ADDENDUM TO ASX RELEASE 19 MAY 2021 **European Metals Holdings Limited** (ASX & AIM: EMH, NASDAQ: ERPNF) ("European Metals" or the "Company") provides the attached amended and re-stated JORC Table 1 (Sections 1 and 2) intended to accompany the ASX Release of 19 May 2021 "Strong Results from Locked Cycle Tests Confirms Process". This addendum includes additional technical detail following consultation with ASX. This announcement has been approved for release by the Board. ### **CONTACT** For further information on this update or the Company generally, please visit our website at www.europeanmet.com or see full contact details at the end of this release. ### **COMPETENT PERSON** Information in this release that relates to exploration results is based on information compiled by Mr Vojtech Sesulka. Mr Sesulka is a Member of European Federation of Geologists and a Competent Person as defined in the 2012 edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves and a Qualified Person for the purposes of the AIM Guidance Note on Mining and Oil & Gas Companies dated June 2009. Dr Sesulka consents to the inclusion in the release of the matters based on his information in the form and context in which it appears. The information in this release that relates to Mineral Resources and Exploration Targets has been compiled by Mr Lynn Widenbar. Mr Widenbar, who is a Member of the Australasian Institute of Mining and Metallurgy, is a full time employee of Widenbar and Associates and produced the estimate based on data and geological information supplied by European Metals. Mr Widenbar has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity that he is undertaking to qualify as a Competent Person as defined in the JORC Code 2012 Edition of the Australasian Code for Reporting of Exploration Results, Minerals Resources and Ore Reserves. Mr Widenbar consents to the inclusion in this report of the matters based on his information in the form and context that the information appears. **DIRECTORS AND MANAGEMENT** Keith Coughlan EXECUTIVE CHAIRMAN Richard Pavlik EXECUTIVE DIRECTOR Kiran Morzaria Lincoln Bloomfield NON-EXECUTIVE DIRECTOR Dennis Wilkins COMPANY SECRETARY **CORPORATE INFORMATION** ASX EMH AIM EMH NASDAQ ERPNF Frankfurt E861.F CDI'S ON ISSUE 174.8M #### **CAUTION REGARDING FORWARD LOOKING STATEMENTS** Information included in this release constitutes forward-looking statements. Often, but not always, forward looking statements can generally be identified by the use of forward looking words such as "may", "will", "expect", "intend", "plan", "estimate", "anticipate", "continue", and "guidance", or other similar words and may include, without limitation, statements regarding plans, strategies and objectives of management, anticipated production or construction commencement dates and expected costs or production outputs. Forward looking statements inherently involve known and unknown risks, uncertainties and other factors that may cause the company's actual results, performance and achievements to differ materially from any future results, performance or achievements. Relevant factors may include, but are not limited to, changes in commodity prices, foreign exchange fluctuations and general economic conditions, increased costs and demand for production inputs, the speculative nature of exploration and project development, including the risks of obtaining necessary licences and permits and diminishing quantities or grades of reserves, political and social risks, changes to the regulatory framework within which the company operates or may in the future operate, environmental conditions including extreme weather conditions, recruitment and retention of personnel, industrial relations issues and litigation. Forward looking statements are based on the company and its management's good faith assumptions relating to the financial, market, regulatory and other relevant environments that will exist and affect the company's business and operations in the future. The company does not give any assurance that the assumptions on which forward looking statements are based will prove to be correct, or that the company's business or operations will not be affected in any material manner by these or other factors not foreseen or foreseeable by the