

Exploration Update - Gordons Gold Project

New high-grade RC drill intercepts expand Yandal's pipeline of discovery targets

- Assays from shallow RC drilling at the Star of Gordon prospect located 2km along strike from the operating Gordon Sirdar gold mine have returned multiple significant intercepts from transitional and primary rocks. Mineralisation is open at depth, highlights include:
 - 8m @ 4.69g/t Au from 15m including 1m @ 13.29g/t (YRLRC513) \triangleright
 - 10m @ 2.53g/t Au from 27m including 1m @ 8.56g/t (YRLRC514) \triangleright
 - 5m @ 2.44g/t Au from 21m including 1m @ 4.68g/t (YRLR493) \triangleright
- Assays from AC drilling to blade refusal at the Malone and Gordons Dam SE prospects have improved definition of a large bedrock targets which are currently being tested with RC drilling with diamond drilling to follow. Highlights include:

Malone Prospect

- 5m @ 1.94g/t Au from 65m including 1m @ 8.21g/t Au (YRLAC633) \triangleright
- > 4m @ 1.52g/t Au from 83m at end-of-hole (YRLAC590)
- > 2m @ 1.17g/t Au from 58m including 1m @ 2.07g/t at end-of-hole (YRLAC632)
- 4m @ 3.01g/t Au from 80m (YRLAC648 4m composite sample)

Gordons Dam SE Prospect

- 1m @ 1.33g/t Au from 73m and 1m @ 1.65g/t Au at end-of-hole (YRLAC467) \geq
- 2m @ 1.10g/t Au from 44m including 1m @ 1.23g/t at end-of-hole (YRLAC465) \triangleright
- A new deep diamond hole was completed to 342m and intersected the target porphyry hosted and related mineralisation at the Gordons Dam prospect, additional holes to follow assay results pending.

Yandal Resources' Managing Director; Mr Lorry Hughes commented:

"Results from first pass drilling at the Star of Gordons prospect have exceeded our expectations and provide us with a new high-priority target. Extensive shallow historic workings in the prospect area so close to an operating mine encouraged us to test it and we will now explore for extensions at depth.

In addition the Gordons gold project continues to return excellent drilling results from a number of prospects and the mineralised footprint in the Gordons Dam area is expanding with each reconnaissance AC program. There is potential for a large gold deposit at depth similar in size to those in the area. We have commenced a detailed structural study to improve geology and mineralisation models and to direct further aggressive RC and diamond drilling at depth".

Registered Address Yandal Resources Limited

ACN 108 753 608 ABN 86 108 753 608

159 Stirling Highway Α Nedlands WA 6009 P PO Box 1104

Nedlands WA 6909

Board Members

Lorry Hughes Katina Law Kelly Ross Bianca Taveira

т

Е

w

Managing Director/CEO Chair Non-Executive Director **Company Secretary**

+61 8 9389 9021 yandal@yandalresources.com.au www.yandalresources.com.au

Gold Projects

Ironstone Well (100% owned) Barwidgee (100% owned) Mt McClure (100% owned) Gordons (100% owned) Shares on Issue 98,015,276 \$0.64 Share Price Market Cap \$62M ASX Code YRL

Yandal Resources Ltd (ASX: YRL, "Yandal Resources" or the "Company") is pleased to report new drilling results from Air-core ("AC") and reverse circulation ("RC") drilling at multiple prospects within the Gordons gold project, located in the highly prospective Kalgoorlie-Boulder Region of Western Australia (Figure 1).

Star of Gordon Prospect

A total of 43 angled RC holes for 4,197m were completed during the March Quarter 2021¹ to test ~1.5km strike length of shallow historic workings and surficial prospecting areas (Figures 1, 2 & Table 1). RC drilling was used to penetrate primary rocks as the depth of strong weathering is generally very shallow at ~10-15m. Widespread mineralisation was encountered within transitional and primary mafic, ultramafic and porphyry rock types. The mineralisation is open in all directions. Highlights include;

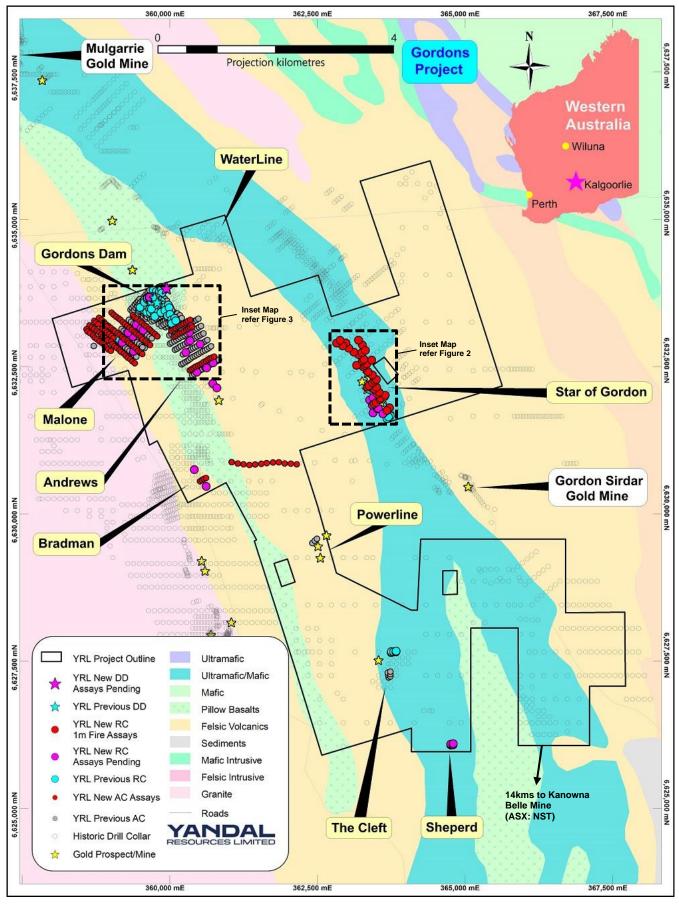
- **3m @ 1.37g/t** Au from 10m including 1m @ 2.32g/t (YRLRC491)
- **3m @ 1.28g/t** Au from 18m including **1m @ 1.69g/t** (YRLRC492)
- **5m @ 2.44g/t** Au from 21m including **3m @ 3.25g/t** (YRLRC493)
- 6m @ 1.37g/t Au from 94m including 1m @ 6.12g/t (YRLRC501)
- 2m @ 1.57g/t Au from 51m including 1m @ 2.63g/t (YRLRC503)
- 4m @ 0.86g/t Au from 40m including 1m @ 2.99g/t (YRLRC506)
- > 3m @ 2.11g/t Au from 61m including 1m @ 3.67g/t (YRLRC506A)
- > 5m @ 0.95g/t Au from 35m including 1m @ 2.73g/t (YRLRC507)
- > 8m @ 4.69g/t Au from 15m including 2m @ 10.20g/t and 1m @ 13.29g/t (YRLRC513)
- > 10m @ 2.53g/t Au from 27m including 2m @ 6.88g/t and 1m @ 8.56g/t (YRLRC514)

