

Scale of Viper Mineralised System Continues to Grow with More High-Grade Gold Results

- Further high-grade results from recent infill and extensional RC drilling at Viper include:
 - ➤ 6m at 11.34g/t gold from 74m, including 2m at 29.2g/t gold (VIPRC121);
 - 9m at 6.78g/t gold from 54m, including 1m at 36.9g/t gold (VIPRC120);
 - 1m at 36.5g/t gold from 51m (VIPRC120);
 - 6m at 9.69g/t gold from 60m, including 1m at 15.9g/t gold (VIPRC119);
 - 7m at 5.07g/t gold from 64m, including 1m at 19.7g/t gold (VIPRC116);
 - 10m at 3.50g/t gold from 68m, including 1m at 17.3g/t gold (VIPRC108).
- Surface mineralisation delineated in the southern part of the deposit.
- Results suggest Viper can potentially make a more significant contribution to near-term mining schedule and will be included in a revised Mineral Resource Estimate.
- Further deep resource drilling, as well as grade control drilling, is planned.
- Commencement of mining at Viper to be expedited; early works at Viper are already underway with mining to commence in the coming weeks.

Firefinch Limited (ASX: FFX) (Firefinch or the Company) is pleased to announce latest drilling results received from the Viper Deposit (Viper), part of the Firefinch's 80% owned Morila Gold Project.

Firefinch's Managing Director, Dr Michael Anderson, commented:

"These are outstanding results. The scale of the mineralised system at Viper continues to grow with each drillhole. The delineation of surface mineralisation in the southern part of the deposit will provide another source of early oxide feed as we ramp up the Morila plant. The high-grade zones under the pit also suggest that Viper can potentially make a more significant contribution to our near-term mining schedule. During my recent visit to site, we discussed and agreed plans to expedite the commencement of mining at Viper."

Background

The Viper deposit is located approximately 27 kilometres north-west of Morila and is accessed by an established haul road (Figure 4). Initial drilling was completed by Randgold (2000-2009) and then by Firefinch (2013-2015) under its previous name Birimian Gold SARL. In 2016 Randgold reacquired Viper through Société Mines de Morila SA (now owned 80% by Firefinch) and completed infill resource drilling followed by grade control drilling between 2016 and 2018. Mining at Viper was completed in 2018-2019 with 0.81 million tonnes mined at 1.19 g/t gold to produce 31,000 ounces of gold.

In February 2021, Firefinch completed a 43-hole Reverse Circulation (RC) drill program with results confirming the continuity of mineralisation below the existing open pit (refer ASX Announcement 29th March 2021). Follow up drilling has now been completed to infill the better results from the February program, as well as test extensions to the south and at depth, where mineralisation remained open.

The Mineral Resources at Viper were updated in May 2021 to:

I	ndicated			Inferred		Total			
Tonnes (millions)	Grade (g/t)	Ounces ('000)	Tonnes (millions)	Grade (g/t)	Ounces ('000)	Tonnes (millions)	Grade (g/t)	Ounces ('000)	
1.52	1.04	51	0.02	1.41	1	1.55	1.05	52	

Refer Appendix 1 and ASX Announcement 3rd May 2021 for further details

Drilling Results

A total of 53 holes for 7,011 metres have been completed at Viper since the first phase of drilling in February 2021. As mentioned, the ongoing programme aims to infill existing drilling at depth to 20 metres spaced sections along the main part of the Viper deposit. In the south, we are testing the strike and down dip extent of the deposit.

All assay results received to date from this programme are included in Appendix 1 and shown on Figures 1 and 3, with better results including:

- ➤ 6m at 11.34g/t gold from 74m including 2m at 29.2g/t gold (VIPRC121);
- > 9m at 6.78g/t gold from 54m, including 1m at 36.9g/t gold (VIPRC120);
- 1m at 36.5g/t gold from 51m (VIPRC120);
- ➤ 6m at 9.69g/t gold from 60m, including 1m at 15.9g/t gold (VIPRC119);
- > 7m at 5.07g/t gold from 64m, including 1m at 19.7g/t gold (VIPRC116);
- > 10m at 3.50g/t gold from 68m, including 1m at 17.3g/t gold (VIPRC108);
- > 10m at 3.45g/t gold from 57m (VIPRC055);
- > 8m at 4.19g/t gold from 48m (VIPRC056);
- 6m at 4.72g/t gold from 56m (VIPRC057);
- 6m at 4.00g/t gold from 70m, including 1m at 12.2g/t gold (VIPRC117);
- 15m at 1.71g/t gold from 75m (VIPRC070);
- 2m at 11.53g/t gold from 55m (VIPRC113);
- 3m at 7.66g/t gold from 23m (VIPRC076); and
- > 5m at 3.78g/t gold from 76m, including 1m at 14.1g/t gold (VIPRC115).