company or management or beyond the company's control. Although the company attempts and has attempted to identify factors that would cause actual actions, events or results to differ materially from those disclosed in forward looking statements, there may be other factors that could cause actual results, performance, achievements or events not to be as anticipated, estimated or intended, and many events are beyond the reasonable control of the company. Accordingly, readers are cautioned not to place undue reliance on forward looking statements. Forward looking statements in these materials speak only at the date of issue. Subject to any continuing obligations under applicable law or any relevant stock exchange listing rules, in providing this information the company does not undertake any obligation to publicly update or revise any of the forward looking statements or to advise of any change in events, conditions or circumstances on which any such statement is based. ## LITHIUM CLASSIFICATION AND CONVERSION FACTORS Lithium grades are normally presented in percentages or parts per million (ppm). Grades of deposits are also expressed as lithium compounds in percentages, for example as a percent lithium oxide (Li₂O) content or percent lithium carbonate (Li₂CO₃) content. Lithium carbonate equivalent ("LCE") is the industry standard terminology for, and is equivalent to, Li_2CO_3 . Use of LCE is to provide data comparable with industry reports and is the total equivalent amount of lithium carbonate, assuming the lithium content in the deposit is converted to lithium carbonate, using the conversion rates in the table included below to get an equivalent Li_2CO_3 value in percent. Use of LCE assumes 100% recovery and no process losses in the extraction of Li_2CO_3 from the deposit. Lithium resources and reserves are usually presented in tonnes of LCE or Li. The standard conversion factors are set out in the table below: Table: Conversion Factors for Lithium Compounds and Minerals | Convert from | | Convert to Li | Convert to Li ₂ O | Convert to Li ₂ CO ₃ | Convert to LiOH.H ₂ O | |-------------------|---------------------------------|---------------|------------------------------|--|----------------------------------| | Lithium | Li | 1.000 | 2.153 | 5.325 | 6.048 | | Lithium Oxide | Li ₂ O | 0.464 | 1.000 | 2.473 | 2.809 | | Lithium Carbonate | Li ₂ CO ₃ | 0.188 | 0.404 | 1.000 | 1.136 | | Lithium Hydroxide | LiOH.H ₂ O | 0.165 | 0.356 | 0.880 | 1.000 | | Lithium Fluoride | LiF | 0.268 | 0.576 | 1.424 | 1.618 | ### **WEBSITE** A copy of this announcement is available from the Company's website at www.europeanmet.com. ## **ENQUIRIES:** **European Metals Holdings Limited** Keith Coughlan, Executive Chairman Tel: +61 (0) 419 996 333 Email: keith@europeanmet.com Kiran Morzaria, Non-Executive Director Tel: +44 (0) 20 7440 0647 Dennis Wilkins, Company Secretary Tel: +61 (0) 417 945 049 Email: dennis@europeanmet.com WH Ireland Ltd (Nomad & Joint Broker) James Joyce/James Sinclair-Ford Tel: +44 (0) 20 7220 1666 (Corporate Finance) Harry Ansell/Jasper Berry (Broking) **Shard Capital (Joint Broker)** Tel: +44 (0) 20 7186 9950 Damon Heath Erik Woolgar Blytheweigh (Financial PR) Tel: +44 (0) 20 7138 3222 Tim Blythe Megan Ray Chapter 1 Advisors (Financial PR – Aus) David Tasker Tel: +61 (0) 433 112 936 The information contained within this announcement is considered to be inside information, for the purposes of Article 7 of EU Regulation 596/2014, prior to its release. The person who authorised for the release of this announcement on behalf of the Company was Keith Coughlan, Executive Chairman. # JORC Code, 2012 Edition - Table 1 # Section 1 Sampling Techniques and Data #### Criteria **JORC Code explanation** Sampling Nature and quality of sampling (eg cut techniques channels, random chips, or specific specialised industry standard • measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF • instruments, etc). These examples should not be taken as limiting the broad meaning • of samplina. • Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. - Aspects of the determination mineralisation that are Material to the Public Report. - In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. #### Commentary - Between 2014 and 2021, the