The mineralisation occurs <2km directly NNW along strike from the Gordon Sirdar underground gold mine which is owned and operated by FMR Investments Pty Ltd ("FMR"). FMR are currently mining ~60,000t of ore per month using conventional underground mining methods and transporting the ore via road haulage for processing at their mill in Coolgardie.

Considering the extent of historic workings, the proximity of the intercepts to known gold deposits and the limited historic drilling into primary rocks, the Company considers the prospect to be a high priority exploration target. Planning and preparation for follow-up RC drilling to test for mineralisation at 100-150m depth is underway with commencement planned in the September Quarter.

Malone Prospect

A total of 93 vertical AC holes for 5,650m were completed in February and March along strike from and in areas adjacent to known mineralisation within shallow palaeochannel sediments, porphyry and mafic rock types (Figures 1 & 3 and Tables 2 & 3). Numerous significant intercepts from 4m composite samples were previously reported from 74 holes¹ and now individual 1m samples have returned significant mineralisation. Highlights include;


- 4m @ 1.52g/t Au from 83m at end-of-hole (YRLAC590)
- **6m @ 0.47g/t** Au from 53m including **1m @ 1.02g/t** at end-of-hole (YRLAC612)
- 4m @ 0.62g/t Au from 59m including 1m @ 1.82g/t (YRLAC614)
- 3m @ 1.14g/t Au from 77m including 1m @ 2.25g/t and 3m @ 0.33g/t at end-of-hole (YRLAC628)
- > 2m @ 1.17g/t Au from 58m including 1m @ 2.07g/t at end-of-hole (YRLAC632)
- **5m @ 1.94g/t** Au from 65m including **1m @ 8.21g/t** (YRLAC633)

In addition, 4m composite samples have been returned from the remainder of the program with assays defining additional new mineralisation (Figures 1, 3 & Table 3). Highlights include:

- > 8m @ 0.19g/t Au from 68m (YRLAC616)
- > 4m @ 3.01g/t Au from 80m (YRLAC648)

¹ Refer to YRL ASX announcements dated 13 April 2021 and 5 May 2021.

Figure 1 – Location map of key prospects within the Gordons gold project in relation to nearby operating third party gold mines, project tenure and regional geology.

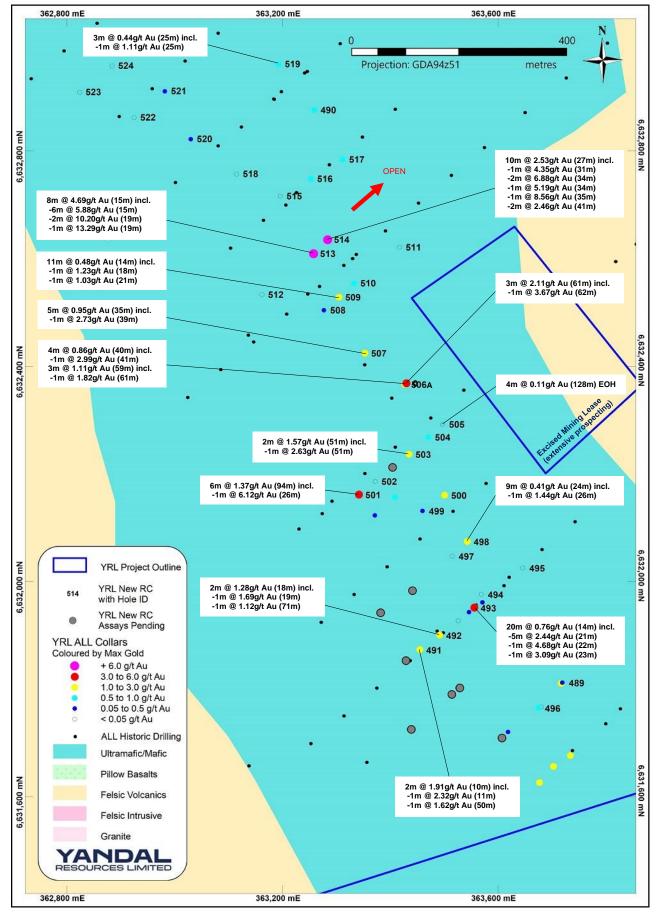


Figure 2 – Plan view drill collar map of the Star of Gordon gold prospect.