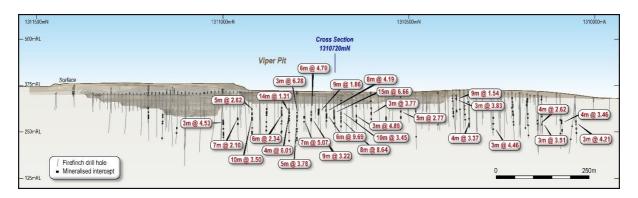


Figure 1. Long Section showing drilling results at Viper.

Discussion of Results

As previously mentioned, the current and ongoing drill programme at Viper was designed to follow up high grade mineralisation discovered below the pit in March 2021. The Company is pleased to report the high grade shoot delineated by earlier drilling has been confirmed to have at least 100 metres strike length and extends 75 metres down dip below the current pit. Importantly, as shown on Figure 2, it remains open at depth. Further drilling is planned.

Of note is the identification and delineation of surface mineralisation in the southern part of Viper. This provides an opportunity to supply early oxide mill feed from the satellite deposits. There has been no previous mining in this area.

Results from the southern portion of the Viper deposit include 15m at 1.71g/t gold from 75m (VIPRC070) and 2m at 4.02g/t gold from 37m, 2m at 3.54g/t gold from 88m and 4m at 3.37g/t gold from 102m (VIPRC045). These drillholes follow results returned in the first phase, such as 5m at 17.7g/t gold from 37m (VIPRC032); 6m at 4.40g/t gold from 66m and 7m at 9.40g/t gold from 92m (VIPRC043).

Overall, the results suggest Viper can potentially make a more significant contribution to the near-term mining schedule than previously thought.

The results will be included in a revised Mineral Resource Estimate and the commencement of mining at Viper is expected to be expedited following these high-grade and impressive results.

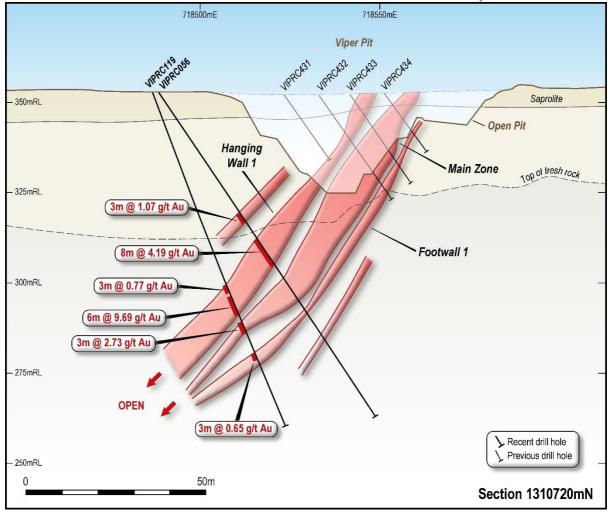


Figure 2. Cross Section 1310720mN showing results from VIPRC119 and VIPRC056.

Viper Geological System

The mineralised system at Viper is about 1,600 metres long. The main domain is interpreted to be continuous over the whole strike extent of the deposit, whereas the footwall domain is interpreted to anastomose in and out of the main domain. Several discontinuous footwall and hanging wall splays will be better defined by grade control drilling and will provide additional mineralised material to the plant.

Mineralisation has now been defined to a depth of about 80 metres but is open at depth. The mineralised domains strike north-south and dip moderately to the west. Gold mineralisation is shear zone hosted, low sulphidation (pyrite and arsenopyrite) quartz vein system, with varying levels of silica, chlorite, biotite and sericite alteration of the host greywacke and siltstone.

A separate mineralised area (Adder) has been identified 120 metres to the east of the southern part of Viper. This weakly mineralised system with occasional higher grades is interpreted to extend for about 160 metres strike and has been shown to exist to a depth of 75 metres below surface. Adder is currently poorly defined but represents another target for further drilling.

Next Steps

The Viper Mineral Resource Estimate is presently being updated to incorporate these new drilling results. An increase in the classification, tonnage and grade is anticipated.

Once the new Mineral Resource Estimate for Viper is optimised it will be incorporated into an update of the Morila Life of Mine plan (refer ASX Announcement 5th May 2021).

The next phases of drilling at Viper will test mineralisation down-dip and down-plunge of these recent intersections. An infill programme will also provide initial grade control data for the near surface mineralisation.

Early mining works at Viper are currently underway. A preferred mining contractor has been selected and will commence work in the coming weeks.

This announcement has been approved for release to the ASX by the Board.

For Enquiries

Dr Michael Anderson Managing Director Firefinch Limited info@firefinchlimited.com +61 8 6149 6100 Dannika Warburton Principal Investability Partners dannika@investability.com.au +61 401 094 261

This announcement contains certain forward-looking statements with respect to Firefinch's financial condition, results of operations, production targets and other matters that are subject to various risks and uncertainties. Actual results, performance or achievements could be significantly different from those expressed or implied by those forward-looking statements. Such forward looking statement are no guarantees of future performance and involve known and unknown risks, uncertainties, and other factors beyond the control of Firefinch that may cause actual results to differ materially from those expressed in the forward-looking statements in this announcement.

