ASX ANNOUNCMENT Date: 05 July 2021

Nusantara Resources Limited ABN 69 150 791 290

Registered Office:

Level 4, 100 Albert Road, South Melbourne Vic 3205 Ph: +61 (3) 9692 7222

Issued Capital

229,273,007 shares 20,000,000 unlisted options 7,700,000 unlisted employee options and performance rights

Substantial Holders

PT Indika Energy TBK28%Lion Selection Group22%Federation Mining Pty Ltd, IMF PtyLtd, and Simon Le Messurier12%

Nusantara Resources Limited is listed on the Australian Securities Exchange – ticker symbol NUS

Dollar values in this report are United States Dollars unless otherwise stated.

Enquiries regarding this report may be directed to: Mr Greg Foulis Chairman +61 438 544 399

This announcement has been authorised by the Managing Director/Board

NUSANTARA RESOURCES LIMIT

AWAK MAS PROJECT MINERAL RESOURCE UPDATE AND HIGHER-GRADE MEASURED RESOURCE AT SALU BULO

37% grade increase observed in areas now classified as Measured at the Salu Bulo deposit ('Salu Bulo')

- Close-spaced drilling at Salu Bulo has strongly refined the geological understanding, producing a well constrained mineralisation model and maiden Measured classification material at Salu Bulo.
- Overall, there has been a 17% reduction of ore tonnes and a commensurate 24% increase in grade, for an overall 3% increase (6,000 oz) in total contained ounces of gold at Salu Bulo.
- Ore tonnes within the Initial Mining Area (**IMA**) at Salu Bulo, for the volume covered by close-spaced drilling, is now 74% Measured, the highest confidence Resource classification, and is available for conversion to Proven Reserves. An Ore Reserves Estimate (**ORE**) update for Awak Mas is expected imminently.
- Close-spaced drilling results from Salu Bulo have delineated, with high confidence, a high-grade breccia zone featuring broad and high-grade intersections (eg SGD003 50m @ 2.03g/t Au from 0m, SGD088 21m @ 4.71g/t Au from 72m, including 4m @ 11.2g/t Au from 88m).
- Salu Bulo positioned as a high-grade starter pit, bolstering the grade of material expected to be processed in early years of production.
- Completion of Salu Bulo Mineral Resource Estimate (**MRE**) update completes the full Awak Mas Gold Project MRE update incorporating all results of close-spaced drilling over the areas targeted for first mining production.

Table 1: Mineral Resource Statement for the Salu Bulo deposit

Category	Tonnes (Mt)	Gold Grade (g/t)	Contained Gold (Moz)
Measured	0.6	2.31	0.05
Indicated	1.6	2.14	0.11
Inferred	0.8	1.26	0.03
TOTAL	3.0	1.95	0.19

Reported at a 0.5g/t Au cut-off within a US\$1,600 Mineral Resource pit shell. All tonnage, grade and ounces have been rounded and minor discrepancies in additive totals may occur.

Salu Bulo is a satellite deposit located 2km east of the main Awak Mas deposit (**Awak Mas**). Completion of an updated MRE for Salu Bulo completes the MRE update for the Awak Mas Gold Project, which contains a total of 2.29Moz of gold.

Table 2: Awak Mas Project Mineral Resource Statement

Deposit	Tonnes (Mt)	Gold Grade (g/t)	Contained Gold (Moz)
Awak Mas	44.6	1.38	1.97
Salu Bulo	3.0	1.95	0.19
Tarra	3.0	1.29	0.13
TOTAL	50.6	1.41	2.29

Reported at a 0.5g/t Au cut-off within a US\$1,600 Mineral Resource pit shell. All tonnage, grade and ounces have been rounded and minor discrepancies in additive totals may occur.

Neil Whitaker, Managing Director commented "the substantial grade uplift we have seen at Salu Bulo from close spaced drilling is a great success. Salu Bulo is expected to be an early source of ore feed for the planned plant, and an increase of grade will benefit the production schedule."

About Nusantara Resources

Nusantara is an ASX Listed gold development company with its flagship Awak Mas Gold Project located in South Sulawesi, Indonesia.

