

ASX RELEASE: 2 July 2021

Strong Gold Assays Extend Leipold Mineralisation to 1km

- Final assays from recent drilling at the Leipold Prospect at the Kookynie Gold Project¹have been received with 17 out of 22 holes returning mineralised intercepts.
- Significant intercepts included:
 - LPRC0122 2 metres @ 4.7 g/t from 65 metres incl. 1 metre @ 8.4 g/t from 66 metres,
 - o LPRC0114 3 metres @ 3.3 g/t from 133 metres incl. 1 metre @ 6.4 g/t from 135 metres,
 - LPRC0112 4 metres @ 3.4 g/t from 127 metres,
 - LPRC0123 6 metres @ 1.7 g/t from 26 metres,
 - o LPRC0118 1 metres @ 7.4 g/t from 35 metres, and
 - LPRC0126 10 metres @ 1.1 g/t from 30 metres.
- Mineralisation extended the Leipold Prospect a further 200m and is now defined over nearly 1km to a vertical depth of only 130 metres, remaining open along strike to the North and at depth.
- With drilling demonstrating mineralisation continues to extend to the North, the further 2kms of strike between Leipold and McTavish remain open and are thought to be increasingly prospective for defining similar high-grade lodes along strike.
- A further 58 holes remain outstanding from McTavish, Champion and Cosmopolitan.
- Once all holes are received and reported, the Company intends to release its Maiden (JORC 2012)
 Resource Estimate for the Leipold, McTavish and Champion Prospects, which are all situated on mining leases.

Metalicity Limited (ASX: MCT) ("MCT" or "Company") is pleased to announce assays results for the Leipold Prospect at the Kookynie Gold Project¹ in the Eastern Goldfields, Western Australia, approximately 60 kilometres south southwest of Leonora.

¹Please refer to ASX Announcement "Metalicity Achieves Earn-In On The Kookynie & Yundamindra Gold Projects" dated 20th May 2021 with Nex Metals Explorations Ltd, ASX:NME.

Commenting on the drilling results, Metalicity CEO, Justin Barton said:

"These results demonstrate a consistent mineralised zone which bodes incredibly well for the impending Resource Estimate. We have nearly a kilometre of strike defined at Leipold and have not defined the down dip limit yet. The initial Resource Estimate that will be published in the coming months is just the beginning for Leipold, McTavish or Champion, as all the prospects are open in one direction or more."

"With a Maiden JORC 2012 Mineral Resource Estimate pending, it is a fantastic culmination of 2 years' worth of hard work, and we look forward to presenting those results when available."

Assay & Drilling Discussion

Kookynie is located 60 kilometres south south-east from Leonora, Western Australia and is host to nine, significant prospects; Champion, McTavish, Leipold, Altona, Mulga Plum, Wandin, Diamantina, Cosmopolitan and Cumberland are known collectively as the DCC Trend, please refer to Figure 1.

