

ASX: ANX 25 MAY 2021

WHIM CREEK PROJECT COPPER TONNES INCREASE BY 37%

 JORC2012 Mineral Resource completed for the Whim Creek Deposit at the Whim Creek Project (Northern Pilbara, WA)

Updated Whim Creek Project Global Resource:

> Copper Resource: 8.25 Mt @ 1.03% Cu (0.40% Cu Cut)

Zinc Resource: 1.28 Mt @ 6.63% Zn (2.0% Zn cut; Cu < 0.4%)

Whim Creek Project Resources contained Cu Tonnes increased by 37%

• Whim Creek Deposit Resources:

> Copper Resource: <u>2.41 Mt @ 0.95% Cu</u> (0.40% Cu cut)

> Zinc Resource: 0.17 Mt @ 3.00% Zn (2.0% Zn cut; Cu < 0.40%)

Over 70% of the Mineral Resource is in the Indicated category

Potential identified for resource extensions south-west of existing Whim Creek
 Resource

Anax Metals Limited (ASX: ANX, **Anax**, or the **Company**) is pleased to announce a JORC 2012 Mineral Resource for the Whim Creek Deposit (**Deposit**) at the Whim Creek Copper-Zinc Project (**Project**) located 115km southwest of Port Hedland in the West Pilbara Region of Western Australia.

The Mineral Resource at the Whim Creek Deposit represents another significant step in the Whim Creek Project's development pathway and has contributed to an updated global Mineral Resource for the Whim Creek Project, which is owned by Anax Metals Limited (80%) and Venturex Resources Limited (20%).

The Mineral Resource was completed following a database audit and verification of historical data and a single diamond drill hole completed by Anax in late 2020 where 20AWCD001 intersected **5m @ 2.43% Cu and 1.02% Zn from 52m** and **7m @ 1.19% Cu from 60m**. The Mineral Resource modelling and estimate was undertaken by independant resource consultancy, Trepanier Pty Ltd, and has produced a JORC2012 compliant Indicated and Inferred Mineral Resource as shown in Table 1 and Table 2.

Table 1: Whim Creek Deposit Copper Mineral Resource by Classification (0.40% Cu cut-off).

Classification	kTonnes	Cu %	Zn %	Pb %	Ag ppm	Au ppm
Measured	-	1	-	1	-	-
Indicated	1,750	1.10	0.63	0.16	6	0.04
Inferred	660	0.56	0.17	0.08	2	0.02
TOTAL Cu Resources	2,410	0.95	0.50	0.14	5	0.04

Note: Appropriate rounding applied.

Table 2: Whim Creek Deposit Zinc Mineral Resource by Classification (≥ 2.0% Zn; < 0.40% Cu).

Classification	kTonnes	Cu %	Zn %	Pb %	Ag ppm	Au ppm
Measured	-	-	-	-	-	-
Indicated	120	0.12	3.22	0.44	12	0.08
Inferred	45	0.13	2.47	0.40	9	0.04
TOTAL Zn Resources	165	0.13	3.00	0.43	11	0.07

Note: Appropriate rounding applied.

A grade-tonnage curve based on different Cu cut-offs is shown in Figure 1.

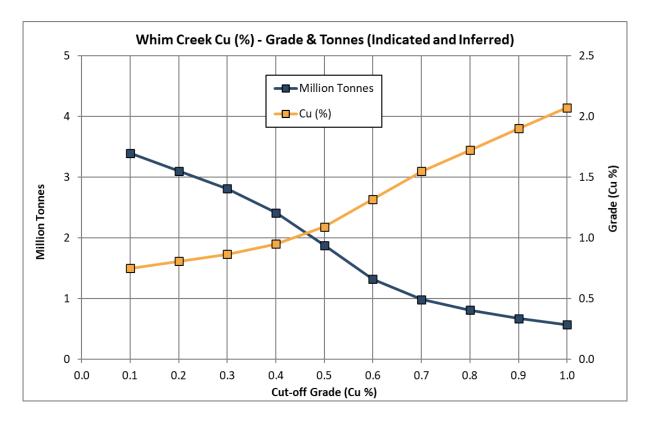


Figure 1: Grade-Tonnage Curve based on Cu cut-offs for the Whim Creek Deposit Mineral Resource.

Over 70% of the Mineral Resource has been classified as Indicated, with the remaining resources in the Inferred category (Figure 2). The classification is supported by drilling density, geological continuity and confidence in the geological interpretation.

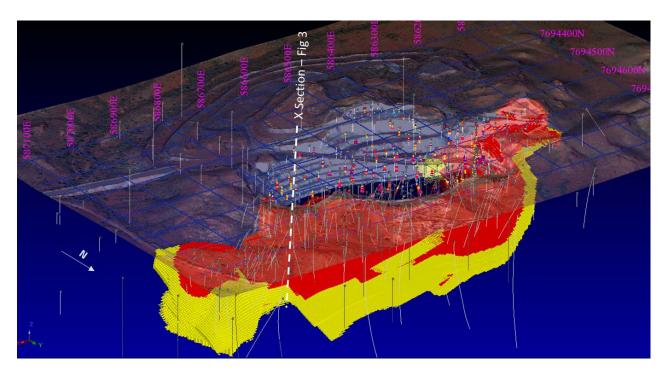


Figure 2: Oblique view of the Whim Creek Deposit showing Indicated (red) and Inferred (yellow) resources. View Direction is -25° towards 215°. Figure 3 Cross Section orientation shown.

Table 3 and Table 4 provides a breakdown of the resources by oxidation type. Over 75% of the resource is comprised of sulphide mineralisation, which is made up predominantly of chalcopyrite (copper) and sphalerite (zinc).

Straits Resources operated Whim Creek in the mid-2000s and mined out the majority of the oxide material at the Deposit. Transitional mineralisation (primarily chalcocite and chalcopyrite) extends on average ~5m below the base of the current pit with fresh sulphides occurring at depth (Figure 3).

Table 3: Whim Creek Deposit Copper Mineral Resource by Oxidation (0.40% Cu cut-off).

Туре	kTonnes	Cu %	Zn %	Pb %	Ag ppm	Au ppm
Oxide	430	0.69	0.09	0.29	7	0.05
Transitional	130	1.19	0.62	0.10	4	0.05
Fresh	1,850	0.99	0.59	0.11	4	0.03
TOTAL Cu Resource	2,410	0.95	0.50	0.14	5	0.04

Note: Appropriate rounding applied.

Туре	kTonnes	Cu %	Zn %	Pb %	Ag ppm	Au ppm
Oxide	5	0.17	3.66	0.40	12	0.03
Transitional	30	0.09	3.59	0.41	9	0.05
Fresh	130	0.13	2.85	0.43	12	0.08
Total Zn Resource	165	0.13	3.00	0.43	11	0.07

Table 4: Whim Creek Deposit Zinc Mineral Resource by Oxidation (≥ 2.0% Zn; < 0.40% Cu).

Note: Appropriate rounding applied.

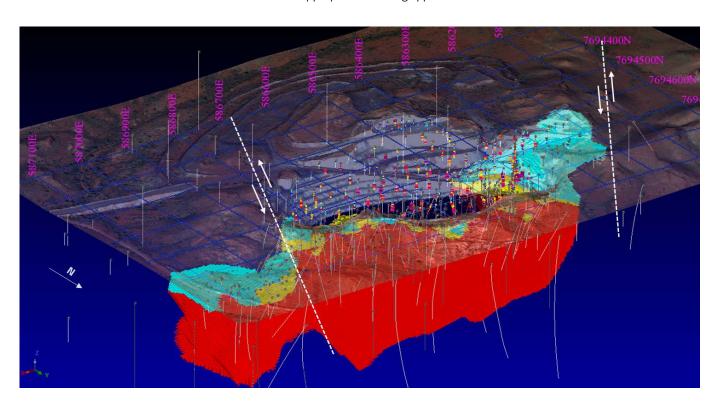


Figure 3: Oblique view of the Whim Creek Deposit showing oxide (light blue), transitional (yellow) and fresh sulphide (red) resources. View Direction is -25° towards 215°.

Resource Upside Potential

The updated geological interpretation coupled with a review of historical WAMEX reports has highlighted an area west of the existing pit that is **prospective for possible strike extensions**. Mapping by previous operators recognised transverse faults that displace the mine horizon to the northeast (NE), as well as southwest (SW) of the current pit. The fault-displaced NE extension has been tested and intersected by numerous drill holes, resulting in the definition of resources that have been included in the current Mineral Resource (Figure 3).

The possible SW extension has only been tested with two shallow drill holes, despite surface expressions of the mine horizon having been mapped over more than 300m. The Company plans to complete field reconnaisance and a detailed review of historical data in order to facilitate potential future drill targeting.

Whim Creek 2020 Diamond Drilling Results

In November 2020 Anax completed one diamond hole (20AWCD001) designed to target zones of high and medium-grade mineralisation at Whim Creek, with HQ core to be used for ore sorting and metallurgical test work.

In late November 2020 the Company reported that drilling at Mons Cupri and Whim Creek had intersected visible, strong near-surface sulphide mineralisation. The Whim Creek drill hole (20AWCD001) intersected a strongly mineralised, chlorite-silica altered zone between 48 - 57m made up primarily of pyrite and chalcopyrite and another moderately mineralised chalcopyrite stringer zone at 63 - 68m downhole (See ASX Announcement of 25 November 2020).

Continuous XRF Scanning has returned and intersection of **5m @ 2.43% Cu and 1.02% Zn from 52m** and **7m @ 1.19% Cu from 60m** for 20AWCD001 (Figure 4).

Whole core was processed through the Minalyzer CS (Minalyzer) continuous XRF scanner unit. Calibration samples were selected from Mons Cupri drill holes only and submitted for standard geochemical analyses in late December 2020. XRF scanning results were subsequently calibrated against the geochemical assay results (refer to ASX Announcement 5 February 2021). As no calibration samples were selected from 20AWCD001, the Mons Cupri calibration results were also applied to 20AWCD001.

There is reasonable agreement between the assayed head grade of bulk composite WC1 that was compiled for ore sorting testwork (see ASX Announcement 28 April 2021) and the calculated head grade from XRF scanning results, athough it appears that the XRF scanning results may be undercalling Cu grades in 20AWCD001.

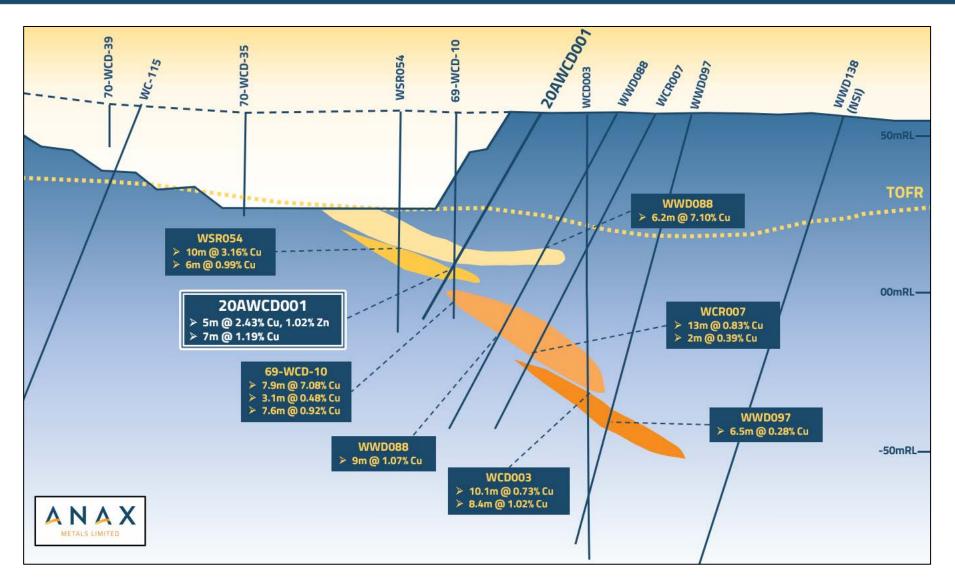

Table 5 compares the calculated head grade for WC1 (made up of 20AWCD001 – 52 to 56m + 60 to 67m) against the assayed head grade from the bulk composite.

Table 5: Calculated Head assays vs Composite Head assays for WC1.

Composite ID		ated Head (RF Minalyze	
	Cu %	Zn %	Pb %
WC1	1.82	0.50	0.06

	Composite + Products											
Cu %	Zn %	Pb %										
2.24	2.24 0.44 0.11											

Figure 4: Oblique cross section (looking towards 305°) showing 20AWCD001, select previous drill holes and interpreted copper domains. Refer to Figure 1 for approximate cross section location. Note: A number of holes have been omitted from the section for ease of display.

Next Steps

Anax is progressing a number of key feasibility and permitting workstreams. Following completion of ore sorting test work (see ASX Announcement 28 April 2021), the Company commenced comminution and metallurgical test work on Mons Cupri ore sorting products. Geotechnical studies have been completed and Anax's mining consultant is currently finalising optimisations and design for Mons Cupri, Whim Creek and Salt Creek.

Concurrently, Anax and its consultants are advancing environmental assessments, including flora and fauna, hydrological and hydrogeological studies and waste rock characterisation. Anax is preparing a Mining Proposal which it is aiming to submit in Q3 2021.

Whim Creek Project Global Resource

The updated Whim Creek Project Global Mineral Resource for copper dominant and zinc dominant resources (exclusive of eachother) are shown below in Table 6 and Table 7.

Table 6: Whim Creek Project Global Copper Dominant Mineral Resource (0.40% Cu Cut-off).

Deposit	Classification	kTonnes	Cu %	Zn %	Pb %	Ag ppm	Au ppm
Mons Cupri	Measured	990	1.62	1.42	0.61	38	0.28
	Indicated	3,130	0.84	0.47	0.20	16	0.09
	Inferred	400	0.60	0.22	0.10	10	0.03
Salt Creek	Measured	-	-	-	-	-	-
	Indicated	850	1.40	1.12	0.24	8	0.11
	Inferred	460	1.15	2.41	0.60	27	0.16
Whim Creek	Measured	-	-	-	-	-	-
	Indicated	1,750	1.10	0.63	0.16	6	0.04
	Inferred	660	0.56	0.17	0.08	2	0.02
COMBINED	Measured	990	1.62	1.42	0.61	38	0.28
	Indicated	5,730	1.00	0.61	0.19	12	0.08
	Inferred	1,530	0.75	0.86	0.24	12	0.07
TOTAL Cu Resources	Combined	8,250	1.03	0.76	0.25	15	0.10

Note: Appropriate rounding applied.

Table 7: Whim Creek Project Global Zinc Dominant Mineral Resource (≥ 2.0% Zn; < 0.40% Cu)

Deposit	Classification	kTonnes	Cu %	Zn %	Pb %	Ag ppm	Au ppm
Mons Cupri	Measured	70	0.16	4.56	1.79	53	0.23
	Indicated	340	0.09	3.56	1.01	38	0.07
	Inferred	150	0.08	4.84	1.96	27	0.04
Salt Creek	Measured	-	-	-	-	-	-
	Indicated	170	0.18	14.15	4.23	85	0.53
	Inferred	380	0.12	8.75	2.57	62	0.25
Whim Creek	Measured	-	-	-	-	-	-
	Indicated	120	0.12	3.22	0.44	12	0.08
	Inferred	45	0.13	2.46	0.40	9	0.04
COMBINED	Measured	70	0.16	4.56	1.79	53	0.23
	Indicated	630	0.12	6.34	1.77	46	0.19
	Inferred	575	0.11	7.22	2.23	48	0.18
TOTAL Zn Resources		1,275	0.12	6.63	1.98	47	0.19

Note: Appropriate rounding applied.

For and on behalf of the Board

For further information, please contact:

Anax Metals Limited 20 Kings Park Road, West Perth WA 6005

Telephone: 08 6143 1840

References

The information provided in this announcement refers to the following Anax Announcements to the ASX:

- 1. Drilling Intersects Massive Sulphides, 25 November 2020
- 2. Outstanding Drilling Results, 5 February 2021
- 3. Sorting Tests unlock Whim Creek Value, 28 April 2021

COMPETENT PERSON'S STATEMENT

The information in this report that relates to Exploration Results is based on and fairly represents information compiled by Mr Andrew McDonald. Mr McDonald is an employee and shareholder of Anax Metals Ltd and is a member of the Australian Institute of Geoscientists. Mr McDonald has sufficient experience of relevance to the style of mineralisation and types of deposits under consideration, and to the activities undertaken to qualify as a Competent Persons as defined in the 2012 Edition of the Joint Ore Reserves Committee (JORC) Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr McDonald consents to the inclusion in this report of the matters based on information in the form and context in which they appear.

The information in this report that relates to the Mineral Resource for Mons Cupri and Salt Creek was first reported by the Company in accordance with Listing Rule 5.8 in the Company's prospectus dated 18 September 2020. The Company confirms that it is not aware of any new information or data that materially affects the information included in the prospectus and that all material assumptions and technical parameters underpinning the estimate in the prospectus continue to apply and have not materially changed.

The information in this report that relates to Mineral Resources for the Whim Creek Deposit is based on and fairly represents information compiled by Mr Andrew McDonald (an employee of Anax Metals Ltd) and Mr Lauritz Barnes, (Consultant with Trepanier Pty Ltd). Mr McDonald is a member of the Australian Institute of Geoscientists and Mr Barnes is a member of both the Australasian Institute of Mining and Metallurgy and the Australasian Institute of Geoscientists. Mr McDonald and Mr Barnes have sufficient experience of relevance to the styles of mineralisation and types of deposits under consideration, and to the activities undertaken to qualify as Competent Persons as defined in the 2012 Edition of the Joint Ore Reserves Committee (JORC) Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Specifically, Mr McDonald is the Competent Person for the database (including all drilling information and mined depletion), the geological and mineralisation models plus completed the site visits. Mr Barnes is the Competent Person for the geological and mineralisation models, construction of the 3-D model plus the estimation. Mr McDonald and Mr Barnes consent to the inclusion in this report of the matters based on information in the form and context in which they appear.

APPENDIX 1

SUMMARY OF RESOURCE ESTIMATE AND REPORTING CRITERIA

As per ASX Listing Rule 5.8 and the 2012 JORC reporting guidelines, a summary of the material information used to estimate the Mineral Resource is detailed below (for more detail please refer to JORC Table 1, Sections 1 to 3 included below).

Geology and geological interpretation

The Whim Creek base metal deposit occurs within the Archaean-aged Pilbara Craton, a granite-greenstone terrane formed between 3,600 Ma and 2,800 Ma. The Whim Creek Greenstone Belt forms a major constituent of the Pilbara Craton and comprises a north east trending, arcuate, rift sequence encompassing the Mons Cupri dacite unconformably overlain by the Bookingarra Group of volcanicastics and mafic to ultramafic volcanics, which wrap around the Caines Well batholith. The Whim Creek Greenstone belt is confined to the north-west by the Scholl Shear and to the south-east by the Loudens Fault.

Known mineralisation is confined to the Bookingarra Group volcaniclastics, in particular the Cistern Formation and the Rushall Slate, both of which outcrop extensively across the Project area. These units have been disrupted by multiple tectonic events, causing folding and faulting.

The mineralisation at the Whim Creek Project is interpreted to be of the Volcanogenic Massive Sulphide (VMS) style. These deposits are interpreted to form in close association with submarine volcanism through the circulation of hydrothermal fluids and subsequent exhalation of sulphide mineralisation on the ancient seafloor similar to present-day black smokers. VMS mineralisation typically forms concordant or strata-bound lenses of polymetallic semi-massive to massive sulphides, which are underlain by discordant feeder-type vein-systems and associated alteration.

The Whim Creek Deposit mineralisation occurs at a stratigraphic position some 150 to 200 m above the base of the Rushall Slate. Mineralisation occurs as either higher-grade rhyolite-hosted zinc or copper rich lenses, or as stratiform bedding-parallel mineralised lenses within sericite-chlorite altered argillite and siltstone units of the Rushall Slate. The mineralisation dips moderately to the north and can be traced along strike for over 600 m. It extends down dip below the base of the current pit for approximately 120 m and has a thickness of between 5 to 8 metres. Transform faults displace mineralisation at the western and eastern margins of the main mine horizon.

Oxide resources were previously mined by Straits Resources (Straits) in the 2000s by open pit methods. Remnant fresh mineralisation is characterised by three distinct styles. An outermost massive sphaleriterich layer is underlain by a massive chalcopyrite-pyrite zone, which in turn passes into a chalcopyrite-pyrite stringer zone. These three zones are hosted by sericite-chlorite altered argillite and siltstone units of the Rushall Slate.

