

#### **NEWS RELEASE**

8 June 2021

### POSITIVE RESULTS CONTINUE AT TUMAS 3 DFS RESOURCE DRILLING

#### HIGHLIGHTS

- 359 holes for 7,634m completed at Tumas 3 Central
  - Drilling aimed at converting remaining Inferred Resources to Indicated JORC status and defining the periphery of the Tumas 3 deposit to expand the DFS LOM to 20+ years
  - o 804 holes for 14,621m drilled since February 2021
- 48% of holes drilled intersected mineralisation greater than 100ppm eU<sub>3</sub>O<sub>8</sub> over 1m. Best intersections (200ppm eU<sub>3</sub>O<sub>8</sub> cut-off grade) include:
  - o T3I930: 10m@1,945ppm eU<sub>3</sub>O<sub>8</sub> from 28m
  - o T3I963: 8m@2,242ppm eU<sub>3</sub>O<sub>8</sub> from 10m
  - o T3I973: 9m@1,897ppm eU<sub>3</sub>O<sub>8</sub> from 7m
  - T3I771: 5m@1,222ppm eU₃O<sub>8</sub> from 16m
  - o T3I1151: 8m@754ppm eU₃O<sub>8</sub> from 16m
- Resource upgrade drilling now commenced at Tumas 3 West
- Updated Mineral Resource Estimate for Tumas 3 deposit expected late June

Deep Yellow Limited (ASX: DYL) (**Deep Yellow**) is pleased to announce completion of the RC resource upgrade infill drilling program at the Tumas 3 Central deposit, located on EPL3496 (Figure 1). The Project is held by Deep Yellow through its wholly owned subsidiary Reptile Uranium Namibia (Pty) Ltd (**RUN**).

The mineralisation at Tumas 3 (comprising Tumas 3 Central, Tumas 3 West and Tumas 3 East) occurs as a discrete mineral deposit, occurring separately from the other deposits so far discovered within highly uranium fertile Tumas palaeochannel system, namely, Tumas 1 (which also includes Tumas 1 East) and Tumas 2 in addition to Tubas Red Sand/Calcrete deposits (see Figure 1).

Infill drilling moved to Tumas 3 Central on 28 April 2021 (announced on 5 May) following completion of drilling at Tumas 3 East, with 359 holes drilled for 7,634m by 27 May. Work is now progressing at Tumas 3 West. Since the beginning of the program in February 2021, 804 holes for 14,621m have been drilled. Three drill rigs are engaged for the work.

The infill drilling program is focused on achieving a drill hole spacing sufficient to enable a resource conversion from Inferred to Indicated JORC resource status.

Importantly, drilling completed at Tumas 3 Central is indicating that expectations for the conversion rate to Indicated Resource category are being met, with 48% of the 359 holes completed returning uranium mineralisation greater than 100ppm  $eU_3O_8$  over 1m, and 25% showing uranium mineralisation greater than 200ppm  $eU_3O_8$  over 1m.

The equivalent uranium values are based on down-hole radiometric gamma logging carried out by a fully calibrated Aus-Log gamma logging system.

The positive results from the infill drilling are reflected in Figure 2, which outlines GT (grade x thickness) in colour code, comparing previous drilling results against most recent results. It is pleasing to note that the GT intervals of the latest drill holes confirm grade continuity across the Tumas 3 deposit, with the possibility of locally extending the known resource base, especially along the southern tributary channel of Tumas 3 as shown in Figure 5. Figures 3, 4 and 5 show the results in cross-section.

Table 1 in Appendix 1 lists all intersections greater than 100ppm  $eU_3O_8$  over 1m. Table 2 in Appendix 1 shows intersections greater than 200ppm  $eU_3O_8$  cut off, with grades ranging from 203ppm to 2,242ppm  $eU_3O_8$  at an average thickness of 3.3m. Table 3 in Appendix 1 shows all drill hole details.

The infill drilling program currently continues at Tumas 3 West, with the primary objective of the overall program including Tumas 3 East, Central, West and Tumas 1 East expanding the Life of Mine (LOM) from 11.5 years (as defined in the recently completed PFS) to 20+ years for utilisation in the DFS currently underway.

Once the resource upgrade drilling is completed in this area a new Mineral Resource Estimate will be undertaken for the Tumas 3 West, Central and East Deposits (see Figure 3), expected to be released late June.

The resource upgrade drilling program will then move to the last phase to complete resource conversion drilling at Tumas 1 East (see Figure 1). This will follow with the completion of a new overall Mineral Resource Estimate for incorporation into the Tumas DFS to enable a 20+year LOM consideration. The DFS ore reserve base will derive from testing of only 60% of the known regional Tumas palaeochannel system.

Significant exploration upside potential exists associated with this highly prospective target to further increase the resource base beyond that associated with current DFS footprint with 50km of channel systems remaining to be tested. This will be the focus of the investigations in the latter part of CY 2021.

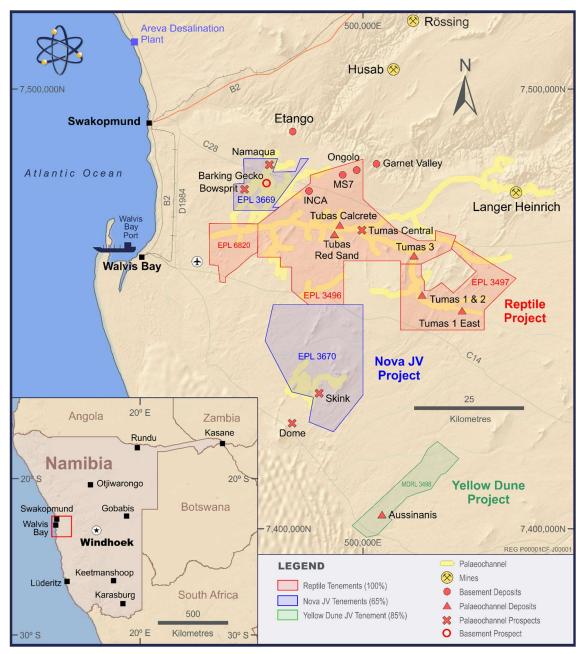



Figure 1: EPLs 3496, 3497 showing Tumas deposits and main prospect locations over palaeochannels.

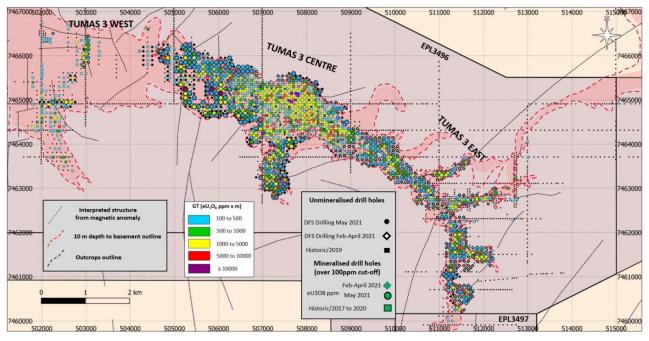



Figure 2: GT map showing existing drill collars and 2021 infill holes.



Figure 3: Tumas 3 Central, drill cross-Section 7,465,950 N.

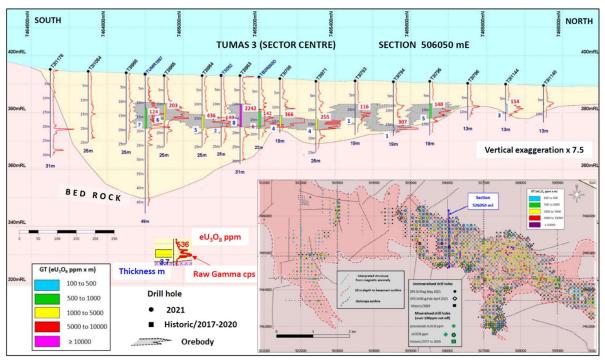



Figure 4: Tumas 3 Central, drill cross-section 506,050 E.

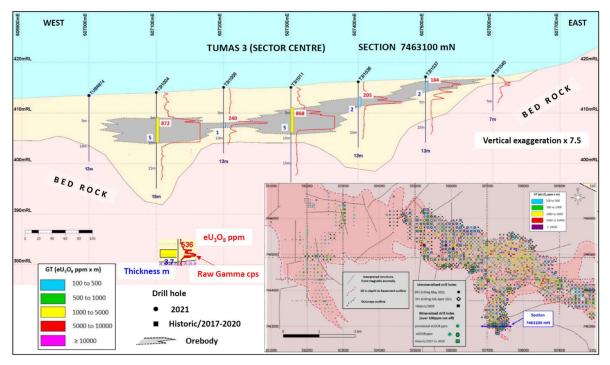



Figure 5: Tumas 3 Central, drill cross-section 7,463,100 N.

Yours faithfully

JOHN BORSHOFF Managing Director/CEO Deep Yellow Limited

This ASX announcement was authorised for release by Mr John Borshoff, Managing Director/CEO, for and on behalf of the Board of Deep Yellow Limited.

