526	6572401	391	-61	79				Awaiting Results
21FRRC006	394780	6572401	391	-60	91				Awaiting Results
21FRRC007	394750	6572325	391	-61	92	40	44	4	1.46
21FRRC008	394700	6572328	384	-61	93	52	56	4	1.19
21FRRC009	394775	6572176	384	-61	92				No Significant Intercept
21FRRC010	394745	6572203	384	-61	89				No Significant Intercept
21FRRC011	394713	6572109	391	-60	48				No Significant Intercept
21FRRC012	394884	6572049	391	-60	45	72	76	4	1.15
21FRRC013	394848	6572012	391	-60	45	52	56	4	3.04
21FRRC014	394817	6571978	384	-60	45				No Significant Intercept
21FRRC015	394939	6571927	384	-60	45				No Significant Intercept
21FRRC016	394984	6571898	384	-70	45	12	16	4	3.36
ZIFRRCUIO	394904	037 1090	304	-70	45	40	42	2	7.64
21FRRC017	394969	6571886	384	-70	45	36	40	4	1.4
211 KKC017	394909	0371000	304	-70	45	52	56	4	2.99
21FRRC018	395026	6571872	384	-65	45				No Significant Intercept
21FRRC019	395006	6571854	384	-65	45				No Significant Intercept
21FRRC020	395031	6571815	384	-60	45				No Significant Intercept
21FRRC021	394697	6572441	390	-60	95				No Significant Intercept
21FRRC022	394714	6572492	390	-61	94				No Significant Intercept
21FRRC023	394155	6572482	390	-60	44				No Significant Intercept
21FRRC024	394181	6572467	390	-60	45	52	60	8	1.15
21FRRC025	394203	394203	390	-61	47				No Significant Intercept

21FRRC026	394180	6572429	390	-62	40				No Significant Intercept
21FRRC027	394248	6572403	390	-62	50				No Significant Intercept
21FRRC028	394230	6572386	390	-60	44				No Significant Intercept
21FRRC029	394239	6572296	390	-60	85				No Significant Intercept
21FRRC030	394239	6572249	390	-61	101				No Significant Intercept
21FRRC031	394268	6572197	390	-70	51				No Significant Intercept
21FRRC032	394285	6572185	390	-61	50				No Significant Intercept
21FRRC033	394269	6572173	390	-62	47				No Significant Intercept
21FRRC034	394292	6572142	390	-60	45	28	32	4	5.25
21FRRC035	394312	6572127	390	-89	274				No Significant Intercept
21FRRC036	394611	6573958	390	-61	94				No Significant Intercept
21FRRC037	394575	6573955	390	-60	93				No Significant Intercept
21FRRC038	394542	6573957	390	-60	104				No Significant Intercept
21FRRC039	394508	6573956	390	-61	94				No Significant Intercept
21FRRC040	394457	6574056	390	-61	95				No Significant Intercept
21FRRC041	394420	6574057	390	-61	96				No Significant Intercept
21FRRC042	394384	6574057	390	-61	97				No Significant Intercept
21FRRC043	394670	6574551	384	-60	92				Awaiting Results
21FRRC044	394621	6574549	389	-61	87				Awaiting Results
21FRRC045	395226	6572707	398	-61	47				Awaiting Results
21FRRC046	395019	6572732	395	-61	40				Awaiting Results
21FRRC047	394985	6572729	395	-61	53				Awaiting Results
21FRRC048	394911	6572698	398	-60	45				Awaiting Results
21FRRC049	394303	6573703	398	-60	90				Awaiting Results
21FRRC050	394261	6573704	398	-60	90				Awaiting Results
21FRRC051	393707	6573664	398	-61	92				Awaiting Results
21FRRC052	393659	6573666	398	-61	95				Awaiting Results
21FRRC053	393622	6573666	398	-61	92				Awaiting Results
21FRRC054	394024	6573926	398	-61	94				Awaiting Results
21FRRC055	393969	6573923	398	-60	94				Awaiting Results
21FRRC056	394000	6573984	398	-60	90				Awaiting Results
21FRRC057	393953	6573984	398	-60	90				Awaiting Results
21FRRC058	394000	6574525	398	-61	91				Awaiting Results
21FRRC059	393949	6574525	398	-60	90				Awaiting Results
21FRRC060	393902	6574525	398	-60	90				Awaiting Results