Company commenced a core drilling program and collected samples from core splits in line with JORC Code guidelines. - Sample intervals honour geological or visible mineralization boundaries and vary between 50 cm and 2 m. Majority of samples is 1 m in length - The samples are half or quarter of core; the latter applied for large diameter core. - Between 1952 and 1989, the Cinovec deposit was sampled in two ways; in drill core and underground channel samples. - Channel samples, from drift ribs and faces, were collected during detailed exploration between 1952 and 1989 by Geoindustria n.p. and Rudne Doly n.p., both Czechoslovak State companies. Sample length was 1 m, channel 10x5 cm, sample mass about 15 kg. Up to 1966, samples were collected using hammer and chisel; from 1966 a small drill (Holman Hammer) was used. 14179 samples were collected and transported to a crushing facility. - Core and channel samples were crushed in two steps: to -5mm, then to -0.5mm, 100a splits were obtained and pulverized to -0.045mm for analysis. - The metalurgical samples were hand-selected from drill core from drill holes in the southern part of the Cínovec deposit, recovered in the exploration programme taking place in August-October 2020. The total weight of the sample was 76.6 kg. | DH_ID | Sample_ID | From
[m] | To
[m] | Interval
Length
[m] | Simplified_Lithology | Weight
[kg] | Mass
Percentage
[%] | |--------|-----------|-------------|-----------|---------------------------|----------------------|----------------|---------------------------| | CIS-18 | CIS18069 | 228.3 | 229.2 | 0.9 | greisen | | | | CIS-18 | CIS18071 | 229.2 | 230.2 | 1 | greisen | | | | CIS-18 | CIS18072 | 230.2 | 231 | 0.8 | greisen | | | | CIS-19 | CIS19082 | 258 | 259 | 1 | greisen | | | | CIS-19 | CIS19107 | 279 | 280 | 1 | greisen | | | | CIS-19 | CIS19114 | 285 | 286 | 1 | greisen | 41.2 | 54% | | CIS-19 | CIS19115 | 286 | 287 | 1 | greisen | | | | CIS-20 | CIS20065 | 230.5 | 231 | 0.5 | greisen | | | | CIS-20 | CIS20072 | 235 | 236 | 1 | greisen | | | | CIS-20 | CIS20073 | 236 | 236.2 | 0.2 | greisen | | | | CIS-20 | CIS20120 | 276 | 276.6 | 0.6 | greisen | | | | Criteria | JORC Code explanation | Commenta | ary | | | | | | | | | |------------|--|--|--|---|---|--|--|--|---|---|--| | | | | CIS-19 | CIS19087 | 262 | 263 | 1 | greisenized granite | | | | | | | | CIS-19 | CIS19088 | 263 | 264 | 1 | greisenized granite | | | | | | | | CIS-19 | CIS19090 | 264 | 264.3 | 0.3 | greisenized granite | 19.25 | 25% | | | | | | CIS-19 | CIS19098 | 272 | 273 | 1 | greisenized granite | | | | | | | | CIS-20 | CIS20123 | 278 | 279 | 1 | greisenized granite | | | | | | | | CIS-18 | CIS18031 | 195 | 196 | 1 | granite | | | | | | | | CIS-19 | CIS19022 | 202 | 203.5 | 1.5 | granite | 16.15 | 21% | | | | | | CIS-19 | CIS19023 | 203.5 | 205 | 1.5 | granite | | | | | | | | | | | | | | 76.6 | 100% | | | Drilling | • Drill type (eg core, reverse circu | annour The sassume The meshown in Perthesample years of those find crushin laborate. | nceme ample ed in t etalurç in the h. The e to giv of the i irst fiv ng equ ory pr | ent. was blent be current gical sampabove tale three cruste mine life, it is years. Tipment ar ocedures | ded to
t mine
oles we
ole. Ea
shed s
ed ore
n acco
he equ
d the o | match
model
ere con
ch lithe
ample
repres
ordance
uipmer
compo | the avent
nposed
plogy (3
s were to
sentative
with the
trused to
siting w | erage lithium graderially modified erage lithium graderially of three different in total) was cruthen composited e of the expected eratio of lithology Nagrom was as performed with total of 940.1m. | de and r
simplifie
shed at
(mixed)
I run-of-
jies in th
standard
h Nagro | mineral cor
ed lithologi
Nagrom la
into a sing
mine in the
ne mining n
I laboratory
m's standa | mposition es as boratory yle e first 5 nodel for y-scale ard | | techniques | open-hole hammer, rotary air blast, Bangka, sonic, etc) and details (e diameter, triple or standard tube, diamond tails, face-sampling bit o type, whether core is oriented and i what method, etc). | auger, drilled to eg core epth of rother f so, by for a to deeper was high holes e core was higher than the form of o | for a to | total of 2,4
2017, six of
rilled for a
298m.
2015, the
ons the coverage 98
yed PQ sinduced.