The mineralised domain interpretations were based upon a combination of geology, pit mapping and observations, structural measurements (drill core and open pit), supporting multi-element lithochemistry (in particular S, Fe and target elements Cu, Zn and Pb) and lower cut-off grades of 0.3% Cu for the copper lodes and 0.5% Zn for the zinc/lead lodes. Oxidation surfaces were modelled using drillhole logs and pit mapping / observations, supporting multi-element lithochemistry (in particular S) plus metallurgical characteristics.

Drilling techniques and hole spacing

Drilling at the deposit that was used to calculate the Mineral Resource was primarily Reverse Circulation (171 holes for 45% of total) with supporting Diamond Core drilling (135 holes for 36% of total) drilled mainly by Dominian Mining (1994 to 1997), Straits Resources (2004 – 2008) and Venturex Resources (2011). The remaing ~20% of drilling is made up of Open Hole Percussion (64 holes for 17% of total) and percussion vacuum drill holes (10 holes for 3%) drilled in the 1970s. The vast majority of the percussion holes, together with Dominion Mining holes were drilled into the shallow oxide zones that were mined by Straits Resources in the mid-2000's.

A number of open hole percussion and diamond drill holes were also drilled at the deposit prior to 1965. Limited information is available detailing drilling and sampling practices for some of these drilling generations and as a result these holes were excluded from grade estimation. They were however used as a guide to inform domain intepretations where appropriate.

Drill holes at Whim Creek are orientated in numerous directions, but have either been drilled vertically or towards the south/southwest in the central parts of the deposit, or angled south in the northeastern part of the deposit. A few drill holes have been drilled towards the north from within the previously mined pit. Drill sections at Whim Creek are typically spaced 20m to 30m apart, with holes spaced 15 to 20m apart on section. The spacing (on and between sections) decreases towards the north and increases within the extents of the pit.

Sampling and sub-sampling techniques

RC drilling typically used a number of different diametre face sampling hammers that ranged between 4.25" and 5.5". Three or four metre composite samples were typically collected using a pvc spear in unmineralised portions, but resampled to 1m where assays returned values >0.2% Cu. One (1) metre samples were collected using either pvc or splitters in mineralised sections of the holes. No information is available detailing historical RC drilling sampling techniques.

Diamond core drilling used conventional diamond coring techniques at either NQ, HQ or BQ core size. Drill core was oriented by the drillers placing orientation marks on the bottom of the core at the end or start of every run. Drill core recovery was typically very high or in full (averaged >95% including near

surface intervals). The core was typically marked up, photographed and geologically logged at site. Core was sampled by cutting the nominated samples in half or quarters for geochemical assays.

Field duplicate samples were typically collected at a ratio of 1:50 samples, while field standards were inserted at a ratio of approximately 1:40 samples.

Sample analysis method

Straits submitted samples to ALS Perth for ICP-AES/MS determination, while Venturex submitted samples to Ultratrace Perth for fusion digestions with ICPES determination in 2011. Both used Fire Assays with AAS finish to determine gold grades. Samples were weighed, dried and pulverised to 85% passing 75 micron from which a a sub-sample was split that was sent for multi element suite analyses using 4-acid digestion with an ICP-ES finish. Gold analyses were completed using Fire Assays with AAS finish.

Cut-off grades

Cut off grades reported at 0.4% Cu or 2% Zn are consistent with those reported for similar deposit types elsewhere in the world and are considered appropriate for the style of mineralisation encountered.

Estimation Methodology

Composited drill hole samples (to 1m) contained within the Cu-rich and Zn-rich mineralised domains supported the interpolation of block grades, using a hard boundary interpolation, into the geologically guided grade envelopes (0.3% Cu and 0.5% Zn). Cu, Zn, Pb, Au, Fe and S grades were estimated into the model using Ordinary Kriging (OK). Search ellipses were aligned along any changing strikes and dips of the domains.

A combination of methods, including grade histograms, log probability plots and statistical tools, were used to ascertain whether top cutting was required. Influences of extreme sample distribution outliers are reduced by top-cutting on a domain basis. Based on this statistical analysis of the data population, and checks for clustered grades, no top-cuts were applied.

The low nugget effect was modelled for both Cu and Zn and a minimum of 6 and a maximum of 12 composited (1m) samples were used in any one block estimate (limited to a maximum of 4 per hole), within increasing search ellipses of 45m, 90m with the third pass populating any remianing blocks.

Block sizes for each deposit model were based upon the average drill spacing, with block sizes set to approximately a quarter of the drill spacing in the easting and northing directions. Sub-celling was used to constrain the large block sizes within the geological envelopes.

Bulk densities have been assigned to the Cu and Zn/Pb domains using regressions as follows:

ZnPb Domains: ((Fe% + Cu% + Zn% + Pb%) x 0.0233) + 2.68

Cu Domains: ((Fe% + Cu% + Zn% + Pb%) x 0.0258) + 2.60

A total of 2,015 density measurements were derived at Whim Creek by immersion methods, with 226 falling within the modelled Cu-rich domains and 289 within the modelled Zn-rich domains. Statistical analysis was completed by mineralised domains, rock type, oxidation and potential correlation with multi-element assays (including sulphide zone elements Fe, Cu, Zn, Pb and S – and combinations thereof). The result for the combined Fe+Cu+Zn+Pb regression was determined to be most appropriate for the mineralised domains. Bulk density has been assigned to all waste material on the basis of weathering state. The bulk density factors applied to the waste are 2.70 g/cm³ in the oxide, and 2.83 g/cm³ in fresh/transition zone material.

Classification criteria

The Mineral Resource has been classified on the basis of confidence in the geological model, continuity of mineralized zones, drilling density, confidence in the underlying database and the available bulk density information. All factors considered; the resource estimate has in part been assigned to Indicated resources with the remainder to the Inferred category.

Drill spacing supporting Indicated up to 15m past the core 30m x 30m drilling. Drill spacing supporting Inferred is up to 50m, depending on geological model confidence and mineralisation continuity. Some volumes of extrapolated mineralisation domains were not classified, where the interpolated block grades and geological understanding were not reasonably supported by drilling and/or understanding of geological continuity to satisfy the requirement for an Inferred classification.

The classified Mineral Resource has been depleted appropriately using the 2008 September EOM survey produced by the Straits Whim Creek surveyor.

Mining and metallurgical methods and parametres

The potential mining method is considered to be open pit mining.

Flotation Metallurgical test work by Straits was completed on representative material with copper recoveries greater than 90% often achieved at concentrate grades in excess of 25% Cu. Further studies aimed at optimising Zn recoveries were recommended. Initial metallurgical results suggest that copper can however be readily recovered via conventional flotation processes.

APPENDIX 2: Drill hole collar details and intercepts for Mineral Resource domains at the Whim Creek Deposit (MGA Zone 50)

HoleID	Hole Type	MGA Easting	MGA Northing	RL	Dip	MGA Azimuth	Hole Depth (m)	Cu Domain	Depth From (m)	Interval Length (m)	Cu_pct
20AWCD001	DDH	586676	7694606	52	-50	180	81.0	19	52.0	5.0	2.43
20AWCD001	DDH	586676	7694606	52	-50	180	81.0	18	60.0	7.0	1.19
69-WCD-10	DDH	586672	7694569	54	-90	0	65.8	19	39.9	7.9	7.08
69-WCD-10	DDH	586672	7694569	54	-90	0	65.8	18	47.9	3.1	0.48
69-WCD-10	DDH	586672	7694569	54	-90	0	65.8	17	55.5	7.6	0.92
69-WCD-11	DDH	586656	7694532	54	-90	0	53.6	19	27.4	5.2	0.70
69-WCD-12	DDH	586688	7694566	54	-90	0	65.8	19	36.9	9.8	6.39
69-WCD-12	DDH	586688	7694566	54	-90	0	65.8	18	49.1	9.2	0.93
69-WCD-13	DDH	586277	7694595	68	-90	0	46.6	16	10.1	17.1	1.41
69-WCD-14	DDH	586277	7694590	68	-90	0	45.7	16	12.2	8.1	2.00
69-WCD-15	DDH	586283	7694590	68	-90	0	48.8	16	13.7	15.9	2.63
69-WCD-16	DDH	586282	7694596	68	-90	0	45.7	16	11.3	19.2	7.69
69-WCD-17	DDH	586283	7694599	68	-90	0	45.7	16	12.8	16.8	3.34
69-WCD-5	DDH	586679	7694626	51	-90	0	118.0	16	93.3	12.0	0.40
69-WCD-5	DDH	586679	7694626	51	-90	0	118.0	15	108.3	2.4	0.41
69-WCD-7	DDH	586608	7694576	62	-90	0	65.2	18	53.5	6.3	1.37
69-WCD-8	DDH	586629	7694556	56	-90	0	53.6	19	32.3	1.2	0.30
69-WCD-8	DDH	586629	7694556	56	-90	0	53.6	18	40.5	11.3	0.84
69-WCD-9	DDH	586636	7694577	55	-90	0	65.2	18	52.1	5.6	1.67
69-WCD-9	DDH	586636	7694577	55	-90	0	65.2	17	61.6	0.9	0.85
70-WCD-1	DDH	586508	7694427	78	-90	0	21.7	10	0.0	3.1	1.76
70-WCD-1	DDH	586508	7694427	78	-90	0	21.7	11	5.5	2.4	0.29
70-WCD-11	DDH	586303	7694614	63	-90	0	46.0	16	19.5	15.2	0.74
70-WCD-12	DDH	586269	7694618	72	-90	0	39.9	99	7.6	3.4	0.57
70-WCD-12	DDH	586269	7694618	72	-90	0	39.9	16	22.3	8.8	4.03

HoleID	Hole Type	MGA Easting	MGA Northing	RL	Dip	MGA Azimuth	Hole Depth (m)	Cu Domain	Depth From (m)	Interval Length (m)	Cu_pct
70-WCD-12	DDH	586269	7694618	72	-90	0	39.9	13	32.6	4.6	0.28
70-WCD-13	DDH	586238	7694587	85	-90	0	55.5	16	15.2	5.5	0.26
70-WCD-13	DDH	586238	7694587	85	-90	0	55.5	13	30.8	12.2	0.70
70-WCD-13	DDH	586238	7694587	85	-90	0	55.5	12	47.6	6.1	0.36
70-WCD-14	DDH	586268	7694559	83	-90	0	34.4	17	15.5	12.5	1.13
70-WCD-15	DDH	586300	7694558	80	-90	0	46.9	17	22.9	4.9	0.56
70-WCD-15	DDH	586300	7694558	80	-90	0	46.9	16	32.3	4.3	0.45
70-WCD-16	DDH	586296	7694500	80	-90	0	24.7	17	12.2	4.6	0.64
70-WCD-17	DDH	586268	7694529	89	-90	0	35.4	17	13.4	17.1	0.87
70-WCD-18	DDH	586300	7694582	73	-90	0	38.7	16	21.0	10.4	5.05
70-WCD-19	DDH	586240	7694559	90	-90	0	36.3	16	18.6	6.1	0.35
70-WCD-19	DDH	586240	7694559	90	-90	0	36.3	13	27.7	7.3	0.40
70-WCD-20	DDH	586239	7694531	91	-90	0	24.8	17	4.0	10.1	2.42
70-WCD-21	DDH	586571	7694489	62	-90	0	24.4	11	11.0	10.4	0.92
70-WCD-22	DDH	586513	7694580	56	-90	0	54.0	18	26.8	18.3	2.76
70-WCD-23	DDH	586543	7694579	55	-90	0	71.9	18	33.5	16.5	1.40
70-WCD-23	DDH	586543	7694579	55	-90	0	71.9	16	60.1	1.5	0.38
70-WCD-24	DDH	586573	7694578	56	-90	0	126.9	18	39.0	10.7	1.55
70-WCD-24	DDH	586573	7694578	56	-90	0	126.9	17	60.7	1.2	2.60
70-WCD-24	DDH	586573	7694578	56	-90	0	126.9	13	98.2	1.5	0.30
70-WCD-25	DDH	586602	7694545	57	-90	0	53.0	18	41.2	4.6	0.94
70-WCD-26	DDH	586571	7694516	64	-90	0	38.5	18	24.7	9.8	3.37
70-WCD-27	DDH	586572	7694547	58	-90	0	47.2	18	35.1	7.0	2.45
70-WCD-28	DDH	586568	7694458	60	-90	0	24.4	11	6.1	1.5	0.40
70-WCD-3	DDH	586509	7694488	75	-90	0	38.6	11	23.8	11.3	3.15
70-WCD-31	DDH	586331	7694615	60	-90	0	50.8	17	24.4	1.5	0.20
70-WCD-31	DDH	586331	7694615	60	-90	0	50.8	16	33.5	10.7	0.74

HoleID	Hole Type	MGA Easting	MGA Northing	RL	Dip	MGA Azimuth	Hole Depth (m)	Cu Domain	Depth From (m)	Interval Length (m)	Cu_pct
70-WCD-32	DDH	586330	7694558	70	-90	0	35.4	17	12.2	18.9	2.23
70-WCD-33	DDH	586660	7694513	56	-90	0	31.5	11	13.7	10.7	0.74
70-WCD-34	DDH	586581	7694607	55	-90	0	81.2	18	59.4	1.5	0.36
70-WCD-34	DDH	586581	7694607	55	-90	0	81.2	17	65.5	3.1	0.58
70-WCD-36	DDH	586484	7694613	55	-90	0	53.0	18	35.1	4.6	0.31
70-WCD-39	DDH	586601	7694486	56	-90	0	14.0	11	0.0	9.1	0.80
70-WCD-42	DDH	586537	7694425	75	-90	0	19.2	11	7.6	5.8	2.94
70-WCD-44	DDH	586634	7694545	54	-90	0	46.0	19	26.8	4.6	1.83
70-WCD-44	DDH	586634	7694545	54	-90	0	46.0	18	32.9	9.1	1.03
70-WCD-45	DDH	586477	7694428	78	-90	0	14.0	11	5.5	3.0	3.44
70-WCD-47	DDH	586567	7694422	72	-90	0	14.0	11	2.1	7.6	1.45
70-WCD-48	DDH	586605	7694605	59	-90	0	96.6	16	84.4	7.6	0.97
70-WCD-49	DDH	586694	7694543	56	-90	0	41.5	11	24.4	11.3	1.04
70-WCD-5	DDH	586543	7694486	68	-90	0	33.8	11	18.6	9.2	2.67
70-WCD-50	DDH	586481	7694518	68	-90	0	30.5	11	18.3	10.7	1.72
70-WCD-51	DDH	586392	7694614	60	-90	0	59.7	17	33.5	4.6	1.12
70-WCD-53	DDH	586482	7694458	73	-90	0	16.2	11	7.6	3.1	0.50
70-WCD-54	DDH	586362	7694645	58	-90	0	78.3	14	62.5	7.0	0.89
70-WCD-54	DDH	586362	7694645	58	-90	0	78.3	13	71.0	7.3	1.28
70-WCD-55	DDH	586361	7694615	59	-90	0	50.6	17	27.7	12.2	0.98
70-WCD-55	DDH	586361	7694615	59	-90	0	50.6	16	41.5	4.6	0.94
70-WCD-56	DDH	586336	7694677	62	-90	0	82.0	14	55.8	7.6	1.37
70-WCD-56	DDH	586336	7694677	62	-90	0	82.0	13	66.1	7.3	5.60
70-WCD-6	DDH	586539	7694457	69	-90	0	25.6	11	10.4	11.9	3.45
70-WCD-60	DDH	586239	7694620	81	-90	0	46.0	16	20.7	11.0	0.61
70-WCD-60	DDH	586239	7694620	81	-90	0	46.0	13	39.0	3.1	0.78
70-WCD-63	DDH	586360	7694674	65	-90	0	100.0	14	70.4	7.6	0.96

HoleID	Hole Type	MGA Easting	MGA Northing	RL	Dip	MGA Azimuth	Hole Depth (m)	Cu Domain	Depth From (m)	Interval Length (m)	Cu_pct
70-WCD-63	DDH	586360	7694674	65	-90	0	100.0	13	79.6	7.6	0.99
70-WCD-65	DDH	586270	7694650	67	-90	0	47.9	13	36.6	3.0	7.48
70-WCD-69	DDH	586298	7694644	66	-90	0	64.0	13	45.1	11.6	0.64
70-WCD-9	DDH	586542	7694547	60	-90	0	43.9	18	26.5	10.1	3.92
70-WCP-1	OPH	586384	7694385	94	-90	0	9.1	10	0.0	7.3	2.10
70-WCP-10	ОРН	586400	7694386	95	-90	0	8.2	10	0.0	2.7	1.87
70-WCP-11	OPH	586399	7694370	97	-90	0	11.0	10	0.0	0.9	0.14
70-WCP-13	ОРН	586414	7694369	96	-90	0	10.1	10	0.0	2.7	1.89
70-WCP-17	ОРН	586339	7694402	95	-90	0	11.0	10	0.0	2.7	0.16
70-WCP-19	ОРН	586599	7694424	73	-90	0	14.6	10	0.0	1.8	0.48
70-WCP-2	ОРН	586382	7694371	96	-90	0	11.0	10	0.0	8.2	4.51
70-WCP-20	ОРН	586600	7694454	62	-90	0	14.6	11	0.0	7.3	0.94
70-WCP-21	ОРН	586631	7694485	57	-90	0	22.0	11	0.0	22.0	1.25
70-WCP-22	ОРН	586662	7694483	61	-90	0	18.3	10	0.0	5.5	0.72
70-WCP-22	ОРН	586662	7694483	61	-90	0	18.3	11	5.5	12.8	1.85
70-WCP-23	ОРН	586693	7694513	60	-90	0	22.0	11	11.0	11.0	2.34
70-WCP-24	ОРН	586725	7694542	59	-90	0	31.1	11	23.8	7.3	0.66
70-WCP-26	ОРН	586207	7694589	83	-90	0	23.8	16	12.8	1.8	0.24
70-WCP-27	ОРН	586297	7694525	87	-90	0	31.1	17	23.8	7.3	1.07
70-WCP-3	ОРН	586368	7694371	96	-90	0	10.1	10	0.0	0.9	0.14
70-WCP-4	ОРН	586369	7694385	94	-90	0	11.0	10	0.0	0.9	0.26
70-WCP-5	ОРН	586354	7694387	95	-90	0	11.0	10	0.0	2.7	0.43
70-WCP-51	ОРН	586919	7694685	55	-90	0	18.3	21	9.1	1.8	0.65
70-WCP-52	ОРН	586946	7694699	51	-90	0	29.3	21	16.5	9.2	1.04
70-WCP-6	ОРН	586354	7694401	93	-90	0	11.0	10	0.0	1.8	0.39
70-WCP-7	ОРН	586370	7694401	91	-90	0	11.0	10	0.0	2.7	0.16
70-WCP-8	ОРН	586352	7694370	94	-90	0	11.0	10	0.0	0.9	0.52