Mineral Resource Estimate update for Salu Bulo deposit and Awak Mas Gold Project

Nusantara Resources Ltd (**Nusantara**, **the Company**) is pleased to present an updated Mineral Resource Estimate (**MRE**) for the Salu Bulo deposit, incorporating the results of close-spaced diamond drilling. The updated MRE for Salu Bulo follows the updated Awak Mas deposit MRE update released in March¹ and the combined, updated MRE estimates will form the basis for generating an updated ORE for final mine planning for the entire Awak Mas Gold Project which is almost complete.

The MRE update for Salu Bulo is based on new, close-spaced diamond drilling data from a campaign carried out from October 2020 to March 2021. Close-spaced drilling is part of Nusantara's de-risking strategy by improving the drilling density and geological understanding in areas that are targeted for first mining production.

The MRE update has been compiled by Cube Consulting, independent mining consultants who have compiled the previous MRE estimates for Nusantara, based on data from a drilling program designed and executed by Nusantara and collaboratively developed geological interpretations.

The key changes incorporated in the Salu Bulo MRE update since the April 2020 estimate include:

- Increase in drilling density (from roughly 50m x 25m previously, to 15m x 15m) and with this sufficient
 resolution to delineate, at a high level of confidence, sub-vertical vein hosted mineralisation and high-grade
 zones of mineralised breccia.
- Increase in grade of mineralisation now in Measured classification, compared with the Indicated classification material in the April 2020 MRE for Salu Bulo.
- The volume of material that has been close space drilled is now 74% Measured classification, the highest confidence Resource category.

The updated Salu Bulo MRE completes the integration of results of close-spaced drilling of the IMA, and now stands at 2.29Moz of gold.

¹ Refer to ASX announcement made by Nusantara Resources (NUS) on 16 March 2021 Successful close-spaced diamond drilling campaign generates maiden Measured Resource at Awak Mas

Deposit	Category	Tonnes (Mt)	Gold Grade (g/t)	Contained Gold (Moz)
Awak Mas	Measured	2.2	1.58	0.11
	Indicated	36.5	1.41	1.66
	Inferred	5.9	1.10	0.21
	Sub-Total	44.6	1.38	1.97
Salu Bulo	Measured	0.6	2.31	0.05
	Indicated	1.6	2.14	0.11
	Inferred	0.8	1.26	0.03
	Sub-Total	3.0	1.95	0.19
Tarra	Measured	-	-	-
	Indicated	-	-	-
	Inferred	3.0	1.29	0.13
	Sub-Total	3.0	1.29	0.13
TOTAL	Measured	2.9	1.74	0.16
	Indicated	38.1	1.44	1.77
	Inferred	9.7	1.17	0.36
	TOTAL	50.6	1.41	2.29

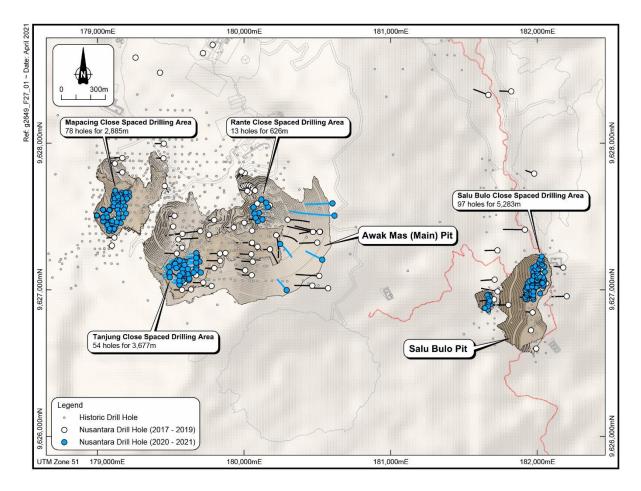
1. MRE is reported inside US\$1,600/oz Pit Shell at 0.5g/t Cut-off.