#### For further information contact:

John Borshoff Managing Director/CEO T: +61 8 9286 6999 E: john.borshoff@deepyellow.com.au

#### About Deep Yellow Limited

Deep Yellow Limited is a differentiated, advanced uranium exploration company in predevelopment phase, implementing a contrarian strategy to grow shareholder wealth. This strategy is founded upon growing the existing uranium resources across the Company's uranium projects in Namibia (a Definitive Feasibility Study is in progress on the Tumas Project) and the pursuit of accretive, counter-cyclical acquisitions to build a global, geographically diverse asset portfolio. The Company's cornerstone suite of projects in Namibia is situated within a top-ranked African mining destination in a jurisdiction that has a long, well-regarded history of safely and effectively developing and regulating its considerable uranium mining industry.

ABN 97 006 391 948

Unit 17, Spectrum Building 100–104 Railway Road Subiaco, Western Australia 6008

PO Box 1770 Subiaco, Western Australia 6904



#### Competent Person's Statement

The information in this announcement as it relates to exploration results was compiled by Dr Katrin Kärner, a Competent Person who is a Member of the Australasian Institute of Mining and Metallurgy (AusIMM). Dr Kärner, who is currently the Exploration Manager for Reptile Mineral Resources and Exploration (Pty) Ltd (RMR), the manager of the tenements, has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which she is undertaking, to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Dr Kärner consents to the inclusion in this announcement of the matters based on the information in the form and context in which it appears. Dr Kärner holds shares in the Company.

| Hole ID | Depth From (m) | Depth To (m) | Interval Width (m) | eU₃O <sub>8</sub> (ppm) |
|---------|----------------|--------------|--------------------|-------------------------|
| T3I1000 | 6              | 9            | 3                  | 294                     |
| T3I1001 | 5              | 7            | 2                  | 125                     |
| T3I1003 | 3              | 8            | 5                  | 286                     |
| T3I1004 | 5              | 10           | 5                  | 872                     |
| T3I1005 | 5              | 8            | 3                  | 144                     |
| T3I1006 | 5              | 10           | 5                  | 272                     |
| T3I1007 | 5              | 9            | 4                  | 192                     |
| T3I1008 | 7              | 8            | 1                  | 240                     |
| T3I1009 | 4              | 8            | 4                  | 113                     |
| T3I1010 | 4              | 8            | 4                  | 171                     |
| T3I1011 | 4              | 9            | 5                  | 868                     |
| T3I1012 | 5              | 6            | 1                  | 218                     |
| T3I1015 | 1              | 5            | 4                  | 278                     |
| T3I1016 | 1              | 4            | 3                  | 234                     |
| T3I1017 | 0              | 2            | 2                  | 170                     |
| 1311017 | 6              | 7            | 1                  | 219                     |
| T3I1018 | 3              | 8            | 5                  | 158                     |
| T3I1022 | 2              | 7            | 5                  | 157                     |
| T3I1023 | 5              | 6            | 1                  | 323                     |
| T3I1025 | 4              | 5            | 1                  | 160                     |
| T3I1026 | 1              | 3            | 2                  | 333                     |
| T3I1028 | 1              | 3            | 2                  | 117                     |
| T3I1029 | 0              | 2            | 2                  | 191                     |
| T3I1030 | 0              | 4            | 4                  | 328                     |
| T3I1032 | 1              | 2            | 1                  | 219                     |
| T3I1033 | 3              | 5            | 2                  | 157                     |
| T3I1034 | 8              | 9            | 1                  | 116                     |
| T3I1036 | 3              | 5            | 2                  | 205                     |
| T3I1037 | 1              | 3            | 2                  | 164                     |
| T3I1039 | 1              | 4            | 3                  | 127                     |
| T3I1042 | 1              | 6            | 5                  | 329                     |
| T3I1043 | 2              | 4            | 2                  | 331                     |
| T3I1046 | 7              | 11           | 4                  | 343                     |
| T3I1047 | 6              | 8            | 2                  | 127                     |
| T3I1048 | 5              | 6            | 1                  | 251                     |
| T3I1051 | 29             | 30           | 1                  | 102                     |
| T3I1057 | 11             | 17           | 6                  | 94                      |
| T3I1058 | 13             | 17           | 4                  | 260                     |
| T3I1060 | 12             | 13           | 1                  | 108                     |
| T3I1061 | 13             | 17           | 4                  | 309                     |
| T3I1065 | 17             | 20           | 3                  | 184                     |
| T3I1066 | 17             | 20           | 3                  | 107                     |

# **Table 1:** Drill hole intersections 29 April 2021 to 27 May applying a cut-off of 100ppm $eU_3O_8$ and a<br/>minimum thickness of 1m.

| Hole ID | Depth From (m) | Depth To (m) | Interval Width (m) | eU₃O <sub>8</sub> (ppm) |
|---------|----------------|--------------|--------------------|-------------------------|
| T2110C7 | 12             | 13           | 1                  | 151                     |
| T3I1067 | 16             | 20           | 4                  | 246                     |
| T3I1070 | 15             | 16           | 1                  | 129                     |
| T3I1071 | 15             | 19           | 4                  | 94                      |
| T3I1072 | 24             | 25           | 1                  | 231                     |
| T3I1074 | 15             | 18           | 3                  | 126                     |
| T3I1083 | 16             | 17           | 1                  | 104                     |
| T3I1090 | 23             | 24           | 1                  | 137                     |
| T3I1091 | 18             | 25           | 7                  | 378                     |
| T3I1093 | 15             | 16           | 1                  | 169                     |
| T3I1096 | 19             | 20           | 1                  | 235                     |
| T3I1104 | 5              | 6            | 1                  | 118                     |
| T3I1105 | 9              | 11           | 2                  | 156                     |
|         | 4              | 5            | 1                  | 138                     |
| T3I1108 | 8              | 9            | 1                  | 100                     |
| T3I1111 | 16             | 18           | 2                  | 167                     |
| T3I1113 | 20             | 24           | 4                  | 1019                    |
|         | 13             | 14           | 1                  | 118                     |
| T3I1114 | 23             | 24           | 1                  | 193                     |
| T3I1115 | 22             | 23           | 1                  | 764                     |
| T3I1117 | 22             | 23           | 1                  | 103                     |
| T3I1118 | 22             | 24           | 2                  | 961                     |
| T3I1125 | 21             | 24           | 3                  | 1341                    |
| T3I1128 | 6              | 8            | 2                  | 163                     |
| T3I1129 | 6              | 8            | 2                  | 115                     |
| T3I1125 | 7              | 8            | 1                  | 140                     |
| T3I1130 | 7              | 9            | 2                  | 162                     |
| T3I1131 | 7              | 8            | 1                  | 159                     |
| T3I1132 | 6              | 7            | 1                  | 140                     |
| T3I1134 | 6              | 7            | 1                  | 110                     |
| T3I1130 | 7              | 8            | 1                  | 102                     |
| T3I1138 | 7              | 8            | 1                  | 102                     |
| T3I1133 | 7              | 9            | 2                  | 168                     |
| T3I1143 | 7              | 10           | 3                  | 154                     |
| T3I1144 | 5              | 6            | 1                  | 154                     |
| T3I1140 | 16             | 24           | 8                  | 754                     |
| T3I1151 | 8              | 9            | 1                  | 149                     |
| T3I1153 | 27             | 28           |                    | 149                     |
| T3I1160 | +              |              | 1                  | 839                     |
|         | 28<br>20       | 30<br>27     | 2 7                | 122                     |
| T3I1166 |                |              | 2                  |                         |
| T3I1168 | 25             | 27           |                    | 352                     |
| T3I1171 | 23             | 24           | 1                  | 106                     |
| T3I1172 | 18             | 22           | 4                  | 1080                    |
| T3I1173 | 19             | 21           | 2                  | 298                     |
| T3I1174 | 20             | 21           | 1                  | 150                     |
| T3I1176 | 21             | 22           | 1                  | 133                     |

| Hole ID | Depth From (m) | Depth To (m) | Interval Width (m) | eU₃O <sub>8</sub> (ppm) |
|---------|----------------|--------------|--------------------|-------------------------|
| T211170 | 19             | 20           | 1                  | 124                     |
| T3I1179 | 23             | 25           | 2                  | 161                     |
| T3I1182 | 14             | 15           | 1                  | 131                     |
| T3I1185 | 6              | 8            | 2                  | 121                     |
| T3I1186 | 6              | 7            | 1                  | 123                     |
| T3I1188 | 12             | 13           | 1                  | 121                     |
| T3I1191 | 18             | 19           | 1                  | 158                     |
| T3I1201 | 6              | 7            | 1                  | 102                     |
| T3I1206 | 15             | 16           | 1                  | 154                     |
| T3I1210 | 25             | 26           | 1                  | 114                     |
| T3I350  | 20             | 25           | 5                  | 533                     |
| T3I767  | 15             | 18           | 3                  | 200                     |
| T3I768  | 9              | 13           | 4                  | 178                     |
|         | 10             | 11           | 1                  | 120                     |
| T31769  | 15             | 19           | 4                  | 247                     |
|         | 22             | 23           | 1                  | 104                     |
| T3I770  | 15             | 16           | 1                  | 102                     |
| T3I771  | 12             | 21           | 9                  | 734                     |
| T3I774  | 15             | 16           | 1                  | 262                     |
| T3I775  | 12             | 21           | 9                  | 278                     |
| T3I776  | 12             | 20           | 8                  | 135                     |
| T3I777  | 16             | 17           | 1                  | 174                     |
| T3I778  | 18             | 22           | 4                  | 228                     |
| T3I779  | 16             | 20           | 4                  | 354                     |
| T3I809  | 8              | 11           | 3                  | 127                     |
| T3I810  | 7              | 9            | 2                  | 107                     |
| T3I812  | 8              | 11           | 3                  | 118                     |
| T3I813  | 7              | 9            | 2                  | 117                     |
| T3I814  | 17             | 22           | 5                  | 626                     |
| T3I815  | 8              | 9            | 1                  | 124                     |
| T3I816  | 8              | 10           | 2                  | 109                     |
| T3I817  | 16             | 23           | 7                  | 302                     |
| T3I818  | 8              | 18           | 10                 | 148                     |
| T3I895  | 6              | 7            | 1                  | 127                     |
| T3I897  | 10             | 17           | 7                  | 140                     |
| T3I898  | 12             | 15           | 3                  | 213                     |
| T3I899  | 10             | 13           | 3                  | 135                     |
| T3I900  | 10             | 11           | 1                  | 245                     |
| T3I901  | 24             | 25           | 1                  | 290                     |
| T3I902  | 12             | 13           | 1                  | 231                     |
| T3I904  | 11             | 12           | 1                  | 125                     |
| T3I906  | 7              | 8            | 1                  | 112                     |
| T3I908  | 16             | 17           | 1                  | 122                     |
|         | 7              | 8            | 1                  | 105                     |
| T3I910  | 13             | 16           | 3                  | 144                     |
| T3I911  | 7              | 11           | 4                  | 258                     |