TROJAN REG	IONAL RC DR	ILLING – April			Down	hole			
Hole_ID	MGA_East	MGA_North	RL	Dip	Azimuth	From (m)	To (m)	Interval (m)	Au Grade (g/t)
						52	53	1	1.18
21TNRC001	408605	6580511	369	-61	94	61	68	7	5.04
						87	88	1	1.23
21TNRC002	408557	6580514	370	-61	95				Awaiting Results
21TNRC003	408638	6580464	369	-61	96				No Significant Intercept
21TNRC004	408631	6580360	369	-61	92				No Significant Intercept
21TNRC005	408901	6579766	369	-60	90				No Significant Intercept
21TNRC006	408862	6579771	369	-60	89	84	88	4	6.67
21TNRC007	408597	6580563	369	-61	91				No Significant Intercept
21TNRC008	408555	6580562	369	-61	91	84	88	4	1.03
21TNRC009	407922	6580866	369	-60	93				No Significant Intercept
21TNRC010	407883	6580863	369	-60	91				No Significant Intercept
21TNRC011	407949	6581049	369	-61	93				No Significant Intercept
21TNRC012	407891	6581046	369	-60	91				No Significant Intercept
21TNRC013	407630	6581219	369	-61	275				No Significant Intercept
21TNRC014	407628	6581197	369	-61	273				No Significant Intercept
21TNRC015	408875	6581857	377	-60	90				Awaiting Results
21TNRC016	408852	6581848	377	-60	92				Awaiting Results
21TNRC017	408802	6581860	377	-60	88				Awaiting Results
21TNRC018	409076	6581061	369	-60	94				Awaiting Results
21TNRC019	409042	6581059	369	-60	96				Awaiting Results
21TNRC020	408961	6581060	369	-61	87				Awaiting Results

APPENDIX A - JORC 2012 RESOURCE TABLE - Black Cat (100% owned)

The current in-situ, drill-defined Resources for the Kal East Gold Project are listed below.