The new results are considered highly encouraging as they currently define a large transitional and bedrock anomaly extending for over 1km in a north-south direction and for over 500m in the east-west direction. The anomaly is open to the south-west and the western part of the anomaly is interpreted to be related to a NNW – SSE trending mafic - felsic volcanic contact. The underlying regional schematic geology interpretation map shown in Figure 3, is not currently accurate as it is in the process of being updated with recent information for future releases.

Results from the area in the vicinity of hole YRLAC648 (4m @ 3.01g/t Au from 80m) are particularly encouraging as they define a linear +300m long east-west trending zone that is open to the west (Figure 3). Additional lines of first pass AC drilling are planned to commence in the current quarter with ongoing RC and diamond ("DD") drilling planned for immediate follow-up.

RC drilling is currently underway at the Malone prospect to test new targets generated from the earlier AC results. An ongoing RC program is underway to test beneath the anomalies to maximum depths of 150-200m depending on ground conditions (Figure 3). If results are successful, deeper RC and DD drilling will immediately follow. RC assay results are pending.

Gordons Dam SE Prospect

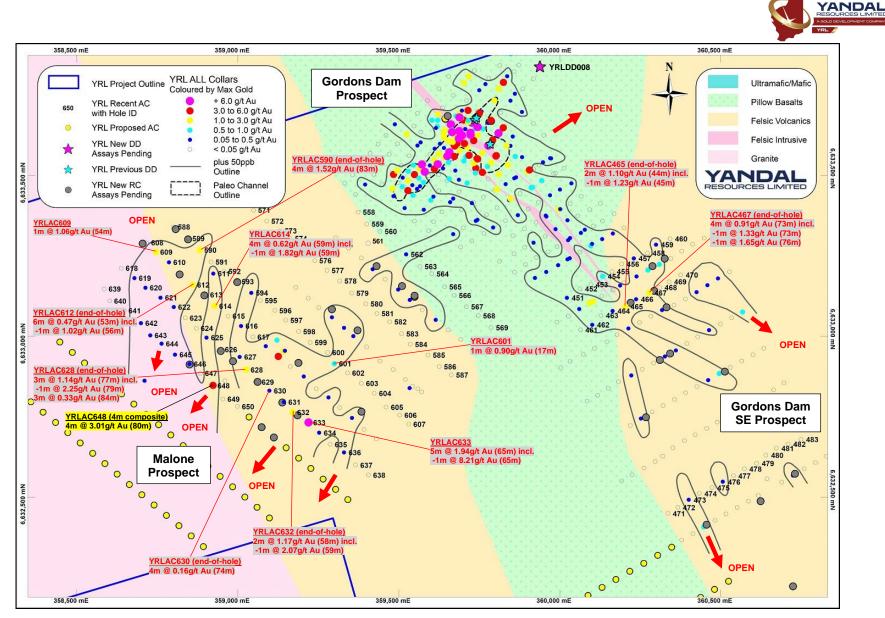
Individual 1m assay results were returned from anomalous 4m composite intervals from angled AC holes which have also provided better definition of the bedrock targets ~600m south-east along strike from the more advanced Gordons Dam prospect (Figures 1, 3 & Table 2). Highlights include;

- > 2m @ 1.10g/t Au from 44m including 1m @ 1.23g/t Au at end-of-hole (YRLAC465)
- > 4m @ 0.91g/t Au from 73m including 1m @ 1.65g/t Au at end-of-hole (YRLAC465)

Follow-up RC drilling has commenced to test beneath the most encouraging bedrock anomalies and further drilling is planned once the results of a detailed structural mineralisation study at Gordons Dam are received. RC assay results are pending.

Gordons Dam Prospect

As follow-up to high-grade primary intercepts returned from March Quarter RC drilling including **1m @ 20.68g/t Au** from 118m in hole YRLRC543¹ and **1m @ 20.41g/t Au** from 73m in hole YRLRC539¹, a detailed structural mineralisation study was instigated. The study will be completed by Davis Vanderhor Geological Consultants and use all available drilling data including results from a recently completed DD hole YRLDD008.


The new hole was completed to 342.1m downhole depth and was designed to intersect porphyry hosted and related mineralisation at vertical depth of ~200m (Figure 3). Significant disseminated, brecciated and quartz hosted sulphides were noted within altered porphyry and mafic rocks in the drill core commencing very close to the interpreted target depth. DD assay results are pending.

Next Steps

Key exploration activities planned during the June and September Quarter at the Gordons project include;

- Receive and review all pending AC, RC and DD drill hole results from Gordons Dam, Gordons Dam SE, Malone and Sheperd prospects and implement immediate follow-up high-impact drilling to test targets to maximum vertical depths of ~500m;
- Compile results and implement recommendations from the structural mineralisation study;
- Continue DD, RC and AC programs at the Gordons Dam, Gordons Dam SE, Malone and Star of Gordon prospects.

¹ Refer to YRL ASX announcement dated 5 May 2021.

Figure 3 – Gordons Dam, Gordons Dam SE and Malone prospect collar plan showing the location of newly completed and proposed AC holes, newly completed and proposed RC holes, newly completed diamond holes and all other holes as per the legend and Tables 1-3. * Underlying regional geology units are currently being updated.