HoleID	Hole Type	MGA Easting	MGA Northing	RL	Dip	MGA Azimuth	Hole Depth (m)	Cu Domain	Depth From (m)	Interval Length (m)	Cu_pct
70-WCP-9	ОРН	586385	7694393	93	-90	0	11.0	10	0.0	3.7	1.02
74-WCP-1	ОРН	586724	7694546	59	-90	0	42.7	11	25.9	10.7	0.89
74-WCP-10	ОРН	586444	7694583	60	-90	0	32.0	18	12.2	7.6	0.80
74-WCP-10	ОРН	586444	7694583	60	-90	0	32.0	17	29.0	3.0	0.86
74-WCP-11	ОРН	586426	7694572	62	-90	0	30.5	18	15.2	4.6	0.22
74-WCP-13	ОРН	586421	7694498	66	-90	0	15.2	11	0.0	10.7	0.99
74-WCP-14	ОРН	586435	7694481	65	-90	0	15.2	11	0.0	10.7	1.68
74-WCP-15	ОРН	586568	7694404	77	-90	0	15.2	10	0.0	3.1	0.81
74-WCP-15	ОРН	586568	7694404	77	-90	0	15.2	11	6.1	1.5	0.42
74-WCP-16	ОРН	586538	7694410	76	-90	0	15.2	10	0.0	3.1	0.66
74-WCP-16	ОРН	586538	7694410	76	-90	0	15.2	11	4.6	1.5	0.20
74-WCP-17	ОРН	586374	7694597	60	-90	0	27.4	17	24.4	3.1	7.27
74-WCP-2	ОРН	586690	7694498	64	-90	0	21.3	10	0.0	3.1	0.48
74-WCP-2	ОРН	586690	7694498	64	-90	0	21.3	11	16.8	4.6	0.60
74-WCP-20	ОРН	586417	7694592	66	-90	0	39.6	18	18.3	6.1	2.81
74-WCP-20	ОРН	586417	7694592	66	-90	0	39.6	17	33.5	6.1	0.78
74-WCP-21	ОРН	586179	7694592	78	-90	0	21.3	16	0.0	3.1	0.37
74-WCP-21	ОРН	586179	7694592	78	-90	0	21.3	13	9.1	1.5	0.23
74-WCP-24	ОРН	586209	7694620	82	-90	0	30.5	16	13.7	7.6	0.42
74-WCP-27	ОРН	586963	7694719	50	-90	0	42.7	21	30.5	3.0	0.22
74-WCP-28	ОРН	586962	7694698	52	-90	0	36.6	21	24.4	6.1	0.44
74-WCP-29	ОРН	586961	7694667	57	-90	0	30.5	21	16.8	7.6	0.58
74-WCP-3	ОРН	586663	7694499	58	-90	0	24.4	11	1.5	18.3	0.59
74-WCP-30	ОРН	586961	7694637	55	-90	0	27.4	21	7.6	10.7	0.27
74-WCP-31	ОРН	586930	7694669	55	-90	0	21.3	21	12.2	6.1	0.41
74-WCP-34	ОРН	586901	7694699	57	-90	0	27.4	21	13.7	3.1	0.24
74-WCP-37	ОРН	586850	7694661	54	-90	0	36.6	23	12.2	12.2	0.91

HoleID	Hole Type	MGA Easting	MGA Northing	RL	Dip	MGA Azimuth	Hole Depth (m)	Cu Domain	Depth From (m)	Interval Length (m)	Cu_pct
74-WCP-37	OPH	586850	7694661	54	-90	0	36.6	24	27.4	6.1	0.30
74-WCP-38	ОРН	586820	7694663	54	-90	0	36.6	23	9.1	6.1	0.33
74-WCP-4	OPH	586662	7694468	66	-90	0	18.3	10	0.0	1.5	0.11
74-WCP-40	ОРН	586481	7694563	58	-90	0	36.6	18	22.9	13.7	3.86
74-WCP-42	ОРН	586389	7694540	69	-90	0	36.6	18	6.1	15.2	1.95
74-WCP-43	ОРН	586329	7694462	88	-90	0	21.3	11	4.6	1.5	0.88
74-WCP-43	OPH	586329	7694462	88	-90	0	21.3	18	10.7	7.6	0.36
74-WCP-44	OPH	586322	7694432	90	-90	0	18.3	10	0.0	1.5	0.14
74-WCP-44	ОРН	586322	7694432	90	-90	0	18.3	18	7.6	4.6	0.73
74-WCP-45	ОРН	586324	7694401	94	-90	0	15.2	10	0.0	1.5	0.28
74-WCP-45	OPH	586324	7694401	94	-90	0	15.2	11	4.6	7.6	0.38
74-WCP-46	ОРН	586266	7694511	84	-90	0	25.6	17	9.1	15.2	0.92
74-WCP-47	OPH	586205	7694513	85	-90	0	15.2	16	0.0	6.1	0.21
74-WCP-5	OPH	586661	7694453	69	-90	0	18.3	10	0.0	3.1	0.36
74-WCP-6	OPH	586630	7694499	55	-90	0	30.5	11	4.6	16.8	1.61
74-WCP-7	ОРН	586622	7694465	61	-90	0	21.3	11	3.1	9.1	0.62
74-WCP-8	OPH	586464	7694571	56	-90	0	27.4	18	19.8	7.6	2.13
74-WCP-9	OPH	586479	7694586	56	-90	0	29.0	18	19.8	9.2	1.43
DWMB001	RC	586683	7694603	53	-90	0	90.0	16	88.0	2.0	1.01
RV1	VAC	586234	7694527	90	-90	0	16.8	11	0.9	12.8	0.87
RV10	VAC	586287	7694599	68	-90	0	42.1	11	12.2	21.3	1.83
RV11	VAC	586293	7694605	67	-90	0	44.8	11	16.8	21.3	1.44
RV12	VAC	586301	7694614	64	-90	0	44.2	11	16.8	18.3	1.34
RV2	VAC	586239	7694534	91	-90	0	42.7	11	6.1	9.1	3.28
RV3	VAC	586244	7694542	92	-90	0	44.8	11	18.3	22.9	0.71
RV4	VAC	586250	7694550	91	-90	0	27.7	11	21.3	3.0	1.85
RV5	VAC	586256	7694556	87	-90	0	61.0	11	15.2	32.0	0.76

HoleID	Hole Type	MGA Easting	MGA Northing	RL	Dip	MGA Azimuth	Hole Depth (m)	Cu Domain	Depth From (m)	Interval Length (m)	Cu_pct
RV7	VAC	586271	7694572	78	-90	0	42.7	11	13.7	18.3	0.66
RV9	VAC	586280	7694593	68	-90	0	37.8	11	12.2	12.2	2.98
WC94D1	DDH	586514	7694549	61	-90	0	42.2	18	26.8	12.8	1.82
WC94D10	DDH	586506	7694504	72	-90	0	36.3	11	21.0	11.3	5.61
WC94D2	DDH	586508	7694580	56	-90	0	36.3	18	26.4	10.0	2.66
WC94D3	DDH	586511	7694511	70	-90	0	39.3	11	24.3	13.2	2.62
WC94D5	DDH	586504	7694453	79	-90	0	27.1	11	14.0	5.4	0.65
WC94D6	DDH	586279	7694503	81	-90	0	18.3	17	6.3	10.9	1.18
WC94D7	DDH	586288	7694535	87	-90	0	36.0	17	25.7	6.8	1.14
WC94D8	DDH	586266	7694576	78	-90	0	36.3	17	11.7	2.6	4.77
WC94D8	DDH	586266	7694576	78	-90	0	36.3	16	21.7	9.6	1.21
WC94D9	DDH	586281	7694607	68	-90	0	33.0	16	10.5	21.6	5.88
WC94RC10	RC	586362	7694612	58	-90	0	42.0	17	27.0	13.0	1.27
WC94RC11	RC	586358	7694600	59	-90	0	36.0	17	23.0	10.0	0.40
WC94RC11	RC	586358	7694600	59	-90	0	36.0	16	35.0	1.0	0.22
WC94RC2	RC	586603	7694515	57	-90	0	36.0	18	22.0	12.0	0.95
WC94RC3	RC	586511	7694549	61	-90	0	42.0	18	25.0	16.0	2.70
WC94RC4	RC	586542	7694516	68	-90	0	43.0	18	24.0	18.0	1.65
WC94RC5	RC	586511	7694517	69	-90	0	39.0	18	30.0	8.0	1.72
WC94RC6	RC	586491	7694490	74	-90	0	33.0	11	11.0	21.0	1.30
WC94RC7	RC	586281	7694592	68	-90	0	33.0	16	11.0	19.0	2.02
WC94RC8	RC	586303	7694614	63	-90	0	24.0	17	14.0	3.0	0.34
WC94RC8	RC	586303	7694614	63	-90	0	24.0	16	20.0	4.0	1.42
WC94RC9	RC	586305	7694627	63	-90	0	36.0	16	26.0	9.0	0.37
WC95RC1	RC	586374	7694541	68	-90	0	14.0	18	8.0	5.0	0.94
WC95RC10	RC	586341	7694411	94	-90	0	15.0	10	0.0	2.0	0.42
WC95RC11	RC	586336	7694434	91	-90	0	10.5	10	0.0	1.0	5.00

HoleID	Hole Type	MGA Easting	MGA Northing	RL	Dip	MGA Azimuth	Hole Depth (m)	Cu Domain	Depth From (m)	Interval Length (m)	Cu_pct
WC95RC11	RC	586336	7694434	91	-90	0	10.5	11	4.0	4.0	0.98
WC95RC12	RC	586346	7694500	79	-90	0	20.0	11	2.0	4.0	0.35
WC95RC12	RC	586346	7694500	79	-90	0	20.0	18	8.0	9.0	1.53
WC95RC13	RC	586230	7694542	91	-90	0	29.0	16	13.0	8.0	1.79
WC95RC14	RC	586215	7694560	93	-90	0	27.0	16	12.0	10.0	0.99
WC95RC15	RC	586214	7694522	90	-90	0	21.0	17	0.0	2.0	0.24
WC95RC15	RC	586214	7694522	90	-90	0	21.0	16	8.0	2.0	0.81
WC95RC15	RC	586214	7694522	90	-90	0	21.0	13	18.0	1.0	0.48
WC95RC16	RC	586157	7694539	93	-90	0	10.0	16	0.0	1.0	0.04
WC95RC16	RC	586157	7694539	93	-90	0	10.0	13	9.0	0.5	0.46
WC95RC17	RC	586170	7694544	93	-90	0	3.0	16	0.0	3.0	0.23
WC95RC18	RC	586225	7694581	89	-90	0	36.0	16	15.0	7.0	0.18
WC95RC18	RC	586225	7694581	89	-90	0	36.0	13	27.0	7.0	0.83
WC95RC19	RC	586190	7694593	80	-90	0	21.0	16	5.0	5.0	0.64
WC95RC19	RC	586190	7694593	80	-90	0	21.0	13	17.0	2.0	0.22
WC95RC2	RC	586343	7694566	65	-90	0	30.0	17	24.0	4.0	0.66
WC95RC20	RC	586163	7694588	79	-90	0	15.0	13	0.0	9.0	2.16
WC95RC21	RC	586174	7694589	78	-90	0	18.0	16	0.0	2.0	0.72
WC95RC21	RC	586174	7694589	78	-90	0	18.0	13	3.0	10.0	1.20
WC95RC24	RC	586397	7694589	65	-90	0	45.0	17	32.0	1.0	0.56
WC95RC24	RC	586397	7694589	65	-90	0	45.0	16	40.0	4.0	0.80
WC95RC3	RC	586429	7694574	61	-90	0	33.0	18	16.0	4.0	0.35
WC95RC4	RC	586404	7694536	65	-90	0	25.0	18	7.0	2.0	0.65
WC95RC5	RC	586407	7694514	66	-90	0	17.0	11	0.0	4.0	0.26
WC95RC5	RC	586407	7694514	66	-90	0	17.0	18	6.0	9.0	2.33
WC95RC6	RC	586415	7694480	71	-90	0	14.0	11	0.0	6.0	0.55
WC95RC7	RC	586450	7694438	73	-90	0	12.0	11	0.0	10.0	3.51

HoleID	Hole Type	MGA Easting	MGA Northing	RL	Dip	MGA Azimuth	Hole Depth (m)	Cu Domain	Depth From (m)	Interval Length (m)	Cu_pct
WC95RC8	RC	586368	7694464	86	-90	0	21.0	10	0.0	4.0	1.69
WC95RC8	RC	586368	7694464	86	-90	0	21.0	11	9.0	10.0	1.01
WC95RC9	RC	586369	7694444	87	-90	0	14.0	10	0.0	1.0	0.33
WC95RC9	RC	586369	7694444	87	-90	0	14.0	11	7.0	6.0	1.30
WCD003	DDH	586708	7694591	55	-90	360	174.4	17	74.2	10.1	0.73
WCD003	DDH	586708	7694591	55	-90	360	174.4	16	84.3	8.4	1.02
WCD003	DDH	586708	7694591	55	-90	360	174.4	99	129.4	2.6	0.53
WCR001	RC	586669	7694594	52	-59	204	72.0	18	57.0	5.0	0.77
WCR002	RC	586706	7694598	54	-60	227	84.0	19	45.0	4.0	2.40
WCR002	RC	586706	7694598	54	-60	227	84.0	17	67.0	9.0	0.95
WCR003	RC	586743	7694605	60	-60	224	96.0	19	59.0	5.0	2.22
WCR003	RC	586743	7694605	60	-60	224	96.0	18	65.0	17.0	1.12
WCR003	RC	586743	7694605	60	-60	224	96.0	17	85.0	1.0	0.22
WCR004	RC	586585	7694624	51	-56	225	96.0	17	66.0	9.0	7.17
WCR004	RC	586585	7694624	51	-56	225	96.0	16	75.0	3.0	0.98
WCR005	RC	586811	7694659	54	-56	218	90.0	23	4.0	4.0	0.37
WCR005	RC	586811	7694659	54	-56	218	90.0	24	21.0	7.0	0.40
WCR005	RC	586811	7694659	54	-56	218	90.0	26	34.0	6.0	0.30
WCR006	RC	586595	7694627	51	-56	188	93.0	18	63.0	7.0	1.24
WCR006	RC	586595	7694627	51	-56	188	93.0	17	70.0	9.0	0.94
WCR007	RC	586714	7694618	54	-61	228	99.0	17	78.0	13.0	0.83
WCR007	RC	586714	7694618	54	-61	228	99.0	16	92.0	2.0	0.39
WCR008	RC	586376	7694711	54	-61	218	120.0	99	64.0	1.0	0.21
WCR008	RC	586376	7694711	54	-61	218	120.0	13	78.0	3.0	1.40
WCR009	RC	586657	7694602	51	-90	360	102.0	16	79.0	15.0	0.64
WCR009	RC	586657	7694602	51	-90	360	102.0	15	98.0	4.0	0.24
WSR001	RC	586129	7694535	93	-90	0	22.0	16	0.0	7.0	0.46

HoleID	Hole Type	MGA Easting	MGA Northing	RL	Dip	MGA Azimuth	Hole Depth (m)	Cu Domain	Depth From (m)	Interval Length (m)	Cu_pct
WSR001	RC	586129	7694535	93	-90	0	22.0	13	14.0	2.0	0.45
WSR002	RC	586135	7694582	80	-90	0	22.0	13	0.0	11.0	0.69
WSR005	RC	586144	7694544	92	-90	0	28.0	16	0.0	3.0	0.39
WSR005	RC	586144	7694544	92	-90	0	28.0	13	14.0	4.0	0.77
WSR005	RC	586144	7694544	92	-90	0	28.0	12	25.0	1.0	0.59
WSR007	RC	586173	7694541	92	-90	0	28.0	16	0.0	8.0	0.80
WSR007	RC	586173	7694541	92	-90	0	28.0	13	17.0	1.0	0.25
WSR008	RC	586190	7694560	82	-90	0	34.0	16	0.0	3.0	1.19
WSR008	RC	586190	7694560	82	-90	0	34.0	13	13.0	11.0	1.11
WSR008	RC	586190	7694560	82	-90	0	34.0	12	26.0	8.0	0.84
WSR010	RC	586214	7694500	81	-90	0	28.0	16	0.0	1.0	0.21
WSR011	RC	586247	7694501	81	-90	0	28.0	17	0.0	8.0	0.93
WSR012	RC	586240	7694615	80	-90	0	58.0	16	18.0	4.0	0.48
WSR012	RC	586240	7694615	80	-90	0	58.0	13	40.0	4.0	0.33
WSR013	RC	586274	7694489	77	-90	0	16.0	17	4.0	4.0	2.72
WSR014	RC	586271	7694603	69	-90	0	58.0	16	11.0	17.0	6.75
WSR014	RC	586271	7694603	69	-90	0	58.0	13	30.0	4.0	0.20
WSR014	RC	586271	7694603	69	-90	0	58.0	12	39.0	6.0	1.00
WSR015	RC	586284	7694639	68	-90	0	82.0	13	38.0	2.0	0.52
WSR015	RC	586284	7694639	68	-90	0	82.0	12	59.0	1.0	0.28
WSR016	RC	586306	7694593	67	-90	0	52.0	16	21.0	20.0	2.53
WSR016	RC	586306	7694593	67	-90	0	52.0	13	41.0	6.0	0.52
WSR017	RC	586304	7694621	63	-90	0	58.0	16	26.0	11.0	0.74
WSR017	RC	586304	7694621	63	-90	0	58.0	13	38.0	11.0	0.94
WSR017	RC	586304	7694621	63	-90	0	58.0	12	49.0	9.0	1.19
WSR018	RC	586305	7694662	64	-90	0	82.0	13	51.0	8.0	1.30
WSR019	RC	586336	7694486	83	-90	0	28.0	11	0.0	4.0	0.33

HoleID	Hole Type	MGA Easting	MGA Northing	RL	Dip	MGA Azimuth	Hole Depth (m)	Cu Domain	Depth From (m)	Interval Length (m)	Cu_pct
WSR019	RC	586336	7694486	83	-90	0	28.0	18	9.0	11.0	1.57
WSR020	RC	586334	7694518	73	-90	0	28.0	18	2.0	7.0	0.42
WSR020	RC	586334	7694518	73	-90	0	28.0	17	11.0	5.0	1.30
WSR021	RC	586341	7694543	66	-90	0	46.0	17	9.0	11.0	1.78
WSR021	RC	586341	7694543	66	-90	0	46.0	13	32.0	2.0	0.27
WSR022	RC	586332	7694575	66	-90	0	46.0	17	23.0	4.0	0.31
WSR022	RC	586332	7694575	66	-90	0	46.0	16	28.0	5.0	0.41
WSR022	RC	586332	7694575	66	-90	0	46.0	13	40.0	5.0	0.43
WSR023	RC	586336	7694628	60	-90	0	64.0	17	26.0	6.0	0.79
WSR023	RC	586336	7694628	60	-90	0	64.0	14	48.0	4.0	0.55
WSR024	RC	586334	7694659	61	-90	0	100.0	14	56.0	2.0	0.76
WSR024	RC	586334	7694659	61	-90	0	100.0	13	60.0	3.0	1.18
WSR025	RC	586364	7694429	87	-90	0	16.0	10	0.0	1.0	0.22
WSR025	RC	586364	7694429	87	-90	0	16.0	11	4.0	9.0	1.17
WSR026A	RC	586361	7694485	83	-90	0	28.0	10	0.0	5.0	0.36
WSR026A	RC	586361	7694485	83	-90	0	28.0	11	10.0	9.0	1.39
WSR027	RC	586366	7694514	74	-90	0	28.0	11	0.0	6.0	2.18
WSR027	RC	586366	7694514	74	-90	0	28.0	18	6.0	8.0	1.31
WSR028A	RC	586370	7694574	60	-90	0	46.0	17	19.0	15.0	1.69
WSR028A	RC	586370	7694574	60	-90	0	46.0	16	34.0	2.0	0.62
WSR029	RC	586368	7694632	58	-90	0	82.0	17	27.0	13.0	2.98
WSR029	RC	586368	7694632	58	-90	0	82.0	14	51.0	18.0	0.51
WSR030	RC	586394	7694352	92	-90	0	16.0	10	0.0	1.0	1.78
WSR031	RC	586393	7694417	85	-90	0	22.0	10	0.0	2.0	1.22
WSR032	RC	586399	7694488	70	-90	0	22.0	11	3.0	4.0	5.02
WSR033	RC	586396	7694565	66	-90	0	46.0	17	25.0	10.0	1.78
WSR033	RC	586396	7694565	66	-90	0	46.0	16	36.0	3.0	0.53