2. Mineral Resources are not Mineral Reserves and do not have demonstrated economic viability.

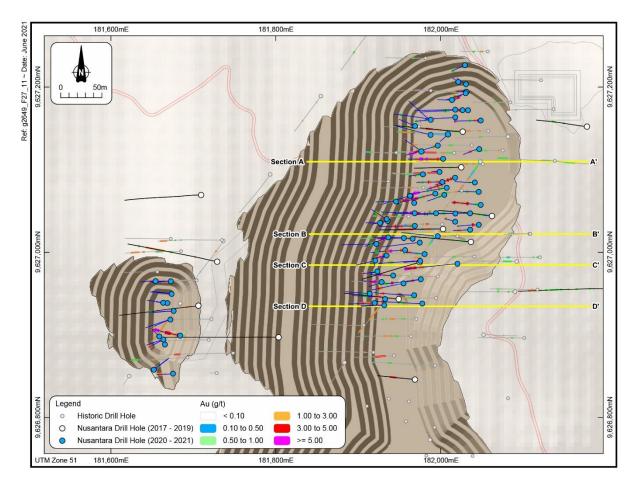
3. All tonnage, grade and ounces have been rounded and minor discrepancies in additive totals may occur.

4. Cut-off grades were determined using a base gold price of US\$1450/oz (Awak Mas) and US\$1400 (Salu Bulo), metallurgical recoveries supported by test work and based on all material being processed via a Whole of Ore CIL flowsheet.

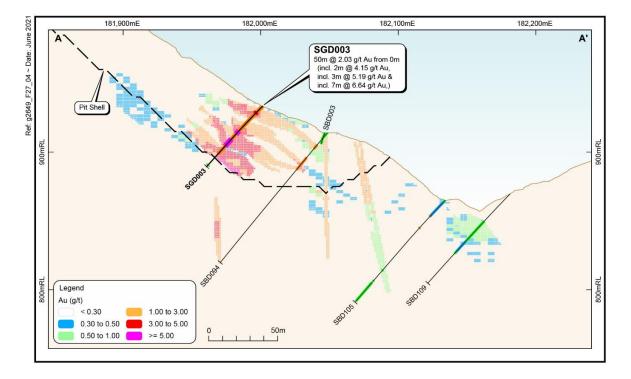
Salu Bulo close-spaced drilling


The basis of this MRE update is close-spaced diamond drilling, which has been completed to infill the majority of the IMA to 15m x 15m drill spacing. The IMA is the material scheduled for the first two years of mining production. Mineralisation that falls into the Salu Bulo MRE consists of a main zone (Biwa and Bandoli), with a smaller satellite to the immediate west at Lelating. The IMA at Salu Bulo consists of the Northern half of the main zone, and all of the satellite Lelating zone. The southern portion of the main zone and proximal targets for new or extensions of known mineralisation will require drilling prior to open pit mine development.

97 holes for diamond drilling have been drilled for 5,283m at Salu Bulo, and all of the assays were returned prior to modelling (refer to Appendix 1 for a full listing of intersections). Drilling returned broad and high-grade intersections including:


SGD003 50m @ 2.03g/t Au from 0m, including 3m @ 5.19g/t Au from 27m and 7m @ 6.64g/t Au from 35m;
SGD088 21m @ 4.71g/t Au from 72m, including 4m @ 11.2g/t Au from 88m;
SGD079 22m @ 3.72g/t Au from 22m, including 6m @ 8.09g/t Au from 32m;
SGD030 12m @ 6.41g/t Au from 48m, including 4m @ 11.23g/t Au from 54m;
SGD065 18m @ 3.91g/t Au from 49m, including 4m @ 10.66g/t Au from 55m;

Close spaced drilling at Salu Bulo has strongly refined the geological understanding, producing a well constrained mineralisation model. The interpreted position and extents of sub-vertical, vein hosted mineralisation is now well constrained the previously interpreted but poorly constrained zone of shallow dipping, conformable mineralisation is now well constrained, and drilling has consistently shown this zone is characterised by hematitic breccias and broad, higher grade gold mineralisation. Consequently, this zone has now been modelled with a hard boundary rather than a diffusive interpolation of grade which was previously employed.


Figure 1. Awak Mas Gold Project plan view, showing locations of close spaced drilling campaigns within the planned open pits at Awak Mas and Salu Bulo.