Table 1 – Drill collar locations, depth, orientation and 1m down hole assay results for the Star of Gordons gold prospect.

Hole Id	North (m)	East (m)	Depth (m)	Dip (Deg.)	Azi. (Deg.)	From (m)	To (m)	Interval (m)	Au1 g/t (FA50)	Au2 g/t (FA50)
Star of Gordo	n Prospect	RC Interva	ls (>0.10g	g/t Au)						
YRLRC0491	6631868	363457	120	-60	230	0	1	1	0.10	
						3	4	1	0.27	
						10	13	3	1.37	
				inclu	iding	10	12	2	1.91	
				inclu	Iding	11	12	1	2.04	2.32
						19	20	1	0.10	
						23	24	1	0.14	
						37	39	2	0.20	
						45	46	1	0.24	
						50	51	1	1.62	
						53	54	1	0.21	
						91	92	1	0.12	
						95	96	1	0.34	
						98	99	1	0.12	
YRLRC0492	6631893	363487	138	-60	230	5	6	1	0.12	
						15	22	7	0.64	-
				inclu	iding	18	21	3	1.28	
				inclu	iding	19	20	1	1.51	1.69
						31	32	1	0.16	
						46	47	1	0.21	
						57	58	1	0.17	
						60	66	6	0.12	
						71	76	5	0.34	
						71	72	1	1.06	1.12
						87	88	1	0.12	
YRLRC0493	6631951	363556	72	-60	230	14	34	20	0.76	_
				inclu	•	21	26	5	2.44	
				inclu	•	21	24	3	3.25	
				inclu	•	22	22	1	4.68	3.95
				inclu	iding	23	24	1	1.34	3.09
YRLRC0494	6631977	363587	96	-60	230			SA >0.03g/t		
YRLRC0495	6632030	363650	72	-60	230		n	SA >0.03g/t		T
YRLRC0496	6631768	363677	132	-60	230	88	90	2	0.70	
						95	101	6	0.28	
YRLRC0497	6632048	363516	60	-60	230		N	SA >0.03g/t	_	-
YRLRC0498	6632074	363546	144	-60	230	24	33	9	0.41	
				inclu	Iding	26	27	1	1.26	1.44
						62	67	5	0.24	
						104	105	1	0.14	
						113	114	1	0.27	
						124	126	2	0.33	
YRLRC0499	6632130	363459	60	-60	230	28	32	4	0.21	
YRLRC0500	6632162	363498	71	-60	230	37	46	9	0.41	

Hole Id	North (m)	East (m)	Depth (m)	Dip (Deg.)	Azi. (Deg.)	From (m)	To (m)	Interval (m)	Au1 g/t (FA50)	Au2 g/t (FA50)
				inclu	ding	42	43	1	1.12	L
				inclu	ding	55 57	62 58	7 1	0.40 0.82	1.31
						68	70	2	0.34	
YRLRC0501	6632161	363342	114	-60	230	20	26	6	0.25	
				inclu	ding	22	24	2	0.63	
						30	36	6	0.34	
				inclu	ding	32	34	2	0.72	
						76	88	12	0.18	
						94	100	6	1.37	
				inclu	ding	97	98	1	4.33	6.12
YRLRC0502	6632187	363372	90	-60	230		N	SA>0.03g/t	Au	
YRLRC0503	6632238	363434	120	-60	230	39	41	2	0.20	
						44	46	2	0.15	
						51	53	2	1.57	
				inclu	ding	51	52	1	2.46	2.63
						77	79	2	0.18	
						85	88	3	0.29	
YRLRC0504	6632264	363464	120	-60	230	44	50	6	0.26	
				inclu	ding	47	48	1	0.79	0.71
						53	54	1	0.29	
YRLRC0505*	6632290	363495	132	-60	230	128	132	- 4	0.11#	-
YRLRC0506	6632358	363420	64	-60	230	40	44	4	0.86	-
				inclu	ding	41	42	1	2.87	2.99
						50	51	1	0.13	
						59	64	5	0.73	
				inclu	ding	59	62	3	1.11	
				inclu	ding	61	62	1	1.82	1.74
YRLRC0506A	6632358	363420	90	-60	230	61	64	3	2.11	
				inclu	ding	61	63	2	3.08	
				inclu	ding	62	63	1	3.67	
YRLRC0507	6632426	363347	120	-60	230	32	43	11	0.63	-
				inclu	ding	35	40	5	0.95	
				inclu	ding	35	36	1	1.54	
				inclu	ding	39	40	1	2.67	2.73
YRLRC0508	6632497	363276	90	-60	230	9	10	1	0.48	
YRLRC0509	6632522	363307	90	-60	230	14	25	11	0.48	
				inclu	-	15	22	7	0.64	
				inclu	•	18	19	1	1.23	1.16
				inclu	-	21	22	1	1.03	
YRLRC0510	6632548	363337	90	-60	230	8	11	3	0.13	
						15	55	7	0.13	
						24	26	2	0.73	
				inclu	-	24	25	1	0.87	0.96
YRLRC0511*	6632621	363424	96	-60	230	8	12	4	0.16	
YRLRC0512	6632532	363161	90	-60	230		N	SA>0.03g/t	Au	