| Hole ID | Depth From (m) | Depth To (m) | Interval Width (m) | eU₃O <sub>8</sub> (ppm) |
|---------|----------------|--------------|--------------------|-------------------------|
| T3I912  | 6              | 10           | 4                  | 163                     |
| T3I913  | 5              | 8            | 3                  | 135                     |
| T3I914  | 6              | 7            | 1                  | 121                     |
| T3I915  | 7              | 11           | 4                  | 125                     |
| T3I916  | 7              | 8            | 1                  | 139                     |
| T3I917  | 14             | 19           | 5                  | 178                     |
| T3I921  | 25             | 26           | 1                  | 441                     |
| T21022  | 20             | 21           | 1                  | 137                     |
| T3I923  | 29             | 30           | 1                  | 275                     |
| TOLOGE  | 19             | 25           | 6                  | 606                     |
| T3I925  | 29             | 30           | 1                  | 294                     |
| T3I927  | 19             | 23           | 4                  | 199                     |
| T3I928  | 18             | 26           | 8                  | 217                     |
| T3I929  | 18             | 27           | 9                  | 449                     |
| T3I930  | 15             | 29           | 14                 | 1427                    |
| T3I935  | 18             | 19           | 1                  | 119                     |
| T3I936  | 8              | 20           | 12                 | 154                     |
| T21020  | 6              | 10           | 4                  | 98                      |
| T3I938  | 17             | 22           | 5                  | 143                     |
| T3I940  | 18             | 19           | 1                  | 142                     |
| T3I941  | 9              | 27           | 18                 | 276                     |
| T3I942  | 10             | 15           | 5                  | 169                     |
| T3I945  | 18             | 28           | 10                 | 498                     |
| T3I950  | 20             | 21           | 1                  | 118                     |
| T3I957  | 9              | 10           | 1                  | 106                     |
| TOLOGA  | 13             | 14           | 1                  | 173                     |
| T3I961  | 17             | 19           | 2                  | 888                     |
| T3I962  | 14             | 15           | 1                  | 114                     |
| T3I963  | 10             | 18           | 8                  | 2242                    |
| T3I964  | 14             | 19           | 5                  | 436                     |
| T3I965  | 10             | 16           | 6                  | 203                     |
| T3I968  | 12             | 15           | 3                  | 106                     |
| T3I969  | 13             | 15           | 2                  | 228                     |
| T3I970  | 16             | 17           | 1                  | 358                     |
| T3I971  | 13             | 17           | 4                  | 255                     |
| T3I972  | 12             | 13           | 1                  | 106                     |
| T21072  | 2              | 3            | 1                  | 112                     |
| T3I973  | 6              | 16           | 10                 | 1720                    |
| T3I974  | 14             | 15           | 1                  | 180                     |
| T21070  | 14             | 15           | 1                  | 104                     |
| T3I976  | 18             | 22           | 4                  | 102                     |
| T3I978  | 22             | 24           | 2                  | 195                     |
| T3I979  | 13             | 15           | 2                  | 221                     |
| T3I980  | 14             | 15           | 1                  | 133                     |
| T3I981  | 11             | 13           | 2                  | 149                     |
| T3I984  | 19             | 20           | 1                  | 183                     |

| Hole ID | Depth From (m) | Depth To (m) | Interval Width (m) | eU₃O <sub>8</sub> (ppm) |
|---------|----------------|--------------|--------------------|-------------------------|
| T3I987  | 8              | 9            | 1                  | 160                     |
| T3I988  | 7              | 8            | 1                  | 112                     |
| T3I992  | 6              | 9            | 3                  | 131                     |
| T3I997  | 6              | 8            | 2                  | 172                     |

| <b>Table 2:</b> Drill hole intersections 29 April to 27 May 2021 applying a cut-off of 200ppm $eU_3O_8$ and a |
|---------------------------------------------------------------------------------------------------------------|
| minimum thickness of 1m.                                                                                      |

| Hole ID | Depth From (m) | Depth To (m) | Interval Width (m) | eU₃O <sub>8</sub> (ppm |
|---------|----------------|--------------|--------------------|------------------------|
| T3I1000 | 5              | 10           | 5                  | 203                    |
| T3I1003 | 3              | 8            | 5                  | 286                    |
| T3I1004 | 3              | 10           | 7                  | 640                    |
| T3I1006 | 4              | 10           | 6                  | 243                    |
| T211007 | 5              | 6            | 1                  | 225                    |
| T3I1007 | 7              | 8            | 1                  | 224                    |
| T3I1008 | 7              | 8            | 1                  | 240                    |
| T3I1009 | 7              | 8            | 1                  | 258                    |
| T3I1010 | 6              | 7            | 1                  | 229                    |
| T3I1011 | 4              | 9            | 5                  | 868                    |
| T3I1012 | 5              | 6            | 1                  | 218                    |
| T3I1015 | 1              | 6            | 5                  | 232                    |
| T3I1016 | 1              | 4            | 3                  | 234                    |
| T3I1017 | 0              | 1            | 1                  | 236                    |
| 1311017 | 6              | 7            | 1                  | 219                    |
| T3I1018 | 6              | 7            | 1                  | 234                    |
| T3I1022 | 5              | 7            | 2                  | 212                    |
| T3I1023 | 5              | 6            | 1                  | 322                    |
| T3I1026 | 1              | 4            | 3                  | 231                    |
| T3I1029 | 0              | 1            | 1                  | 250                    |
| T3I1030 | 0              | 5            | 5                  | 272                    |
| T3I1032 | 1              | 2            | 1                  | 219                    |
| T3I1036 | 3              | 5            | 2                  | 205                    |
| T3I1037 | 1              | 2            | 1                  | 218                    |
| T3I1042 | 0              | 6            | 6                  | 284                    |
| T3I1043 | 2              | 5            | 3                  | 233                    |
| T3I1046 | 7              | 11           | 4                  | 343                    |
| T3I1048 | 5              | 6            | 1                  | 251                    |
| T3I1058 | 12             | 17           | 5                  | 218                    |
| T3I1061 | 12             | 17           | 5                  | 260                    |
| T3I1065 | 17             | 18           | 1                  | 275                    |
| T3I1067 | 17             | 20           | 3                  | 283                    |
| T3I1072 | 24             | 25           | 1                  | 231                    |
| T3I1091 | 18             | 25           | 7                  | 378                    |
| T3I1096 | 19             | 20           | 1                  | 235                    |
| T3I1111 | 17             | 18           | 1                  | 201                    |
| T3I1113 | 20             | 24           | 4                  | 1019                   |