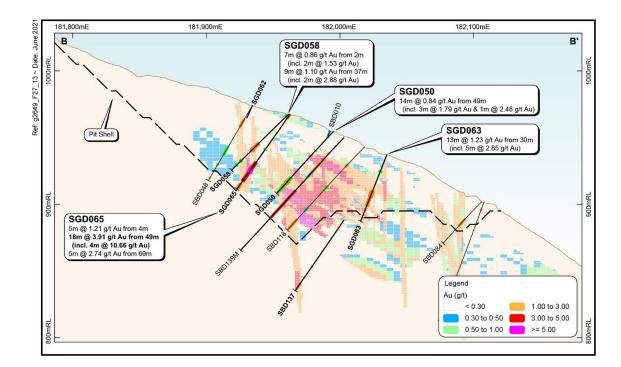


Figure 2. Salu Bulo planned open pit, showing the locations of close spaced drill hole collars covering the Initial Mining Area, over the Northern portion of the main pit and all of the smaller Lelating pit to the immediate west. Locations are also shown for cross sections below (figures 3-6).

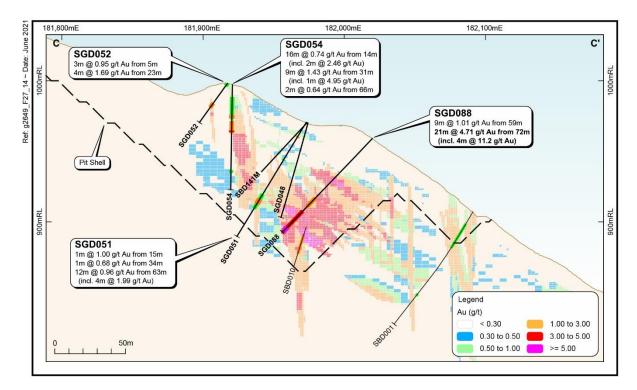


Figure 3. Cross section A-A', oriented east-west, showing drill hole SGD003, which returned 50m at 2.03g/t Au from surface and demonstrates the thick and high-grade nature of mineralisation delineated in hematitic breccia zones in the northern portion of Salu Bulo.

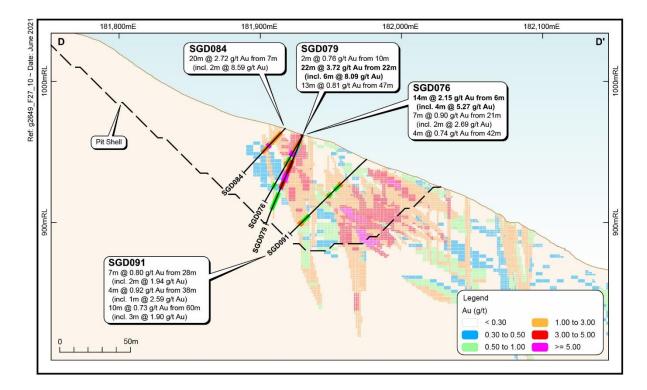


Figure 4. Cross section B-B', oriented east-west, showing drill hole SGD065, which returned 18m at 3.91g/t Au from 49m including 4m at 10.66g/t Au from 55m.

Figure 5. Cross section C-C', oriented east-west, showing drill hole SGD088, which returned 21m at 4.71g/t Au from 72m including 4m at 11.2g/t Au from 88m.

Figure 6. Cross section D-D', oriented east-west, showing drill hole SGD079, which returned 22m at 3.72g/t Au from 22m including 6m at 8.09g/t Au from 32m.

Ore Reserves Update

The updated Awak Mas Gold Project MRE will form the basis for an updated ORE for the Awak Mas Gold Project that will be used to develop an updated mine design and schedule. New Measured category material at Awak Mas and Salu Bulo, will be available for potential conversion to Proven Ore Reserves.

An updated Ore Reserves Estimate for the Awak Mas and Salu Bulo deposits, are almost complete and expected to be announced imminently.

Salu Bulo Geology and Mineralisation

The Awak Mas Gold Project currently contains three separate MREs: Awak Mas (1.97Moz), Salu Bulo (0.19Moz) and Tarra (0.13Moz) for a total of 2.29Moz. In addition, there are numerous prospects over the Contract of Work area and especially in the near mine area where gold anomalism or prospective geology has been identified and requires follow up.