		sured Min Resource	eral		cated Mine Resource		Inferred	Mineral R	esource	Total M	lineral Res	source
Deposit	Tonnes ('000s)	Grade (g/t Au)	Metal (000s	Tonnes ('000s)	Grade (g/t Au)	Metal ('000s	Tonnes ('000s)	Grade (g/t Au)	Metal ('000s	Tonnes ('000s)	Grade (g/t Au)	Metal ('000s
Ayhree Mining Centre												
Open Pit	-	-	-	964	2.7	83	863	1.8	50	1,827	2.3	132
Underground	-	-	-	230	4.6	34	823	3.5	93	1,053	3.8	127
Sub Total	-	-	-	1,194	3.0	117	1,686	2.6	143	2,880	2.8	259
Najestic Mining Centre												
Open Pit	-	-	-	2,083	1.6	104	1,969	1.4	90	4,052	1.5	194
Underground	-	-	-	627	4.9	100	476	5.5	84	1,103	5.2	184
Sub Total	-	-	-	2,710	2.3	204	2,445	2.2	174	5,155	2.3	37
ingals Mining Centre												
Open Pit	-	-	-	670	1.9	41	1,847	1.8	105	2,517	1.8	146
Underground	-	-	-	-	-	-	122	2.5	10	122	2.5	1(
Sub Total	-	-	-	670	1.9	41	1,969	1.8	115	2,639	1.8	15
rojan												
Open Pit	-	-	-	1,356	1.8	79	760	1.5	36	2,115	1.7	11
Sub Total	-	-	-	1,356	1.8	79	760	1.5	36	2,115	1.7	11
Other Resources				-								
Open Pit	13	3.2	1.0	200	2.6	17	1,134	2.3	85	1,347	2.4	10
Underground	-	-	-	-	-	-	114	3.8	14	114	3.8	14
Sub Total	13	3.2	1.0	200	2.6	17	1,248	2.5	99	1,461	2.5	11
TOTAL Mineral Resource	13	3.2	1.0	6,130	2.3	457	8,109	2.2	566	14,251	2.2	1,02
Edition'. . All tonnages reported are dry metric tr . Data is rounded to thousands of tonne. Resources have been reported as bo the original ASX announcements for ef- he announcements containing the Table 1. Myhree Mining Centre: o Boundary- o Trump – B	tonnages reported are dry metric tonnes. ta is rounded to thousands of tonnes and thousands of ounces gold. Discrepancies in totals may occur due to rounding. sources have been reported as both open pit and underground with varying cut-offs based off several factors discussed in the corresponding Table 1 which can be found w original ASX announcements for each Resource innouncements containing the Table 1 Checklists of Assessment and Reporting Criteria relating for the 2012 JORC compliant Resources are: 1. Myhree Mining Centre: o Boundary – Black Cat ASX announcement on 9 October 2020 "Strong Resource Growth Continues including 53% Increase at Fingals Fortune"; o Trump – Black Cat ASX announcement on 9 October 2020 "Strong Resource Growth Continues including 53% Increase at Fingals Fortune";											
 Strathfield – Black Cat ASX announcement on 31 March 2020 "Bulong Resource Jumps by 21% to 294,000 oz"; Majestic Mining Centre: Majestic – Black Cat ASX announcement on 11 March 2021 "1 Million Oz in Resource & New Gold Targets"; Sovereign – Black Cat ASX announcement on 11 March 2021 "1 Million Oz in Resource & New Gold Targets"; Imperial – Black Cat ASX announcement on 11 March 2021 "1 Million Oz in Resource & New Gold Targets"; 												
 Fingals Mining Centre: Fingals Fortune – Black Cat ASX announcement on 28 January 2021 "1 Million Ounce Resource in Sight"; Trojan: 												
5. Other Resources: o Queen Ma o Melbourne o Anomaly 3	rgaret – Bla United – Bl 8 – Black C	ck Cat ASX ack Cat AS> at ASX anno	announcem (announcer ouncement (ent on 18 F ment on 18 on 31 March	ebruary 201 February 20 1 2020 "Bulo	9 "Robust M 19 "Robust ng Resourc	laiden Mine Maiden Min e Jumps by	ral Resource eral Resour 21% to 294	e Estimate a ce Estimate ,000 oz";	at Bulong"; at Bulong";		:

- Wombola Dam Black Cat ASX announcement on 28 May 2020 "Significant Increase in Resources Strategic Transaction with Silver Lake";
 Hammer and Tap Black Cat ASX announcement on 10 July 2020 "JORC 2004 Resources Converted to JORC 2012 Resources";
 - Rome's Find Black Cat ASX announcement on 10 July 2020 "JORC 2004 Resources Converted to JORC 2012 Resources".
 Rome's Find Black Cat ASX announcement on 10 July 2020 "JORC 2004 Resources Converted to JORC 2012 Resources".

COMPETENT PERSON'S STATEMENT

The information in this announcement that relates to geology and exploration results and planning was compiled by Mr. Edward Summerhayes, who is a Member of the AIG and an employee, shareholder and option holder of the Company. Mr. Summerhayes has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr. Summerhayes consents to the inclusion in the report of the matters based on the information in the form and context in which it appears.

The Company confirms that it is not aware of any new information or data that materially affects the information in the original reports, and that the form and context in which the Competent Person's findings are presented have not been materially modified from the original reports.

Where the Company refers to the Mineral Resources in this report (referencing previous releases made to the ASX), it confirms that it is not aware of any new information or data that materially affects the information included in that announcement and all material assumptions and technical parameters underpinning the Mineral Resource estimate with that announcement continue to apply and have not materially changed.