HoleID	Hole Type	MGA Easting	MGA Northing	RL	Dip	MGA Azimuth	Hole Depth (m)	Cu Domain	Depth From (m)	Interval Length (m)	Cu_pct
WSR034	RC	586427	7694396	89	-90	0	22.0	10	0.0	1.0	0.13
WSR035	RC	586420	7694434	74	-90	0	22.0	11	1.0	6.0	0.66
WSR036	RC	586426	7694458	64	-90	0	22.0	11	1.0	5.0	0.57
WSR037	RC	586420	7694523	64	-90	0	34.0	11	0.0	5.0	1.56
WSR037	RC	586420	7694523	64	-90	0	34.0	18	7.0	7.0	3.04
WSR038	RC	586429	7694542	59	-90	0	46.0	11	0.0	5.0	0.51
WSR038	RC	586429	7694542	59	-90	0	46.0	18	8.0	12.0	3.45
WSR039	RC	586426	7694613	60	-90	0	70.0	18	26.0	5.0	0.38
WSR039	RC	586426	7694613	60	-90	0	70.0	17	31.0	14.0	2.48
WSR039	RC	586426	7694613	60	-90	0	70.0	16	45.0	6.0	0.82
WSR039	RC	586426	7694613	60	-90	0	70.0	15	61.0	7.0	0.71
WSR040	RC	586456	7694414	82	-90	0	22.0	10	0.0	1.0	0.42
WSR040	RC	586456	7694414	82	-90	0	22.0	11	3.0	4.0	0.57
WSR041A	RC	586451	7694470	62	-90	0	22.0	11	0.0	8.0	2.68
WSR042	RC	586445	7694499	60	-90	0	28.0	11	0.0	14.0	1.14
WSR043	RC	586450	7694533	58	-90	0	49.0	11	0.0	2.0	2.64
WSR043	RC	586450	7694533	58	-90	0	49.0	18	4.0	11.0	1.59
WSR044	RC	586458	7694559	56	-90	0	52.0	18	17.0	17.0	1.33
WSR045	RC	586458	7694619	55	-90	0	58.0	17	34.0	16.0	7.00
WSR045	RC	586458	7694619	55	-90	0	58.0	16	50.0	2.0	0.94
WSR047	RC	586494	7694452	78	-90	0	28.0	10	2.0	1.0	0.27
WSR047	RC	586494	7694452	78	-90	0	28.0	11	13.0	4.0	1.40
WSR048	RC	586480	7694539	62	-90	0	40.0	18	11.0	15.0	3.62
WSR049	RC	586482	7694570	57	-90	0	60.0	18	22.0	19.0	4.00
WSR049	RC	586482	7694570	57	-90	0	60.0	15	58.0	1.0	0.32
WSR050	RC	586486	7694603	54	-90	0	60.0	18	23.0	19.0	3.41
WSR050	RC	586486	7694603	54	-90	0	60.0	17	46.0	5.0	0.46

HoleID	Hole Type	MGA Easting	MGA Northing	RL	Dip	MGA Azimuth	Hole Depth (m)	Cu Domain	Depth From (m)	Interval Length (m)	Cu_pct
WSR050	RC	586486	7694603	54	-90	0	60.0	16	54.0	1.0	0.45
WSR051	RC	586545	7694564	57	-90	0	59.0	18	35.0	7.0	3.32
WSR051	RC	586545	7694564	57	-90	0	59.0	17	53.0	2.0	0.57
WSR052	RC	586607	7694560	60	-90	0	70.0	18	45.0	9.0	1.88
WSR053	RC	586633	7694429	70	-90	0	28.0	10	0.0	1.0	0.27
WSR054	RC	586666	7694550	54	-90	0	70.0	19	31.0	10.0	3.16
WSR054	RC	586666	7694550	54	-90	0	70.0	18	41.0	6.0	0.99
WSR055	RC	586698	7694531	57	-90	0	52.0	11	18.0	11.0	1.08
WSR056	RC	586726	7694520	59	-90	0	34.0	11	15.0	6.0	0.32
WSR057	RC	586730	7694558	59	-90	0	58.0	11	30.0	13.0	1.10
WSR059	RC	586751	7694565	64	-90	0	56.0	11	36.0	12.0	0.75
WSR060	RC	586758	7694592	66	-90	0	82.0	19	65.0	5.0	1.92
WSR060	RC	586758	7694592	66	-90	0	82.0	18	79.0	1.0	0.14
WSR062	RC	586210	7694530	91	-90	0	28.0	17	0.0	1.0	0.95
WSR062	RC	586210	7694530	91	-90	0	28.0	16	8.0	5.0	6.40
WSR062	RC	586210	7694530	91	-90	0	28.0	13	17.0	5.0	0.77
WSR062	RC	586210	7694530	91	-90	0	28.0	12	25.0	3.0	0.56
WSR063	RC	586427	7694638	54	-90	0	76.0	16	51.0	4.0	1.25
WSR063	RC	586427	7694638	54	-90	0	76.0	15	59.0	9.0	0.51
WSR063	RC	586427	7694638	54	-90	0	76.0	14	73.0	3.0	0.42
WSR064	RC	586458	7694633	54	-90	0	70.0	17	42.0	9.0	0.97
WSR064	RC	586458	7694633	54	-90	0	70.0	15	69.0	1.0	4.03
WWC023	RC	586514	7694619	53	-60	180	117.0	18	38.0	11.0	2.90
WWC023	RC	586514	7694619	53	-60	180	117.0	17	54.0	6.0	0.35
WWC023	RC	586514	7694619	53	-60	180	117.0	16	62.0	6.0	0.42
WWC024	RC	586460	7694603	57	-61	176	60.0	18	20.0	14.0	0.75
WWC024	RC	586460	7694603	57	-61	176	60.0	17	38.0	8.0	0.83

HoleID	Hole Type	MGA Easting	MGA Northing	RL	Dip	MGA Azimuth	Hole Depth (m)	Cu Domain	Depth From (m)	Interval Length (m)	Cu_pct
WWC025	RC	586365	7694552	65	-60	177	35.0	18	8.0	4.0	0.53
WWC025	RC	586365	7694552	65	-60	177	35.0	17	14.0	8.0	2.59
WWC027	RC	586131	7694576	81	-61	188	25.0	13	0.0	8.0	0.39
WWC028	RC	586157	7694583	79	-61	185	30.0	13	6.0	14.0	0.47
WWC028	RC	586157	7694583	79	-61	185	30.0	12	28.0	2.0	0.38
WWC029	RC	586189	7694597	76	-60	184	51.0	16	0.0	4.0	0.24
WWC029	RC	586189	7694597	76	-60	184	51.0	13	14.0	10.0	0.29
WWC029	RC	586189	7694597	76	-60	184	51.0	12	36.0	2.0	0.41
WWC037	RC	586512	7694417	78	-65	180	20.0	10	0.0	2.0	0.29
WWC038	RC	586323	7694444	88	-65	220	30.0	11	0.0	2.0	0.21
WWC038	RC	586323	7694444	88	-65	220	30.0	18	6.0	4.0	0.80
WWC059	DDH	586427	7694600	50	-60	0	250.6	18	13.0	11.0	4.27
WWC059	DDH	586427	7694600	50	-60	0	250.6	17	24.0	20.0	2.14
WWC059	DDH	586427	7694600	50	-60	0	250.6	16	44.0	9.0	4.33
WWC059	DDH	586427	7694600	50	-60	0	250.6	15	56.0	17.0	1.55
WWC059	DDH	586427	7694600	50	-60	0	250.6	14	86.0	11.0	0.33
WWC059	DDH	586427	7694600	50	-60	0	250.6	13	106.0	14.0	0.77
WWC060	RC	586215	7694612	78	-90	0	44.0	16	10.0	4.0	0.47
WWC061	RC	586219	7694596	78	-90	0	40.0	13	26.0	2.0	0.34
WWC062	RC	586207	7694597	78	-90	0	40.0	13	20.0	10.0	0.44
WWC063	RC	586984	7694761	47	-65	206	106.0	26	96.0	6.0	0.55
WWC064	RC	587000	7694729	49	-65	206	64.0	22	56.0	8.0	0.60
WWC066	RC	587023	7694711	48	-65	225	78.0	21	44.0	5.0	0.39
WWC066	RC	587023	7694711	48	-65	225	78.0	22	49.0	5.0	0.33
WWC073	RC	586306	7694664	59	-60	180	84.0	13	47.0	7.0	0.82
WWC073	RC	586306	7694664	59	-60	180	84.0	12	57.0	6.0	0.68
WWC074	RC	586337	7694622	53	-60	180	60.0	17	18.0	5.0	0.91

HoleID	Hole Type	MGA Easting	MGA Northing	RL	Dip	MGA Azimuth	Hole Depth (m)	Cu Domain	Depth From (m)	Interval Length (m)	Cu_pct
WWC074	RC	586337	7694622	53	-60	180	60.0	16	28.0	14.0	1.11
WWC075	RC	586368	7694640	52	-60	0	96.0	14	69.0	3.0	0.21
WWC075	RC	586368	7694640	52	-60	0	96.0	13	72.0	8.0	0.83
WWC076	RC	586494	7694661	54	-60	180	108.0	15	92.0	1.0	0.22
WWC076	RC	586494	7694661	54	-60	180	108.0	14	94.0	4.0	0.48
WWC077	RC	586517	7694645	52	-60	180	90.0	18	46.0	6.0	4.90
WWC077	RC	586517	7694645	52	-60	180	90.0	15	81.0	9.0	0.65
WWC078	RC	586519	7694606	54	-60	180	66.0	18	36.0	14.0	5.62
WWC078	RC	586519	7694606	54	-60	180	66.0	17	52.0	6.0	0.51
WWC079	RC	586368	7694638	52	-80	0	96.0	14	60.0	8.0	0.64
WWC079	RC	586368	7694638	52	-80	0	96.0	13	70.0	7.0	0.76
WWC080	RC	586452	7694656	48	-80	180	84.0	17	38.0	12.0	0.33
WWC080	RC	586452	7694656	48	-80	180	84.0	14	75.0	4.0	0.50
WWC081	RC	586402	7694633	48	-80	0	84.0	17	23.0	5.0	1.24
WWC081	RC	586402	7694633	48	-80	0	84.0	16	38.0	4.0	0.89
WWC081	RC	586402	7694633	48	-80	0	84.0	15	43.0	5.0	1.05
WWC081	RC	586402	7694633	48	-80	0	84.0	14	55.0	13.0	0.43
WWC083	RC	586800	7694662	53	-60	160	70.0	24	20.0	8.0	0.21
WWC083	RC	586800	7694662	53	-60	160	70.0	26	33.0	5.0	0.34
WWC084	RC	586997	7694798	46	-65	206	149.0	26	112.0	18.0	0.60
WWC085	RC	587051	7694740	47	-65	225	150.0	22	80.0	12.0	0.25
WWC085	RC	587051	7694740	47	-65	225	150.0	26	108.0	5.0	0.41
WWC086	RC	586576	7694579	50	-60	180	70.0	18	43.0	7.0	1.53
WWC086	RC	586576	7694579	50	-60	180	70.0	17	57.0	1.0	0.44
WWC112	RC	586644	7694642	52	-54	205	115.0	16	94.0	14.0	0.60
WWC113	RC	586639	7694557	41	-80	46	70.0	19	21.0	10.0	2.56
WWC113	RC	586639	7694557	41	-80	46	70.0	18	31.0	7.0	1.63

HoleID	Hole Type	MGA Easting	MGA Northing	RL	Dip	MGA Azimuth	Hole Depth (m)	Cu Domain	Depth From (m)	Interval Length (m)	Cu_pct
WWC114	RC	586632	7694557	41	-65	325	75.0	19	25.0	7.0	0.42
WWC114	RC	586632	7694557	41	-65	325	75.0	18	39.0	11.0	1.16
WWC114	RC	586632	7694557	41	-65	325	75.0	17	60.0	5.0	1.94
WWC115	RC	586544	7694611	42	-71	133	80.0	18	40.0	8.0	2.75
WWC115	RC	586544	7694611	42	-71	133	80.0	17	50.0	5.0	1.15
WWC115	RC	586544	7694611	42	-71	133	80.0	16	60.0	8.0	0.60
WWC116	RC	586539	7694608	43	-72	207	80.0	18	39.0	5.0	0.75
WWC116	RC	586539	7694608	43	-72	207	80.0	17	45.0	7.0	0.74
WWC116	RC	586539	7694608	43	-72	207	80.0	16	54.0	6.0	0.25
WWC116	RC	586539	7694608	43	-72	207	80.0	15	67.0	1.0	0.52
WWC117	RC	586539	7694616	42	-76	292	50.0	18	33.0	6.0	3.13
WWC126	RC	586313	7694727	60	-55	165	100.0	13	76.0	8.0	1.75
WWC137	RC	586822	7694638	55	-60	180	45.0	23	0.0	1.0	0.10
WWC139	RC	586837	7694651	55	-60	180	45.0	23	7.0	9.0	0.90
WWC140	RC	586836	7694670	53	-60	180	55.0	23	20.0	4.0	0.29
WWC140	RC	586836	7694670	53	-60	180	55.0	24	32.0	4.0	0.35
WWC141	RC	586835	7694692	52	-60	180	75.0	26	44.0	8.0	0.41
WWC142	RC	586834	7694713	52	-60	180	75.0	26	52.0	7.0	0.69
WWC144	RC	586867	7694696	53	-60	180	61.0	24	40.0	7.0	0.64
WWC144	RC	586867	7694696	53	-60	180	61.0	26	48.0	7.0	0.53
WWC145	RC	586867	7694674	53	-60	180	40.0	23	18.0	10.0	0.52
WWC146	RC	586867	7694716	54	-60	180	67.0	26	59.0	3.0	0.51
WWC147	RC	586871	7694735	54	-60	180	73.0	26	64.0	5.0	0.69
WWC151	RC	586853	7694715	54	-60	180	60.0	26	56.0	4.0	0.62
WWC152	RC	586824	7694693	52	-60	180	65.0	26	44.0	6.0	0.57
WWC154	RC	586807	7694640	57	-60	180	55.0	23	0.0	4.0	0.63
WWC156	RC	586911	7694672	55	-60	180	30.0	21	4.0	4.0	0.46

HoleID	Hole Type	MGA Easting	MGA Northing	RL	Dip	MGA Azimuth	Hole Depth (m)	Cu Domain	Depth From (m)	Interval Length (m)	Cu_pct
WWC159	RC	586958	7694659	56	-60	180	40.0	21	16.0	5.0	1.10
WWC160	RC	586942	7694651	56	-60	180	30.0	21	8.0	10.0	0.68
WWC161	RC	586955	7694696	52	-60	180	40.0	21	20.0	7.0	0.85
WWC162	RC	586945	7694695	52	-60	180	40.0	21	14.0	8.0	0.80
WWC163	RC	586989	7694660	52	-40	180	40.0	21	16.0	8.0	0.74
WWC164	RC	586974	7694663	55	-40	180	40.0	21	20.0	6.0	0.61
WWC165	RC	586975	7694701	51	-45	180	45.0	21	29.0	6.0	0.60
WWC166	RC	586990	7694675	52	-45	180	45.0	21	20.0	9.0	0.44
WWC167	RC	586962	7694724	49	-55	180	55.0	21	32.0	4.0	0.40
WWC167	RC	586962	7694724	49	-55	180	55.0	22	44.0	6.0	0.71
WWC168	RC	586958	7694631	56	-40	180	40.0	21	5.0	11.0	0.58
WWC171	RC	586308	7694577	36	-60	210	40.0	16	0.0	4.0	0.15
WWC171	RC	586308	7694577	36	-60	210	40.0	13	8.0	4.0	0.26
WWC171	RC	586308	7694577	36	-60	210	40.0	12	24.0	4.0	0.36
WWD087	DDH	586722	7694589	57	-58	200	98.8	19	47.0	6.7	2.72
WWD087	DDH	586722	7694589	57	-58	200	98.8	18	53.7	4.3	0.72
WWD088	DDH	586714	7694605	54	-65	208	114.3	19	46.8	6.2	7.10
WWD088	DDH	586714	7694605	54	-65	208	114.3	17	70.0	9.0	1.07
WWD089	DDH	586706	7694590	55	-51	218	109.7	19	48.1	11.0	3.03
WWD089	DDH	586706	7694590	55	-51	218	109.7	18	59.0	7.0	1.03
WWD090	DDH	586683	7694615	52	-65	208	141.0	17	73.2	7.5	1.19
WWD091	DDH	586676	7694603	52	-65	232	117.1	17	69.0	7.0	1.01
WWD092	DDH	586649	7694625	52	-60	196	125.1	17	75.0	8.5	0.82
WWD093	DDH	586650	7694624	52	-55	213	105.1	17	74.0	11.0	2.59
WWD094	DDH	586640	7694644	51	-65	220	173.2	16	94.0	6.0	0.51
WWD094	DDH	586640	7694644	51	-65	220	173.2	15	101.0	7.0	0.20
WWD095	DDH	586601	7694634	52	-57	230	133.2	17	72.9	4.1	1.44

HoleID	Hole Type	MGA Easting	MGA Northing	RL	Dip	MGA Azimuth	Hole Depth (m)	Cu Domain	Depth From (m)	Interval Length (m)	Cu_pct
WWD095	DDH	586601	7694634	52	-57	230	133.2	16	80.8	12.2	0.44
WWD095	DDH	586601	7694634	52	-57	230	133.2	15	96.0	1.0	0.19
WWD095	DDH	586601	7694634	52	-57	230	133.2	14	105.0	0.9	0.24
WWD096	DDH	586601	7694665	51	-60	212	126.1	16	94.0	2.0	0.35
WWD096	DDH	586601	7694665	51	-60	212	126.1	15	109.0	1.0	0.24
WWD096	DDH	586601	7694665	51	-60	212	126.1	13	124.5	0.3	0.50
WWD097	DDH	586722	7694624	54	-75	211	140.1	16	96.5	6.5	0.28
WWD097	DDH	586722	7694624	54	-75	211	140.1	15	111.0	1.0	0.18
WWD098	DDH	586568	7694654	51	-60	206	141.2	18	67.7	0.4	2.10
WWD098	DDH	586568	7694654	51	-60	206	141.2	16	87.0	5.0	0.35
WWD098	DDH	586568	7694654	51	-60	206	141.2	15	95.0	6.0	0.34
WWD098	DDH	586568	7694654	51	-60	206	141.2	14	104.1	1.9	0.42
WWD098	DDH	586568	7694654	51	-60	206	141.2	13	116.0	1.0	0.18
WWD099	DDH	586554	7694668	52	-55	230	129.0	14	109.0	2.0	0.54
WWD099	DDH	586554	7694668	52	-55	230	129.0	13	127.0	2.0	0.27
WWD100	DDH	586513	7694693	53	-61	200	137.2	15	96.0	0.6	0.38
WWD100	DDH	586513	7694693	53	-61	200	137.2	14	103.0	12.1	0.85
WWD100	DDH	586513	7694693	53	-61	200	137.2	13	126.0	1.0	0.55
WWD101	DDH	586513	7694693	53	-61	236	174.3	13	121.0	7.0	0.27
WWD101	DDH	586513	7694693	53	-61	236	174.3	12	132.2	3.8	0.43
WWD102	DDH	586714	7694605	54	-56	204	77.6	19	50.5	7.5	5.17
WWD102	DDH	586714	7694605	54	-56	204	77.6	18	59.0	10.3	0.96
WWD103	DDH	586412	7694704	54	-68	170	133.3	13	95.2	7.9	2.33
WWD104	DDH	586414	7694704	54	-50	210	126.1	15	76.1	2.9	1.26
WWD104	DDH	586414	7694704	54	-50	210	126.1	14	89.2	5.8	0.50
WWD104	DDH	586414	7694704	54	-50	210	126.1	13	99.0	4.0	0.63
WWD104	DDH	586414	7694704	54	-50	210	126.1	12	114.5	3.6	0.50

HoleID	Hole Type	MGA Easting	MGA Northing	RL	Dip	MGA Azimuth	Hole Depth (m)	Cu Domain	Depth From (m)	Interval Length (m)	Cu_pct
WWD118	DDH	586896	7694813	46	-53	155	159.3	26	110.0	14.0	0.53
WWD119	DDH	586668	7694656	51	-54	207	153.3	16	105.0	5.5	0.87
WWD119	DDH	586668	7694656	51	-54	207	153.3	15	113.0	3.9	0.61
WWD120	DDH	586748	7694603	60	-68	198	121.7	19	53.1	9.9	3.94
WWD120	DDH	586748	7694603	60	-68	198	121.7	18	63.0	11.9	1.04
WWD123	DDH	586613	7694682	50	-60	218	135.4	15	115.0	4.0	0.24
WWD123	DDH	586613	7694682	50	-60	218	135.4	14	121.0	2.0	0.27
WWD123	DDH	586613	7694682	50	-60	218	135.4	13	129.0	1.0	0.13
WWD132	DDH	586746	7694605	60	-75	189	153.7	16	92.0	5.0	0.54
WWD136	DDH	586786	7694629	58	-70	205	180.6	19	64.0	11.2	1.86
WWD136	DDH	586786	7694629	58	-70	205	180.6	18	77.0	11.0	0.60
WWD136	DDH	586786	7694629	58	-70	205	180.6	17	88.0	8.3	0.59
WWD136	DDH	586786	7694629	58	-70	205	180.6	16	112.0	1.0	0.10
WWD137	DDH	586786	7694629	58	-70	245	183.6	15	128.4	7.5	0.28
WWD137	DDH	586786	7694629	58	-70	245	183.6	14	142.0	2.0	0.28
WWD139	DDH	586757	7694658	53	-65	120	258.7	16	129.0	6.0	0.36
WWD139	DDH	586757	7694658	53	-65	120	258.7	15	136.0	10.0	0.26
WWD139	DDH	586757	7694658	53	-65	120	258.7	14	157.5	7.0	0.72
WWD140	DDH	586808	7694661	50	-65	185	205.1	23	0.0	3.3	0.11
WWD140	DDH	586808	7694661	50	-65	185	205.1	24	16.0	4.0	0.40
WWD140	DDH	586808	7694661	50	-65	185	205.1	26	32.9	6.1	0.45
WWD140	DDH	586808	7694661	50	-65	185	205.1	16	108.0	14.0	0.57
WWD140	DDH	586808	7694661	50	-65	185	205.1	15	124.0	16.0	0.35
WWD140	DDH	586808	7694661	50	-65	185	205.1	14	148.0	1.3	1.08
WWD141	DDH	586808	7694661	50	-55	155	168.6	23	0.0	3.0	0.20
WWD141	DDH	586808	7694661	50	-55	155	168.6	24	20.0	11.0	0.52
WWD141	DDH	586808	7694661	50	-55	155	168.6	26	35.0	4.0	0.27