Competent Persons Declaration

The information in this announcement that relates to Exploration Results and Mineral Resources at the Viper Deposit is based on information compiled by Mr Simon McCracken. Mr McCracken is an employee of Firefinch Limited and a member of the Australian Institute of Geoscientists. Mr McCracken has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and the activity he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves ('the JORC Code')". Mr McCracken consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

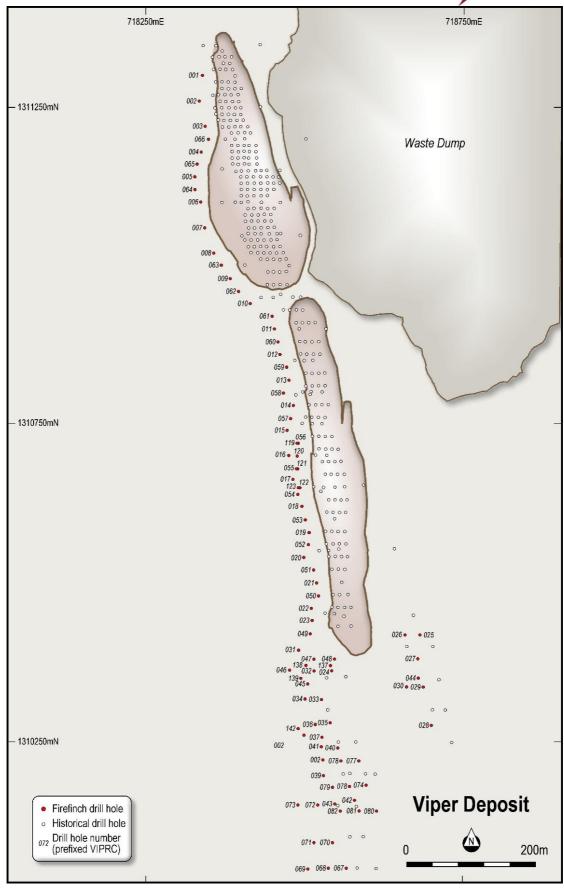


Figure 3. Plan showing Firefinch and historical drilling at Viper.

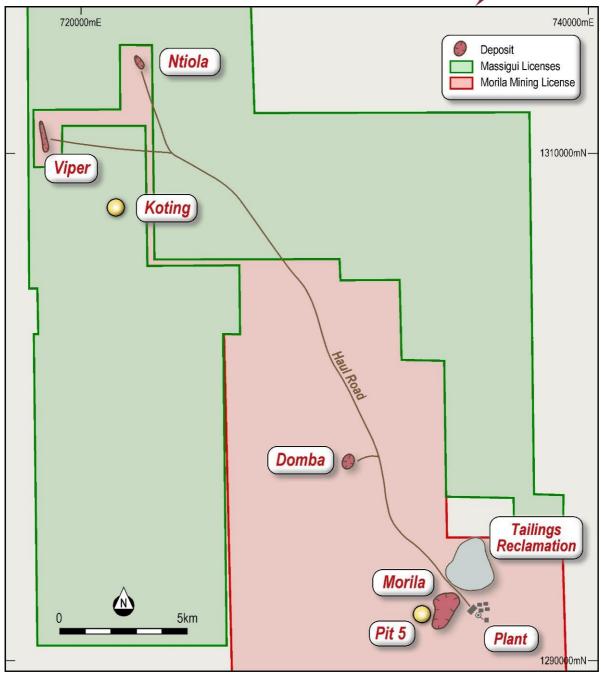


Figure 4. Plan showing location of Viper Deposit within the Morila Gold Project.

Table 1. Mineral Resources for the Morila Gold Project.

Deposit	Measur	ed & Indio	ated ⁶		Inferred			Total	
	Tonnes (millions)	Grade (g/t)	Ounces ('000)	Tonnes (millions)	Grade (g/t)	Ounces ('000)	Tonnes (millions)	Grade (g/t)	Ounces ('000)
Morila Pit ¹	21.2	1.60	1,090	17.5	1.37	770	38.6	1.50	1,860
Morila NE ²				0.21	3.07	21	0.21	3.07	21
Samacline ²				3.74	2.56	308	3.74	2.56	308
Tailings ³	1.73	0.50	28				1.73	0.50	28
Morila Pit 5 4	0.72	1.04	24	0.12	1.38	6	0.84	1.10	30
N'Tiola ⁴	2.42	1.05	81	0.01	0.73	1	2.43	1.04	81
Viper ⁴	1.52	1.04	51	0.02	1.41	1	1.55	1.05	52
Domba ⁵	0.20	1.75	11	0.25	1.61	13	0.46	1.67	25
Koting ⁴	0.65	1.04	22	0.28	0.94	8	0.93	1.01	30
Total	28.42	1.43	1,309	22.08	1.58	1,124	50.50	1.50	2,433

 $^{^{1}}$ The Morila Pit resource is quoted using a 0.4g/t gold cut-off grade.