ASX Announcement 27 May 2021

Hole Id	North (m)	East (m)	Depth (m)	Dip (Deg.)	Azi. (Deg.)	From (m)	To (m)	Interval (m)	Au1 g/t (FA50)	Au2 g/t (FA50)
YRLRC0513	6632609	363253	90	-60	230	9	12	3	0.39	
						15	23	8	4.69	
				inclu	ding	15	21	6	5.88	
				inclu	ding	19	21	2	10.20	
				inclu	ding	19	20	1	11.95	13.29
YRLRC0514	6632635	363283	90	-60	230	20	23	3	0.71	
						27	37	10	2.53	
				inclu	ding	31	32	1	4.12	4.35
				inclu	ding	34	36	2	6.88	
				inclu	ding	34	35	1	1.45	5.19
				inclu	ding	35	36	1	7.82	8.56
						41	43	2	2.46	
YRLRC0515	6632692	363194	60	-60	230		N	SA>0.03g/t	Au	
YRLRC0516	6632743	363256	90	-60	230	45	50	5	0.43	
YRLRC0517	6632795	363317	60	-60	230	24	26	2	0.17	
						28	31	3	0.33	
				inclu	ding	28	29	1	0.73	
YRLRC0518	6632753	363113	96	-60	230		N	SA>0.03g/t	Au	
YRLRC0519	6632958	363200	90	-60	230	25	28	3	0.44	
				inclu	ding	25	26	1	0.97	1.11
						41	44	3	0.24	
						64	65	1	0.57	
						67	69	2	0.27	
YRLRC0520	6632818	363033	90	-60	230	32	33	1	0.23	
YRLRC0521	6632909	362984	90	-60	230	32	33	1	0.28	
YRLRC0522	6632857	362923	90	-60	230			SA>0.03g/t		
YRLRC0523	6632906	362826	90	-60	230			SA>0.03g/t		
YRLRC0524	6632958	362887	96	-60	230		N	SA>0.03g/t	Au	
YRLRC0558	6632213	363403	90	-60	230		A	ssays pend	ing	
YRLRC0559	6631940	363387	120	-60	230			ssays pend	-	
YRLRC0560	6631986	363443	120	-60	230			ssays pend	-	
YRLRC0561	6631851	363437	132	-60	230			ssays pend	-	
YRLRC0562	6631725	363443	120	-60	230			SA>0.03g/t		
YRLRC0563	6631788	363518	60	-60	230		A	ssays pend	ing	
YRLRC0564	6631800	363533	132	-60	230			ssays pend	-	
YRLRC0565	6631710	363609	120	-60	230		A	ssays pend	ing	

Table 2 – Drill collar locations, depth, orientation and 1m down hole AC assay results for the Malone and Gordons Dam South East gold prospects.

Hole Id	North (m)	East (m)	Depth (m)	Dip (Deg.)	Azi. (Deg.)	From (m)	To (m)	Interval (m)	Au1 g/t (FA50)	Au2 g/t (FA50)
Malone Prosp	ect 1m AC I	ntervals (>	0.10g/t A	u)						
YRLAC0590	6633270	358884	87	-90	360	83	87	4	1.52#	
YRLAC0594	6633142	359037	76	-90	360	56	58	2	0.38	
YRLAC0601	6632917	359305	54	-90	360	17	18	1	0.79	0.90

ASX Announcement 27 May 2021

Hole Id	North (m)	East (m)	Depth (m)	Dip (Deg.)	Azi. (Deg.)	From (m)	To (m)	Interval (m)	Au1 g/t (FA50)	Au2 g/t (FA50)
YRLAC0609	6633258	358743	72	-90	360	49	52	3	0.15	
						54	55	1	1.06	1.01
						57	59	2	0.35	
						61	64	3	0.40	
YRLAC0610	6633226	358781	78	-90	360		Ν	SA>0.10g/t	Au	
YRLAC0611	6633194	358819	78	-90	360		Ν	SA>0.10g/t	Au	
YRLAC0612	6633162	358858	59	-90	360	53	59	6	0.47#	-
				inclu	ding	56	57	1	1.02	
YRLAC0614	6633097	358934	72	-90	360	59	63	4	0.62	
				inclu	ding	59	60	1	1.59	1.82
YRLAC0628	6632892	359023	87	-90	360	77	80	3	1.14	
				inclu	ding	79	80	1	2.25	
						84	87	3	0.33#	
YRLAC0630	6632828	359100	78	-90	360	74	78	4	0.16#	-
YRLAC0632	6632764	359176	60	-90	360	58	60	2	1.17#	_
				inclu	ding	59	60	1	2.07#	1.94
YRLAC0633	6632731	359215	82	-90	360	65	70	5	1.94	
				inclu	ding	65	66	1	8.21	8.10
YRLAC0634	6632699	359253	84	-90	360	75	76	1	0.18	
						79	81	2	0.35	
Gordons Dam	SE Prospe	ct 1m AC Ir	ntervals (>0.10g/t	Au)					
YRLAC0454	6633184	360132	66	-60	240	56	57	1	0.61	0.55
YRLAC0462	6633039	360098	47	-60	240	32	33	1	0.10	
YRLAC0463	6633058	360133	49	-60	240		Ν	SA>0.10g/t	Au	
YRLAC0465	6633096	360203	46	-60	240	44	46	2	1.10#	-
				inclu	ding	45	46	1	1.23#	
YRLAC0467	6633134	360273	77	-60	240	73	77	4	0.91#	
				inclu	ding	73	74	1	1.33	1.24
				inclu	ding	76	77	1	1.58	1.65

Table 3 – Drill collar locations, depth, orientation and 4m down hole AC assay results for the Malone gold prospect.