MAJESTIC, FINGALS & TROJAN MINING CENTRES - 2012 JORC TABLE 1

Section 1: Sampling Techr	niques and Data	
Criteria	JORC Code Explanation	Commentary
Sampling techniques	Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.	Black Cat has recently undertaken sampling activities at Majestic Mining Centre, Fingals Mining Centre and Trojan Mining Centre by RC.
	Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.	Recent sampling undertaken by Black Cat provides high quality representative samples that are carried out to industry standard and include QAQC standards. All samples are weighed in the laboratory.
	Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1m samples from which 3kg was pulverised to produce a 30g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information.	Black Cat's recent RC drilling is sampled into 1m intervals via a cone splitter on the rig producing a representative sample of approximately 3kg. Samples are selected to weigh less than 3kg to ensure total sample inclusion at the pulverisation stage. Selected holes were sampled by 4m composits, taken with a spear. Composit samples returning a grade >0.1 g/t Au were then replit into the original 1m samples. All samples are crushed, dried and pulverised to a nominal 90% passing 75µm to produce a 40g or 50g sub sample for analysis by FA/AAS.
Drilling techniques	Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	RC drilling was completed using a face sampling percussion hammer. The RC bit size was 143mm diameter.
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed.	RC samples are checked visually.
	Measures taken to maximise sample recovery and ensure representative nature of the samples.	RC sample recovery and representivity were maintained through industry standard maintenance of the cone splitter and verified through the use of duplicate samples.
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	There is no known bias between sample recovery and grade.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. 	Logging of RC chips record lithology, mineralogy, texture, mineralisation, weathering, colour, alteration and veining. Chips from all Black Cat's RC holes are stored in chip trays and photographed for future reference. These chip trays are archived in Kalgoorlie.
	The total length and percentage of the relevant intersections logged.	All recent drilling has been logged in full.
Sub-sampling techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or all core taken.	No diamond core drilled.

Section 1: Sampling Technic	ques and Data	
Criteria	JORC Code Explanation	Commentary
	If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.	All Black Cat's RC sampling to date have been cone split to 1m increments on the rig, except those speared as part of a 4 meter composite. All samples to date have been dry.
	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	The laboratory preparation of samples adheres to industry best practice. It is conducted by a commercial laboratory and involves oven drying, coarse crushing then total grinding to a size of 90% passing 75µm.
	Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.	All subsampling activities are carried out by commercial laboratory and are considered to be satisfactory.
	Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second half sampling.	Black Cat's RC field duplicate samples are carried out at a rate of 1:50 and are sampled directly from the on-board splitter on the rig. These are submitted for the same assay process as the original samples and the laboratory are unaware of such submissions.
	Whether sample sizes are appropriate to the grain size of the material being sampled.	Sample sizes of 3kg are considered to be appropriate given the grain size (90% passing 75 μ m) of the material sampled.
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	Samples are analysed by an external laboratory using a 40g fire assay with AAS finish. This method is considered suitable for determining gold concentrations in rock and is a total digest method.
	For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	None used.
	Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been	Recent drilling adhered to strict QAQC protocols involving weighing of samples, collection of field duplicates and insertion of certified reference material (blanks and standards). QAQC data are checked against reference limits in the SQL database on import.
	established.	The laboratory performs a number of internal processes including repeats, standards and blanks. Analysis of this data displayed acceptable precision and accuracy.
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel.	Black Cat's significant intercepts are verified by database, geological and corporate staff.
	The use of twinned holes.	Black Cat will use twinned holes to assist in verification of historic results from time to time.
	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	All primary data related to logging and sampling is directly entered to Excel templates. All data is sent to Perth and stored in the centralised database, managed by a database consultant.
	Discuss any adjustment to assay data.	No adjustments or calibrations are made to any assay data, apart from resetting below detection values to half positive detection. First gold assay is utilised for exploration work.
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations	Selected holes have been picked up by a licenced surveyor using RTK-GPS. All early stage exploration holes have been picked up by handheld GPS.
		Down hole surveys are collected a north seeking gyro.
	Specification of the grid system used.	Black Cat uses the grid system GDA 1994 MGA Zone 51.