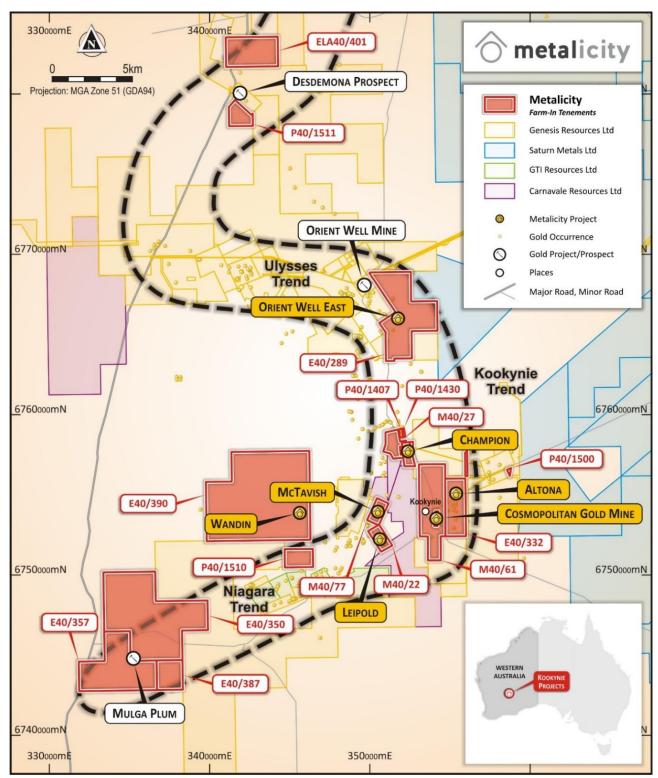


Figure 1 – Kookynie Prospect Locality Map with mineralised trends.

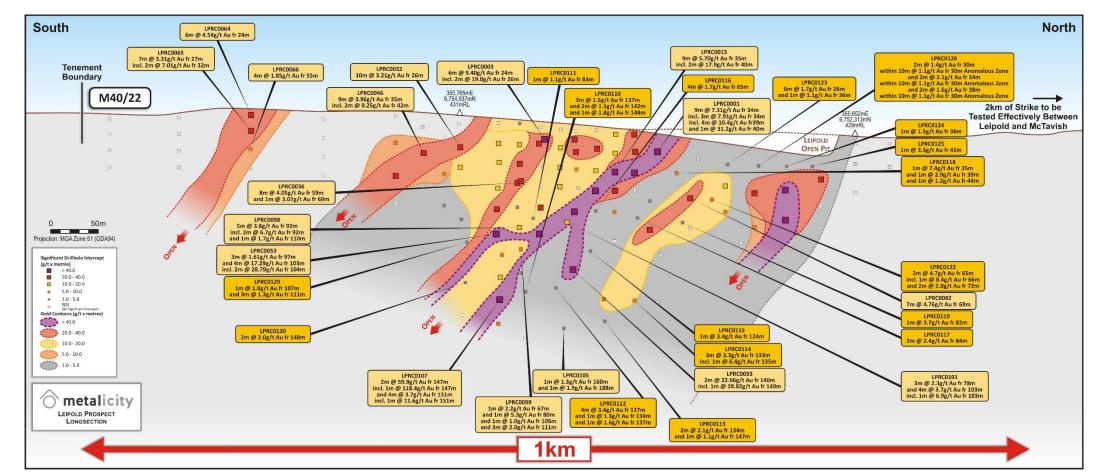


Figure 2 – Leipold Plane of Vein Section with recent drilling*.

For Figure Two Drilling Results,*Please refer to ASX Announcements: Metalicity Continues to Deliver Impressive Drill Hole Results for the Kookynie Gold Project, dated 22nd December 2020, Metalicity Continues to Deliver Fantastic Drill Hole Results for the Kookynie Gold Project dated 1st October 2020, Metalicity Reports Drill Hole Intercepts Up to 100 g/t Au for the Kookynie Gold Project dated 1sth September 2020, Metalicity Continues to Deliver Spectacular Drill Hole Results for the Kookynie Gold Project dated 25th August 2020, Metalicity Delivers More Outstanding Drill Hole Results for the Kookynie Gold Project dated 1sth July 2020, Metalicity Continues to Deliver Excellent Drill Hole Results for the Kookynie Gold Project dated 2sth June 2020 & Metalicity Reports Drill Hole Intercepts Up To 80 g/t Au & Additional Tenement Acquisition for Kookynie dated 21st January 2020.