² The Samacline and Morila NE resources are quoted using a 1.8g/t gold cut-off grade.

³ The Tailings resource is quoted using a 0.3g/t gold cut-off grade.

⁴ The N'Tiola, Viper, Pit 5 and Koting resources are quoted above cut-off grades based on forecast costs (0.35 - 0.48g/t).

⁵ The Domba resource is quoted using a 0.5g/t gold cut-off grade.

⁶ Detailed breakdown of Measured, Indicated and Inferred Mineral Resources are supplied in the ASX Announcement of 3rd May 2021.

⁷ Numbers in the above table may not appear to sum correctly due to rounding.

Firefinch is a Mali focussed gold miner and lithium developer. Firefinch has an 80% interest in the Morila Gold Mine and 100% of the Goulamina Lithium Project.

Morila has produced 7.5 million ounces of gold since 2000; it was one of the world's highest grade open pits some 12 to 20 years ago. Firefinch acquired the mine at a substantial discount in November 2020 with the view to increase production at the 4.5mtpa mill from a current annual production profile of 40,000 ounces of gold per annum from tailing treatment, towards a target of 70 to 90,000 ounces of gold per annum through mining of small open pits, stocks and tailings from mid-2021. In 2022, the Company plans to further increase production to target 150,000 to 200,000 ounces of gold per annum by re-commencing mining from the main Morila pit to fully exploit the 2.43 million ounces of gold in the Global Resource at Morila (Measured: 1.73Mt at 0.5g/t gold for 0.03Moz, Indicated: 26.7Mt at 1.49g/t gold for 1.28Moz and Inferred: 22.1Mt at 1.58g/t gold for 1.12Moz). A production target of 150,000 to 200,000 ounces of gold per annum has been set by the Company. Morila's geological limits are not well understood, thus exploration is a major focus at Morila, its satellite resources and multiple targets on the 685km² of surrounding tenure.

The Goulamina Lithium Project is one of the world's largest undeveloped deposits and has the potential to be one of the lowest cost producers. All permits are in place, a Definitive Feasibility Study is complete and a Global Resource of 109 million tonnes at 1.45% Li₂O with 1.57 million tonnes of contained Li₂O has been declared comprising 8.4 million tonnes at 1.57% Li₂O in the Measured category, 56.2 million tonnes at 1.48% Li₂O in the Indicated category and 43.9 million tonnes at 1.45% Li₂O in the Inferred category. Firefinch intends to demerge Goulamina into a new ASX listed Company and is conducting a process to investigate partnering, offtake and financing options for the Project.

Firefinch is a responsible miner. We support positive social and economic change through contributing to the communities in which we operate. We seek to buy local, employ local and safeguard the environment and our people's health, safety, and wellbeing.

The Company confirms that it is not aware of any new information or data that materially affects the Mineral Resources at Goulamina and Morila and the production estimates for Goulamina. The Company also confirms that all material assumptions and parameters underpinning the Mineral Resource estimates and production estimates continue to apply and have not materially changed. Please refer to ASX Announcements of 8th July 2020 and 20th October 2020 (Goulamina), 8th February 2021 (Morila Resource), 7th September 2020 and 28th April 2021 (Morila Tailings), 24th November 2020 and 3rd May 2021 (N'Tiola, Viper, Domba, Koting, Morila Pit 5), and 9th February 2021, 28th April 2021 and 5th May 2021 (Morila Gold Production, Ore Reserves and Production Targets).