Awak Mas is a high level, low sulphidation hydrothermal system which is overprinted by a strong sub-vertical fracture control which has channelled the mineralising fluids. Two principal overprinting settings for gold mineralisation are identified:

- Shallow dipping mineralisation, which has formed by mineralising fluids that have migrated laterally along foliation parallel, shallowly dipping favourable strata. These zones are conformable with stratigraphy and may develop medium to high grades proximal to sub-vertical structures, grading to very low grades in areas (internal waste zones) distally.
- 2. Sub-vertical feeder structures, which are considered to be the conduit for early mineralising fluids and in a subsequent overprinting event, have carried late-stage hydrothermal mineralising fluids depositing gold in some of the sub-vertical structures that crosscut the strata hosting shallow dipping mineralisation. This multi-phase gold mineralisation is characterised by milled and crackle breccia, vuggy quartz infill, and stockwork veining with distinct sub-vertical feeder structures, and typically features higher grade mineralisation than shallow dipping zones.

These mineralisation styles vary in prominence across the Awak Mas Gold Project.

Typically, shallow dipping conformable mineralisation is ubiquitous across the Awak Mas deposit and tends to
account for the lower grade mineralisation (except proximal to feeder zones). At Salu Bulo, zones of strongly
hematised breccias containing high gold grades are currently interpreted to be analogous to the conformable
mineralisation that occurs at Awak Mas but have only been identified at the northern end of the Biwa / Bandoli
trend and typically feature higher gold grades.

Sub-vertical feeder structures are absent in some areas of Awak Mas, however they tend to account for the
higher grade mineralisation where they occur. At Salu Bulo, sub-vertical feeder structures are prominent
throughout all of the areas encapsulated by the MRE and contain grades commensurate with these structures at
Awak Mas.

Sampling and Sub-Sampling Techniques

Most of the sampling data used for the MRE is historical where sampling practices were carried out under the relevant company's protocols and procedures to industry practice of the time.

Sampling for the most recent close-spaced drilling at Salu Bulo has been carried out using HQ3 size Diamond Drill Hole whole core only, on nominal 1m intervals. The entire sample was crushed to a nominal 2-3mm, and a 1kg sub-sample was pulverised to produce a 40g fire assay charge.

Sample preparation and analysis was conducted at two laboratories in Jakarta. Geoservices was the primary laboratory, however the Intertek laboratory (which has been used as a check laboratory to date) was also used for some sample batches after a flooding event at Geoservices. Irrespective of which laboratory the same process was employed and involved:

- Samples weighed and dried at 105°C.
- Jaw and Boyd crushed to nominal 2-3mm.
- 1kg sub-sample rotary split for final preparation.
- Sub-sample pulverised by LM2 ring mill pulverisers to 95% passing 75microns for lab analysis, and
- 200g pulp aliquot for analytical analysis.

The nature, quality and appropriateness of the sample preparation technique is consistent with industry standard practices.

Sample Analysis Method

Current gold analysis by Nusantara has used a 40g charge fire assay method with an AAS finish, carried out by Geoservices or Intertek in Jakarta.

There is no additional element analysis included for this close spaced drilling program.

Quality Assurance and Quality Control

Coarse reject duplicate, coarse blanks, and both intra and umpire laboratory pulp duplicates were used to ensure the sampling of the close spaced drilling campaign was representative and un-biased. Control duplicate samples constitute 10-15% of the total submitted samples.

The following QC sampling protocols and insertion rates have been adopted for the close spaced diamond drilling:

- Certified Refence Material (5%).
- Coarse Blank Material (2.5%).
- Coarse Duplicate Samples (5-10%).
- Blind pulp assay check duplicates, resubmitted to primary laboratory (2%).
- Umpire pulp assay check duplicates (5%).

Random primary laboratory inspections undertaken on a monthly to quarterly basis, however due to COVID-19 restrictions this regularity was reduced.

Performance of the control samples are regularly monitored, with any disparities investigated and remedied, regular QAQC reporting, and meetings are held on at least a monthly basis.

Results to date demonstrate an acceptable level of accuracy and precision.

Geological Interpretation

The mineralisation geometry at Awak Mas is complex and variable but generally has a main shallow orientation parallel to the foliation at ~30° toward the northeast. A secondary mineralisation orientation is sub-vertical to steeply east dipping developed along north-south oriented feeder structures. Salu Bulo features clearly defined N-NE dipping flat, breccia hosted zones and steeper, N-S striking narrow vein to stockwork zones.