		MGA 94_Zone 51 South											
Hole ID	Tenement	Hole Type	Easting	Northing	RL	ЕОН	Dip	Azi	From (m)	To (m)	Down Hole Width (m)	Grade (Au g/t)	Comments
									137	140	3	1.5	3 metres @ 1.5 g/t from 137 metres
LPRC0110	M40/22	RC	350,917	6,752,057	432	170	-60	250	142	144	2	1.1	2 metres @ 1.1 g/t from 142 metres
									148	149	1	1.8	1 metre @ 1.8 g/t from 148 metres
LPRC0111	M40/22	RC	350,838	6,752,052	432	110	-60	250	83	84	1	1.1	1 metre @ 1.1 g/t from 83 metres
									127	131	4	3.4	4 metres @ 3.4 g/t from 127 metres
LPRC0112	M40/22	M40/22 RC 350,89	350,899	6,752,074	432	160	-60	250	134	135	1	1.3	1 metre @ 1.3 g/t from 134 metres
									137	138	1	1.6	1 metre @ 1.6 g/t from 137 metres
LPRC0113	1440/22	RC	250.040	6.752.406	422	176	-	250	134	136	2	2.1	2 metres @ 2.1 g/t from 134 metres
LPKC0113	M40/22	RC	350,919	6,752,106	432	1/6	-60	250	147	148	1	1.1	1 metre @ 1.1 g/t from 147 metres
LPRC0114	M40/22	RC	350,890	6,752,116	432	158	-60	250	133	136	3	3.3	3 metres @ 3.3 g/t from 133 metres incl. 1 metre @ 6.4 g/t from 135 metres
LPRC0115	M40/22	RC	350,865	6,752,125	432	140	-60	250	124	125	1	3.4	1 metre @ 3.4 g/t from 124 metres
LPRC0116	M40/22	RC	350,809	6,752,087	432	94	-60	250	65	69	4	1.7	4 metres @ 1.7 g/t from 65 metres
LPRC0117	M40/22	RC	350,805	6,752,146	432	102	-60	250	84	86	2	2.4	2 metres @ 2.4 g/t from 84 metres
		RC	350,749	6,752,149			-60		35	36	1	7.4	1 metre @ 7.4 g/t from 35 metres
LPRC0118	M40/22				431	66		250	39	40	1	2.9	1 metre @ 2.9 g/t from 39 metres
									44	45	1	1.2	1 metre @ 1.2 g/t from 44 metres
LPRC0119	M40/22	RC	350,794	6,752,188	432	118	-60	250	82	83	1	3.7	1 metre @ 3.7 g/t from 82 metres
LPRC0120	M40/22	RC	350,835	6,752,180	432	140	-60	250	No significant intersection				
LPRC0121	M40/22	RC	350,874	6,752,160	432	162	-60	250	250 No significant intersection				
LPRC0122	M40/22	RC	350,766	6,752,200	432	90	60	250	65	67	2	4.7	2 metres @ 4.7 g/t from 65 metres incl. 1 metre @ 8.4 g/t from 66 metres
LFRCUIZZ	10140/22	KC .	330,700	0,732,200	432	90	-00	230	72	74	2	2.0	2 metres @ 2.0 g/t from 72 metres
LPRC0123	M40/22	RC	350,717	6,752,211	431	42	60	250	26	32	6	1.7	6 metres @ 1.7 g/t from 26 metres
LFRCUIZS	10140/22	KC .	330,717	0,732,211	431	42	-60	230	36	37	1	1.1	1 metre @ 1.1 g/t from 36 metres
LPRC0124	M40/22	RC	350,712	6,752,252	432	60	-60	250	38	39	1	1.5	1 metre @ 1.5 g/t from 38 metres
LPRC0125	M40/22	RC	350,712	6,752,273	432	60	-60	250	41	42	1	3.3	1 metre @ 3.3 g/t from 41 metres
									30	32	2	1.4	2 metres @ 1.4 g/t from 30 metres, within 10 m @ 1.1 g/t from 30 m anomalous zone
LPRC0126	M40/22	RC	350,717	6,752,232	431	54	-60	250	34	36	2	2.1	2 metres @ 2.1 g/t from 34 metres, within 10 m @ 1.1 g/t from 30 m anomalous zone
									38	40	2	1.6	2 metres @ 1.6 g/t from 38 metres, within 10 m @ 1.1 g/t from 30 m anomalous zone
LPRC0127	M40/22	RC	350,725	6,752,185	430	48	-60	250	No signifi	cant int	ersection		
LPRC0128	M40/22	RC	350,963	6,752,009	432	186	-60	250	No signifi	cant int	ersection		
LPRC0129	M40/22	RC	350,886	6,751,983	432	126	60	250	107	108	1	1.0	1 metre @ 1.0 g/t from 107 metres
LFNCU129	14140/22	nc nc	330,000	0,731,363	432	120	-00	230	111	114	3	1.3	3 metres @ 1.3 g/t from 111 metres
LPRC0130	M40/22	RC	350,924	6,751,996	432	168	-60	250	148	149	1	2.0	2 metres @ 2.0 g/t from 148 metres
LPRC0131	M40/22	RC	350,798	6,752,240	432	120	-60	250	No signifi	cant int	ersection		