APPENDIX 1: SIGNIFICANT INTERSECTIONS (>0.4g/t gold) FROM THE VIPER DEPOSIT

Hole ID	Туре	Easting	Northing	RL	Dip	Azimuth	Depth	From	То	Interval	Grade (g/t)
VIPRC044	RC	718678	1310350	354	-60	90	102	23	24	1	0.95
VII 11CO 1-1	· · ·	710070	1310330	334	- 00	30	102	38	39	1	1.43
								48	50	2	0.84
								81	82	1	3.8
VIPRC045	RC	718504	1310340	363	-60	90	120	37	39	2	4.02
								88	90	2	3.54
								102	106	4	3.37
								113	114	1	3.01
VIPRC046	RC	718479	1310360	360	-60	90	132	56	57	1	3.86
VIPRC047	RC	718513	1310380	364	-55	90	90	65	66	1	1.94
								70	73	3	1.13
								80	81	1	1.6
VIPRC048	RC	718545	1310380	362	-55	90	60	14	17	3	0.63
								22	24	2	0.83
VIPRC049	RC	718507	1310420	357	-55	90	120	6	7	1	4.42
		740-00	4046:00	252			4	101	103	2	0.94
VIPRC050	RC	718520	1310480	353	-55	90	179		• • •	NSI	4.15
VIPRC051	RC	718512	1310520	352	-55	90	120	7	11	4	1.13
\/IDDC053	D.C.	740504	1210560	254			100	54	59	5	2.77
VIPRC052	RC	718504	1310560	351	-55	90	108	73	82	9	0.85
VIPRC053	RC	718499	1310600	351	-55	90	108	21 58	23 60	2	3.89
									79	2 1	5.48
VIPRC054	RC	718488	1310640	351	-55	90	114	36	37	1	1.37 1.68
VIPKC034	NC NC	/10400	1310040	331	-55	90	114	66	67	1	1.95
								70	73	3	4.89
								81	90	9	0.95
VIPRC055	RC	718488	1310680	351	-55	90	100	28	29	1	5.79
								57	67	10	3.45
								71	76	5	0.61
VIPRC056	RC	718488	1310720	353	-55	90	108	40	42	2	1.58
								48	56	8	4.19
VIPRC057	RC	718477	1310760	353	-55	90	102	48	49	1	1.21
								56	62	6	4.72
								66	70	4	1.14
VIPRC058	RC	718464	1310800	354	-55	90	174	62	64	2	9.23
								71	83	12	0.92
VIPRC059	RC	718470	1310840	355	-55	90	150	57	70	13	0.72
								128	133	5	0.98
VIPRC060	RC	718457	1310880	356	-55	90	132	51	56	5	2.62
\#BB-2655		7404:0	424222	25.5			400	61	71	10	0.79
VIPRC061	RC	718448	1310920	356	-55	90	120	52	57	5	1.30
VIDDOGG	D.C	710205	1210000	254		00	174	65	73	8	1.17
VIPRC062	RC	718395	1310960	354	-55	90	174	81	102	7 5	2.1
VIPRC063	RC	718367	1311000	353	-55	90	180	98 86	103 87	5 1	0.74 13.4
VIFRCUOS	nC	/ 1030/	1311000	333	-33	30	100	91	95	4	1.39
								97	101	4	2.06
VIPRC064	RC	718326	1311120	351	-55	90	162	107	112	5	1.70
VIPRC065	RC	718320	1311120	350	-55 -55	90	156	67	77	10	1.01
3.1.1.2003		, 10020	1011100	550			130	90	92	2	1.45
									J_		±.¬J

Firefinch Limited ABN: 11 113 931 105

ASX: FFX

Level 3, 31 Ventnor Ave, West Perth WA 6005, Australia

											Grade
Hole ID	Type	Easting	Northing	RL	Dip	Azimuth	Depth	From	То	Interval	(g/t)
VIPRC066	RC	718348	1311200	351	-55	90	150	40	45	5	0.85
								65	73	8	0.86
VIPRC067	RC	718565	1310050	343	-60	90	108	81	84	3	4.21
		, 10000		0.0				93	98	5	0.72
VIPRC068	RC	718535	1310050	345	-60	90	144	112	114	2	3.40
VIPRC069	RC	718505	1310050	347	-60	90	180	93	94	1	1.22
VIII NEGOS		7 10303	1310030	347		30	100	133	135	2	1.58
VIPRC070	RC	718542	1310090	348	-60	90	126	75	90	15	1.71
VIPRC071	RC	718513	1310090	351	-60	90	168	132	136	4	0.83
VIPRC072	RC	718519	1310150	355	-60	90	178	83	84	1	1.47
		7 100 10						91	93	2	5.16
								135	141	6	1.28
VIPRC073	RC	718488	1310150	357	-60	90	189	134	135	1	1.82
		7 10 100	1010100			30	103	138	139	1	1.07
VIPRC074	RC	718595	1310180	351	-60	90	96	18	19	1	1.05
1.00/4		, 10000	1010100	331	- 00		- 30	22	26	4	0.66
								30	31	1	1.08
								34	36	2	0.98
VIPRC075	RC	718569	1310180	352	-60	90	110	32	35	3	0.88
VII ICO75	· · · ·	710303	1310100	332	- 00	30	110	103	104	1	1.29
VIPRC076	RC	718542	1310178	354	-60	90	138	15	20	5	0.88
VII ICO70	· · · ·	710542	1310170	334	- 00	30	130	23	26	3	7.66
								63	65	2	1.48
								98	99	1	2.14
								128	130	2	1.04
VIPRC077	RC	718585	1310219	354	-60	90	78	14	16	2	1.36
VIIICOTT	il.C	710303	1310213	334	-00	30	70	41	45	4	1.19
VIPRC078	RC	718557	1310220	356	-60	90	108	27	32	5	1.32
VII ICO70	· · · ·	710557	1310220	330	- 00	30	100	37	47	10	0.57
								73	75	2	1.43
VIPRC079	RC	718527	1310220	358	-60	90	175	17	18	1	1.11
VIII NCC75		710327	1310220	330		30	173	58	59	1	1.11
								69	70	1	1.39
								90	91	1	3.58
VIPRC080	RC	718612	1310140	346	-60	90	126	8	12	4	1.76
VIPRC081	RC	718585	1310140	347	-60	90	114	22	23	1	1.02
		0000		<u> </u>				30	31	1	3.62
								53	56	3	1.42
VIPRC082	RC	718612	1310140	346	-60	90	138	3	5	2	1.25
		0012		- · · ·				10	12	2	1.94
								30	32	2	1.33
								56	60	4	1.07
								63	66	3	1.47
								87	91	4	2.62
VIPRC108	RC	718443	1310920	356	-75	90	120	26	27	1	0.56
								48	49	1	0.46
								60	61	1	1.48
								68	78	10	3.50
						including		68	69	1	17.30
								82	83	1	0.84
								107	113	6	0.89
								114	116	2	0.83
L								114	110		0.77