Section 1: Sampling Tec	chniques and Data	
Criteria	JORC Code Explanation	Commentary
	Quality and adequacy of topographic control.	RLs have been assigned using the Shuttle Radar Topography Mission ("SRTM") digital elevation model, unless surveyed by RTK-GPS. RTK GPS pickups will be used to build up local topographic models over exploration areas.
Data spacing and distribution	Data spacing for reporting of Exploration Results.	The nominal drill hole spacing is 25m (northing) by 25m (easting) for infill drilling and 50m (northing) by 40m (easting) for regional exploration.
	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	Drill hole spacing is sufficient.
Orientation of data in	Whether sample compositing has been applied.	No compositing has been applied.
relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	All holes were drilled towards grid east, except for selected holes at the Fingals regional program which were drilled at a 45 degree azimuth. Two holes at Trojan were drilled to grid west, targeting a separate structure.
	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	All drilling from surface has been drilled as close to perpendicular to the predicted orientation of stratigraphy as possible. This has reduced the risk of introducing a sampling bias as far as possible. No orientation-based sampling bias has been identified in the data at this point.
Sample security	The measures taken to ensure sample security.	Black Cat's samples prepared on site by Black Cat geological staff. Samples are selected, collected into tied calico bags and delivered to the laboratory by staff or contractors directly and there are no concerns with sample security.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	Black Cat has recently created appropriate sampling procedures.

Section 2: Reporting of Exploration Results				
Criteria	JORC Code Explanation	Commentary		
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as Joint Ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	The Majestic Mining Centre is located in M25/350 and P25/2323. The Fingals Mining Centre is located on M26/357, M26/148, M26/248, and M26/364. The Trojan Mining Centre is located on M25/0104, E25/0571, E25/0558, E25/0526 and P25/2333. M26/357, M26/148, M26/248, M26/364, M25/0104, E25/0571, E25/0558, E25/0526 and P25/2333. are currently held by Black Cat (Bulong) Pty Ltd, or controlled by Black Cat. Mining lease M25/350 is granted and is held until 2033 and is renewable for a further 21 years on a continuing basis. Mining lease M26/248 is granted and held until 2029 and is renewable for a further 21 years on a continuing basis. Mining lease M26/148 is granted and held until 2030 and is renewable for a further 21 years on a continuing basis. Mining leases M26/357 and M26/364 are granted and held until 2033 and are renewable for a further 21 years on a continuing basis.		