Table 1 – Leipold Prospect Anomalous Drill Hole Intercepts.

Note: Duplicates and CRM analysis was not used in the calculation of the significant intercepts. A hole listed with "no significant anomalism" means that no sample run returned a value to trigger reporting.

Intercepts were calculated based on a sample returning an assay value of greater than 1 g/t Au over an interval greater than 2 metres, but not including any more than 1 metre of internal material that graded less than 1 g/t Au. Intervals were based on geology and no top cut off was applied.

The Leipold Prospect Summary

The results illustrated above continue to define and expand the mineralisation observed at Leipold. As mentioned earlier, the programme at Leipold, McTavish and Champion, has been designed off the back of a preliminary Mineral Resource work conducted in January 2021. The tenure and extent of the returned mineralisation bodes exceptionally well for this impending Mineral Resource Estimate at Leipold, and the Company has observed similar structures at Champion and McTavish that correlate with previously observed mineralisation.

The Company is waiting on the back log of assays to finalise the drill hole database and commence the resource estimation for McTavish and Champion. Figure 2 above, details a plane of vein long section for the Leipold drilling to date and intercepts reported in Table 1.

Drilling Discussion

Since the recommencement of drilling at the Kookynie Gold Project for 2021*, the Company has completed a total of 102 drill holes for a total of 12,538 metres, with the completion of all outstanding assays for Leipold. The following table details the holes drilled to date and what is pending at the date of this report.

Tenement	Prospect	Metres Drilled	Holes Completed	Holes Reported to Date	To Be Reported
M40/61	Cosmopolitan	3,043	12	0	12
M40/77	McTavish	1,758	28	8	20
M40/27	Champion	3,120	26	0	26
	Гotal	7,921	66	8	58

Table 2 – Drilling breakdown as of the date of this report.

As illustrated, we have a significant backlog from previous drilling of prospects that was designed to extend known mineralisation, and assist in preparing and stating updated Mineral Resource Estimates for the Leipold, McTavish and Champion Prospects.

This Announcement is approved by the Board of Metalicity Limited.

ENQUIRIES

Investors

Justin Barton CEO +61 8 6500 0202

jbarton@metalicity.com.au

Metalicity confirms that the Company is not aware of any new information or data that materially affects the information included in the relevant market announcement and, in the case of "exploration results" that all material assumptions and technical parameters underpinning the "exploration results" in the relevant announcements referenced apply and have not materially changed.

Competent Person Statement

Information in this report that relates to Exploration results and targets is based on, and fairly reflects, information compiled by Mr. Jason Livingstone, a Competent Person who is a Member of the Australian Institute of Geoscientists. Mr. Livingstone is an employee of Metalicity Limited. Mr. Livingstone has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined by the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr. Livingstone consents to the inclusion of the data in the form and context in which it appears.

Note

This Announcement is designed to also supplement for Nex Metals Exploration as it relates to our farm-in agreement as announced on the 6th May 2019 titled "Metalicity Farms Into Prolific Kookynie & Yundamindra Gold Projects, WA".