Firefinch Limited ABN: 11 113 931 105

ASX: FFX

Level 3, 31 Ventnor Ave, West Perth WA 6005, Australia

											Grade
Hole ID	Type	Easting	Northing	RL	Dip	Azimuth	Depth	From	То	Interval	(g/t)
VIPRC112	RC	718467	1310840	355	-70	90	114	41	43	2	1.88
								57	59	2	0.62
								60	66	6	2.34
								75	78	3	0.46
								79	81	2	0.84
								95	96	1	0.41
								108	111	3	0.79
VIPRC113	RC	718472	1310820	355	-71	90	140	49	50	1	0.91
								55	57	2	11.53
						including		55	56	1	22.20
								58	59	1	0.91
								60	61	1	0.55
								63	67	4	1.74
								72	75	3	0.54
								77	81	4	0.50
								82	83	1	0.51
								86	87	1	0.43
								113	114	1	1.23
								115	116	1	0.71
								134	136	2	0.75
								137	138	1	0.97
VIPRC114	RC	718477	1310820	355	-51	90	120	52	61	9	1.69
								62	63	1	1.19
								64	66	2	0.66
								67	68	1	0.79
								75	76	1	0.44
								83	84	1	1.35
								86	88	2	0.80
								90	91	1	0.43
								96	101	5	0.85
								107	108	1	0.59
VIPRC115	RC	718460	1310800	354.9	-71	93	114	68	69	1	1.18
								76	81	5	3.78
						including		76	77	1	14.10
								102	103	1	1.92
								105	106	1	0.45
								107	108	1	0.42
								110	111	1	0.90
VIPRC116	RC	718472	1310780	354	-71	91	108	64	71	7	5.07
						including		66	67	1	19.70
								79	82	3	0.55
								86	87	1	0.69
VIPRC117	RC	718468	1310760	353.31	-69	88	120	48	49	1	0.53
								70	76	6	4.00
						including		70	71	1	12.20
								77	78	1	4.72
								81	82	1	0.52
								96	97	1	0.47
								102	103	1	0.65
		740	40.0=:-								
VIPRC118	RC	718482	1310740	353	-51	89	120	47	49	2	0.55
								51	60	9	1.86

Firefinch Limited ABN: 11 113 931 105

ASX: FFX

Level 3, 31 Ventnor Ave, West Perth WA 6005, Australia

Hole ID	Туре	Easting	Northing	RL	Dip	Azimuth	Depth	From	То	Interval	Grade (g/t)
								62	66	4	2.19
								67	72	5	1.61
								76	78	2	0.50
								100	102	2	0.36
VIPRC119	RC	718487	1310720	352	-70	94	100	57	58	1	1.76
								60	66	6	9.69
						including		60	61	1	15.90
						including		62	63	1	13.30
						including		64	65	11	13.80
								67 77	71 79	2	2.14
VIPRC120	RC	718487	1310700	352	-57	93	108	43	44	1	0.84
VIPRC120	NC	/1040/	1310700	332	-57	95	106	48	49	1	0.41
								51	52	1	36.50
								<u>51</u>	63	9	6.78
						including		57	58	1	36.90
						meraamg		64	66	2	0.82
								69	80	11	0.95
								81	82	1	0.66
								94	95	1	1.54
VIPRC121	RC	718486	1310680	352	-71	92	120	18	19	1	3.81
								72	73	1	0.81
								74	80	6	11.34
						including		75	77	2	29.15
								81	82	1	0.68
								83	84	1	0.39
								89	93	4	1.00
								115	116	1	0.52
VIPRC137	RC	718540	1310370	363	-61	92	90	13	22	9	1.54
								23	30	7	0.91
								60	62	2	1.83
								63	66	3	0.53
\/IDDC420	D.C.	740504	1210270	262		00	430	77	78	1	0.41
VIPRC138	RC	718501	1310370	363	-61	88	138	13 17	15	2	0.37
								23	18 24	<u> </u>	2.02
								25 25	28	3	0.41
VIPRC142	RC	718488	1310270	361	-59	89	140	40	42	2	3.83 1.81
VIFICT#2	NC.	/ 10400	13102/0	301	-33	UJ	140	77	78	1	0.56
								82	84	2	0.80
								85	86	1	0.52
								92	93	1	0.95
								101	104	3	0.94
								118	121	3	4.46
						including		118	119	1	10.60