HoleID	Hole Type	MGA Easting	MGA Northing	RL	Dip	MGA Azimuth	Hole Depth (m)	Cu Domain	Depth From (m)	Interval Length (m)	Cu_pct
WWD142	DDH	586760	7694585	65	-76	185	168.1	11	44.0	12.0	0.70
WWD143	DDH	586910	7694767	49	-62	184	150.9	26	75.0	7.0	0.71

HoleID	Hole Type	MGA Easting	MGA Northing	RL	Dip	MGA Azimuth	Hole Depth (m)	ZnPb Domain	Depth From (m)	Interval Length (m)	Zn_pct	Pb_pct
20AWCD001	DDH	586676	7694606	52	-50	180	81.0	19	47.0	3.0	0.58	0.16
20AWCD001	DDH	586676	7694606	52	-50	180	81.0	18	52.0	5.0	1.02	0.11
20AWCD001	DDH	586676	7694606	52	-50	180	81.0	17	64.0	1.0	0.31	0.03
69-WCD-10	DDH	586672	7694569	54	-90	0	65.8	18	39.9	4.9	0.28	0.05
69-WCD-10	DDH	586672	7694569	54	-90	0	65.8	17	50.9	1.5	1.35	0.11
69-WCD-11	DDH	586656	7694532	54	-90	0	53.6	19	24.4	3.1	0.80	0.24
69-WCD-11	DDH	586656	7694532	54	-90	0	53.6	18	30.5	2.1	0.27	0.54
69-WCD-12	DDH	586688	7694566	54	-90	0	65.8	19	33.2	3.7	1.28	0.17
69-WCD-12	DDH	586688	7694566	54	-90	0	65.8	18	41.5	3.1	0.29	0.23
69-WCD-13	DDH	586277	7694595	68	-90	0	46.6	16	10.1	5.2	0.12	0.10
69-WCD-14	DDH	586277	7694590	68	-90	0	45.7	16	12.2	2.9	0.08	0.45
69-WCD-15	DDH	586283	7694590	68	-90	0	48.8	16	13.7	4.6	0.01	0.37
69-WCD-16	DDH	586282	7694596	68	-90	0	45.7	16	12.2	1.5	0.04	1.02
69-WCD-17	DDH	586283	7694599	68	-90	0	45.7	16	12.8	1.8	0.01	0.11
69-WCD-2	DDH	587104	7694788	58	-90	0	160.3	26	147.5	0.6	0.52	0.02
69-WCD-4	DDH	586565	7694656	50	-90	0	73.3	17	71.2	1.2	10.65	0.55
69-WCD-5	DDH	586679	7694626	51	-90	0	118.0	16	89.0	2.7	4.47	
69-WCD-5	DDH	586679	7694626	51	-90	0	118.0	15	109.8	0.9	0.10	0.00
69-WCD-7	DDH	586608	7694576	62	-90	0	65.2	19	45.1	1.2	7.10	0.55
69-WCD-7	DDH	586608	7694576	62	-90	0	65.2	18	50.3	1.8	4.70	0.35
69-WCD-8	DDH	586629	7694556	56	-90	0	53.6	19	32.3	3.1	8.91	1.15
69-WCD-8	DDH	586629	7694556	56	-90	0	53.6	18	37.2	9.1	1.06	0.11

HoleID	Hole Type	MGA Easting	MGA Northing	RL	Dip	MGA Azimuth	Hole Depth (m)	ZnPb Domain	Depth From (m)	Interval Length (m)	Zn_pct	Pb_pct
69-WCD-9	DDH	586636	7694577	55	-90	0	65.2	18	47.2	4.0	0.88	0.07
69-WCD-9	DDH	586636	7694577	55	-90	0	65.2	17	56.4	1.4	0.40	0.00
70-WCD-1	DDH	586508	7694427	78	-90	0	21.7	11	3.1	3.7	0.52	0.47
70-WCD-11	DDH	586303	7694614	63	-90	0	46.0	16	18.3	8.8	0.25	0.23
70-WCD-12	DDH	586269	7694618	72	-90	0	39.9	99	7.6	3.4	0.50	1.51
70-WCD-12	DDH	586269	7694618	72	-90	0	39.9	16	22.3	4.0	0.57	0.04
70-WCD-12	DDH	586269	7694618	72	-90	0	39.9	13	35.7	1.5	0.06	0.09
70-WCD-13	DDH	586238	7694587	85	-90	0	55.5	16	14.0	5.2	0.36	1.11
70-WCD-14	DDH	586268	7694559	83	-90	0	34.4	17	15.5	7.6	0.23	1.32
70-WCD-14	DDH	586268	7694559	83	-90	0	34.4	16	23.2	3.4	0.03	0.88
70-WCD-15	DDH	586300	7694558	80	-90	0	46.9	17	21.3	7.9	0.03	1.01
70-WCD-15	DDH	586300	7694558	80	-90	0	46.9	16	32.3	1.2	0.07	0.10
70-WCD-16	DDH	586296	7694500	80	-90	0	24.7	17	9.1	1.5	0.01	0.08
70-WCD-17	DDH	586268	7694529	89	-90	0	35.4	17	13.4	4.0	0.19	0.31
70-WCD-17	DDH	586268	7694529	89	-90	0	35.4	16	22.9	1.5	0.22	0.98
70-WCD-18	DDH	586300	7694582	73	-90	0	38.7	16	21.0	7.0	0.28	1.00
70-WCD-19	DDH	586240	7694559	90	-90	0	36.3	16	18.6	3.7	0.06	0.58
70-WCD-20	DDH	586239	7694531	91	-90	0	24.8	17	4.0	6.4	0.45	0.86
70-WCD-21	DDH	586571	7694489	62	-90	0	24.4	11	9.8	4.6	0.29	0.68
70-WCD-22	DDH	586513	7694580	56	-90	0	54.0	18	29.9	7.6	0.60	0.01
70-WCD-22	DDH	586513	7694580	56	-90	0	54.0	17	37.5	7.6	1.76	0.02
70-WCD-23	DDH	586543	7694579	55	-90	0	71.9	18	33.2	3.1	0.94	0.08
70-WCD-23	DDH	586543	7694579	55	-90	0	71.9	17	42.4	7.6	1.18	0.02
70-WCD-24	DDH	586573	7694578	56	-90	0	126.9	18	39.0	3.4	0.59	0.03
70-WCD-25	DDH	586602	7694545	57	-90	0	53.0	18	30.5	12.2	2.20	0.23
70-WCD-26	DDH	586571	7694516	64	-90	0	38.5	18	24.7	5.8	0.08	0.51
70-WCD-27	DDH	586572	7694547	58	-90	0	47.2	18	32.0	4.6	0.61	0.06
70-WCD-28	DDH	586568	7694458	60	-90	0	24.4	11	3.1	1.5	0.03	0.41

HoleID	Hole Type	MGA Easting	MGA Northing	RL	Dip	MGA Azimuth	Hole Depth (m)	ZnPb Domain	Depth From (m)	Interval Length (m)	Zn_pct	Pb_pct
70-WCD-3	DDH	586509	7694488	75	-90	0	38.6	11	15.9	3.1	0.00	0.22
70-WCD-31	DDH	586331	7694615	60	-90	0	50.8	17	21.3	6.1	0.10	0.24
70-WCD-31	DDH	586331	7694615	60	-90	0	50.8	16	27.4	3.1	0.75	0.02
70-WCD-32	DDH	586330	7694558	70	-90	0	35.4	18	12.2	7.6	0.09	0.44
70-WCD-32	DDH	586330	7694558	70	-90	0	35.4	17	21.3	9.8	0.11	0.44
70-WCD-33	DDH	586660	7694513	56	-90	0	31.5	11	9.1	4.6	0.10	0.23
70-WCD-34	DDH	586581	7694607	55	-90	0	81.2	18	59.4	1.5	0.18	0.12
70-WCD-34	DDH	586581	7694607	55	-90	0	81.2	17	62.5	4.6	3.56	0.01
70-WCD-35	DDH	586632	7694515	54	-90	0	33.2	11	13.7	4.6	0.13	0.39
70-WCD-36	DDH	586484	7694613	55	-90	0	53.0	17	45.7	6.1	0.66	0.06
70-WCD-38	DDH	586636	7694606	55	-90	0	78.1	17	67.1	3.0	0.42	0.16
70-WCD-38	DDH	586636	7694606	55	-90	0	78.1	16	71.6	4.6	0.95	0.16
70-WCD-39	DDH	586601	7694486	56	-90	0	14.0	11	0.0	1.5	0.04	0.08
70-WCD-40	DDH	586665	7694605	51	-90	0	78.0	16	71.9	6.1	3.63	1.46
70-WCD-41	DDH	586695	7694604	53	-90	0	86.0	16	75.3	4.6	0.49	0.22
70-WCD-42	DDH	586537	7694425	75	-90	0	19.2	11	6.1	3.0	0.11	0.47
70-WCD-43	DDH	586725	7694603	55	-90	0	90.8	16	84.1	3.1	0.26	0.15
70-WCD-44	DDH	586634	7694545	54	-90	0	46.0	19	26.8	1.5	0.24	0.16
70-WCD-44	DDH	586634	7694545	54	-90	0	46.0	18	34.4	1.5	0.28	0.02
70-WCD-45	DDH	586477	7694428	78	-90	0	14.0	11	4.0	4.6	0.01	0.07
70-WCD-46	DDH	586725	7694574	58	-90	0	64.9	18	52.1	5.8	0.63	0.10
70-WCD-48	DDH	586605	7694605	59	-90	0	96.6	17	69.8	7.9	1.64	0.14
70-WCD-49	DDH	586694	7694543	56	-90	0	41.5	11	18.3	3.1	0.36	0.27
70-WCD-5	DDH	586543	7694486	68	-90	0	33.8	11	15.9	3.7	0.00	0.07
70-WCD-50	DDH	586481	7694518	68	-90	0	30.5	11	11.0	2.8	0.02	0.22
70-WCD-51	DDH	586392	7694614	60	-90	0	59.7	17	33.5	6.1	1.17	0.32
70-WCD-51	DDH	586392	7694614	60	-90	0	59.7	16	39.6	3.1	2.21	0.18
70-WCD-52	DDH	586401	7694643	56	-90	0	78.4	16	47.9	4.3	9.90	1.15

HoleID	Hole Type	MGA Easting	MGA Northing	RL	Dip	MGA Azimuth	Hole Depth (m)	ZnPb Domain	Depth From (m)	Interval Length (m)	Zn_pct	Pb_pct
70-WCD-52	DDH	586401	7694643	56	-90	0	78.4	15	53.6	9.2	3.87	0.51
70-WCD-53	DDH	586482	7694458	73	-90	0	16.2	11	7.6	3.1	0.03	0.43
70-WCD-54	DDH	586362	7694645	58	-90	0	78.3	15	46.0	1.8	0.15	0.07
70-WCD-55	DDH	586361	7694615	59	-90	0	50.6	17	27.7	5.8	0.03	2.64
70-WCD-55	DDH	586361	7694615	59	-90	0	50.6	16	33.5	6.4	0.34	0.26
70-WCD-55	DDH	586361	7694615	59	-90	0	50.6	15	44.5	1.5	0.60	0.00
70-WCD-56	DDH	586336	7694677	62	-90	0	82.0	15	55.8	7.6	6.38	0.87
70-WCD-56	DDH	586336	7694677	62	-90	0	82.0	14	66.1	7.3	3.69	0.41
70-WCD-58	DDH	586544	7694642	52	-90	0	94.9	16	82.0	3.1	1.82	0.03
70-WCD-59	DDH	586512	7694640	53	-90	0	82.3	16	72.5	3.1	0.66	0.35
70-WCD-6	DDH	586539	7694457	69	-90	0	25.6	11	7.6	4.3	0.07	0.14
70-WCD-60	DDH	586239	7694620	81	-90	0	46.0	16	20.7	3.0	0.16	1.18
70-WCD-60	DDH	586239	7694620	81	-90	0	46.0	14	28.4	1.5	0.40	0.22
70-WCD-60	DDH	586239	7694620	81	-90	0	46.0	13	39.0	3.1	0.42	2.22
70-WCD-61	DDH	586484	7694641	53	-90	0	69.1	16	64.6	2.4	0.73	0.18
70-WCD-62	DDH	586394	7694674	58	-90	0	87.8	15	69.8	0.6	1.11	0.10
70-WCD-63	DDH	586360	7694674	65	-90	0	100.0	14	68.9	12.2	0.94	0.08
70-WCD-63	DDH	586360	7694674	65	-90	0	100.0	13	87.2	6.1	0.37	0.11
70-WCD-65	DDH	586270	7694650	67	-90	0	47.9	14	36.6	4.6	2.58	1.47
70-WCD-65	DDH	586270	7694650	67	-90	0	47.9	13	44.2	1.5	0.37	0.21
70-WCD-68	DDH	586365	7694706	56	-90	0	121.3	13	109.7	7.6	1.17	0.41
70-WCD-69	DDH	586298	7694644	66	-90	0	64.0	14	42.7	4.0	1.95	0.57
70-WCD-69	DDH	586298	7694644	66	-90	0	64.0	13	49.7	4.6	1.23	0.23
70-WCD-9	DDH	586542	7694547	60	-90	0	43.9	18	31.1	4.3	1.18	0.60
70-WCP-1	OPH	586384	7694385	94	-90	0	9.1	10	0.0	0.9	0.05	0.92
70-WCP-10	OPH	586400	7694386	95	-90	0	8.2	10	0.0	0.9	0.51	0.48
70-WCP-10	OPH	586400	7694386	95	-90	0	8.2	11	7.3	0.9	0.19	0.16
70-WCP-11	OPH	586399	7694370	97	-90	0	11.0	10	0.0	0.9	0.05	0.06

HoleID	Hole Type	MGA Easting	MGA Northing	RL	Dip	MGA Azimuth	Hole Depth (m)	ZnPb Domain	Depth From (m)	Interval Length (m)	Zn_pct	Pb_pct
70-WCP-11	ОРН	586399	7694370	97	-90	0	11.0	11	7.3	1.8	0.01	0.21
70-WCP-12	ОРН	586416	7694384	94	-90	0	10.1	10	0.0	1.8	0.01	0.07
70-WCP-13	OPH	586414	7694369	96	-90	0	10.1	10	0.0	0.9	0.16	0.12
70-WCP-14	OPH	586430	7694368	94	-90	0	11.0	10	0.0	3.7	0.02	0.20
70-WCP-15	OPH	586445	7694367	91	-90	0	11.0	10	0.0	0.9	0.01	0.12
70-WCP-17	OPH	586339	7694402	95	-90	0	11.0	10	0.0	2.7	0.02	1.44
70-WCP-2	OPH	586382	7694371	96	-90	0	11.0	10	0.0	6.4	0.16	0.30
70-WCP-21	OPH	586631	7694485	57	-90	0	22.0	11	0.0	5.5	0.07	0.49
70-WCP-22	OPH	586662	7694483	61	-90	0	18.3	11	0.0	3.7	0.02	0.64
70-WCP-23	OPH	586693	7694513	60	-90	0	22.0	11	11.0	5.5	0.07	0.22
70-WCP-24	OPH	586725	7694542	59	-90	0	31.1	11	18.3	5.5	0.07	0.16
70-WCP-26	OPH	586207	7694589	83	-90	0	23.8	16	5.5	1.8	0.08	0.46
70-WCP-26	OPH	586207	7694589	83	-90	0	23.8	14	11.0	3.7	0.04	0.63
70-WCP-27	OPH	586297	7694525	87	-90	0	31.1	11	1.8	3.7	0.17	0.12
70-WCP-27	ОРН	586297	7694525	87	-90	0	31.1	17	18.3	3.7	0.06	0.15
70-WCP-3	ОРН	586368	7694371	96	-90	0	10.1	10	0.0	1.8	0.03	0.34
70-WCP-4	ОРН	586369	7694385	94	-90	0	11.0	10	0.0	5.5	0.02	2.11
70-WCP-5	ОРН	586354	7694387	95	-90	0	11.0	10	0.0	2.7	0.05	0.73
70-WCP-50	ОРН	586891	7694671	54	-90	0	47.6	21	0.0	1.8	0.01	0.07
70-WCP-51	ОРН	586919	7694685	55	-90	0	18.3	21	1.8	5.5	0.02	0.85
70-WCP-52	ОРН	586946	7694699	51	-90	0	29.3	21	14.6	5.5	0.02	0.26
70-WCP-6	ОРН	586354	7694401	93	-90	0	11.0	10	0.0	0.9	0.02	0.58
70-WCP-7	ОРН	586370	7694401	91	-90	0	11.0	10	0.0	0.9	0.01	0.10
70-WCP-8	OPH	586352	7694370	94	-90	0	11.0	10	0.0	0.9	0.02	0.07
70-WCP-9	OPH	586385	7694393	93	-90	0	11.0	10	0.0	2.7	0.06	0.75
74-WCP-1	OPH	586724	7694546	59	-90	0	42.7	11	24.4	1.5	0.95	0.08
74-WCP-10	OPH	586444	7694583	60	-90	0	32.0	18	12.2	7.6	0.22	0.62
74-WCP-10	ОРН	586444	7694583	60	-90	0	32.0	17	22.9	3.1	0.14	0.25

HoleID	Hole Type	MGA Easting	MGA Northing	RL	Dip	MGA Azimuth	Hole Depth (m)	ZnPb Domain	Depth From (m)	Interval Length (m)	Zn_pct	Pb_pct
74-WCP-11	OPH	586426	7694572	62	-90	0	30.5	18	16.8	6.1	0.07	0.97
74-WCP-11	OPH	586426	7694572	62	-90	0	30.5	17	29.0	1.5	0.04	0.18
74-WCP-13	OPH	586421	7694498	66	-90	0	15.2	11	1.5	4.6	0.24	0.51
74-WCP-14	OPH	586435	7694481	65	-90	0	15.2	11	0.0	3.1	0.10	0.15
74-WCP-16	OPH	586538	7694410	76	-90	0	15.2	11	0.0	1.5	0.01	0.30
74-WCP-18	OPH	586392	7694587	64	-90	0	30.5	17	29.0	1.5	0.06	0.21
74-WCP-2	OPH	586690	7694498	64	-90	0	21.3	11	7.6	6.1	0.01	0.10
74-WCP-20	OPH	586417	7694592	66	-90	0	39.6	18	18.3	9.1	0.50	1.00
74-WCP-20	OPH	586417	7694592	66	-90	0	39.6	17	33.5	6.1	0.10	0.23
74-WCP-21	OPH	586179	7694592	78	-90	0	21.3	16	0.0	1.5	0.03	0.80
74-WCP-21	OPH	586179	7694592	78	-90	0	21.3	14	6.1	6.1	0.04	0.64
74-WCP-21	OPH	586179	7694592	78	-90	0	21.3	13	19.8	1.5	0.01	0.62
74-WCP-22	OPH	586198	7694600	80	-90	0	27.4	16	3.1	1.5	0.03	0.10
74-WCP-22	OPH	586198	7694600	80	-90	0	27.4	14	13.7	6.1	0.07	0.74
74-WCP-24	OPH	586209	7694620	82	-90	0	30.5	16	13.7	1.5	0.13	0.60
74-WCP-27	OPH	586963	7694719	50	-90	0	42.7	21	24.4	6.1	0.16	0.04
74-WCP-27	OPH	586963	7694719	50	-90	0	42.7	22	39.6	3.1	0.10	0.05
74-WCP-28	OPH	586962	7694698	52	-90	0	36.6	21	21.3	6.1	0.12	4.65
74-WCP-28	OPH	586962	7694698	52	-90	0	36.6	22	27.4	6.1	0.12	2.98
74-WCP-29	OPH	586961	7694667	57	-90	0	30.5	21	13.7	4.6	0.03	0.23
74-WCP-3	OPH	586663	7694499	58	-90	0	24.4	11	1.5	4.6	0.07	0.35
74-WCP-30	OPH	586961	7694637	55	-90	0	27.4	21	7.6	3.0	0.11	2.78
74-WCP-31	ОРН	586930	7694669	55	-90	0	21.3	21	3.0	1.5	0.26	0.17
74-WCP-32	OPH	586933	7694730	51	-90	0	33.5	21	18.3	9.2	0.14	0.22
74-WCP-34	OPH	586901	7694699	57	-90	0	27.4	21	7.6	9.1	0.03	0.86
74-WCP-37	OPH	586850	7694661	54	-90	0	36.6	23	3.0	3.1	0.02	0.07
74-WCP-38	OPH	586820	7694663	54	-90	0	36.6	23	6.1	4.6	0.10	0.22
74-WCP-38	OPH	586820	7694663	54	-90	0	36.6	26	24.4	6.1	1.23	0.72