Forward Looking Statements

This announcement may contain certain "forward-looking statements" which may not have been based solely on historical facts, but rather may be based on the Company's current expectations about future events and results. Where the Company expresses or implies an expectation or belief as to future events or results, such expectation or belief is expressed in good faith and believed to have reasonable basis. However, forward-looking statements:

(a) are necessarily based upon a number of estimates and assumptions that, while considered reasonable by the Company, are inherently subject to significant technical, business, economic, competitive, political and social uncertainties and contingencies;

(b) involve known and unknown risks and uncertainties that could cause actual events or results to differ materially from estimated or anticipated events or results reflected in such forward-looking statements. Such risks include, without limitation, resource risk, metals price volatility, currency fluctuations, increased production costs and variances in ore grade or recovery rates from those assumed in mining plans, as well as political and operational risks in the countries and states in which the Company operates or supplies or sells product to, and governmental regulation and judicial outcomes; and

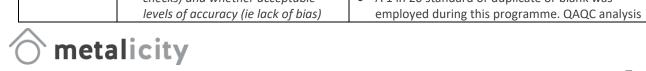
(c) may include, among other things, statements regarding estimates and assumptions in respect of prices, costs, results and capital expenditure, and are or may be based on assumptions and estimates related to future technical, economic, market, political, social and other conditions.

The words "believe", "expect", "anticipate", "indicate", "contemplate", "target", "plan", "intends", "continue", "budget", "estimate", "may", "will", "schedule" and similar expressions identify forward-looking statements.

All forward-looking statements contained in this presentation are qualified by the foregoing cautionary statements. Recipients are cautioned that forward-looking statements are not guarantees of future performance and accordingly recipients are cautioned not to put undue reliance on forward-looking statements due to the inherent uncertainty therein.

The Company disclaims any intent or obligation to publicly update any forward-looking statements, whether as a result of new information, future events or results or otherwise.

^{*}Please refer to ASX Announcement "First Hole Intersects Visible Gold at the Cosmopolitan Prospect, 100m North of Historic Cosmopolitan Gold Mine" dated 4th February 2021.


Appendix One – JORC Code, 2012 Edition – Table 1

Section 1: Sampling Techniques and Data

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 Reverse circulation (RC) sampling was conducted by the offsiders on the drill rig and checked at the end of each rod (6 metres) to ensure that the sample ID's matched the interval that was intended to be represented by that sample ID. No issues were seen or noted by the Competent person during the entire drilling campaign. These samples are kept onsite in a secure location available for further analysis if required. All RC samples were sieved and washed to ensure samples were taken from the appropriate intervals. The presence of quartz veining +-sulphide presence +- alteration was used to determine if a zone was interpreted to be mineralised. If the sample was deemed to be potentially mineralised, the samples were submitted for screen fire assay. If no mineralisation was observed, the sample was submitted for check using fire assay. All samples were submitted for analysis, no compositing took place. The quality of the sampling is industry standard and was completed with the utmost care to ensure that the material being sampled, can be traced back to the interval taken from the drill hole for both RC and diamond core. OREAS standards of 60 gram charges of OREAS 22F (Au grade range of <1ppb Au – this is a blank), OREAS 251 (Au grade range of 0.498ppm Au to 0.510ppm Au), OREAS 219 (Au grade range of 0.768ppm Au) and OREAS 229b (Au grade range of 11.86ppm Au to 12.04ppm Au) were used in alternating and sporadic patterns at a ratio of 1 QAQC sample in 20 samples submitted. The material used to make these standards was sourced from a West Australian, Eastern Goldfields orogenic gold deposits.
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is oriented and if so, by what method, etc). 	• RC drilling used a bit size of 5 ¼ inch.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative 	 RC drilling sample recovery was excellent. No relationship was displayed between recovery and grade nor loss/gain of fine/course material.