^{* -} denotes mineralisation at end of hole

APPENDIX 2: JORC CODE, 2012 EDITION – TABLE 1 EXPLORATION RESULTS, MINERAL RESOURCES & ORE RESERVES, PIT 5 DEPOSIT, MORILA GOLD PROJECT, MALI

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information. 	 One metre samples were collected using Reverse Circulation (RC) drilling with a ~140mm bit. The entire sample is collected from the cyclone on the rig in plastic bags and then split by hand using a riffle splitter to collect a sample of between 2 and 3 kg in a prenumbered cotton sample bag. The entire sample is pulverized and a 30g charge is collected for fire assay/AAS analysis.
Drilling techniques	 Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 All samples in the current campaign were collected using RC drilling RC drilling using face sampling bit with a nominal 5.5" hole diameter.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 RC recoveries for the primary sample were observed and estimated qualitatively, with the sub samples weighed as a quantitative measure. The entire sample was collected from the cyclone and subsequently split by hand in a riffle splitter to maximise representivity. Drill sample recovery is considered adequate for the drilling techniques employed. RC drilling utilised booster packs to manage water ingress with most samples being dry. Condition of the sample was recorded (ie Dry, Moist, or Wet)

Criteria	JORC Code explanation	Commentary
		 Where samples were wet (due to ground water there is a possibility that the assay result could be biased through loss of fine material. No relationship is known to exist between sample recovery and grade.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 Chips were geologically logged in their entirety by geologists and a representative fraction collected in a chip tray. The logs are sufficiently detailed to support Mineral Resource estimation. Logged criteria included lithology, alteration, alteration intensity, weathering, grainsize and sulphides. Geological logging is qualitative in nature although percentages of sulphides are estimated along with structural measurements.
Sub- sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 RC samples are either split using a cone or riffle splitter mounted on the rig or split by hand using a stand-alone riffle splitter. These techniques are appropriate for collecting statistically unbiassed samples. Samples are weighed to ensure a sample weight of between 2 and 3 kg. Samples of between 2 and 3 kg are considered appropriate for determination of contained gold using the fire assay technique. Certified reference standards, Blanks, and duplicates are inserted into the sample stream as the samples are collected at a rate of 10%. Field duplicates are inserted every 20 samples Blanks (derived from unmineralized river sand) and Certified reference material standards (CRMs) are inserted alternately every 20 samples Both duplicates (two aliquots of 50g from the same 200g sub sample) and replicates (two samples from the same raw sample) were used to test the laboratory precision (repeatability) and the homogeneity of the sample respectively.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and 	 Samples were analysed for gold at the SGS Laboratory onsite at Morila, an accredited commercial laboratory. The laboratory is located on site but operated by an independent third party. Sample preparation comprised of the following:

Criteria **JORC Code explanation Commentary** model, reading times, calibrations factors drying all samples and crushing (for core applied and their derivation, etc. samples). Nature of quality control procedures Pulverise entire sample to 95% passing 75 adopted (e.g. standards, blanks, microns (all samples). duplicates, external laboratory checks) and o A 30g sub sample analysed by fire assay whether acceptable levels of accuracy (i.e. with AAS finish. lack of bias) and precision have been established. QA/QC programme comprises Certified Reference Materials, replicates, duplicates, and blanks. Laboratory checks include Every 50th sample is screened to confirm % passing 2mm and 75 microns. o 1 reagent blank every 84 samples 1 preparation blank every 84 samples o 2 weighed replicates every 84 samples o 1 preparation duplicate (re split) every 84 samples o 3 SRMs every 84 samples o Certified reference standards, Blanks, and duplicates are inserted into the sample stream as the samples are collected at a rate of 10%. Field duplicates are inserted every 20 samples Blanks (derived from unmineralized river sand) and Certified reference standards (CRMs) are inserted alternately every 20 samples Replication (two samples from the same raw sample) and duplication (two aliquots from the same sub-sample) tests were also carried out by the laboratory. Verification The verification of significant intersections Firefinch drill hole data was compiled and by either independent or alternative of sampling digitally captured by Company geologists at company personnel. the drill rig. Drilling and sampling and assaying The use of twinned holes. procedures have been developed to ensure Documentation of primary data, data entry consistent sampling practices are used by procedures, data verification, data storage site personnel. (physical and electronic) protocols. All drilling and exploration data are stored in Discuss any adjustment to assay data. the company database which is hosted by an independent geological database consultant. The compiled digital data is verified and validated by the consultant before loading into the database. QAQC reports are generated regularly to allow ongoing reviews of sample quality. Twinned holes were not used to verify results, infill drilling has been used to increase confidence. Location of Accuracy and quality of surveys used to Drill hole collars are located using DGPS or locate drill holes (collar and down-hole data points RTK GPS.