Inly core of | total o
core sore size). In
zed co | n. In 20
bles wo
f 1831
size was
e was
2016 a
bre for
was en | 016, severe drillous.55m. Fas HQ3 reduce and 201 upper populations. | venteen core holed for a total of rom 2020 until no (60mm diameter d to NQ3 (44 millorarts of the drillhorarts of the drillhorarts; vertical ar | es were 2697.1n ow 17 co r) in upp m diame rigs we oles. In e | drilled for
n. In 2018
are holes we
per parts of
eter). Core
ere used, a
deeper sec | a total of
ten core
ere drilled
holes; in
recovery
and select
ctions HQ
ground. | | Criteria | JORC Code explanation | Commentary | |---|--|---| | Drill sample recovery | | 1596 m (structural hole). Core diameters from 220 mm near surface to 110 mm at depth. Average core recovery 89.3%. Underground drilling: 999 holes for 54,974.74 m; horizontal and inclined. Core diameter 46mm; drilled by Craelius XC42 or DIAMEC drills. Core recovery for historical surface drill holes was recorded on drill logs and entered into the database. No correlation between grade and core recovery was established. | | | recovery and ensure representative nature of the samples. • Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. | | | Logging | Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. | later entered into an Excel database. | | Sub-sampling
techniques
and sample
preparation | If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all | In 2014-21, core was washed, geologically logged, sample intervals determined and marked then the core was cut in half. Larger core was cut in half and one half was cut again to obtain a quarter core sample. One half or one quarter samples were delivered to ALS Global for assaying after duplicates, blanks and standards were inserted in the sample stream. The remaining drill core is stored on site for reference. Sample preparation was carried out by ALS Global in Romania, using industry standard techniques appropriate for the style of mineralisation represented at Cinovec. Historically, core was either split or consumed entirely for analyses. Samples are considered to be representative. | | Criteria | sub-sampling stages to maximise representivity of samples. • Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. • Whether sample sizes are appropriate to the grain size of the material being sampled. | Sample size and grains size are deemed appropriate for the analytical techniques used. The metallurgical samples was then ground down with a laboratory rod mill to a P90 of 250 microns. No size fractions were discarded in this step. For the metallurgical recovery work the blended ore was crushed and passed through magnetic separation in line with the current flowsheet. Chemical Analysis was by X-ray Fluorescence Spectroscopy. The main element composition was analyzed on representative samples by X-ray fluorescence spectroscopy (XRF, S8 Tiger by Bruker AXS) according to DIN EN ISO 12677. Loss on ignition was determined according to DIN EN ISO 12677. Lithium and Rubidium Analysis was by Na2O2Fusion. The samples were prepared in a sodium peroxide (Na2O2) fusion, where the Na2O2 oxidizes the samples and form compounds that are soluble in a dilute acidic solution. The samples were analyzed for their respective lithium and rubidium contents using inductively coupled plasma spectrometry (Varian, Vista MPX). | |--|--|--| | Quality of assay data and laboratory tests | The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. | methods were determined by results of tests for various analytical techniques. | • Overall accuracy of sampling and assaying was proved later by test mining and | Criteria | JORC Code explanation | Commentary | |---|--|--| | | | reconciliation of mined and analysed grades. | | Verification of
sampling and
assaying | The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. | During the 2014-21 drill campaigns the Company indirectly verified grades of tin and
lithium by comparing the length and grade of mineral intercepts with the current block
model. | | Location of data points | Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. | Down hole surveys were recorded by a contractor. | | Data spacing
and
distribution | Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. | Historical data density is very high. Spacing is sufficient to establish an inferred resource that was initially estimated using MICROMINE software in Perth, 2012. Areas with lower coverage of Li% assays have been identified as exploration targets. Sample compositing to 1m intervals has been applied mathematically prior to estimation but not physically. | | Orientation of data in relation to geological structure | • • | In 2014-21, drill hole azimuth and dip was planned to intercept the mineralized zones at near-true thickness. As the mineralized zones dip shallowly to the south, drill holes were vertical or near vertical and directed to the north. Due to land access restrictions, certain holes could not be positioned in sites with ideal drill angle. The Company has not directly collected any samples underground because the workings are inaccessible at this time. Based on historic reports, level plan maps, sections and core logs, the samples were | | Criteria | J | ORC Code explanation | Commentary | |--------------------|------|--|--| | | | have introduced a sampling bias, this should be assessed and reported if material. | collected in an unbiased fashion, systematically on two underground levels from drift ribs and faces, as well as from underground holes drilled perpendicular to the drift directions. The sample density is adequate for the style of deposit. Multiple samples were taken and analysed by the Company from the historic tailing repository and waste dump. Only lithium was analysed (Sn and W too low). The results matched the historic grades. | | Sample