| Hole ID | Depth From (m) | Depth To (m) | Interval Width (m) | eU₃O <sub>8</sub> (ppm |
|---------|----------------|--------------|--------------------|------------------------|
| T3I1115 | 21             | 24           | 3                  | 269                    |
| T3I1118 | 21             | 25           | 4                  | 479                    |
| T3I1125 | 20             | 24           | 4                  | 1023                   |
| T3I1143 | 7              | 8            | 1                  | 224                    |
| T3I1151 | 16             | 24           | 8                  | 754                    |
| T3I1164 | 26             | 30           | 4                  | 430                    |
| T3I1166 | 25             | 27           | 2                  | 228                    |
| T3I1168 | 24             | 27           | 3                  | 257                    |
| T3I1172 | 17             | 22           | 5                  | 876                    |
| T3I1173 | 18             | 21           | 3                  | 228                    |
| T3I1179 | 23             | 24           | 1                  | 212                    |
| T3I350  | 21             | 25           | 4                  | 635                    |
| T3I767  | 15             | 17           | 2                  | 237                    |
| T3I768  | 9              | 11           | 2                  | 262                    |
| T31769  | 15             | 19           | 4                  | 247                    |
| T3I771  | 16             | 21           | 5                  | 1222                   |
| T3I774  | 15             | 16           | 1                  | 262                    |
|         | 12             | 17           | 5                  | 253                    |
| T3I775  | 17             | 22           | 5                  | 264                    |
| T3I776  | 14             | 15           | 1                  | 212                    |
| T3I778  | 18             | 22           | 4                  | 228                    |
| T3I779  | 15             | 20           | 5                  | 299                    |
| T3I814  | 16             | 22           | 6                  | 528                    |
|         | 16             | 19           | 3                  | 220                    |
| T3I817  | 19             | 24           | 5                  | 302                    |
| T3I818  | 15             | 18           | 3                  | 243                    |
| T3I897  | 15             | 16           | 1                  | 207                    |
| T3I898  | 12             | 15           | 3                  | 213                    |
| T3I900  | 10             | 11           | 1                  | 245                    |
| T3I901  | 24             | 25           | 1                  | 290                    |
| T3I902  | 12             | 13           | 1                  | 231                    |
| T3I911  | 6              | 11           | 5                  | 223                    |
| T3I917  | 14             | 17           | 3                  | 207                    |
| T3I921  | 25             | 27           | 2                  | 259                    |
| T3I923  | 29             | 30           | 1                  | 275                    |
| T21025  | 18             | 25           | 7                  | 532                    |
| T3I925  | 29             | 30           | 1                  | 294                    |
| T3I927  | 20             | 23           | 3                  | 206                    |
| T3I928  | 18             | 24           | 6                  | 239                    |
|         | 19             | 20           | 1                  | 259                    |
| T3I929  | 20             | 27           | 7                  | 522                    |
| T3I930  | 18             | 28           | 10                 | 1945                   |
|         | 14             | 15           | 1                  | 212                    |
| T3I936  | 17             | 19           | 2                  | 218                    |
| T3I938  | 18             | 20           | 2                  | 208                    |
| T3I941  | 16             | 18           | 2                  | 214                    |

| Hole ID | Depth From (m) | Depth To (m) | Interval Width (m) | eU₃O <sub>8</sub> (ppm |
|---------|----------------|--------------|--------------------|------------------------|
|         | 19             | 27           | 8                  | 463                    |
| T3I942  | 12             | 15           | 3                  | 206                    |
| T3I945  | 19             | 28           | 9                  | 540                    |
| T3I961  | 15             | 19           | 4                  | 458                    |
| T3I963  | 10             | 18           | 8                  | 2242                   |
| T3I964  | 14             | 19           | 5                  | 436                    |
| T3I965  | 10             | 15           | 5                  | 216                    |
| T3I969  | 13             | 15           | 2                  | 228                    |
| T3I970  | 16             | 17           | 1                  | 358                    |
| T3I971  | 13             | 17           | 4                  | 255                    |
| T3I973  | 7              | 16           | 9                  | 1897                   |
| T3I978  | 22             | 23           | 1                  | 273                    |
| T3I979  | 13             | 15           | 2                  | 221                    |

Table 3: RC drill hole details 29 April to 27 May 2021.

| Hole ID | Easting | Northing | RL (m) | EOH (m) |
|---------|---------|----------|--------|---------|
| T3I1000 | 507700  | 7465500  | 408    | 13      |
| T3I1001 | 507700  | 7465600  | 408    | 13      |
| T3I1002 | 507600  | 7465600  | 407    | 13      |
| T3I1003 | 507000  | 7463250  | 412    | 13      |
| T3I1004 | 507100  | 7463100  | 414    | 19      |
| T3I1005 | 507050  | 7463050  | 414    | 13      |
| T3I1006 | 507100  | 7463000  | 416    | 13      |
| T3I1007 | 507150  | 7463050  | 415    | 13      |
| T3I1008 | 507200  | 7463100  | 415    | 13      |
| T3I1009 | 507250  | 7463050  | 416    | 13      |
| T3I1010 | 507200  | 7463000  | 416    | 13      |
| T3I1011 | 507300  | 7463100  | 415    | 19      |
| T3I1012 | 507300  | 7463200  | 415    | 13      |
| T3I1013 | 507350  | 7463150  | 416    | 13      |
| T3I1014 | 507350  | 7463050  | 416    | 7       |
| T3I1015 | 507300  | 7463000  | 416    | 13      |
| T3I1016 | 507400  | 7463000  | 417    | 13      |
| T3I1017 | 507350  | 7462950  | 417    | 13      |
| T3I1018 | 507250  | 7462950  | 417    | 19      |
| T3I1019 | 507150  | 7462950  | 417    | 13      |
| T3I1020 | 507050  | 7462950  | 416    | 7       |
| T3I1021 | 507000  | 7463000  | 417    | 13      |
| T3I1022 | 507300  | 7462900  | 418    | 13      |
| T3I1023 | 507400  | 7462900  | 418    | 13      |
| T3I1024 | 507500  | 7462900  | 419    | 7       |
| T3I1025 | 507450  | 7462950  | 418    | 7       |
| T3I1026 | 507500  | 7463000  | 418    | 13      |
| T3I1027 | 507600  | 7463000  | 419    | 13      |
| T3I1028 | 507450  | 7463050  | 417    | 13      |

| Hole ID | Easting | Northing | RL (m) | EOH (m) |
|---------|---------|----------|--------|---------|
| T3I1029 | 507550  | 7463050  | 418    | 13      |
| T3I1030 | 507250  | 7462850  | 418    | 7       |
| T3I1031 | 507350  | 7462850  | 418    | 7       |
| T3I1032 | 507250  | 7462800  | 419    | 7       |
| T3I1033 | 507300  | 7462800  | 419    | 13      |
| T3I1034 | 506950  | 7463250  | 411    | 13      |
| T3I1035 | 506850  | 7463250  | 411    | 7       |
| T3I1036 | 507400  | 7463100  | 416    | 13      |
| T3I1037 | 507500  | 7463100  | 417    | 13      |
| T3I1038 | 507450  | 7463150  | 416    | 13      |
| T3I1039 | 507550  | 7463150  | 417    | 13      |
| T3I1040 | 507600  | 7463100  | 417    | 7       |
| T3I1041 | 507400  | 7463200  | 415    | 13      |
| T3I1042 | 507500  | 7463200  | 416    | 13      |
| T3I1043 | 507350  | 7463250  | 414    | 13      |
| T3I1044 | 507450  | 7463250  | 412    | 7       |
| T3I1045 | 507350  | 7463350  | 413    | 13      |
| T3I1046 | 507450  | 7463350  | 412    | 13      |
| T3I1047 | 507400  | 7463300  | 414    | 13      |
| T3I1048 | 507500  | 7463300  | 415    | 13      |
| T3I1049 | 507550  | 7463250  | 415    | 7       |
| T3I1050 | 507590  | 7463200  | 416    | 7       |
| T3I1051 | 505550  | 7464850  | 393    | 34      |
| T3I1052 | 505550  | 7464750  | 395    | 31      |
| T3I1053 | 505950  | 7464750  | 394    | 25      |
| T3I1054 | 506100  | 7464750  | 394    | 25      |
| T3I1055 | 506150  | 7464750  | 395    | 25      |
| T3I1056 | 506200  | 7464700  | 396    | 25      |
| T3I1057 | 506400  | 7464700  | 397    | 25      |
| T3I1058 | 506600  | 7464700  | 399    | 19      |
| T3I1059 | 506650  | 7464650  | 400    | 31      |
| T3I1060 | 506550  | 7464650  | 399    | 25      |
| T3I1061 | 506450  | 7464650  | 395    | 25      |
| T3I1062 | 506500  | 7464600  | 399    | 19      |
| T3I1063 | 506400  | 7464600  | 397    | 19      |
| T3I1064 | 506350  | 7464650  | 397    | 19      |
| T3I1065 | 506600  | 7464600  | 400    | 25      |
| T3I1066 | 506650  | 7464550  | 400    | 25      |
| T3I1067 | 506550  | 7464550  | 399    | 25      |
| T3I1068 | 506450  | 7464550  | 398    | 16      |
| T3I1069 | 506700  | 7464500  | 401    | 25      |
| T3I1070 | 506600  | 7464500  | 400    | 25      |
| T3I1071 | 506950  | 7464450  | 404    | 31      |
| T3I1072 | 506850  | 7464350  | 403    | 28      |
| T3I1073 | 506750  | 7464350  | 402    | 25      |
| T3I1074 | 506500  | 7464500  | 399    | 19      |