Hole Id	North (m)	East (m)	Depth (m)	Dip (Deg.)	Azimuth (Deg.)	From (m)	To (m)	Interval (m)	Au g/t (AR50)
Malone Prosp	ect 4m Com	posite AC Ir	tervals (:	>0.03g/t A	\u)				
YRLAC0561	6633288	359485	48	-90	360		NSA	>0.03g/t Au	
YRLAC0616	6633033	359011	82	-90	360	68	76	8	0.19
YRLAC0617	6633001	359049	75	-90	360	36	40	4	0.03
YRLAC0618	6633214	358640	27	-90	360	NSA>0.03g/t Au			
YRLAC0619	6633181	358678	45	-90	360	40	44	4	0.10
YRLAC0620	6633149	358717	78	-90	360	64	72	8	0.16
YRLAC0621	6633117	358755	66	-90	360	52	60	8	0.11
YRLAC0622	6633085	358793	76	-90	360	48	60	12	0.03
YRLAC0623	6633053	358832	50	-90	360	48	50	2	0.04#
YRLAC0624	6633021	358870	81	-90	360	0	4	4	0.03
YRLAC0625	6632989	358908	90	-90	360	0	4	4	0.05

Hole Id	North (m)	East (m)	Depth (m)	Dip (Deg.)	Azimuth (Deg.)	From (m)	To (m)	Interval (m)	Au g/t (AR50)
						64	68	4	0.03
						80	88	8	0.05
YRLAC0643	6633008	358729	74	-90	360	68	72	4	0.07
YRLAC0644	6632976	358767	97	-90	360	92	96	4	0.05
YRLAC0645	6632944	358806	96	-90	360	0	8	8	0.04
						60	64	4	0.03
						68	72	4	0.06
						84	92	8	0.04
YRLAC0646	6632912	358844	103	-90	360	0	4	4	0.03
						92	100	8	0.05
YRLAC0648	6632848	358921	118	-90	360	80	84	4	3.01
YRLAC0649	6632816	358959	114	-90	360		NSA	>0.03g/t Au	
YRLAC0650	6632783	358997	66	-90	360		NSA	>0.03g/t Au	

Notes to Table 1 - 1. An accurate dip and strike and the controls on mineralisation are only interpreted and the true width of mineralisation is unknown at this stage. 2. For AC and RC drilling, 4m composite samples are submitted are analysed using a 50g Aqua Regia digest with Flame AAS gold finish (0.01ppm detection limit), 1m samples are analysed using a 50g fire assay with ICP-MS finish gold analysis (0.01ppm detection limit) by Aurum Laboratories in Beckenham, Western Australia. 3. g/t (grams per tonne). 4. Intersections are calculated over intervals >0.15g/t or as indicated. 5. Drill type AC = Air-core, RC = Reverse Circulation. 6. Coordinates are in GDA94, MGA Z51. 7. * denotes a 4m composite assay 8. **# denotes an end of hole assay**.

About Yandal Resources Limited

Yandal Resources listed on the ASX in December 2018 and has a portfolio of advanced gold exploration projects in the highly prospective Yandal and Norseman-Wiluna Greenstone Belts of Western Australia.

Yandal Resources' Board has a track record of successful discovery, mine development and production.

Material	Indicated				Inferred			Total	
Туре	Tonnes	Au (g/t)	Oz	Tonnes	Au (g/t)	Oz	Tonnes	Au (g/t)	Oz
Laterite	89,853	1.26	3,631	86,671	1.23	3,422	176,524	1.24	7,054
Oxide	2,015,900	1.33	86,071	2,246,845	1.10	79,389	389 4,262,745 1.21		165,420
Transition	35,223	1.20	1,360	1,160,471	1.10	40,966	1,195,695	1.10	42,325
Fresh				1,751,484	0.95	53,440	1,751,484	0.95	53,440
Total	2,140,976	1.32	91,062	5,245,471	1.05	177,217	7,386,448	1.13	268,352

November 2020 Mineral Resource Estimate Summary Table – Flushing Meadows Gold Deposit

* Reported above 0.5g/t Au lower cut-off grade, refer to Yandal Resources Ltd ASX announcement dated 4 November 2020 for full details.

Competent Person Statement

The information in this document that relates to Exploration Results, geology and data compilation is based on information compiled by Mr Trevor Saul, a Competent Person who is a Member of The Australian Institute of Mining and Metallurgy. Mr Saul is the Exploration Manager for the Company, is a full-time employee and holds shares and options in the Company.

Mr Saul has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Saul consents to the inclusion in this announcement of the matters based on this information in the form and context in which it appears.

The information in this announcement that relates to the Flushing Meadows Mineral Resource Estimate is based on information compiled and generated by Andrew Bewsher, an employee of BM Geological Services Pty Ltd ("BMGS"). Both Andrew Bewsher and BMGS hold shares in the company. BMGS consents to the inclusion, form and context of the relevant information herein as derived from the original resource reports. Mr Bewsher has sufficient experience relevant to the style of mineralisation and type of deposit under consideration and to the activity which is being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the JORC 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'.

Authorised by the board of Yandal Resources

For further information please contact:

Lorry Hughes Managing Director Yandal Resources Limited yandal@yandalresources.com.au Bianca Taveira Company Secretary +61 8 9389 9021 yandal@yandalresources.com.au

Appendix 1 – Gordons Gold Project JORC Code (2012) Table 1, Section 1 and 2

Mr Trevor Saul, Exploration Manager of Yandal Resources compiled the information in Section 1 and Section 2 of the following JORC Table 1 and is the Competent Person for those sections. The following Table and Sections are provided to ensure compliance with the JORC Code (2012 edition) requirements for the reporting of Mineral Resources.