security | • | The measures taken to ensure sample security. | <u> </u> | | Audits
reviews | or • | The results of any audits or reviews of sampling techniques and data. | Review of sampling techniques possible from written records. No flaws found. | # Section 2 Reporting of Exploration Results (Criteria listed in section 1 also apply to this section.) | Criteria | JORC Code explanation | Commentary | |---|---|--| | Mineral tenement and land tenure status | Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with | four licenses Cinovec (expires 31/12/2023), Cinovec 2 (expires 31/12/2023), Cinovec 3 (expires 31/10/2021) and Cinovec4 (expires 30/04/2022). 100% owned by Geomet, no native interests or environmental concerns. A State royalty applies metals production and | | Criteria | JORC Code explanation | Commentary | |-----------------------------------|--|---| | | any known impediments to obtaining a licence to operate in the area. | There are no known impediments to
obtaining an Exploitation Permit for
the defined resource. | | Exploration done by other parties | Acknowledgment and appraisal of
exploration by other parties. | There has been no acknowledgment
or appraisal of exploration by other
parties. | | Geology | Deposit type, geological setting and
style of mineralisation. | Cinovec is a granite-hosted tintungsten-lithium deposit. Late Variscan age, post-orogenic granite intrusion. Tin and tungsten occur in oxide minerals (cassiterite and wolframite). Lithium occurs in zinnwaldite, a Li-rich muscovite Mineralization in a small granite cupola. Vein and greisen type. Alteration is greisenisation, silicification. | | Drill hole Information | A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this | | | Criteria | JORC Code explanation | Commentary | |--|---|---| | | exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. | | | Data aggregation methods | In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. | not and will not include aggregate intercepts. • Metal equivalent not used in reporting. | | Relationship between mineralisation widths and intercept lengths | These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). | • | | Criteria | JORC Code explanation | Commentary | |------------------------------------|---|--| | Diagrams | Appropriate maps and sections
(with scales) and tabulations of
intercepts should be included for
any significant discovery being
reported These should include, but
not be limited to a plan view of drill
hole collar locations and
appropriate sectional views. | Appropriate maps and sections have
been generated by the Company, and
independent consultants. Available in
customary vector and raster outputs,
and partially in consultant's reports. | | Balanced reporting | Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. | Balanced reporting in historic reports guaranteed by norms and standards, verified in 1997, and 2012 by independent consultants. The historic reporting was completed by several State institutions and cross validated. Only selected metallurgical results have been reported. | | Other substantive exploration data | Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. | representative rock and ore types; (historic data + 92 measurements in 2016-17 from current core holes); petrographic and mineralogical studies, hydrological information, hordness mainture content. | | Further work | The nature and scale of planned
further work (eg tests for lateral
extensions or depth extensions or | Grade verification sampling from
underground or drilling from surface.
Historically-reported grades require | | Criteria | JORC Code explanation large-scale step-out drilling). • Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. | Commentary modern validation in order to improve the resource classification. The number and location of sampling sites will be determined from a 3D wireframe model and geostatistical considerations reflecting grade continuity. The geologic model will be used to determine if any infill drilling is | |----------|---|---| | | · · | The geologic model will be used to | **DIRECTORS AND MANAGEMENT** Keith Coughlan EXECUTIVE CHAIRMAN Richard Pavlik EXECUTIVE DIRECTOR Kiran Morzaria NON-EXECUTIVE DIRECTOR Lincoln Bloomfield NON-EXECUTIVE DIRECTOR Dennis Wilkins COMPANY SECRETARY CORPORATE INFORMATION ASX EMH AIM EMH NASDAQ ERPNF Frankfurt E861.F CDI'S ON ISSUE 174.8M