| Hole ID | Easting | Northing | RL (m) | EOH (m) |
|---------|---------|----------|--------|---------|
| T3I1075 | 506650  | 7464150  | 402    | 13      |
| T3I1076 | 506700  | 7464100  | 403    | 13      |
| T3I1077 | 506650  | 7464050  | 403    | 16      |
| T3I1078 | 506700  | 7464000  | 403    | 25      |
| T3I1079 | 506750  | 7463950  | 404    | 19      |
| T3I1080 | 506950  | 7464050  | 404    | 7       |
| T3I1081 | 505050  | 7465850  | 381    | 31      |
| T3I1082 | 505050  | 7465750  | 382    | 37      |
| T3I1083 | 505050  | 7465650  | 382    | 37      |
| T3I1084 | 505050  | 7465450  | 383    | 31      |
| T3I1085 | 505050  | 7465350  | 383    | 31      |
| T3I1086 | 504850  | 7465650  | 381    | 31      |
| T3I1087 | 504850  | 7465550  | 381    | 37      |
| T3I1088 | 504850  | 7465450  | 381    | 37      |
| T3I1089 | 504850  | 7465750  | 380    | 31      |
| T3I1090 | 504850  | 7465850  | 379    | 37      |
| T3I1091 | 504850  | 7465950  | 379    | 31      |
| T3I1092 | 504850  | 7466050  | 379    | 25      |
| T3I1093 | 504850  | 7466150  | 378    | 19      |
| T3I1094 | 504850  | 7466250  | 378    | 19      |
| T3I1095 | 504750  | 7465850  | 379    | 31      |
| T3I1096 | 504750  | 7466050  | 378    | 25      |
| T3I1097 | 504750  | 7466250  | 377    | 25      |
| T3I1098 | 504650  | 7466250  | 376    | 25      |
| T3I1099 | 504650  | 7466150  | 376    | 25      |
| T3I1100 | 504650  | 7466050  | 377    | 25      |
| T3I1101 | 507550  | 7463350  | 414    | 13      |
| T3I1102 | 507400  | 7463400  | 413    | 13      |
| T3I1103 | 507500  | 7463400  | 412    | 7       |
| T3I1104 | 507450  | 7463450  | 412    | 13      |
| T3I1105 | 507400  | 7463500  | 412    | 13      |
| T3I1106 | 507500  | 7463500  | 412    | 7       |
| T3I1107 | 507450  | 7463550  | 412    | 7       |
| T3I1108 | 507500  | 7463600  | 412    | 19      |
| T3I1109 | 507600  | 7463600  | 412    | 7       |
| T3I1110 | 507550  | 7463650  | 412    | 13      |
| T3I1111 | 507550  | 7463750  | 412    | 25      |
| T3I1112 | 507550  | 7463850  | 411    | 25      |
| T3I1113 | 507600  | 7464000  | 412    | 31      |
| T3I1114 | 507550  | 7464050  | 411    | 25      |
| T3I1115 | 507650  | 7464050  | 412    | 31      |
| T3I1116 | 507700  | 7464000  | 413    | 25      |
| T3I1117 | 507750  | 7464050  | 413    | 25      |
| T3I1118 | 507650  | 7463950  | 412    | 31      |
| T3I1119 | 507700  | 7463900  | 413    | 25      |
| T3I1120 | 507850  | 7464050  | 413    | 25      |

| Hole ID | Easting | Northing | RL (m) | EOH (m) |
|---------|---------|----------|--------|---------|
| T3I1121 | 507900  | 7464100  | 414    | 25      |
| T3I1122 | 507750  | 7464150  | 412    | 19      |
| T3I1123 | 507650  | 7464150  | 411    | 31      |
| T3I1124 | 507550  | 7464150  | 410    | 31      |
| T3I1125 | 507600  | 7464100  | 411    | 31      |
| T3I1126 | 507600  | 7463900  | 412    | 31      |
| T3I1127 | 507750  | 7463950  | 413    | 31      |
| T3I1128 | 506750  | 7465650  | 397    | 13      |
| T3I1129 | 506650  | 7465650  | 396    | 13      |
| T3I1130 | 506550  | 7465650  | 395    | 13      |
| T3I1131 | 506450  | 7465650  | 394    | 13      |
| T3I1132 | 506350  | 7465650  | 393    | 13      |
| T3I1133 | 506750  | 7465750  | 397    | 13      |
| T3I1134 | 506650  | 7465750  | 396    | 13      |
| T3I1135 | 506550  | 7465750  | 395    | 13      |
| T3I1136 | 506450  | 7465750  | 394    | 13      |
| T3I1137 | 506350  | 7465750  | 393    | 13      |
| T3I1138 | 506250  | 7465750  | 392    | 13      |
| T3I1139 | 506150  | 7465750  | 391    | 13      |
| T3I1140 | 506300  | 7465800  | 393    | 13      |
| T3I1141 | 506300  | 7465900  | 393    | 7       |
| T3I1142 | 506250  | 7465850  | 392    | 13      |
| T3I1143 | 506150  | 7465850  | 391    | 13      |
| T3I1144 | 506050  | 7465850  | 389    | 13      |
| T3I1145 | 505950  | 7465850  | 389    | 19      |
| T3I1146 | 506250  | 7465950  | 391    | 13      |
| T3I1147 | 506150  | 7465950  | 390    | 7       |
| T3I1148 | 506050  | 7465950  | 390    | 13      |
| T3I1149 | 505850  | 7465950  | 388    | 7       |
| T3I1150 | 505750  | 7465950  | 387    | 13      |
| T3I1151 | 504750  | 7465950  | 378    | 31      |
| T3I1152 | 504750  | 7466150  | 378    | 25      |
| T3I1153 | 505450  | 7465750  | 385    | 19      |
| T3I1154 | 505450  | 7465650  | 385    | 19      |
| T3I1155 | 505450  | 7465550  | 386    | 25      |
| T3I1156 | 505450  | 7465450  | 387    | 31      |
| T3I1157 | 505450  | 7465350  | 387    | 25      |
| T3I1158 | 505450  | 7465250  | 387    | 37      |
| T3I1159 | 505450  | 7465150  | 388    | 25      |
| T3I1160 | 505450  | 7465050  | 388    | 37      |
| T3I1161 | 505700  | 7465100  | 390    | 13      |
| T3I1162 | 505700  | 7465200  | 390    | 13      |
| T3I1163 | 505700  | 7465400  | 395    | 13      |
| T3I1164 | 505700  | 7464700  | 395    | 37      |
| T3I1165 | 505600  | 7464700  | 397    | 37      |
| T3I1166 | 505800  | 7464700  | 395    | 31      |

| Hole ID | Easting | Northing | RL (m) | EOH (m) |
|---------|---------|----------|--------|---------|
| T3I1167 | 505650  | 7464650  | 397    | 31      |
| T3I1168 | 505750  | 7464650  | 397    | 31      |
| T3I1169 | 505700  | 7464600  | 399    | 31      |
| T3I1170 | 505800  | 7464600  | 399    | 31      |
| T3I1171 | 505850  | 7464650  | 397    | 37      |
| T3I1172 | 505900  | 7464700  | 394    | 31      |
| T3I1173 | 506000  | 7464700  | 394    | 31      |
| T3I1174 | 505950  | 7464650  | 396    | 31      |
| T3I1175 | 504300  | 7465800  | 375    | 37      |
| T3I1176 | 506050  | 7464650  | 395    | 31      |
| T3I1177 | 506000  | 7464600  | 395    | 25      |
| T3I1178 | 506100  | 7464700  | 395    | 31      |
| T3I1179 | 506150  | 7464650  | 396    | 31      |
| T3I1180 | 502750  | 7465550  | 358    | 31      |
| T3I1181 | 507150  | 7464050  | 407    | 19      |
| T3I1182 | 507200  | 7464000  | 408    | 19      |
| T3I1183 | 507100  | 7463800  | 407    | 13      |
| T3I1184 | 505150  | 7466150  | 381    | 19      |
| T3I1185 | 505200  | 7466200  | 381    | 16      |
| T3I1186 | 505250  | 7466250  | 381    | 19      |
| T3I1187 | 505450  | 7466250  | 383    | 7       |
| T3I1188 | 504700  | 7466100  | 377    | 31      |
| T3I1189 | 504700  | 7466000  | 377    | 31      |
| T3I1190 | 504650  | 7465950  | 377    | 31      |
| T3I1191 | 504700  | 7465900  | 378    | 31      |
| T3I1192 | 504500  | 7466200  | 375    | 28      |
| T3I1193 | 504500  | 7466100  | 375    | 25      |
| T3I1194 | 504500  | 7466000  | 376    | 10      |
| T3I1195 | 504500  | 7465900  | 377    | 31      |
| T3I1196 | 504500  | 7465800  | 377    | 34      |
| T3I1197 | 504300  | 7465900  | 375    | 31      |
| T3I1198 | 504300  | 7466000  | 374    | 31      |
| T3I1199 | 504300  | 7466100  | 374    | 31      |
| T3I1200 | 504300  | 7466200  | 373    | 22      |
| T3I1201 | 505550  | 7466050  | 384    | 13      |
| T3I1202 | 505650  | 7466050  | 385    | 13      |
| T3I1203 | 505750  | 7466050  | 386    | 13      |
| T3I1204 | 505450  | 7466150  | 384    | 13      |
| T3I1205 | 505700  | 7465300  | 389    | 13      |
| T3I1206 | 506250  | 7465250  | 388    | 25      |
| T3I1207 | 501950  | 7464950  | 361    | 37      |
| T3I1208 | 502050  | 7464950  | 361    | 37      |
| T3I1209 | 502150  | 7464950  | 361    | 37      |
| T3I1210 | 502250  | 7464950  | 361    | 37      |
| T3I348  | 502350  | 7464950  | 361    | 19      |
| T3I349  | 502450  | 7464950  | 361    | 25      |