Section 1 Sampling Techniques and Data

Criteria	JORC Code explanation	Commentary
Sampling techniques	Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling.	 4m composite samples taken with a sample scoop thrust into the RC sample bag which is laid out in individual metres in a plastic bag on the ground. 1m single splits taken using a cone splitter at time o drilling, if 4m composites are anomalous (>100-200ppb or lower depending on location), 1m single splits are submitted for analyses. Average sample weights about 3.0kg for 4m composites and 2.0-3.0kg for 1m samples. For AC drilling samples laid out on the ground and sampled as above. Average weights are 2.0-3.0kg for composites and 2.0-3.0kg for singles.
	Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.	 For RC and AC drilling regular air and manual cleaning of cyclone to remove hung up clays where present. Routinely regular standards are submitted during composite analysis and standards, blanks and duplicates for 1m samples. Based on statistical analysis and cross checks of these results, there is no evidence to suggest the samples are not representative. Standards & replicate assays taken by the laboratory.
	Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information.	 AC and RC drilling was used to obtain 1m samples from which approximately 2.0-3.0kg sample was pulverised to produce a 50g Aqua Regia digest with Flame AAS gold finish (0.01ppm detection limit) fo composite samples and a 50g fire assay with ICP-MS (inductively coupled plasma - mass spectrometry finish gold analysis (0.01ppm detection limit) for 1m samples by Aurum Laboratories in Beckenham Western Australia. Samples assayed for Au, As, Cu, Pb, Zn and Ag for this program. Drilling intersected oxide, transitional and primary mineralisation to a maximum drill depth of 132m.
Drilling techniques	Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is oriented and if so, by what method, etc).	• RC drilling with a 4' ¹ / ₂ inch face sampling hammer bit. AC drilling used a 3' ¹ / ₂ inch blade bit.
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples.	 RC and AC recovery and meterage was assessed by comparing drill chip volumes or (sample bags fo RC) for individual meters. Estimates of sample recoveries were recorded. Routine checks for correct sample depths are undertaken every rod. RC sample recoveries were visually checked for recovery, moisture and contamination. The cyclone was routinely cleaned ensuring no material build up.
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	 Due to the generally good/standard drilling conditions and powerful drilling rig the geologist believes the RC and AC samples are representative, some bias would occur in the advent of poor sample recovery which was logged when encountered. At depth there were some wet samples and these are recorded on geological logs.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate	 RC and AC drill chip logging is routinely completed on one metre intervals at the rig by the geologist The log was made to standard logging descriptive sheets, and transferred into Micromine software or

Criteria	JORC Code explanation	С	ommentary
	Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or	•	a computer once back at the Perth office. Logging was qualitative in nature. All intervals logged for AC and RC drilling completed during drill program with a representative sample placed into chip trays.
	costean, channel, etc) photography. The total length and percentage of the relevant intersections logged.		
Sub-sampling techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled.	•	AC and RC samples taken. AC and RC samples were collected from the drill rig by spearing each 1m collection bag (RC) or from the ground (AC) and compiling a 4m composite sample. Single splits were automatically taken by the rig cone splitter for RC. Wet or dry samples were noted in the logs. For Yandal Resources Ltd samples, duplicate 1m samples were taken in the field, with standards and blanks inserted with the 1m and 4m samples for analyses. 1m samples were consistent and weighed approximately 2.0-3.0kg for RC (2.0-3.0kg for AC) and it is common practice to review 1m results and then review sampling procedures to suit. Once samples arrived in Perth, further work including duplicates and QC was undertaken at the laboratory. Yandal Resources Ltd has determined that at the Gordons Dam prospect there is sufficient data for a MRE however the deposit is open in many directions and will grow. Mineralisation mostly occurs within intensely oxidised saprolitic and palaeochannel clays after altered mafic, porphyry and felsic rocks (typical greenstone geology). The sample size is standard practice in the WA Goldfields to ensure representivity.
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.	•	The composite 4m samples were assayed using a 50g Aqua Regia digest with Flame AAS gold finish (0.01ppm detection limit) finish Au, Ag, As, Cu, Pb and Zn analysis (0.01ppm detection limit) by Aurum Laboratories in Beckenham, Western Australia for gold only. Initial 4m samples were assayed by Aqua Regia with fire assay checks (0.01ppm detection limit). No geophysical assay tools were used. Laboratory QA/QC involves the use of internal lab standards using certified reference material, blanks, splits and replicates as part of the in-house procedures. QC results (blanks, duplicates, standards) were in line with commercial procedures, reproducibility and accuracy. These comparisons were deemed satisfactory. Some re-splitting with an onsite three-tier riffle splitter has been undertaken in the palaeochannel area for analyses. A number of samples have been selected for future metallurgical testing. A number of 1m residues from RC assays are planned to be analysed at other laboratories for comparison.
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data.	•	Work was supervised by senior Aurum Laboratory staff experienced in metals assaying. QC data reports confirming the sample quality have been supplied. Data storage as PDF/XL files on company PC in the Perth office. No data was adjusted. Significant intercepts reported in Tables 1-3 by Mr Trevor Saul of Yandal Resources and were generated by compositing to the indicated downhole thickness. Lower cut-offs were used for reporting as shown and intersections are generally calculated with a maximum of 2m of internal dilution.