Firefinch Limited ABN: 11 113 931 105

ASX: FFX

Level 3, 31 Ventnor Ave, West Perth WA 6005, Australia

surveys), trenches, mine workings and

Criteria	JORC Code explanation	Commentary
	 other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Down hole dip and azimuth are collected using a Gyro measuring every 20 to 50m for RC drilling. Coordinates are recorded in UTM WGS84 29N Topographic control is maintained by the Morila mine survey department with a mixture of survey pickups and aerial data and is considered adequate for mine planning purposes.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Drill holes are on 20m spaced sections and test between 30 and 60 metres down dip of historical drilling at Viper. The spacing is sufficient to establish grade continuity and will be incorporated into an updated Mineral Resource once all results received. No sample compositing has been applied.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 Six mineralized zones are interpreted to dip moderately to steeply to the west. Drilling is generally oriented -60 degrees due east to intersect the zone as close to perpendicular as practicable. No sampling bias is known to exist though it is not precluded.
Sample security	The measures taken to ensure sample security.	 Samples are delivered from the drilling site in batches for each drill holes to the SGS laboratory at Morila with appropriate paperwork to ensure the chain of custody is recorded.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	 QAQC checks of individual assay files are routinely made when the results are issued. A QAQC report for the entire program is generated and reviewed to document any laboratory drift or assay bias.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria		PRC Code explanation		ommentary
Mineral tenement and land tenure status	•	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	•	The Viper Deposit lies within the Morila license (PE 99/15) which is owned by Société des Mines de Morila SA, a Malian registered company with 20% held by the Malian Government.
Exploration done by other parties	•	Acknowledgment and appraisal of exploration by other parties.	•	Focused systematic regional exploration of the Morila area began in the mid 1980s. Most exploration was completed by Randgold, in JV with Anglogold Ashanti. Exploration in the Morila area has been extensively detailed in ASX Announcements of 31 August 2020 and 8 February 2021. Firefinch, under its former names Birimian Gold and Mali Lithium, completed substantial exploration at N'Tiola, Viper, Koting and the surrounding area including soil sampling, Auger Drilling, Air-core Drilling and RC Drilling as well as limited diamond drilling. The N'Tiola and Viper deposits which were then acquired and mined by Randgold under an option agreement (refer ASX Announcement 4 Nov 2016).
Geology	•	Deposit type, geological setting and style of mineralisation.	•	The Morila permit is situated in the northern portion of the West African craton between the NNE trending Birimian volcanosedimentary belts of Kalana-Yanfolila and Syama. The region is underlain predominantly by Lower Proterozoic metavolcanic and meta-sedimentary sequences (Birimian) and large areas of granitoids. The whole package of rocks has been deformed by the Eburnean Orogeny. The permit area locates along a contact between Birimian metasediments and the Eburnean granitoids. Geology of the Morila deposit has been extensively detailed in ASX Announcements of 31 August 2020 and 8 February 2021. The Pit 5 Deposit is part of the Morila Deposit. The N'Tiola, Viper and Koting deposits are shear vein hosted orogenic style gold deposits. This style of mineralisation typically forms as veins or disseminations in altered host rock. Deposits of this type often form in proximity to linear geological structures. Surficial geology within the project area typically consists of indurated gravels

	10000	
Criteria	JORC Code explanation	forming plateau, and broad depositional plains consisting of colluvium and alluvial to approximately 5m vertical depth. Lateritic weathering is common within the project area. The depth to fresh rock is typically 35m vertical.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	 All drill hole intersections from the current phase of drilling are reported in Appendix 1. Previous drilling completed at the Viper Deposit has been detailed in the ASX Announcements of 29 March 2021. The Company confirms that there are no material changes to any of the information previously released.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 All sample lengths are 1m. a weighting of 1 has been applied to all samples. Top cuts have not been used Metal equivalent grades have not been stated.
Relationship between mineralisati on widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known'). 	 At Viper several mineralised lodes are interpreted to strike N-S and dip moderately to the West. Drilling is generally oriented -60 degrees due east. Intersection angles on the mineralised zones are between perpendicular and 60 degrees.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	 Appropriate maps and sections are provided in the text

Criteria	JORC Code explanation	Commentary
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	 This report details all intercepts in the drilling completed at the Viper Deposit.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	The Morila Project has been in operation since 2000 with exploration activities completed prior to that. As a consequence there is a large quantity of data including exploration data (geochemical and geophysical surveys, trenching, drilling), production data (grade control drilling, mining and processing), as well as associated data such as environmental and geotechnical, which is used in the exploration and development of the project. None of this information is meaningful or material for the current release.
Further work	 The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	As detailed in the text