A campaign of close-spaced drilling, to approximately 15mN x 15mE, was completed for selected areas of the Awak Mas and Salu Bulo deposits. This increased the confidence in the definition of mineralised domains and supported the detailed definition of ore and waste boundaries in these areas, while also shedding light on the local grade architecture, which informed the grade interpolation in more widely drilled areas.

Construction of mineralised volume domains was a multi-stage process incorporating all the components from the geological framework models. The modelling relies extensively on the detailed historical surface interpretive maps to define the mineralisation control, geometry and grade continuity.

Robust geometrically simple domains were interpreted, incorporating internal dilution to ensure grade continuity and using a nominal geological based lower grade cut-off of 0.2g/t Au. A minimum down hole length of 2m (which equates to 1.5m true width) was employed in the interpretation of the estimation domains.

Estimation methodology

The grade estimation approach for the Awak Mas deposit used a combined Localised Uniform Conditioning ("LUC") and Ordinary Kriging ("OK") technique, grade estimation used for Salu Bulo was entirely Ordinary Kriging.

Mineral Resource Classification

The Mineral Resource has been classified as Measured, Indicated and Inferred on the basis of a range of qualitative criteria.

- data support as defined by drill spacing.
- confidence in the domain interpretation.
- data quality issues affecting particular zones.
- quality of the estimate (slope of regression), and
- reasonable prospects for eventual economic extraction considerations.

Classification of the July 2021 MRE has only been changed in the areas of the close-spaced drilling at Salu Bulo. The remainder of the classification remains unchanged. Areas classified as Measured apply to the parts of the Awak Mas and Salu Bulo deposits where the close-spaced drilling to 15m x 15m has been completed, and where the level of understanding of the mineralisation continuity and quality was considered to be sufficient to allow for mine planning and final evaluation of the economic viability.

Areas classified as Indicated generally applied to regions of 50m or less drill intercept spacing, where the level of understanding of the mineralisation continuity and quality was considered to be sufficient to allow for mine planning and evaluation of the economic viability.

Areas classified as Inferred generally applied to regions of 50m or greater drill spacing (up to 100m), where the geological evidence was sufficient to imply but not verify the geological and grade continuity.

All remaining estimated material is unclassified and not reported as part of the Mineral Resource.

Classification of the Mineral Resource reflects the Competent Person's view of the deposit.

Figure 7: Orthogonal view of Salu Bulo designed pit showing MRE model blocks colour coded by Resource category

Mineral Resource Reporting

The Awak Mas Gold Project Mineral Resource Estimate has been reported within a US\$1600/oz gold price constraining Mineral Resource Shell as detailed in table 4 below.

Table 4: Awak Mas deposit Mineral Resource Statement by category. The July 2021 MRE is reported inside US\$1,600/ozPit Shell at 0.5g/t Cut-off.

Deposit	Category	Tonnes (Mt)	Gold Grade (g/t)	Contained Gold (Moz)
Awak Mas	Measured	2.2	1.58	0.11
	Indicated	36.5	1.41	1.66
	Inferred	5.9	1.10	0.21
	Sub-Total	44.6	1.38	1.97
Salu Bulo	Measured	0.6	2.31	0.05
	Indicated	1.6	2.14	0.11
	Inferred	0.8	1.26	0.03
	Sub-Total	3.0	1.95	0.19
Tarra	Measured	-	-	-
	Indicated	-	-	-
	Inferred	3.0	1.29	0.13
	Sub-Total	3.0	1.29	0.13
TOTAL	Measured	2.9	1.74	0.16
	Indicated	38.1	1.44	1.77
	Inferred	9.7	1.17	0.36
	TOTAL	50.6	1.41	2.29

1. Mineral Resources are not Mineral Reserves and do not have demonstrated economic viability.

2. All tonnage, grade and ounces have been rounded and minor discrepancies in additive totals may occur.

3. Cut-off grades were determined using a base gold price of US\$1450/oz (Awak Mas) and US\$1400 (Salu Bulo), metallurgical recoveries supported by testwork and based on all material being processed via a Whole of Ore CIL flowsheet.