Criteria	JORC Code explanation	Commentary
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control.	 All drill collar locations were initially pegged and surveyed using a hand held Garmin GPS, accurate within 3-5m. Holes were drilled at various spacings dependent on prospect assessment. All reporte coordinates are referenced to the GDA. The topography is very flat at the location of the Gordons Da prospect. Down hole surveys utilised a proshot camera at the end of hole plus every 30m while pullin out of the hole. Grid MGA94 Zone 51. Topography is very flat, small differences in elevation between drill holes will have little effect of mineralisation widths on initial interpretation. All new holes and some available historic holes have been surveyed by DGPS as well as a surveyed topographical surface for compilation of MRE's. The topographic surface has been generated by using the hole collar surveys. It is considered to be sufficient quality to be valid for this stage of exploration.
Data spacing and distribution	Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied.	 Holes were variably spaced in accordance with the collar details/coordinates supplied in Tables 1-3. The hole spacing was determined by the Company to be sufficient when combined with confirme historic drilling results to explore effectively. The sample spacing and the appropriateness of each hor to be included to make up data points for a Mineral Resource has not been determined. It will deper on results from all the drilling and geological interpretations when complete.
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	 No, drilling angle or vertical holes is deemed to be appropriate to intersect the supergene mineralisation and potential residual dipping structures and is appropriate for the current stage of the prospects. depth angle holes have been used to intersect the interpreted dipping lodes. True widths are ofted calculated depending upon the geometry. The relationship between the drilling orientation and the orientation of mineralised structures is n considered to have introduced a sampling bias. Given the style of mineralisation and d spacing/method, it is the most common routine for delineating shallow gold resources in Australia. Angle holes are the most appropriate for exploration style and Resource style drilling for the type ar location of mineralisation intersected.
Sample security Audits or	The measures taken to ensure sample security.	 Samples were collected on site under supervision of the responsible geologist. The work site is on pastoral station. Once collected samples were wrapped and transported to Perth for analysis. Dispate and consignment notes were delivered and checked for discrepancies. Sample security for historical samples was highly variable and dependent on the exploration compare however most of the companies working in the area are considered leaders in improving the sample security, QAQC procedures and exploration procedures.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	No Audits have been commissioned.

Section 2 Reporting of Exploration Results

Criteria	JORC Code explanation	Commentarys
Mineral tenement and	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title	 The drilling was conducted on E24/198, E27/583, E27/536, P27/2206, M27/237, P27/2214, P27/1911, M27/502, P27/2339, P27/2334, P27/2361 and E27/601. The tenement are 100% owned by the Company and there are no 3rd party royalties. The tenements are in good standing and no known

Criteria	JORC Code explanation	Co	ommentarys
land tenure status	interests, historical sites, wilderness or national park and environmental settings.		impediments exist.
	The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.		
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	•	Previous workers in the area include among others, North Ltd, Delta Gold Ltd, Aurion Gold Ltd, Placer Dome Asia Pacific, Barminco Investments, Mt Kersey Mining NL, Gutnick Resources NL, Pacific Arc Exploration, Geopeko, Flinders Resources Ltd, Kesli Chemicals Pty Ltd and Windsor Resources NL.
Geology	Deposit type, geological setting and style of mineralisation.	•	Archaean Orogenic Gold mineralisation hosted within the Boorara domain of the Kalgoorlie Terrane within the Norseman-Wiluna Archaean greenstone belt. The granite-greenstone belt is approximately 600 km long and is characterised by very thick, possibly rift controlled accumulations of ultramafic, mafic and felsic volcanics, intrusive and sedimentary rocks. It is one of the granite / greenstone terrains of the Yilgarn Craton of WA.
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:	•	See Tables 1-3. All holes reported from the current program are listed in Table 1 or can be viewed in Yandal's other ASX releases during 2018-2021.
	 easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. 	•	Other hole collars in the immediate area of the Gordons Dam prospect have been included diagrammatic purposes and Mr Saul considers listing all of the drilling details is prohibitive and w not improve transparency or materiality of the report. Plan view diagrams are shown in the report of drilling collars in close proximity to the new drilling for exploration context in Figures 1-3. No information is excluded.
	If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.		
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated.	•	No weighting or averaging calculations were made, assays reported and compiled are as tabulated in Tables 1-3. All assay intervals reported in Tables 1-3 are typically 4m downhole intervals above 0.03g/t Au lower cut-off for AC and RC drilling or as shown. There is occasionally smaller samples for AC drilling such
	Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	•	as 1m or 2m when the hole was completed to depth that was not a multiple of 4. No metal equivalent calculations were applied.
	The assumptions used for any reporting of metal equivalent values should be clearly stated.		
Relationship between mineralisatio n widths and	These relationships are particularly important in the reporting of Exploration Results.	•	Oxide and Transitional mineralisation is generally flat lying (blanket like) while mineralisation at depth is generally steeper dipping. Further orientation studies are required.

Criteria	JORC Code explanation	Commentarys
intercept lengths	If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known').	 Drill intercepts and true width appear to be close to each other, or within reason allowing for the minimum intercept width of 1m. Yandal Resources Ltd estimates that the true width is variable but probably around 90-100% of the intercepted widths. Given the nature of AC and RC drilling, the minimum width and assay is 1m. Given the highly variable geology and mineralisation including supergene mineralisation and structurally hosted gold mineralisation there is no project wide relationship between the widths and intercept lengths.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	 See Figures 1-3 and Tables 1-3.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	 Summary results for all holes are shown in Tables 1-3 for the current drilling. Diagrammatic results are shown in Figures 1-3.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	 There have been no historical Mineral Resource Estimates. There has been no historic mining at the Gordons Dam, Gordons Dam SE and Malone prospects. There has been some limited small scale historic mining at the Star of Gordons prospect.
Further work	The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	 Additional exploration including AC, RC and DD drilling and or geophysical surveys to advance known prospects is warranted. Additional exploration drilling is likely if new programs are approved by the Company.