Logging	 nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of 	 All recovered sample from RC has been geologically logged to a level where it would support an appropriate Mineral Resource Estimate, mining studies and metallurgical test work. Logging was qualitative based on the 1 metre samples derived from the RC drilling.
Sub-sampling techniques and sample preparation	 The total length and percentage of the relevant intersections logged. If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for 	 RC samples were cone split from the rig. All RC samples were dry. All recoveries were >90%. Duplicates or a CRM standard were inserted every 20 samples. The Competent Person is of the opinion the sampling method is appropriate.
Quality of assay data and laboratory tests	 instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF 	 Fire assay has been selected for RC samples. The methodology employed in these analytical procedures are industry standard with appropriate checks and balances throughout their own processes. The analytical method employed is appropriate for the style of mineralisation and target commodity
	instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias)	present. However, selected entire intercepts with a returned weighted average assay above 5 g/t Au will be selected and analysed using the screen fire method to provide a statistical comparison between the two analytical methods in high grade zones. This is to ensure the high-grade nature (nugget effect) is defined and articulated. No geophysical tools, spectrometers, handheld XRF instruments were used. A 1 in 20 standard or duplicate or blank was employed during this programme. QAQC analysis

		T
Verification of sampling and assaying	 and precision have been established. The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	shows that the lab performed within the specifications of the QAQC protocols. The standards used were from OREAS and based on material sourced from with the Eastern Goldfields. Blanks were also sourced from OREAS as well. No umpire analysis has been performed. No twinned holes have been completed. However, drill holes have been collared near previously drilled holes but on different orientations. Data was collected on to standardised templates in the field and data entered at night. Cross checks were performed verifying field data. No adjustment to the available assay data has been made.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Drill hole collars will be surveyed using a DGPS. The RC holes were downhole surveyed using a "Champ Gyro multi-shot down hole survey camera". GDA94 Zone 51S was used, collars will be picked up by a qualified surveyor using a DGPS (Trimble S7). The surveyed collar coordinates appear to be sufficient, however, better definition is required of the topography to allow for a JORC 2012 compliant estimation. Appendix Two contains collar coordinates as drilled:
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 The data spacing is sufficient to establish a relatively high confidence in geological and grade continuity, however, peripheral data to support the drill holes requires further work to ensure compliance with JORC 2012 guidelines. No sample compositing was applied beyond the calculation of down hole significant intercepts.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 Most of the drilling has been perpendicular to the main structure that hosts mineralisation. Secondary structures oblique to the main structure may have influence hanging and foot wall intercepts. The author believes that the drilling orientation and the orientation of key mineralised structures has not introduced a bias.
Sample security	The measures taken to ensure sample security.	The chain of supply from rig to the laboratory was overseen a contract geologist under the

		supervision of the Competent Person. At no stage has any person or entity outside of the Competent Person, the contract geologist, the drilling contractor, and the assay laboratory came into contact with the samples. Samples dispatched to the laboratory were delivered to the laboratory by a contract geologist, no third-party courier used.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	No external audit of the results, beyond the laboratory internal QAQC measures, has taken place.

Section 2: Reporti	ng of Exploration Results	
Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 Please refer to the tenement column below to where the drill holes were completed. Nex Metals Explorations Ltd holds the tenure in question. Metalicity is currently performing an earn in option as part of our farm in agreement (please refer to ASX Announcement "Metalicity Farms Into Prolific Kookynie & Yundamindra Gold Projects, WA" dated 6th May 2019) No impediments exist to obtaining a license to operate over the listed tenure.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 Nex Metals Explorations Ltd have done a great job of collating the historical drilling completed over the previous 30 years. The Kookynie Area been subjected to many phases of Exploration commencing with the discovery of gold in 1897 at the Cosmopolitan Gold Mine. Extensive work by Western Mining Corporation between 1934 to 1937 with Aerial Geological and Geophysical Survey of Northern Australia (AGGNSA) between 1937 to 1940. Then with WMC at 1966 and 1986, ASARCO between 1974 to 1975, Square Gold and Minerals in 1981, CRA between 1982 and 1983, and Money Mining in 1992. Between 1993 and 2008, FMR and since 2008 it has been held between A&C Mining and Nex Metals Explorations. The historical work completed requires further field verification via re-down hole surveying (if possible) of drill holes beyond 60 metres depth – it appears below this depth; hole deviation becomes a factor in establishing the location of mineralisation in 3D. Furthermore, collar pickups require verification. All laboratory certificates for the assays on file are collated, only recommendation is possibly more duplicate information in mineralised zones.
Geology	Deposit type, geological setting and style of mineralisation.	Kookynie: The project area is in the Keith-Kilkenny