HoleID	Hole Type	MGA Easting	MGA Northing	RL	Dip	MGA Azimuth	Hole Depth (m)	ZnPb Domain	Depth From (m)	Interval Length (m)	Zn_pct	Pb_pct
74-WCP-40	OPH	586481	7694563	58	-90	0	36.6	18	21.3	6.1	0.86	0.35
74-WCP-42	OPH	586389	7694540	69	-90	0	36.6	18	6.1	9.1	0.15	0.28
74-WCP-43	OPH	586329	7694462	88	-90	0	21.3	11	3.1	4.6	0.08	0.86
74-WCP-45	OPH	586324	7694401	94	-90	0	15.2	10	0.0	1.5	0.03	0.04
74-WCP-46	OPH	586266	7694511	84	-90	0	25.6	17	9.1	4.6	0.09	0.24
74-WCP-6	OPH	586630	7694499	55	-90	0	30.5	11	4.6	7.6	0.16	0.38
74-WCP-7	OPH	586622	7694465	61	-90	0	21.3	11	0.0	1.5	0.01	0.17
74-WCP-8	OPH	586464	7694571	56	-90	0	27.4	18	18.3	6.1	0.08	0.21
74-WCP-9	OPH	586479	7694586	56	-90	0	29.0	18	19.8	4.6	0.21	0.61
DWB001	RC	586689	7694613	53	-90	0	90.0	16	81.0	7.0	0.41	0.10
DWMB001	RC	586683	7694603	53	-90	0	90.0	16	80.0	6.0	1.64	0.21
WCD001	DDH	586996	7694822	44	-90	360	173.9	27	164.0	0.9	0.14	0.02
WCD003	DDH	586708	7694591	55	-90	360	174.4	19	46.7	1.3	0.27	0.05
WCD003	DDH	586708	7694591	55	-90	360	174.4	18	55.1	3.9	0.19	0.03
WCD003	DDH	586708	7694591	55	-90	360	174.4	17	65.3	7.7	0.58	0.10
WCR001	RC	586669	7694594	52	-59	204	72.0	19	49.0	1.0	0.28	0.03
WCR001	RC	586669	7694594	52	-59	204	72.0	18	54.0	2.0	2.84	0.02
WCR002	RC	586706	7694598	54	-60	227	84.0	19	45.0	7.0	2.93	0.39
WCR002	RC	586706	7694598	54	-60	227	84.0	18	52.0	4.0	2.04	0.03
WCR002	RC	586706	7694598	54	-60	227	84.0	17	57.0	9.0	1.68	0.30
WCR003	RC	586743	7694605	60	-59	224	96.0	19	57.0	6.0	2.20	0.34
WCR003	RC	586743	7694605	60	-59	224	96.0	18	70.0	4.0	0.35	0.03
WCR003	RC	586743	7694605	60	-59	224	96.0	17	79.0	1.0	0.37	0.01
WCR004	RC	586585	7694624	51	-55	225	96.0	18	54.0	2.0	0.51	0.20
WCR004	RC	586585	7694624	51	-55	225	96.0	17	63.0	3.0	1.87	0.33
WCR005	RC	586811	7694659	54	-56	218	90.0	26	28.0	2.0	0.16	0.04
WCR005	RC	586811	7694659	54	-56	218	90.0	19	68.0	7.0	2.71	1.18
WCR006	RC	586595	7694627	51	-55	188	93.0	18	57.0	7.0	1.52	0.04

HoleID	Hole Type	MGA Easting	MGA Northing	RL	Dip	MGA Azimuth	Hole Depth (m)	ZnPb Domain	Depth From (m)	Interval Length (m)	Zn_pct	Pb_pct
WCR006	RC	586595	7694627	51	-55	188	93.0	99	76.0	1.0	0.05	0.34
WCR007	RC	586714	7694618	54	-61	228	99.0	17	75.0	1.0	0.25	0.10
WCR008	RC	586376	7694711	54	-60	218	120.0	15	64.0	1.0	1.34	0.08
WCR008	RC	586376	7694711	54	-60	218	120.0	14	77.0	9.0	1.46	0.23
WCR008	RC	586376	7694711	54	-60	218	120.0	13	92.0	12.0	0.36	0.11
WCR009	RC	586657	7694602	51	-90	360	102.0	16	68.0	9.0	3.50	0.32
WWC022	RC	586275	7694683	60	-60	176	55.0	13	44.0	6.0	2.31	0.33
WWC023	RC	586514	7694619	53	-60	180	117.0	18	35.0	7.0	1.70	0.17
WWC023	RC	586514	7694619	53	-60	180	117.0	17	47.0	1.0	0.37	0.00
WWC024	RC	586460	7694603	57	-61	176	60.0	18	20.0	6.0	0.21	0.94
WWC024	RC	586460	7694603	57	-61	176	60.0	17	32.0	4.0	0.90	0.02
WWC025	RC	586365	7694552	65	-59	177	35.0	18	8.0	4.0	0.03	0.40
WWC025	RC	586365	7694552	65	-59	177	35.0	17	12.0	6.0	0.02	0.42
WWC026	RC	586242	7694689	61	-59	178	55.0	13	54.0	1.0	0.34	0.24
WWC027	RC	586131	7694576	81	-60	188	25.0	14	0.0	4.0	0.02	0.21
WWC028	RC	586157	7694583	79	-60	185	30.0	14	6.0	2.0	0.04	0.19
WWC029	RC	586189	7694597	76	-60	184	51.0	16	0.0	4.0	0.04	0.23
WWC029	RC	586189	7694597	76	-60	184	51.0	14	10.0	4.0	0.01	0.14
WWC029	RC	586189	7694597	76	-60	184	51.0	13	22.0	2.0	0.13	0.00
WWC030	RC	586158	7694614	70	-59	188	20.0	14	6.0	2.0	0.11	0.18
WWC030	RC	586158	7694614	70	-59	188	20.0	13	12.0	4.0	0.05	0.49
WWC031	RC	586128	7694616	67	-51	181	20.0	13	0.0	4.0	0.04	0.41
WWC038	RC	586323	7694444	88	-65	220	30.0	11	0.0	4.0	0.01	0.10
WWC053	RC	586525	7694870	46	-58	210	232.0	14	148.0	4.0	0.62	0.07
WWC054	RC	586700	7694828	48	-63	204	268.0	15	160.0	3.0	0.65	0.13
WWC055	RC_DT	586629	7694716	49	-59	210	250.0	16	116.0	2.0	1.06	0.56
WWC055	RC_DT	586629	7694716	49	-59	210	250.0	15	128.0	13.0	0.35	0.12
WWC055	RC_DT	586629	7694716	49	-59	210	250.0	14	150.0	4.0	0.42	0.06

HoleID	Hole Type	MGA Easting	MGA Northing	RL	Dip	MGA Azimuth	Hole Depth (m)	ZnPb Domain	Depth From (m)	Interval Length (m)	Zn_pct	Pb_pct
WWC056	RC_DT	586738	7694711	49	-57	210	250.0	16	126.0	1.0	0.60	0.01
WWC056	RC_DT	586738	7694711	49	-57	210	250.0	15	139.0	4.0	1.10	0.37
WWC056	RC_DT	586738	7694711	49	-57	210	250.0	14	152.0	4.0	0.37	0.04
WWC056	RC_DT	586738	7694711	49	-57	210	250.0	13	186.0	6.0	0.40	0.07
WWC057	RC_DT	586860	7694792	47	-52	200	399.7	15	198.0	5.0	0.31	0.10
WWC057	RC_DT	586860	7694792	47	-52	200	399.7	14	207.0	3.0	0.31	0.06
WWC058	RC	586601	7694817	47	-52	200	255.0	14	168.0	4.0	0.35	0.06
WWC058	RC	586601	7694817	47	-52	200	255.0	13	180.0	4.0	0.49	0.08
WWC059	DDH	586427	7694600	50	-60	0	250.6	18	13.0	9.0	0.66	1.46
WWC059	DDH	586427	7694600	50	-60	0	250.6	17	22.0	10.0	0.28	3.48
WWC059	DDH	586427	7694600	50	-60	0	250.6	15	56.0	4.0	0.25	0.12
WWC059	DDH	586427	7694600	50	-60	0	250.6	14	90.0	1.0	0.72	0.05
WWC059	DDH	586427	7694600	50	-60	0	250.6	13	121.0	2.0	1.43	0.59
WWC059	DDH	586427	7694600	50	-60	0	250.6	12	146.0	28.0	0.47	0.06
WWC059	DDH	586427	7694600	50	-60	0	250.6	20	187.0	14.0	0.77	0.06
WWC063	RC	586984	7694761	47	-65	206	106.0	26	82.0	9.0	0.79	0.12
WWC064	RC	587000	7694729	49	-65	206	64.0	21	36.0	4.0	0.64	0.00
WWC064	RC	587000	7694729	49	-65	206	64.0	22	58.0	6.0	0.32	0.01
WWC065	RC	587028	7694808	47	-65	206	120.0	26	109.0	11.0	0.34	0.09
WWC066	RC	587023	7694711	48	-65	225	78.0	21	32.0	4.0	0.33	0.01
WWC066	RC	587023	7694711	48	-65	225	78.0	22	52.0	1.0	0.28	0.00
WWC067	RC	586939	7694716	51	-60	208	40.0	21	20.0	8.0	0.12	0.02
WWC067	RC	586939	7694716	51	-60	208	40.0	22	36.0	4.0	0.15	0.26
WWC073	RC	586306	7694664	59	-60	180	84.0	14	44.0	4.0	3.57	0.78
WWC073	RC	586306	7694664	59	-60	180	84.0	13	55.0	2.0	0.56	0.01
WWC073	RC	586306	7694664	59	-60	180	84.0	12	72.0	12.0	0.84	0.26
WWC074	RC	586337	7694622	53	-60	180	60.0	17	18.0	5.0	0.19	1.58
WWC074	RC	586337	7694622	53	-60	180	60.0	16	24.0	4.0	0.64	0.09

HoleID	Hole Type	MGA Easting	MGA Northing	RL	Dip	MGA Azimuth	Hole Depth (m)	ZnPb Domain	Depth From (m)	Interval Length (m)	Zn_pct	Pb_pct
WWC075	RC	586368	7694640	52	-60	0	96.0	15	56.0	4.0	0.28	0.00
WWC075	RC	586368	7694640	52	-60	0	96.0	14	66.0	10.0	1.31	0.07
WWC075	RC	586368	7694640	52	-60	0	96.0	13	88.0	8.0	0.94	0.29
WWC076	RC	586494	7694661	54	-60	180	108.0	16	67.0	5.0	0.90	0.21
WWC077	RC	586517	7694645	52	-60	180	90.0	18	46.0	6.0	8.13	1.08
WWC077	RC	586517	7694645	52	-60	180	90.0	17	53.0	4.0	2.76	0.69
WWC077	RC	586517	7694645	52	-60	180	90.0	16	60.0	8.0	1.06	0.02
WWC077	RC	586517	7694645	52	-60	180	90.0	99	81.0	1.0	0.79	0.01
WWC078	RC	586519	7694606	54	-60	180	66.0	18	31.0	8.0	4.05	0.48
WWC078	RC	586519	7694606	54	-60	180	66.0	17	43.0	6.0	2.55	0.01
WWC079	RC	586368	7694638	52	-80	0	96.0	15	43.0	8.0	1.14	0.09
WWC079	RC	586368	7694638	52	-80	0	96.0	12	92.0	4.0	2.04	0.31
WWC080	RC	586452	7694656	48	-80	180	84.0	17	40.0	1.0	0.35	0.00
WWC080	RC	586452	7694656	48	-80	180	84.0	16	53.0	1.0	0.77	0.00
WWC080	RC	586452	7694656	48	-80	180	84.0	15	62.0	5.0	1.10	0.29
WWC081	RC	586402	7694633	48	-80	0	84.0	18	8.0	4.0	0.22	0.04
WWC081	RC	586402	7694633	48	-80	0	84.0	17	20.0	4.0	0.50	0.04
WWC081	RC	586402	7694633	48	-80	0	84.0	16	38.0	7.0	3.86	0.57
WWC081	RC	586402	7694633	48	-80	0	84.0	15	46.0	10.0	1.24	0.28
WWC081	RC	586402	7694633	48	-80	0	84.0	14	61.0	1.0	0.43	0.00
WWC081	RC	586402	7694633	48	-80	0	84.0	13	73.0	10.0	1.78	0.36
WWC082	RC	586361	7694739	53	-65	180	126.0	13	109.0	10.0	0.66	0.09
WWC083	RC	586800	7694662	53	-60	160	70.0	26	27.0	2.0	2.08	0.17
WWC084	RC	586997	7694798	46	-65	206	149.0	26	109.0	7.0	2.27	0.56
WWC084	RC	586997	7694798	46	-65	206	149.0	27	142.0	7.0	0.65	0.00
WWC085	RC	587051	7694740	47	-65	225	150.0	21	48.0	4.0	0.70	0.00
WWC085	RC	587051	7694740	47	-65	225	150.0	22	66.0	11.0	0.55	0.14
WWC085	RC	587051	7694740	47	-65	225	150.0	26	101.0	1.0	0.19	0.01

HoleID	Hole Type	MGA Easting	MGA Northing	RL	Dip	MGA Azimuth	Hole Depth (m)	ZnPb Domain	Depth From (m)	Interval Length (m)	Zn_pct	Pb_pct
WWC086	RC	586576	7694579	50	-60	180	70.0	18	40.0	4.0	0.45	0.09
WWC112	RC	586644	7694642	52	-54	205	115.0	17	78.0	1.0	0.25	0.14
WWC112	RC	586644	7694642	52	-54	205	115.0	16	82.0	4.0	1.68	0.22
WWC113	RC	586639	7694557	41	-80	46	70.0	19	21.0	3.0	4.94	0.92
WWC113	RC	586639	7694557	41	-80	46	70.0	18	27.0	1.0	0.28	0.08
WWC114	RC	586632	7694557	41	-65	325	75.0	19	24.0	4.0	2.33	0.36
WWC114	RC	586632	7694557	41	-65	325	75.0	18	30.0	4.0	0.45	0.08
WWC114	RC	586632	7694557	41	-65	325	75.0	99	60.0	2.0	0.66	0.00
WWC115	RC	586544	7694611	42	-71	133	80.0	18	28.0	4.0	0.43	0.00
WWC115	RC	586544	7694611	42	-71	133	80.0	17	39.0	4.0	2.92	0.17
WWC116	RC	586539	7694608	43	-72	207	80.0	18	32.0	4.0	5.63	0.69
WWC116	RC	586539	7694608	43	-72	207	80.0	17	36.0	10.0	0.81	0.05
WWC117	RC	586539	7694616	42	-76	292	50.0	18	33.0	6.0	7.06	0.99
WWC122	RC	586019	7694568	62	-90	0	69.0	20	0.0	4.0	0.28	0.15
WWC126	RC	586313	7694727	60	-55	165	100.0	15	56.0	4.0	0.50	0.00
WWC126	RC	586313	7694727	60	-55	165	100.0	14	76.0	8.0	2.78	0.37
WWC126	RC	586313	7694727	60	-55	165	100.0	13	92.0	4.0	0.68	0.18
WWC135	RC	586807	7694682	53	-60	180	53.0	26	32.0	4.0	0.36	0.01
WWC140	RC	586836	7694670	53	-60	180	55.0	23	8.0	4.0	0.08	0.37
WWC141	RC	586835	7694692	52	-60	180	75.0	26	32.0	8.0	1.44	0.07
WWC142	RC	586834	7694713	52	-60	180	75.0	26	44.0	8.0	1.35	0.05
WWC144	RC	586867	7694696	53	-60	180	61.0	26	32.0	4.0	1.21	0.48
WWC146	RC	586867	7694716	54	-60	180	67.0	26	44.0	8.0	4.95	0.33
WWC147	RC	586871	7694735	54	-60	180	73.0	26	52.0	12.0	1.25	0.41
WWC151	RC	586853	7694715	54	-60	180	60.0	26	44.0	12.0	1.69	0.10
WWC152	RC	586824	7694693	52	-60	180	65.0	23	28.0	4.0	0.12	0.13
WWC152	RC	586824	7694693	52	-60	180	65.0	26	36.0	8.0	1.18	0.16
WWC156	RC	586911	7694672	55	-60	180	30.0	21	0.0	5.0	0.01	0.20

HoleID	Hole Type	MGA Easting	MGA Northing	RL	Dip	MGA Azimuth	Hole Depth (m)	ZnPb Domain	Depth From (m)	Interval Length (m)	Zn_pct	Pb_pct
WWC158	RC	586926	7694769	50	-60	180	75.0	26	68.0	7.0	1.38	0.37
WWC159	RC	586958	7694659	56	-60	180	40.0	21	8.0	4.0	0.02	0.12
WWC160	RC	586942	7694651	56	-60	180	30.0	21	0.0	4.0	0.02	0.04
WWC161	RC	586955	7694696	52	-60	180	40.0	21	16.0	4.0	0.05	0.16
WWC162	RC	586945	7694695	52	-60	180	40.0	21	12.0	3.0	0.03	0.08
WWC163	RC	586989	7694660	52	-40	180	40.0	21	16.0	6.0	0.33	2.22
WWC164	RC	586974	7694663	55	-40	180	40.0	21	16.0	4.0	0.02	0.21
WWC165	RC	586975	7694701	51	-45	180	45.0	21	24.0	4.0	0.06	1.42
WWC166	RC	586990	7694675	52	-45	180	45.0	21	16.0	6.0	0.20	0.97
WWC167	RC	586962	7694724	49	-55	180	55.0	21	24.0	4.0	0.23	0.15
WWC167	RC	586962	7694724	49	-55	180	55.0	22	36.0	4.0	0.14	0.01
WWC168	RC	586958	7694631	56	-40	180	40.0	21	5.0	7.0	0.13	1.92
WWD087	DDH	586722	7694589	57	-58	200	98.8	11	29.5	1.5	0.29	0.07
WWD087	DDH	586722	7694589	57	-58	200	98.8	19	40.8	8.2	2.31	0.38
WWD087	DDH	586722	7694589	57	-58	200	98.8	18	51.0	2.3	0.92	0.08
WWD088	DDH	586714	7694605	54	-65	208	114.3	19	46.8	8.2	3.24	0.52
WWD088	DDH	586714	7694605	54	-65	208	114.3	18	57.0	5.0	0.67	0.01
WWD088	DDH	586714	7694605	54	-65	208	114.3	17	62.0	6.0	1.72	0.17
WWD089	DDH	586706	7694590	55	-51	218	109.7	19	45.4	1.6	1.47	0.29
WWD089	DDH	586706	7694590	55	-51	218	109.7	18	54.0	5.0	1.71	0.19
WWD090	DDH	586683	7694615	52	-65	208	141.0	17	70.7	2.5	4.56	0.33
WWD091	DDH	586676	7694603	52	-65	232	117.1	17	65.1	1.8	4.21	0.29
WWD092	DDH	586649	7694625	52	-60	196	125.1	17	70.0	3.0	1.17	0.22
WWD092	DDH	586649	7694625	52	-60	196	125.1	99	79.0	1.0	0.36	0.00
WWD093	DDH	586650	7694624	52	-55	213	105.1	17	69.6	2.4	2.48	0.91
WWD093	DDH	586650	7694624	52	-55	213	105.1	99	81.4	1.6	0.63	0.01
WWD094	DDH	586640	7694644	51	-65	220	173.2	16	86.0	6.0	1.38	0.41
WWD094	DDH	586640	7694644	51	-65	220	173.2	12	157.9	4.1	0.36	0.01