| Hole ID | Easting | Northing | RL (m) | EOH (m) |
|---------|---------|----------|--------|---------|
| T3I350  | 502550  | 7464950  | 361    | 31      |
| T3I351  | 502650  | 7464950  | 361    | 31      |
| T3I352  | 502750  | 7464950  | 361    | 31      |
| T3I353  | 502650  | 7464850  | 361    | 25      |
| T3I354  | 502550  | 7464850  | 361    | 25      |
| T3I355  | 502450  | 7464850  | 361    | 19      |
| T3I356  | 502150  | 7464850  | 361    | 37      |
| T3I381  | 502650  | 7465550  | 358    | 37      |
| T3I382  | 502750  | 7465450  | 358    | 31      |
| T3I383  | 502650  | 7465450  | 358    | 37      |
| T3I401  | 502950  | 7466150  | 362    | 34      |
| T3I765  | 506550  | 7464850  | 398    | 25      |
| T3I766  | 506700  | 7464850  | 400    | 31      |
| T3I767  | 506750  | 7464950  | 400    | 25      |
| T3I768  | 506750  | 7464650  | 401    | 31      |
| T3I769  | 506750  | 7464550  | 401    | 31      |
| T3I770  | 506850  | 7464550  | 402    | 31      |
| T3I771  | 506950  | 7464550  | 403    | 31      |
| T3I774  | 506850  | 7464050  | 404    | 19      |
| T3I775  | 506850  | 7464250  | 403    | 25      |
| T3I776  | 506750  | 7464250  | 403    | 25      |
| T3I777  | 506750  | 7464150  | 403    | 25      |
| T3I778  | 506750  | 7464050  | 404    | 25      |
| T3I779  | 506950  | 7464350  | 404    | 25      |
| T3I809  | 505750  | 7465750  | 388    | 25      |
| T3I810  | 505750  | 7465850  | 387    | 19      |
| T3I811  | 505650  | 7465950  | 386    | 13      |
| T3I812  | 505650  | 7465850  | 386    | 13      |
| T3I813  | 505550  | 7465950  | 385    | 13      |
| T3I814  | 505650  | 7465650  | 387    | 25      |
| T3I815  | 505550  | 7465750  | 386    | 19      |
| T3I816  | 505550  | 7465650  | 386    | 13      |
| T3I817  | 505550  | 7465550  | 387    | 25      |
| T3I818  | 505650  | 7465750  | 387    | 19      |
| T3I819  | 505650  | 7465450  | 387    | 19      |
| T3I820  | 505550  | 7465450  | 387    | 19      |
| T3I888  | 510750  | 7463150  | 443    | 13      |
| T3I889  | 510300  | 7463500  | 433    | 7       |
| T3I892  | 509100  | 7463850  | 429    | 7       |
| T3I893  | 511750  | 7460550  | 469    | 7       |
| T3I894  | 511650  | 7460450  | 469    | 7       |
| T3I895  | 511600  | 7460400  | 469    | 13      |
| T3I896  | 511500  | 7460400  | 468    | 13      |
| T3I897  | 511350  | 7460450  | 466    | 19      |
| T3I898  | 511350  | 7460550  | 465    | 19      |
| T3I899  | 511300  | 7461050  | 460    | 19      |

| Hole ID | Easting | Northing | RL (m) | EOH (m) |
|---------|---------|----------|--------|---------|
| T3I900  | 511200  | 7461050  | 459    | 25      |
| T3I901  | 511100  | 7461050  | 459    | 31      |
| T3I902  | 511150  | 7461000  | 460    | 25      |
| T3I903  | 511400  | 7461050  | 461    | 13      |
| T3I904  | 511350  | 7461000  | 461    | 19      |
| T3I905  | 511450  | 7461000  | 462    | 7       |
| T3I906  | 511250  | 7461000  | 461    | 19      |
| T3I907  | 511150  | 7461150  | 458    | 25      |
| T3I908  | 511200  | 7460950  | 460    | 19      |
| T3I909  | 511300  | 7460950  | 461    | 19      |
| T3I910  | 505450  | 7465850  | 385    | 19      |
| T3I911  | 505450  | 7465950  | 384    | 19      |
| T3I912  | 505450  | 7466050  | 384    | 13      |
| T3I913  | 505350  | 7466250  | 382    | 13      |
| T3I914  | 505350  | 7466150  | 382    | 13      |
| T3I915  | 505350  | 7466050  | 383    | 19      |
| T3I916  | 505350  | 7465950  | 383    | 19      |
| T3I917  | 505350  | 7465850  | 383    | 25      |
| T3I918  | 505350  | 7465750  | 384    | 19      |
| T3I919  | 505350  | 7465550  | 385    | 31      |
| T3I920  | 505350  | 7465350  | 386    | 37      |
| T3I921  | 505350  | 7465250  | 386    | 37      |
| T3I922  | 505350  | 7465050  | 387    | 37      |
| T3I923  | 505350  | 7464950  | 388    | 37      |
| T3I924  | 505350  | 7464850  | 392    | 37      |
| T3I925  | 505450  | 7464850  | 391    | 37      |
| T3I926  | 505250  | 7464850  | 387    | 31      |
| T3I927  | 505250  | 7464950  | 387    | 37      |
| T3I928  | 505250  | 7465050  | 387    | 37      |
| T3I929  | 505250  | 7465150  | 387    | 37      |
| T3I930  | 505250  | 7465250  | 386    | 37      |
| T3I931  | 505250  | 7465450  | 383    | 37      |
| T3I932  | 505250  | 7465550  | 385    | 31      |
| T3I933  | 505250  | 7465650  | 384    | 19      |
| T3I934  | 505250  | 7465750  | 384    | 31      |
| T3I935  | 505250  | 7465850  | 383    | 25      |
| T3I936  | 505250  | 7465950  | 382    | 25      |
| T3I937  | 505250  | 7466050  | 382    | 19      |
| T3I938  | 505250  | 7466150  | 381    | 25      |
| T3I939  | 505150  | 7465950  | 382    | 25      |
| T3I940  | 505150  | 7465850  | 382    | 31      |
| T3I941  | 505150  | 7465750  | 383    | 37      |
| T3I942  | 505150  | 7465650  | 383    | 37      |
| T3I943  | 505150  | 7465550  | 383    | 31      |
| T3I944  | 505150  | 7465450  | 384    | 37      |
| T3I945  | 505150  | 7465350  | 384    | 37      |

| Hole ID | Easting | Northing | RL (m) | EOH (m) |
|---------|---------|----------|--------|---------|
| T3I946  | 505150  | 7465250  | 385    | 31      |
| T3I947  | 505150  | 7465150  | 385    | 25      |
| T3I948  | 505150  | 7465050  | 388    | 7       |
| T3I949  | 505050  | 7466050  | 380    | 25      |
| T3I950  | 505050  | 7465950  | 381    | 25      |
| T3I951  | 511300  | 7460600  | 464    | 13      |
| T3I952  | 511250  | 7460550  | 464    | 19      |
| T3I953  | 511250  | 7460450  | 466    | 13      |
| T3I954  | 511300  | 7460400  | 466    | 25      |
| T3I955  | 508650  | 7463750  | 421    | 13      |
| T3I956  | 508550  | 7463850  | 421    | 7       |
| T3I957  | 508900  | 7464500  | 423    | 13      |
| T3I958  | 508800  | 7464600  | 422    | 19      |
| T3I959  | 508900  | 7464800  | 424    | 13      |
| T3I960  | 508850  | 7464850  | 423    | 13      |
| T3I961  | 506150  | 7464950  | 394    | 25      |
| T3I962  | 506150  | 7465050  | 394    | 25      |
| T3I963  | 506050  | 7465150  | 393    | 31      |
| T3I964  | 506050  | 7465050  | 393    | 25      |
| T3I965  | 506050  | 7464950  | 393    | 25      |
| T3I966  | 506050  | 7464850  | 394    | 25      |
| T3I967  | 505950  | 7464850  | 394    | 25      |
| T3I968  | 505950  | 7464950  | 394    | 25      |
| T3I969  | 505950  | 7465050  | 394    | 25      |
| T3I970  | 505950  | 7465150  | 394    | 25      |
| T3I971  | 506050  | 7465350  | 394    | 25      |
| T3I972  | 505850  | 7465350  | 394    | 19      |
| T3I973  | 505850  | 7465250  | 390    | 25      |
| T3I974  | 505850  | 7465150  | 390    | 25      |
| T3I975  | 505850  | 7465050  | 391.4  | 13      |
| T3I976  | 505850  | 7464850  | 393    | 25      |
| T3I977  | 505850  | 7464750  | 393    | 25      |
| T3I978  | 505750  | 7464850  | 391    | 28      |
| T3I979  | 505750  | 7465150  | 393    | 19      |
| T3I980  | 505750  | 7465250  | 393    | 22      |
| T3I981  | 505750  | 7465350  | 393    | 16      |
| T3I982  | 505750  | 7465450  | 393    | 13      |
| T3I983  | 505750  | 7465050  | 393    | 16      |
| T3I984  | 505650  | 7464950  | 393    | 28      |
| T3I985  | 505650  | 7464850  | 393    | 31      |
| T3I986  | 508300  | 7465100  | 415.5  | 13      |
| T3I987  | 508250  | 7465150  | 415.5  | 13      |
| T3I988  | 508300  | 7465200  | 415.5  | 13      |
| T3I989  | 508350  | 7465250  | 417    | 13      |
| T3I990  | 508250  | 7465250  | 415    | 13      |
| T3I991  | 508250  | 7465350  | 415    | 7       |

| Hole ID | Easting | Northing | RL (m) | EOH (m) |
|---------|---------|----------|--------|---------|
| T3I992  | 508200  | 7465400  | 414    | 13      |
| T3I993  | 508100  | 7465400  | 413    | 7       |
| T3I994  | 508050  | 7465450  | 412    | 7       |
| T3I995  | 508000  | 7465500  | 411.8  | 7       |
| T3I996  | 507900  | 7465500  | 410.4  | 7       |
| T3I997  | 507800  | 7465500  | 409    | 13      |
| T3I998  | 507850  | 7465550  | 410    | 7       |
| T3I999  | 507750  | 7465550  | 408.5  | 13      |