Tectonic Zone within the north-northwest trending Archean-aged Malcolm greenstone belt. The Keith-Kilkenny Tectonic Zone is a triangular shaped area hosting a succession of Archean mafic-ultramafic igneous and metasedimentary rocks. Regional magnetic data indicates the Kookynie region is bounded to the west by the north-trending Mt George Shear, the Keith-Kilkenny Shear Zone to the east and the Mulliberry Granitoid Complex to the south. • There are several styles of gold mineralisation identified in the Kookynie region. The largest system discovered to date is the high-grade mineralisation mined at the Admiral/Butterfly area, Desdemona area and Niagara area. The gold mineralisation is associated with pyritic quartz veins hosted within north to northeast dipping structures cross-cutting 'favourable' lithologies which can also extend into shears along geological contacts. Gold mineralisation tends to be preferentially concentrated in differentiated dolerite sills associated with pyrite/carbonate/silica/sericite wall rock alteration. A summary of all information For Kookynie (and Yundramindra), please refer to Drill hole material to the understanding of the the Company's announcement dated 6th May Information exploration results including a 2019, "Metalicity Farms Into Prolific Kookynie & tabulation of the following Yundamindra Gold Projects, WA", for all historical information for all Material drill drill collar information, and selected significant holes: intercepts. easting and northing of the drill For the drilling performed and subject to this hole collar announcement, please see Appendix Two in this o elevation or RL (Reduced Level announcement. elevation above sea level in metres) of the drill hole collar o dip and azimuth of the hole down hole length and interception depth hole length. • If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. In reporting Exploration Results, All intercepts have been calculated using the Data weighting averaging techniques, weighted average method but are based on 1 aggregation maximum and/or minimum grade metre samples from RC drilling. Specific intervals methods truncations (eg cutting of high within an interval have been described as part of grades) and cut-off grades are the overall intercept statement. usually Material and should be Intercepts were calculated based on a sample stated. returning an assay value of greater than 0.1 g/t Au Where aggregate intercepts over an interval greater than 2 metres, but not

	 incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 including any more than 1 metre of internal material that graded less than 0.1 g/t Au. Intervals were based on geology and no top cut off was applied. No metal equivalents are discussed or reported.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 Given the shallow dipping nature (approximately - 45° on average) of the mineralisation observed at Kookynie, the nominal drilling inclination of -60° lends to close to truth width intercepts. However, cross cutting structures within the hanging wall and footwall are noted and may influence the results.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	Please see main body of the announcement for the relevant figures.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	All results have been presented. Please refer to Appendix 2.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	 The area has had significant historical production recorded and is accessible via the MINEDEX database. All stated mineral resources for the Kookynie (and Yundramindra) Projects are pre-JORC 2012. Considerable work around bulk density, QAQC, down hole surveys and metallurgy, coupled with the planned drilling will be required to ensure compliance with JORC 2012 guidelines.

Further work

- The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling).
- Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.
- Metalicity intends to drill the known and extend the mineralised occurrences within the Kookynie and Yundramindra Projects. The Yundramindra Project is currently under the plaint process, however Metalicity believes that Nex Metals is well advanced in defending those claims. The drilling will be designed to validate historical drilling with a view to making maiden JORC 2012 Mineral Resource Estimate statements. Metalicity has made the aspirational statement of developing "significant resource and reserve base on which to commence a sustainable mining operation focusing on grade and margin".
- Diagrams pertinent to the area's in question are supplied in the body of this announcement.