HoleID	Hole Type	MGA Easting	MGA Northing	RL	Dip	MGA Azimuth	Hole Depth (m)	ZnPb Domain	Depth From (m)	Interval Length (m)	Zn_pct	Pb_pct
WWD095	DDH	586601	7694634	52	-57	230	133.2	18	58.0	4.0	0.60	0.00
WWD095	DDH	586601	7694634	52	-57	230	133.2	17	70.1	2.8	1.56	0.08
WWD095	DDH	586601	7694634	52	-57	230	133.2	16	75.0	1.2	0.92	0.01
WWD096	DDH	586601	7694665	51	-60	212	126.1	17	78.8	5.2	1.58	0.55
WWD096	DDH	586601	7694665	51	-60	212	126.1	16	86.0	4.0	1.06	0.20
WWD097	DDH	586722	7694624	54	-75	211	140.1	16	86.0	7.0	0.42	0.11
WWD098	DDH	586568	7694654	51	-60	206	141.2	17	67.7	0.4	1.06	0.02
WWD098	DDH	586568	7694654	51	-60	206	141.2	16	76.0	6.0	0.72	0.08
WWD099	DDH	586554	7694668	52	-55	230	129.0	16	86.0	2.5	0.72	0.28
WWD099	DDH	586554	7694668	52	-55	230	129.0	15	95.0	1.0	0.65	0.00
WWD100	DDH	586513	7694693	53	-61	200	137.2	16	90.3	0.8	0.25	0.05
WWD100	DDH	586513	7694693	53	-61	200	137.2	15	94.0	10.0	1.50	0.37
WWD100	DDH	586513	7694693	53	-61	200	137.2	14	106.0	1.0	0.53	0.02
WWD101	DDH	586513	7694693	53	-61	236	174.3	16	88.0	1.0	0.39	0.00
WWD101	DDH	586513	7694693	53	-61	236	174.3	14	119.0	7.0	1.24	0.28
WWD101	DDH	586513	7694693	53	-61	236	174.3	13	136.0	9.0	0.75	0.19
WWD101	DDH	586513	7694693	53	-61	236	174.3	12	157.0	12.0	0.53	0.09
WWD102	DDH	586714	7694605	54	-56	204	77.6	19	47.9	10.1	1.33	0.21
WWD102	DDH	586714	7694605	54	-56	204	77.6	18	59.5	0.7	1.92	0.21
WWD103	DDH	586412	7694704	54	-68	170	133.3	16	67.0	0.9	0.33	0.03
WWD103	DDH	586412	7694704	54	-68	170	133.3	14	95.2	6.9	3.95	0.94
WWD103	DDH	586412	7694704	54	-68	170	133.3	13	109.0	6.0	1.23	0.21
WWD103	DDH	586412	7694704	54	-68	170	133.3	12	130.0	3.3	0.78	0.08
WWD104	DDH	586414	7694704	54	-50	210	126.1	15	76.1	2.9	2.12	0.49
WWD104	DDH	586414	7694704	54	-50	210	126.1	14	90.5	0.5	0.37	0.01
WWD104	DDH	586414	7694704	54	-50	210	126.1	13	101.0	1.0	0.42	0.01
WWD104	DDH	586414	7694704	54	-50	210	126.1	12	115.0	1.0	0.36	0.01
WWD104	DDH	586414	7694704	54	-50	210	126.1	20	125.0	1.1	0.52	0.00

HoleID	Hole Type	MGA Easting	MGA Northing	RL	Dip	MGA Azimuth	Hole Depth (m)	ZnPb Domain	Depth From (m)	Interval Length (m)	Zn_pct	Pb_pct
WWD105	DDH	586408	7694729	53	-70	170	168.3	13	117.1	4.9	0.63	0.13
WWD105	DDH	586408	7694729	53	-70	170	168.3	12	133.0	9.0	0.53	0.08
WWD105	DDH	586408	7694729	53	-70	170	168.3	20	148.0	7.0	0.74	0.11
WWD105	DDH	586408	7694729	53	-70	170	168.3	99	166.0	2.3	0.38	0.04
WWD106	DDH	586357	7694745	53	-65	180	157.8	15	65.6	2.5	0.65	0.00
WWD106	DDH	586357	7694745	53	-65	180	157.8	13	106.0	3.0	0.92	0.14
WWD106	DDH	586357	7694745	53	-65	180	157.8	12	132.0	4.0	0.59	0.08
WWD106	DDH	586357	7694745	53	-65	180	157.8	20	147.0	3.0	0.46	0.09
WWD107	DDH	586310	7694726	56	-60	180	117.3	14	61.6	3.7	4.46	0.91
WWD107	DDH	586310	7694726	56	-60	180	117.3	13	80.6	1.3	0.45	0.00
WWD107	DDH	586310	7694726	56	-60	180	117.3	12	91.0	3.0	1.48	0.28
WWD107	DDH	586310	7694726	56	-60	180	117.3	20	110.0	7.3	0.39	0.07
WWD108	DDH	586262	7694689	60	-55	189	113.9	13	51.0	1.0	0.57	0.00
WWD108	DDH	586262	7694689	60	-55	189	113.9	12	62.0	6.0	1.07	0.21
WWD108	DDH	586262	7694689	60	-55	189	113.9	20	83.0	19.0	0.46	0.07
WWD109	DDH	586277	7694696	58	-69	199	105.0	13	56.0	3.1	0.44	0.00
WWD109	DDH	586277	7694696	58	-69	199	105.0	12	70.0	2.0	1.33	0.32
WWD109	DDH	586277	7694696	58	-69	199	105.0	20	85.0	17.0	0.57	0.07
WWD110	DDH	586935	7694889	45	-57	163	282.3	15	235.0	9.0	0.21	0.03
WWD110	DDH	586935	7694889	45	-57	163	282.3	14	274.0	5.5	0.22	0.04
WWD111	DDH	586353	7694748	52	-58	200	153.3	13	104.3	6.7	2.00	0.37
WWD111	DDH	586353	7694748	52	-58	200	153.3	12	124.0	13.0	0.57	0.10
WWD111	DDH	586353	7694748	52	-58	200	153.3	20	142.0	5.0	0.51	0.09
WWD118	DDH	586896	7694813	46	-53	155	159.3	26	96.0	7.0	2.52	0.26
WWD119	DDH	586668	7694656	51	-54	207	153.3	16	91.7	6.8	1.06	0.09
WWD120	DDH	586748	7694603	60	-68	198	121.7	19	53.1	5.9	4.09	0.93
WWD120	DDH	586748	7694603	60	-68	198	121.7	18	64.0	4.0	0.29	0.06
WWD120	DDH	586748	7694603	60	-68	198	121.7	17	73.0	1.0	0.29	0.01

HoleID	Hole Type	MGA Easting	MGA Northing	RL	Dip	MGA Azimuth	Hole Depth (m)	ZnPb Domain	Depth From (m)	Interval Length (m)	Zn_pct	Pb_pct
WWD123	DDH	586613	7694682	50	-60	218	135.4	17	84.0	5.3	10.65	1.17
WWD123	DDH	586613	7694682	50	-60	218	135.4	16	98.0	5.0	1.32	0.00
WWD124	DDH	586608	7694685	51	-60	245	129.6	17	90.0	1.0	0.65	0.00
WWD124	DDH	586608	7694685	51	-60	245	129.6	16	104.7	2.3	0.25	0.20
WWD124	DDH	586608	7694685	51	-60	245	129.6	15	113.0	6.1	1.94	0.52
WWD125	DDH	586671	7694725	49	-55	180	165.5	16	123.0	13.0	0.64	0.14
WWD125	DDH	586671	7694725	49	-55	180	165.5	15	147.0	8.0	1.00	0.00
WWD128	DDH	586279	7694751	54	-55	180	143.2	13	79.0	4.0	0.46	0.00
WWD128	DDH	586279	7694751	54	-55	180	143.2	12	89.3	3.7	0.83	0.18
WWD128	DDH	586279	7694751	54	-55	180	143.2	20	105.0	11.0	0.54	0.08
WWD129	DDH	586297	7694779	53	-60	151	171.3	13	121.0	5.0	0.55	0.20
WWD129	DDH	586297	7694779	53	-60	151	171.3	12	132.0	10.0	0.66	0.10
WWD129	DDH	586297	7694779	53	-60	151	171.3	20	156.0	15.3	0.54	0.09
WWD130	DDH	586403	7694777	52	-59	185	168.3	15	96.0	2.6	1.10	0.00
WWD130	DDH	586403	7694777	52	-59	185	168.3	13	131.6	2.9	0.41	0.09
WWD130	DDH	586403	7694777	52	-59	185	168.3	12	140.0	4.0	0.59	0.07
WWD130	DDH	586403	7694777	52	-59	185	168.3	20	152.0	11.0	0.73	0.09
WWD131	DDH	586362	7694845	49	-75	195	322.5	13	109.6	5.5	2.33	0.83
WWD131	DDH	586362	7694845	49	-75	195	322.5	12	130.0	3.0	0.61	0.11
WWD131	DDH	586362	7694845	49	-75	195	322.5	20	143.0	5.0	0.53	0.02
WWD132	DDH	586746	7694605	60	-75	189	153.7	19	54.0	7.7	1.42	0.11
WWD132	DDH	586746	7694605	60	-75	189	153.7	18	66.2	2.8	1.04	0.06
WWD132	DDH	586746	7694605	60	-75	189	153.7	17	73.3	5.1	0.67	0.10
WWD132	DDH	586746	7694605	60	-75	189	153.7	16	81.7	8.4	0.73	0.05
WWD133	DDH	586549	7694732	56	-62	202	186.6	16	111.0	3.0	0.59	0.00
WWD133	DDH	586549	7694732	56	-62	202	186.6	15	131.0	4.3	2.38	0.55
WWD133	DDH	586549	7694732	56	-62	202	186.6	14	143.0	1.0	0.89	0.10
WWD133	DDH	586549	7694732	56	-62	202	186.6	13	151.6	7.4	0.49	0.10

HoleID	Hole Type	MGA Easting	MGA Northing	RL	Dip	MGA Azimuth	Hole Depth (m)	ZnPb Domain	Depth From (m)	Interval Length (m)	Zn_pct	Pb_pct
WWD133	DDH	586549	7694732	56	-62	202	186.6	12	183.0	2.3	0.51	0.06
WWD134	DDH	586673	7694729	49	-80	180	203.2	15	139.0	4.0	0.53	0.09
WWD134	DDH	586673	7694729	49	-80	180	203.2	14	151.0	13.0	0.37	0.07
WWD135	DDH	586593	7694771	51	-64	190	204.7	16	125.3	0.7	0.84	0.00
WWD135	DDH	586593	7694771	51	-64	190	204.7	15	142.0	0.9	0.34	0.01
WWD136	DDH	586786	7694629	58	-70	205	180.6	19	58.7	3.3	2.74	0.40
WWD136	DDH	586786	7694629	58	-70	205	180.6	18	73.0	2.2	0.77	0.05
WWD136	DDH	586786	7694629	58	-70	205	180.6	16	93.0	1.0	0.40	0.00
WWD137	DDH	586786	7694629	58	-70	245	183.6	16	113.0	8.6	1.18	0.27
WWD137	DDH	586786	7694629	58	-70	245	183.6	13	168.0	1.0	0.49	0.03
WWD138	DDH	586757	7694658	53	-70	245	249.7	16	122.9	0.4	0.19	0.03
WWD138	DDH	586757	7694658	53	-70	245	249.7	15	133.0	4.0	0.91	0.03
WWD138	DDH	586757	7694658	53	-70	245	249.7	14	146.9	15.2	0.66	0.03
WWD138	DDH	586757	7694658	53	-70	245	249.7	13	177.0	6.0	0.24	0.03
WWD139	DDH	586757	7694658	53	-65	120	258.7	16	117.0	8.0	0.59	0.07
WWD140	DDH	586808	7694661	50	-65	185	205.1	26	26.0	3.3	1.30	0.31
WWD140	DDH	586808	7694661	50	-65	185	205.1	18	84.0	2.0	0.20	0.05
WWD140	DDH	586808	7694661	50	-65	185	205.1	16	97.0	6.0	1.28	0.08
WWD141	DDH	586808	7694661	50	-55	155	168.6	23	1.0	1.0	0.22	0.02
WWD141	DDH	586808	7694661	50	-55	155	168.6	26	23.0	1.0	0.17	0.12
WWD142	DDH	586760	7694585	65	-76	185	168.1	11	40.0	2.0	0.20	0.04
WWD143	DDH	586910	7694767	49	-62	184	150.9	26	65.0	8.0	1.08	0.17
WWD144	DDH	586131	7694770	55	-60	200	201.7	13	19.0	3.0	0.56	0.01
WWD144	DDH	586131	7694770	55	-60	200	201.7	12	34.0	6.0	1.06	0.36
WWD144	DDH	586131	7694770	55	-60	200	201.7	20	62.0	5.0	0.22	0.06

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code Explanation	Commentary
Sampling techniques	 Nature and quality of sampling (e.g., cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g., 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information. 	 The Whim Creek deposit has been sampled through numerous drilling campaigns using rotary air blast holes (RAB), open hole percussion drilling (OPH), rotary vacuum, reverse circulation (RC) and diamond (DD) drill holes. The following drilling campaigns have been identified: DDH1 to DDH11 (DD, Mines Department, 1921) DDH12 to DDH18 (DD, Mines Department, 1941) WC1 to WC (DD, NBH, 1952) B1 to B8 (DD, NBH, 1952) WC1 to WC 1355 (DD, Depuch Mining, 1961 to 1964) 201 to 269 (Rotary Percussion, McMahon, 1965) RV2 to RV12 (Rotary Vacuum, Martin, 1967) 67-WCP1 to 67-WCP27 (DD Holes, Percussion Collared, Martin, 1967) 69-WCD1 to 69-WCD17 (DD Holes, Whim Creek Consolidated, 1969) 70-WCP1 to 70-WCP62 (OPH, Westfield Minerals, 1970) 72-WCD-1 to 72-WCD-4 (OPH, Westfield Minerals, 1972) 74-WCP-1 to 74-WCP-56 (OPH, Westfield Minerals, 1974) 76-WCP-78 to 76-WCP-79 (OPH, Texasgulf, 1976) 76-WCP-1 (DD Hole, Texasgulf, 1976) 91-WCP1 (RC, Dominion Mining, 1991) WC94D1 to WC94D10 (DD, Dominion Mining, 1994) WC94DC1 to WC95RC24 (RC, Dominion Mining, 1995) WSR001 to WSR064 (RC, Dominion Mining, 1996) WSC001 to WSR064 (RC, Dominion Mining, 1996) WWC001 to WWC017 (RC + DD Tails, Straits Resources, 2002 to 2007) WCR001 to WC01003 (DD, Venturex Resources, 2011) WCD0001 (DD, Anax Metals, 2020)

Criteria	JORC Code Explanation	Commentary
		 For Whim Creek Consolidated (WCC) 1969 and 1970 diamond program, half core was split and submitted for assays, except for highly siliceous zones which were sawn. Sample lengths were restricted to between 2 and 6 feet. Percussion drilling was used for precollars. Chip samples were collected by airflush from all pre-collaring and the total chips recovered were weighed. Samples were then riffled down to two samples chan approximately ½ to 1 lb in weight, with one sample submitted for assay. Assaying of all samples were done at Geochemical and Mineralogical Laboratories Pty Ltd of Perth. Complete samples were crushed to minus ¼", 250g riffled out and pulverised to 100% passing 100 mesh. Half to one gram samples were digested in 72% perchloric acid for 2 hours at 180 deg C with accurate volumetric dilution. Cu, Pb, Zn and Ag were determined by AAS. Little information on sub-sampling and laboratory techniques is available for the remaining holes drilled prior to the 1990s, but Westfield and WCC campaigns during the 1970s are likely to have employed similar sub-sampling and assay methods to those described above. Dominion Mining (Dominion) completed numerous programs of RC and DD between 1991 and 1996. One metre RC samples from within visually logged mineralised zones were riffle split to an approximately 3kg sample. Samples outside of these zones were composited into 2 metre to 4 metre composites. Any composite sample returning more than 0.2% Cu was resampled at 1 metre intervals. Drill core was cut with a diamond blade saw and quarter core was sampled to approximately 1 metre intervals unless significant lithological and/or mineralogical changes required shorter samples. Samples were analysed by Genalysis. 1994-95 samples used AX/AAS method which employs a multi-ocid digest, including HF. Later samples were enalysed for total copper using an HF/HCl04/HCl/HN03 mixed acid digest with copper being determined by AAS (precise ore grade analysis). Straits Resources (Str

Criteria	JORC Code Explanation	Commentary
	Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g. core diametre, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.).	 core was cut on geologically determined intervals (0.25–1.5 m). Samples were weighed, dried, crushed and pulverised (total prep) to produce a pulp sub-sample for fusion digestion with an ICP/OES or FA/AAS (gold) finish. Anax whole drill core was processed through the Minalyzer CS continuous XRF scanner unit in Perth, WA. 31 calibration samples from the nearby Mons Cupri deposit were selected and submitted to Bureau Veritas (Perth) for standard geochemical assays. Samples consisted of ¼ core or ¼ splits from -25mm crushed core. Assays were determined for all samples using a fused bead XRF analysis. Assays were also determined for approximately 18 samples using 4 acid digest + ICP/AES, ICP/MS. There was very high correlation between the ICP and XRF results. The Mons Cupri XRF assay results were used by Minalyzer for calibrating Mons Cupri as well as Whim Creek data to produce XRF results quoted in this resource. Diamond drilling by WCC between 1969 and 1970 was a combination of NQ, HQ and BQ core diametre. Sulphide drilling was primarily conducted using NQ and BQ. No information on core diametre or bit sizes are available for other drilling prior to 1991. Between 1991 and1997, RC drilling was done using 4.25", 4.75", 5.25" and 5.375" wide face sampling bits. DD was either HQ, HQ3 or PQ core. Holes were typically vertical and therefore not orientated. Between 2002 and 2007, Straits mostly drilled HQ and NQ core, while RC drilling was done using 5.125,' 5.25' and 5.5' face sampling hammers. Core was typically orientated. In 2010, Venturex used 5.5' face sampling bits for RC drilling. DD drilling was completed using HQ3 core. Anax drilling was completed using triple tube HQ-diametre oriented core.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 WCC diamond drilling in 1969 and 1970 used percussion drilling for pre-collars. Chip samples were collected by airflush from all pre-collaring and the total chips recovered were weighed. Diamond core recovery in oxide zones were reported to be satisfactory, but old mine workings were intersected on occasion. No other information about sample recovery for drilling prior to 2000 is available. Diamond drill core recovery was recorded by Straits and Anax as a percentage of measured recovered core versus drilled distance. Recoveries in mineralised zones were generally very high, on average 99% in mineralised zones. A statistical analysis of diamond core recovery vs copper primarily using Straits diamond drilling in mineralised intervals was undertaken. No sample bias is apparent. VentureX described recoveries of RC drill holes as 'high' with occasional low recovery intervals, but detailed information is not available.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. 	 Historical drill core and RC/percussion holes were quantitatively logged in full. Some re- logging of diamond core was carried out by previous operators. No photographs of historical core have been located.