### JORC Code, 2012 Edition – Table 1 Report

## Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

| Criteria JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.</li> <li>Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.</li> <li>Aspects of the determination of mineralisation that are Material to the Public Report.</li> <li>In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.</li> </ul> | <ul> <li>The RC drilling of February, March, April, May and June 2021 relies on down hole gamma data from calibrated probes which were converted into equivalent uranium values (eU<sub>3</sub>O<sub>8</sub>) by experienced DYL personnel and have been confirmed by a competent person (geophysicist). Geochemical assays will be used to confirm the conversion results once the drilling programme is completed.</li> <li>Appropriate factors were applied to all downhole gamma counting results to make allowance for drill rod thickness, gamma probe dead times and incorporating all other applicable calibration factors.</li> <li>Total gamma eU<sub>3</sub>O<sub>8</sub></li> <li>33 mm Auslog total gamma probes were used and operated by company personnel.</li> <li>RMR's gamma probes were calibrated by a qualified technician at Langer Heinrich Mine in September 2019 (T029, T030, T161, T162, T164 and T165).</li> <li>Probing at Tumas 3 in February, March and April 2021 utilised probes T164, T165, T161 and T162.</li> <li>During drilling, the probes were checked daily using sensitivity checks against a standard source.</li> <li>Gamma measurements were taken at 5 cm intervals at a logging speed of approximately 2 m per minute.</li> <li>Probing was done immediately after drilling mainly through the drill rods and in some cases in the open holes. Rod factors were established to compensate for reduced gamma counts when logging through the rods.</li> </ul> |

| Criteria                 | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                      | • Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                          |                                                                                                                                                                                                                                                                                                                                                                                                            | <ul> <li>The gamma measurements were recorded in counts per second (c/s) and were converted to equivalent eU<sub>3</sub>O<sub>8</sub> values over 1m intervals using probe-specific K-factors.</li> <li>Disequilibrium studies done in 2008 on 22 samples derived from the nearby Tumas 1 and 2 zones by ANSTO Minerals indicated that the U<sup>238</sup> decay chains of the wider Tumas palaeochannel of which Tumas 3 is part, are within an analytical error of ± 12% and considered to be in secular equilibrium.</li> </ul>                                                      |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                            | Chemical assay data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                            | <ul> <li>Geochemical samples were derived from Reverse Circulation (RC) drilling at intervals of 1 m. Samples were split at the drill site using a riffle splitter to obtain a 1kg sample as well as a 1kg field duplicate.</li> <li>A minimum of 15% of all uranium mineralised intersections will be analysed by ALS, Johannesburg, for uranium and sulphur analysis using pressed powder pellet XRF and Leco Furnace and Infrared Spectroscopy, respectively, once the drilling programme is completed. RC drill chips samples are currently being prepared for shipment.</li> </ul> |
| Drilling<br>techniques   | <ul> <li>Drill type (eg core, reverse circulation, open-hole hammer, rotary air<br/>blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple<br/>or standard tube, depth of diamond tails, face-sampling bit or other<br/>type, whether core is oriented and if so, by what method, etc).</li> </ul>                                                                                        | <ul> <li>RC infill drilling was used for the Tumas 3 campaign.</li> <li>All holes were drilled vertically, and intersections measured present true thicknesses.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                              |
| Drill sample<br>recovery | <ul> <li>Method of recording and assessing core and chip sample recoveries<br/>and results assessed.</li> <li>Measures taken to maximise sample recovery and ensure<br/>representative nature of the samples.</li> <li>Whether a relationship exists between sample recovery and grade<br/>and whether sample bias may have occurred due to preferential<br/>loss/gain of fine/coarse material.</li> </ul> | <ul> <li>Drill chip recoveries were good, generally greater than 90%.</li> <li>Drill chip recoveries were assessed by weighing 1 m drill chip samples at the drill site. Weights were recorded in sample tag books.</li> <li>Sample loss was minimised by placing the sample bags directly underneath the cyclone.</li> </ul>                                                                                                                                                                                                                                                           |
| Logging                  | <ul> <li>Whether core and chip samples have been geologically and<br/>geotechnically logged to a level of detail to support appropriate</li> </ul>                                                                                                                                                                                                                                                         | All drill holes were geologically logged.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

| Criteria                                                | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                         | <ul> <li>Mineral Resource estimation, mining studies and metallurgical studies.</li> <li>Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.</li> <li>The total length and percentage of the relevant intersections logged.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                        | <ul> <li>The logging was qualitative in nature. A dominant (Lith1) and a subordinate lithology type (Lith2) was determined for every sample representing a 1m interval with assessment of ratio/percentage.</li> <li>Other parameters routinely logged include colour, colour intensity, weathering, oxidation, alteration, alteration intensity, grain size, hardness, carbonate (CaCO<sub>3</sub>) content, sample condition (wet, dry) and a total gamma count was derived from a Rad-Eye scintillometer.</li> <li>7,690m were geologically logged, which represents 100% of metres drilled.</li> </ul>                                                                                                                                                                                                |
| Sub-sampling<br>techniques<br>and sample<br>preparation | <ul> <li>If core, whether cut or sawn and whether quarter, half or all core taken.</li> <li>If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.</li> <li>For all sample types, the nature, quality and appropriateness of the sample preparation technique.</li> <li>Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.</li> <li>Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.</li> <li>Whether sample sizes are appropriate to the grain size of the material being sampled.</li> </ul> | <ul> <li>Sample splitters used were a 2-tier riffle splitter mounted on the rig giving an 87.5% (reject) and a 12.5% sample (primary sample). A portable 2-tier (50%/50%) splitter was used for preparing a 1kg subsample and 1 kg field duplicate of the primary sample for each metre drilled. All sampling was dry.</li> <li>The sampling techniques are common industry practice.</li> <li>Sample sizes are considered appropriate to the grain size of the material being sampled.</li> <li>Standards will be inserted after each 20<sup>th</sup> primary sample, followed by a duplicate of the 20<sup>th</sup> primary sample, once sample batches are prepared for external assay work.</li> <li>Blanks will be inserted randomly, but commonly following a high-grade primary sample.</li> </ul> |
| Quality of<br>assay data<br>and<br>laboratory<br>tests  | <ul> <li>The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.</li> <li>For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.</li> <li>Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable</li> </ul>                                                                                                                                                       | <ul> <li>The analytical methods will include pressed powder pellet XRF and Leco Furnace and Infrared Spectroscopy, respectively.</li> <li>These techniques are industry standard and considered appropriate.</li> <li>In-house XRF measurements by a Hitachi X-MET8000 Expert Geo instrument commenced in April 2021.</li> <li>AUSLog downhole gamma tools were used as explained under 'Sampling techniques'. This is the principal evaluating technique. 6,976m of gamma data was produced.</li> </ul>                                                                                                                                                                                                                                                                                                  |

| Criteria                                    | JORC Code explanation                                                                                                                                                                                                                                                                                                                           | • Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|---------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                             | levels of accuracy (ie lack of bias) and precision have been established.                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Verification of<br>sampling and<br>assaying | <ul> <li>The verification of significant intersections by either independent or alternative company personnel.</li> <li>The use of twinned holes.</li> <li>Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.</li> <li>Discuss any adjustment to assay data.</li> </ul> | <ul> <li>The geology logs were recorded in the field using tablets and secured excel logging spreadsheets. Logging codes are derived from pre-defined pulldown menus minimizing mis-logging and misspelling. All digital information was downloaded to a server and validated by the geologist at the end of every drill day.</li> <li>Sample tag books were utilized for sample identification.</li> <li>The field drill data of those logs and tag books (lithology, sample specifications etc.) is QA-ed and validated by the relevant project geologist before dispatching for import into a geological database.</li> <li>Twinning of RC holes was not considered; the nuggetty nature of the mineralisation discourages this.</li> <li>Data was uploaded onto a file server following a strict validation protocol.</li> <li>Equivalent eU<sub>3</sub>O<sub>8</sub> values are calculated from raw gamma files by applying calibration and casing factors where applicable.</li> <li>The adjustment factors are stored in a database on a file server.</li> <li>Equivalent U<sub>3</sub>O<sub>8</sub> data is composited from 5cm to 1m intervals.</li> <li>The ratio of eU<sub>3</sub>O<sub>8</sub> versus assayed U<sub>3</sub>O<sub>8</sub> for matching composites will be used to quantify the statistical error, once the drilling programme is completed.</li> </ul> |
| Location of<br>data points                  | <ul> <li>Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.</li> <li>Specification of the grid system used.</li> <li>Quality and adequacy of topographic control.</li> </ul>                                           | <ul> <li>The collars will be surveyed by an in-house surveyor using a differential GPS.</li> <li>All drill holes are vertical and shallow; therefore, no down-hole surveying was required.</li> <li>The grid system is World Geodetic System (WGS) 1984, Zone 33.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Data spacing<br>and<br>distribution         | <ul> <li>Data spacing for reporting of Exploration Results.</li> <li>Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the</li> </ul>                                                                                                                          | <ul> <li>The 359 holes drilled are mainly located in the central part of the<br/>Tumas 3 deposit. Infill drill spacing is to 50m line spacing with 100m<br/>hole spacing.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