Section 2: Reporting of Exploration Results			
Criteria	JORC Code Explanation	Commentary	
		Mining Lease M25/0104 is granted and held until 2034 and is renewable for a further 21 years on a continuing basis.	
		Exploration lease E25/0571 is granted and held until 2024 and is renewable for a further 5 years,	
		Exploration lease E25/0558 is granted and held until 2022 and is renewable for a further 5 years, Exploration lease E25/0526 is granted and held until 2025 and is renewable for a further 5 years Prospecting lease P25/2333 is granted and held until 2024.	
		Prospecting lease P25/2323 is granted and held until 2024.	
		All production is subject to a Western Australian state government Net Smelter Return ("NSR") royalty of 2.5%.	
		There are no registered Aboriginal Heritage sites or pastoral compensation agreements over the tenements.	
	The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	No known impediment to obtaining a licence to operate exists and the remainder of the tenements are in good standing.	
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	Gold was discovered in the Majestic area in the early 1900's with minor, small scale workings undertaken. This was revived in the 1930's at Jones Find when gold was found during fencing operations. Modern exploration began in the area in the 1960's Ni boom, and continued in the 1980's with minor work done by Hillmin Gold Mines NL and WMC carrying out extensive work in the area into the mid 1990's. Homestake gold of Australia, Red Back Mining, Solomon, Aurion and Newcrest all held the ground into the mid 2000's. Integra took control of the ground and utilising RAB/AC and follow up RC drilling discovered the main gold bearing area of Majestic in 2010, with the nearby Imperial being discovered in 2011. Integra advanced the projects until their merger with Silver Lake in 2012. Silver Lake mined the Majestic and Imperial deposits as open pits between 2016 and 2018 with the project being sold to Black Cat in 2020.	
		Fingals Fortune was first identified by Geopeko in joint venture with Mistral Mines in 1983-1984 through a systematic soil geochemical sampling program. This was followed up with costeans, RAB and RC drilling. Geopeko did not perceive the discoveries to be of sufficient size and withdrew from the joint venture in 1986. Mistral Mines continued to explore and define Fingals Fortune, producing a feasibility study in the 1990. During this time, the tenement directly south of Fingals Fortune (now M26/357) was lost to Mistral though	
		an administrative error resulting in the pegging by a prospector.	
		Following Mistral Mines falling into receivership, the project was acquired by Ramsgate Resources, who formed the Mount Monger Gold Project JV with General Gold in 1991. M26/357 was repurchased from Bond Gold Australia and Dragon Resources in 1992.	
		The Fingals Fortune deposit was subsequently mined in 1992 and 1993 by the Mount Monger Gold Project JV, with minor exploration around the area continuing until divestment.	
		Since mining was completed, Exploration of the Fingals Fortune deposit has been sporadic with various companies drilling holes to test the potential of reopening the mine:	
		 Solomon Australia (1999-2000) drilled about 10-15 RC holes to test strike extensions on the mineralisation; 	
		 Aurion Gold Exploration (2001-2002) drilled a couple of RC and diamond holes testing under the existing pit; 	

Section 2: Reporting of Exploration Results				
Criteria	JORC Code Explanation	Commentary		
		 Integra Mining drilled two campaigns in 2007-2009 and 2011-2012 testing mineralisation east of and also below the main pit; Silver Lake drilled four holes in 2012-2013 testing southern extensions to the mineralisation. Black Cat acquired the project in 2020. Gold was mined at the Trojan deposit between 2001 and 2004 during which time the open pit produced 2Mt @ 1.97 g/t Au for 125,000 ounces. 		
Geology	Deposit type, geological setting and style of mineralisation.	The Projects are located in the Kurnalpi Terrane of the Archaean Yilgarn CratonProject-scale geology consists of granite-greenstone lithologies that were metamorphosed to greenschist facies grade. The style of mineralisation is Archaean orogenic gold.		
Drill hole information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar; elevation or Reduced Level ("RL") (elevation above sea level in metres) of the drill hole collar; dip and azimuth of the hole; down hole length and interception depth; hole length; and if the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	Tables containing drill hole collar, survey and intersection data are included in the body of the announcement.		
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated.	All aggregated zones are length weighted. No high-grade cuts have been used.		
	Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	All intersections are calculated using a 1 g/t Au lower cut-off with maximum waste zones between grades of 1m, except where stated in the body of the report.		
	The assumptions used for any reporting of metal equivalent values should be clearly stated.	Not applicable, as no metal equivalent values have been reported.		
Relationship between mineralisation widths and intercept lengths	These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').	All intercepts are reported as downhole depths as true widths are not yet determined.		

Section 2: Reporting of Exploration Results			
Criteria	JORC Code Explanation	Commentary	
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Appropriate diagrams have been included in the body of the announcement.	
Balanced reporting	Where comprehensive reporting of all Exploration. Results are not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	All results have been tabulated in this release.	
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	Geophysical surveys including aeromagnetic surveys have been carried out by previous owners to highlight and interpret prospective structures in the project area.	
Further work	The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	Black Cat is continuing an exploration program which will target extension of mineralisation and regional targets within the Kal East project	