Criteria	JORC Code Explanation	Commentary
	 Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography. The total length and percentage of the relevant intersections logged. 	 Straits and Venturex diamond and RC holes were quantitatively logged in full. Diamond core was photographed. The entire length of Anax diamond drill holes were geologically and geotechnically logged. Logging is at an appropriate detailed quantitative standard to support geological, resource, reserve estimations and feasibility studies.
Sub- sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 For Whim Creek Consolidated (WCC) 1969 and 1970 diamond program, half core was split and submitted for assays, except for highly siliceous zones which were sawn. Chip samples were collected by airflush from all pre-collaring. Samples were then riffled down to two samples each approximately ½ to 1 lb in weight, with one sample submitted for assay. Complete samples were crushed to minus ¼ ", 250g riffled out and pulverised to 100% passing 100 mesh. Half to one gram samples were digested in 72% perchloric acid for 2 hours at 180 deg C with accurate volumetric dilution. Cu, Pb, Zn and Ag were determined by AAS. Little information on sub-sampling and laboratory techniques is available for the remaining holes drilled prior to the 1990s, but Westfield and WCC campaigns during the 1970s are likely to have employed similar sub-sampling and assay methods to those described above. Dominion Mining (Dominion) completed numerous programs of RC and DD between 1991 and 1996. Typically, one metre RC samples from within visually logged mineralised zones were riffle split to an approximately 3kg sample. Drill core was cut with a diamond blade saw and quarter core was sampled to approximately 1 metre intervals unless significant lithological and/or mineralogical changes required shorter samples. 1994-95 samples used AX/AAS method which employs a multi-acid digest, including HF. Later samples were analysed for total copper using an HF/HClO4/HCI/HN03 mixed acid digest with copper being determined by AAS (precise ore grade analysis). Straits Resources (Straits) used standard RC drilling methods to produce 1m RC samples. Three or four-metre composite samples were typically collected using a pvc spear in unmineralised portions, but resampled to 1m where assays returned values >0.2% Cu. One (1) metre samples were collected using either pvc or splitters in mineralised sections of the holes. Straits DD holes were halved on site. All samples were submitted to ALS Perth for preparation an

Criteria	JORC Code Explanation	Commentary
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometres, handheld XRF instruments, etc., the parametres used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.	to produce a pulp sub-sample for analysis fusion digestion with an ICP/OES or FA/AAS (gold) finish. • Anax whole drill core was processed through the Minalyzer CS continuous XRF scanner unit in Perth, WA. 31 calibration samples from the nearby Mons Cupri deposit were selected and submitted to Bureau Veritas (Perth) for standard geochemical assays. Samples consisted of ¼ core or ¾ splits from -25mm crushed core. Assays were determined for all samples using a fused bead XRF analysis. Assays were also determined for approximately 18 samples using 4 acid digest + ICP/AES, ICP/MS. There was very high correlation between the ICP and XRF results. • Anax core calibration samples consisted of either quarter core (sawn with diamond saw) or ¾ splits taken from 1m intervals individually crushed to -25mm. Samples were crushed where required and pulverised by Bureau Veritas to 90% passing 75 µm. A 0.5g sample was taken from the pulp for the fused bead - XRF analysis and a 0.15g sample for the mixed acid digest/ICP analyses. • Bulk composite fines samples consisting of <8mm material generated during crushing of Anax bulk composites were homogenised and a 3kg split was collected for assay. The 3kg sample was crushed to 100% passing 2mm and a 500g split was collected and pulverised to 90% passing 75 µm. • The sample sizes employed are considered appropriate. • Post 2000 drilling by previous operators employed QAQC procedures that involved the use of certified standards, blanks and duplicates. The QAQC data have reportedly been independently audited with no apparent issues identified. • Straits and Venture'x inserted certified reference materials, duplicates and blanks as part of their quality control procedures. Field duplicate samples were typically collected at a ratio of 1:50 samples, while field standards were inserted at a ratio of approximately 1:40 samples. • Post 2000 analytical laboratories used standard internal laboratory QAQC procedures (including pulp repeats, standards and blanks). • No information is avai

Criteria	JORC Code Explanation	Commentary
		 31 calibration samples from the nearby Mons Cupri deposit were collected and sent for laboratory geochemical analyses. All calibration samples underwent a fused bead XRF analysis. Assays were also determined for 18 samples using 4 acid digest + ICP/AES, ICP/MS. Analysis of calibration samples were completed using total or near-total digestions (Fused bead, 4 acid digest). The ICP and XRF samples showed excellent correlation. Results from the Mons Cupri calibration samples were supplied to Minalyzer, who applied calibrations to both Mons Cupri and Whim Creek drilling.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Prior to 2010, verification procedures were not documented. VentureX verified significant intersections through the use of portable XRF data collected in the field, which were cross-checked against the final assays when received. Numerous holes have been twinned at Whim Creek with the original and twin differing by method and/or Company/generation. Twins all compared well. More recent holes and diamond core was generally preferred with the original hole excluded from the Resource Estimation. A range of primary data collection methods have been employed since 1989. Since 2009, data recording used a set of standard Excel templates on a data logger and uploaded to a Notebook computer. The data was sent to Perth office for verification and compilation into an SQL database by the in-house database administrator. Full copies were stored offsite. Anax drilling information is stored in a Datashed-SQL database which is maintained by independent database management providers, Mitchell River Group (MRG). A database migration and audit were completed by MRG in January 2021. For resource modelling purposes, data has been adjusted with all negative assays, representing BDL assays, converted to positive assays - typically half the detection limit.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Prior to 1992, drill holes were recorded local imperial grid systems with varying baselines. Numerous plans and cross sections sourced from open file reports showing historical drill holes have been registered and checked against holes in the database. Historical locations and survey information have been found to be accurate. A surveyor from Dominion first recorded, checked and transformed historical (imperial) collar locations to metric UTM coordinates. Straits employed a professional Mine Surveyor who recorded all Straits drill holes. Previous hole collar coordinates were reportedly checked by Venturex using a DGPS, with all co-ordinates and elevation data considered reliable. Anax drill holes were located using a DGPS or GPS. A number of old drill collar locations around Whim Creek were picked up by Anax personnel using a decimetre accuracy DGPS.

Criteria	JORC Code Explanation	Commentary
		 All holes corresponded with historical Straits RC or DD holes and were within 1m of the location quoted in the database. No downhole surveys have been completed for historical vertical holes. Angled holes are shown on a number of cross sections and these have been verified where available. No information is available detailing the survey methods for vertical holes, but intersection positions generally correlate well with more recent drilling. Straits used single shot survey cameras to record downhole deviation at around 40m intervals for RC drilling and approximately 30m intervals for DD. VentureX used a gyro tool to record downhole deviation in 2011. Anax used a single shot survey camera to record downhole deviation at 20 to 30m intervals. The current grid system used for the location of all drill holes is MGA_GDA94, Zone 50. Topographic control is provided by combination of external survey control, photogrammetry analysis and DGPS measurements and is considered appropriate.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Drill sections at Whim Creek are typically spaced 20m to 30m apart, with holes spaced 15 to 20m apart on section. The spacing (on and between sections) decreases towards the north and increases within the extents of the pit. The current spacing is adequate to assume geological and grade continuity of the mineralised domains. Minalyzer CS produces samples at both 10cm and 1m resolution. Intersections reported are as per the 1m resolution data generated by Minalyzer. No Sample compositing has been applied.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 Whim Creek drilling is orientated in multiple directions but most often in a southerly or south-westerly direction, usually perpendicular to the stratabound mineralisation. Given the stratigraphic nature of the mineralising system, no orientation-based sampling bias has been identified in the data.
Sample security	The measures taken to ensure sample security.	 There is no documentation of the sample security of the samples collected prior to 2010. After 2010, the chain of custody was managed by Venturex. The samples were stored in a secure facility at Whim Creek, collected from site by Toll IPEC and delivered to the assay laboratory in Perth. Online tracking was used to track the progress of batches of samples. Anax drilling was supervised by an independent geological consultant. Diamond core was logged and photographed, before being sent to Perth using commercial freight operators.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	The electronic database was originally compiled by Dominion and Straits using open file and unpublished reports.

Criteria	JORC Code Explanation	Commentary
		 Independent audits of the sampling techniques and data were reportedly completed as part of previous feasibility studies in 2008 (Straits) and 2011 (Snowden). The studies were reported to be "comprehensive and covered all industry standard issues." Anax drilling information is stored in a Datashed-SQL database which is maintained by independent database management providers, Mitchell River Group (MRG). A database migration and audit were completed by MRG in January 2021. Prior to commencing the resource model, Anax verified numerous historical drill holes through the use of open file reports, as well as historical unpublished reports. Where reports were available, historical drill holes have been assigned and open file report number in the database. As a result of this audit, all drilling generations prior to 1967 were excluded from the resource model due to uncertainty related to location, sampling techniques and/or assays/assay techniques.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code Explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 Whim Creek is located within Mining Lease M47/443 and part of M47/236. Anax has an 80% interest in the tenements and VentureX holds the remaining 20% interest. The tenements are within the granted Ngarluma Native Title Claim. M47/443 is located over private land and exempt from state government royalties. Production of precious metals from M47/443 are subject to a 4% royalty held by a third party. The tenements are granted Mining Leases in good standing within previous operating permits. A one-off cash payment of A\$3.5M (or shares in Venturex to the value of A\$3.0M) to a third party is payable on a decision to mine. M47/236 is subject to WA State royalties (5% ad valorem for copper, lead and zinc, and 2.5% for silver and gold). The tenements are subject to a community assistance agreement with Ngarluma Aboriginal Corporation to the value of A\$65,000 per annum when copper is produced.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	The Whim Creek prospect has been explored by several exploration companies since the early 1920s, including the State Mines Department, Depuch Mining, Whim Creek Consolidated, Westfield Minerals, Dominion Mining, Straits Resources and VentureX Resources.
Geology	Deposit type, geological setting and style of mineralisation.	The Whim Creek copper-zinc deposit is hosted by sericite-chlorite altered argillites and siltstones of the Rushall Slate of the Whim Creek Greenstone Belt. The deposit is considered to have formed in a volcanogenic massive sulphide (VMS) setting.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the 	 Detailed drill hole data have been previously periodically publicly released by Venturex and Straits. A full list of intersections that informed the Mineral Resource has been included. All relevant drill hole information has been presented, including collar and survey information for both new and historical drilling.

Criteria	JORC Code Explanation	Commentary
	understanding of the report, the Competent Person should clearly explain why this is the case.	
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 All reported assays have been length weighted. No top-cut has been applied. For reporting exploration results, a nominal 0.4% Cu and 1.0% Zn lower cut-off has been applied. No data aggregation was applied.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known'). 	 Downhole widths are quoted for all drill holes. The reported downhole intercept for 20AWCD001 approximates true width.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	Refer to Diagrams in this release.
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	All relevant results have been reported.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	Not Applicable.
Further work	 The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	The potential for lateral extensions has been identified and will be investigated through field reconnaissance and a detailed review of historical data. Further details will be provided in subsequent releases.

Section 3 Estimation and Reporting of Mineral Resources

(Criteria listed in section 1, and where relevant in section 2, also apply to this section.)

Criteria	JORC Code explanation	Commentary
Database integrity	Measures taken to ensure that data has not been corrupted by, for example, transcription or keying errors, between its initial collection and its use for Mineral Resource estimation purposes.	 The original database was compiled by Dominion and Straits and maintained by VentureX as a Microsoft SQL Server database. The data was imported into a relational SQL Server database using DataShed™ (industry standard drill hole database management software). The data are constantly audited and any discrepancies checked by Anax personnel before being updated in the database.
	Data validation procedures used.	 Normal data validation checks were completed on import to the SQL database. Data has not been checked back to WAMEX reports. All original assays have been supplied and a proportion of these have been checked against the database. All logs are supplied as Excel spreadsheets and any discrepancies checked and corrected by field personnel.
Site visits	Comment on any site visits undertaken by the Competent Person and the outcome of those visits.	Andrew McDonald (Project Manager at Anax and Competent Person) has visited the site numerous times.
Geological interpretation	 Confidence in (or conversely, the uncertainty of) the geological interpretation of the mineral deposit. Nature of the data used and of any assumptions made. 	The mineralisation at the Whim Creek Project is interpreted to be of the Volcanogenic Massive Sulphide (VMS) style. These deposits are interpreted to form in close association with submarine volcanism through the circulation of hydrothermal fluids and subsequent exhalation of sulphide mineralisation on the ancient seafloor similar to present-day black smokers. VMS mineralisation typically forms concordant or strata-bound lenses of polymetallic semi-massive to massive
	The effect, if any, of alternative interpretations on Mineral Resource estimation.	 sulphides, which are underlain by discordant feeder-type vein-systems and associated alteration. The Whim Creek Deposit mineralisation occurs at a stratigraphic position some 150 to 200 m above the base of the Rushall Slate. Mineralisation occurs as either higher-
	The use of geology in guiding and controlling Mineral Resource estimation.	grade rhyolite-hosted zinc or copper rich lenses, or as stratiform bedding-parallel mineralised lenses within sericite-chlorite altered argillite and siltstone units of the Rushall Slate. The mineralisation dips moderately to the north and can be traced
	The factors affecting continuity both of grade and geology.	along strike for over 600 metres. It extends down dip below the base of the current pit for approximately 120 m and has a thickness of between 5 to 8 metres. Transform faults displace mineralisation at the western and eastern margins of the main mine horizon.

Criteria	JORC Code explanation	Commentary
		 Oxide resources were previously mined by Straits Resources (Straits) in the 2000s by open pit methods. Remnant fresh mineralisation is characterised by three distinct styles. An outermost massive sphalerite-rich layer is underlain by a massive chalcopyrite-pyrite zone, which in turn passes into a chalcopyrite-pyrite stringer zone. These three zones are hosted by sericite-chlorite altered argillite and siltstone units of the Rushall Slate. The mineralised domain interpretations were based upon a combination of geology, pit mapping and observations, structural measurements (drill core and open pit), supporting multi-element lithochemistry (in particular S, Fe and target elements Cu, Zn and Pb) and lower cut-off grades of 0.3% Cu for the copper lodes and 0.5% Zn for the zinc/lead lodes. Oxidation surfaces were modelled using drillhole logs and pit mapping / observations, supporting multi-element lithochemistry (in particular S) plus metallurgical characteristics. The confidence in the geological interpretation is considered robust. The geological interpretation is supported by drill hole logging and assays, open pit bench mapping and mineralogical studies completed a number of companies since the 1960s and most recently by VentureX and Anax. No alternative interpretations have been considered at this stage. Grade wireframes correlate extremely well with the logged geology, in particular the observed zoning sulphides present (chalcopyrite/chalcocite, pyrite, sphalerite and galena). The key factor affecting continuity is the presence of the zoned sulphide rich horizons and pods.
Dimensions	The extent and variability of the Mineral Resource expressed as length (along strike or otherwise), plan width, and depth below surface to the upper and lower limits of the Mineral Resource.	The main modelled mineralized domains have a total dimension of 1000m (eastwest), and 250m (north-south) in stacked lenses and ranging between -150m and 100m RL (AMSL).
Estimation and modelling techniques	 The nature and appropriateness of the estimation technique(s) applied and key assumptions, including treatment of extreme grade values, domaining, interpolation parametres and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a description of computer software and parametres used. The availability of check estimates, previous estimates and/or mine production records and whether the Mineral Resource estimate takes appropriate account of such data. 	 Grade estimation using Ordinary Kriging (OK) was completed using Geovia Surpac™ software for Cu, Pb, Zn, Fe, Ag, Au and S. Drill spacing typically ranges from 30m x 30m with some infilled zones at 15 x 15m. Drill hole samples were flagged with wire framed domain codes. Sample data was composited for elements Cu, Pb, Zn, Fe, Ag, S and Au to 1m using a best fit method. Since all holes were typically sampled on 1m intervals, there were only a very small number of residuals in the diamond core holes that were sampled to geological contacts. A combination of methods, including grade histograms, log probability plots and statistical tools, were used to ascertain whether top cutting was required. Influences

Criteria	JORC Code explanation	Commentary
	 The assumptions made regarding recovery of by-products. Estimation of deleterious elements or other non-grade variables of economic significance (e.g. sulphur for acid mine drainage characterisation). In the case of block model interpolation, the block size in relation to the average sample spacing and the search employed. Any assumptions behind modelling of selective mining units. Any assumptions about correlation between variables. Description of how the geological interpretation was used to control the resource estimates. Discussion of basis for using or not using grade cutting or capping. The process of validation, the checking process used, the comparison of model data to drill hole data, and use of reconciliation data if available. 	 of extreme sample distribution outliers are reduced by top-cutting on a domain basis. Based on this statistical analysis of the data population, no top-cuts were applied. Directional variograms were modelled by domain using traditional variograms. Nugget values are moderate to low (around 10%) and structure ranges up to 200m. Domains with more limited samples were assigned variography of geologically similar, adjacent domains. Block model was constructed with parent blocks of 8m (E) by 8m (N) by 2m (RL) and sub-blocked to 4m (E) by 4m (N) by 0.5m (RL). All estimation was completed to the parent cell size. Three estimation passes were used. The first pass had a limit of 45m, the second pass 90m and the third pass searching a large distance to fill the blocks within the wire framed zones. Each pass used a maximum of 12 samples, a minimum of 6 samples and maximum per hole of 4 samples. Search ellipse sizes were based primarily on a combination of the variography and the trends of the wire framed mineralized zones. Hard boundaries were applied between all estimation domains. Validation of the block model included a volumetric comparison of the resource wireframes to the block model volumes. Validation of the grade estimate included comparison of block model grades to the declustered input composite grades plus swath plot comparison by easting, northing and elevation. Visual comparisons of input composite grades vs. block model grades were also completed.
Moisture	Whether the tonnages are estimated on a dry basis or with natural moisture, and the method of determination of the moisture content.	Tonnes have been estimated on a dry basis.
Cut-off parametres	The basis of the adopted cut-off grade(s) or quality parametres applied.	 Cut-off grades primarily coincide with sulphide zonation, in particular Cu-rich (chalcopyrite dominant) and Zn-rich (sphalerite and galena dominant zones). Cut-off grades were also selected with consideration of expected mining cut-off grades.
Mining factors or assumptions	Assumptions made regarding possible mining methods, minimum mining dimensions and internal (or, if applicable, external) mining dilution. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential mining methods, but the assumptions made regarding mining methods and parametres when estimating Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the	Based on the orientations, thicknesses and depths to which the mineralised lodes have been modelled, plus their estimated grades for Cu and Zn, the expected mining method is open pit mining.

Criteria	JORC Code explanation	Commentary
Metallurgical factors or assumptions	 basis of the mining assumptions made. The basis for assumptions or predictions regarding metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential metallurgical methods, but the assumptions regarding metallurgical 	 Flotation Metallurgical test work by Straits was completed on representative material with copper recoveries greater than 90% often achieved at concentrate grades in excess of 25% Cu. Further studies aimed at optimising Zn recoveries were recommended. Initial metallurgical results suggest that copper can be readily recovered via
	treatment processes and parametres made when reporting Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the metallurgical assumptions made.	conventional flotation processes.
Environmental factors or assumptions	Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and processing operation. While at this stage the determination of potential environmental impacts, particularly for a greenfields project, may not always be well advanced, the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the environmental assumptions made.	 Appropriate environmental studies have been completed or commenced. An existing waste rock dump may be expanded, and samples have previously been submitted for waste rock characterisation. Ample volumes of NAF material is likely to be generated during mining to allow for encapsulation of PAF material. Additional sterilisation drilling may be required depending on the ultimate waste dump location.
Bulk density	 Whether assumed or determined. If assumed, the basis for the assumptions. If determined, the method used, whether wet or dry, the frequency of the measurements, the nature, size and representativeness of the samples. The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs, porosity, etc), moisture and differences between rock and alteration zones within the deposit. Discuss assumptions for bulk density estimates used in the evaluation 	 Bulk densities have also been assigned to the Cu and Zn/Pb domains using regressions as follows: ZnPb Domains: ((cu_ok + fe_ok + pb_ok + zn_ok)*(0.0233)) + 2.679 Cu Domains: ((cu_ok + fe_ok + pb_ok + zn_ok)*(0.0258)) + 2.5974 Bulk density has been assigned on the basis of weathering state to all waste material. The bulk density factors applied to the waste are 2.70 g/cm³ in the oxide, and 2.83 g/cm³ in fresh/transition zone material.
Classification	 process of the different materials. The basis for the classification of the Mineral Resources into varying confidence categories. 	The Mineral Resource has been classified on the basis of confidence in the geological model, continuity of mineralized zones, drilling density, confidence in the underlying database and the available bulk density information.

Criteria	JORC Code explanation	Commentary
	 Whether appropriate account has been taken of all relevant factors (i.e. relative confidence in tonnage/grade estimations, reliability of input data confidence in continuity of geology and metal values, quality, quantity and distribution of the data). Whether the result appropriately reflects the Competent Person's view of deposit. 	surveyed pit produced by the Straits Resources Mine Surveyor in September 2008.
Audits or reviews	The results of any audits or reviews of Mineral Resource estimates.	Whilst Mr. Barnes (Competent Person) is considered Independent of Anax, no third- party review has been completed of the May 2021 resource.
Discussion of relative accuracy/ confidence	 Where appropriate a statement of the relative accuracy and confidence leads in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate. The statement should specify whether it relates to global or local estimate and, if local, state the relevant tonnages, which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used. These statements of relative accuracy and confidence of the estimate should be compared with production data, where available. 	of the Mineral Resource as per the guidelines of the 2012 JORC Code. • The statement relates to global estimates of tonnes and grade. t ect s,