| Criteria                                                            | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                              | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|---------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                     | <ul> <li>Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.</li> <li>Whether sample compositing has been applied.</li> </ul>                                                                                                                                                                                                                                    | <ul> <li>The 50m line spacing using 100m drill hole spacing is considered sufficient to define an indicated resource along the Tumas Palaeochannel.</li> <li>The resulting data spacing and drillhole density at Tumas 3 is considered sufficient to establish an Indicated Mineral Resource. An initial Indicated Mineral Resource for the Tumas 3 deposit was announced in May 2020 (ASX Announcement, 12 May 2020).</li> <li>The total gamma count data, which is recorded at 5 cm intervals, is converted to equivalent uranium value (eU<sub>3</sub>O<sub>8</sub>) and composited to 1 m intervals.</li> </ul>                                                                                                                                                              |
| Orientation of<br>data in<br>relation to<br>geological<br>structure | <ul> <li>Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.</li> <li>If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.</li> </ul> | <ul> <li>Uranium mineralisation is strata bound and distributed in a fairly continuous horizontal layer. Holes were drilled vertically and mineralised intercepts represent the true width.</li> <li>All holes were sampled down-hole from surface. Geochemical samples were collected at 1 m intervals. Total-gamma count data was collected at 5 cm intervals.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                      |
| Sample<br>security                                                  | The measures taken to ensure sample security.                                                                                                                                                                                                                                                                                                                                                      | <ul> <li>1m RC drill chip samples including field duplicates for each meter drilled were prepared at the drill site. The assay samples were stored in plastic bags. Sample tags were placed inside the bags. The samples were placed into plastic crates and transported from the drill site to RMR's site premises in Swakopmund by company personnel. Sample preparation for dispatch to ALS in South Africa will be done at RMR's in-house laboratory.</li> <li>Upon completion of the preparation work the remainder of the drill chip sample bags for each hole will be packed back into crates and then stored in designated containers in chronological order, locked up and kept safe at RMR's sample storage yard at Rocky Point located outside Swakopmund.</li> </ul> |
| Audits or<br>reviews                                                | • The results of any audits or reviews of sampling techniques and data.                                                                                                                                                                                                                                                                                                                            | • Drilling data will be audited/reviewed upon completion of the drilling program in June 2021 and receipt of chemical assay results.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

## JORC Code, 2012 Edition – Table 1 Report (continued)

#### **Section 2 Reporting of Exploration Results**

(Criteria listed in the preceding section also apply to this section.)

| Criteria                                         | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                              | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|--------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mineral<br>tenement and<br>land tenure<br>status | <ul> <li>Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.</li> <li>The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.</li> </ul> | <ul> <li>The work to which the Exploration Results relate was undertaken on exclusive prospecting grant EPL3496 (Tumas 3).</li> <li>The EPL was originally granted to Reptile Uranium Namibia (Pty) Ltd (RUN) in June 2006. RUN is a wholly owned subsidiary of Reptile Mineral Resources and Exploration (Pty) Ltd (RMR), the latter being the operator. The EPL is in good standing and is valid until 4 August 2021. A renewal application has been submitted to the Ministry of Mines and Energy.</li> <li>The EPL is located within the Namib-Naukluft National Park in Namibia.</li> <li>There are no known impediments to the Project beyond Namibia's standard permitting procedures.</li> </ul> |
| Exploration<br>done by other<br>parties          | • Acknowledgment and appraisal of exploration by other parties.                                                                                                                                                                                                                                                                                                                                                                                    | <ul> <li>Prior to RUN's ownership of these EPLs, some work was conducted<br/>by Anglo American Prospecting Services (AAPS), General Mining<br/>and Falconbridge in the 1970s.</li> <li>Assay results from the historical drilling are incomplete and available<br/>on paper logs only. There are no digital records available from this<br/>period.</li> </ul>                                                                                                                                                                                                                                                                                                                                           |
| Geology                                          | Deposit type, geological setting and style of mineralisation.                                                                                                                                                                                                                                                                                                                                                                                      | <ul> <li>Tumas mineralisation occurs as secondary carnotite enrichment of variably calcretised palaeochannel and sheet wash sediments and adjacent weathered bedrock.</li> <li>Uranium mineralisation at Tumas is surficial and stratabound in Cenozoic sediments, which include from top to bottom scree, sand, gravel, gypcrete, various intercalated calcareous sand and calcrete horizonts overlying discordant Damaran age folded sequences of meta-volcanics and meta-sediments. Predominant basement stratigraphy is Nosib-Swakop Group with Chuos Fm being the</li> </ul>                                                                                                                        |

| Criteria                       | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <ul> <li>highest lithostratigraphic level in the project area exposed. East of Tumas 3 is Kuiseb Fm exposed forming the highest lithostratigraphic levels. All sequences are highly metamorphosed and characterized by isoclinal folding in partly over thrusted sheets lying staggered on top of each other. Strike is generally NE-SW to NNE-SSW, mostly steep dipping. Three different folding events are observed.</li> <li>The majority of the mineralisation in the project area is hosted in calcrete. Locally, the underlying Proterozoic bedrock shows traces of mineralisation in weathered contact zones of more schistose basement types; this however rarely occurs.</li> </ul> |
| Drill hole<br>Information      | <ul> <li>A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:         <ul> <li>easting and northing of the drill hole collar</li> <li>elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar</li> <li>dip and azimuth of the hole</li> <li>down hole length and interception depth</li> <li>hole length.</li> </ul> </li> <li>If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.</li> </ul> | <ul> <li>359 infill RC holes were drilled over 7,634m between 29 April 2021 and 27 May 2021.</li> <li>All holes were drilled vertically, and intersections measured present true thicknesses.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Data<br>aggregation<br>methods | <ul> <li>In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated.</li> <li>Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.</li> <li>The assumptions used for any reporting of metal equivalent values should be clearly stated.</li> </ul>                                                                                                                                                       | <ul> <li>5cm gamma intervals were composited to 1m intervals.</li> <li>1m composites of eU<sub>3</sub>O<sub>8</sub> were used for the estimate.</li> <li>No grade truncations were applied.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

| Criteria                                                                        | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                         | Commentary                                                                                                                                                                                                                                                                                                                                                                                                            |
|---------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Relationship<br>between<br>mineralisation<br>widths and<br>intercept<br>lengths | <ul> <li>These relationships are particularly important in the reporting of Exploration Results.</li> <li>If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.</li> <li>If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').</li> </ul>             | <ul> <li>The mineralisation is sub-horizontal and all drilling vertical,<br/>therefore, mineralised intercepts are considered to represent true<br/>widths.</li> </ul>                                                                                                                                                                                                                                                |
| Diagrams                                                                        | <ul> <li>Appropriate maps and sections (with scales) and tabulations of<br/>intercepts should be included for any significant discovery being<br/>reported These should include, but not be limited to a plan view of<br/>drill hole collar locations and appropriate sectional views.</li> </ul>                                                                                                                             | <ul> <li>All relevant mineralised intersections were included within the text<br/>and appendices of previous releases.</li> </ul>                                                                                                                                                                                                                                                                                     |
| Balanced<br>reporting                                                           | <ul> <li>Where comprehensive reporting of all Exploration Results is not<br/>practicable, representative reporting of both low and high grades<br/>and/or widths should be practiced to avoid misleading reporting of<br/>Exploration Results.</li> </ul>                                                                                                                                                                     | <ul> <li>Comprehensive reporting, including one previous announcement of<br/>Exploration Results of the March 2020 and May 2021 infill drilling<br/>program covering the Tumas 3 Project area (i.e. ASX<br/>Announcements, 2 April 2020 and 5 May 2021), was practised.</li> <li>Results of the Tumas 3 PFS drilling program were announced on 24<br/>September 2020 and on 29 October 2020, respectively.</li> </ul> |
| Other<br>substantive<br>exploration<br>data                                     | <ul> <li>Other exploration data, if meaningful and material, should be reported<br/>including (but not limited to): geological observations; geophysical<br/>survey results; geochemical survey results; bulk samples – size and<br/>method of treatment; metallurgical test results; bulk density,<br/>groundwater, geotechnical and rock characteristics; potential<br/>deleterious or contaminating substances.</li> </ul> | Nothing to report.                                                                                                                                                                                                                                                                                                                                                                                                    |
| Further work                                                                    | <ul> <li>The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling).</li> <li>Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.</li> </ul>                                                           | • The infill drilling program at Tumas in support of a DFS is continuing.<br>A total of 16,000m are planned in this program. This will be followed<br>by resource estimations to upgrade a large proportion of the resource<br>to the Indicated JORC status.                                                                                                                                                          |