The adopted cut-off grade for reporting is 0.5g/t Au and is based on the Ore Reserve cut-off grade (0.5g/t Au) from the 2018 DFS and 2020 DFS addendum².

Reasonable prospects for eventual economic extraction were based on the use of constraining Mineral Resource shells within which the MRE was reported as shown in figure 7 above. The shells were established using Whittle software, with updated all-in cost parameters and a base gold price of US\$1450/oz for Awak Mas and US\$1400/oz for Salu Bulo.

The robustness and continuity of the modelled mineralised zones is clearly evident at the 0.5g/t Au cut-off grade where continuity can be reasonably assumed between drill holes and along the entire strike length of the Mineral Resource.

² Refer to announcement "Awak Mas NPV Increases by 240% to USD517M" dated 29 June 2020

Grade continuity is more robust at a higher-grade cut-off of 1g/t Au. The current MRE is considered to be a low-risk model which reasonably reflects the likely outcome from selective mining.

JORC CODE, 2012 EDITION – TABLE 1

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling	Nature and quality of sampling (eg cut channels, random chips, or	Sampling has been carried out using mainly Diamond Drill Hole ("DDH") Core,
Techniques	specific specialised industry standard measurement tools appropriate	and to a much lesser extent Reverse Circulation ("RC") chip sampling.
Techniques	specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.	 and to a much lesser extent Reverse Circulation ("RC") chip sampling. Drilling was conducted in a number of campaigns by several companies since 1991, with four main phases: 2017-2021 : Nusantara Resources Limited ("NUS"). 2011-2012 : One Asia Resources Limited. 2006-2007 : Vista Gold (Barbados) Corporation, and 1991-1998 : Battle Mountain Gold Company/Masmindo Mining Corporation Limited. Nusantara has completed a close-spaced drilling program totalling 11,845m in 229 diamond drill holes across three Initial Mining Areas comprising: 54 holes for 3,677m in the Tanjung Domain of the Awak Mas deposit during August to November 2020, 78 holes for 2,885m in the Mapacing Domain of the Awak Mas deposit during November 2020 to early January 2021 and 97 holes for 5,283m in the Salu Bulo deposit during October 2020 to March 2021. Sampling for these three recent programs has been carried out using whole core only. All drill core was generally sampled on 1m intervals, contingent on geology and core recovery.
		 Core was collected directly from the core barrel into core boxes; all core samples were taken as full core, with consideration for maximum sample volume - retaining half core for reference was not required for these close spaced drilling programs.

Criteria	JORC Code explanation	Commentary
		 Minimum interval was 0.4m and maximum 1m for mineralised material, and Maximum 2m for the material that visually appears unmineralised. No specialised measurement tools, e.g., downhole gamma sondes, or handheld XRF instruments, etc. were employed.
	Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.	During the period from 2017 to 2021, sampling was carried out under Nusantara's protocols and QAQC procedures as per industry best practice. Quality Assurance (" QA ") and Quality Control (" QC ") protocols included the monitoring and analysis of inserted certified reference material, blanks and duplicates samples to ensure sample representivity. Samples were cut at or about the 1m interval mark with whole core bagged individually in labelled calico bags. Fractured and veined core, that was liable to "fall apart", was wrapped in masking tape prior to cutting to sample length. Historical sampling was carried out under the relevant company's protocols and procedures and is assumed to be industry standard practice for the time.
	Aspects of the determination of mineralization that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling	All Nusantara drilling was diamond core (predominantly HQ3 size). Full core was sampled on nominal 1m intervals, the entire sample crushed to a nominal 2-3mm, and a 1kg sub-sample was pulverised to produce a 40g fire assay charge.

Criteria	JORC Code explanation	Commentary
	problems. Unusual commodities or mineralization types (eg	
	submarine nodules) may warrant disclosure of detailed information.	
Drilling	Drill type (eg core, reverse circulation, open-hole hammer, rotary air	The Awak Mas – Tanjung and Mapacing Domain close spaced drilling
Techniques	blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple	completed by Nusantara has consisted of:
	or standard tube, depth of diamond tails, face-sampling bit or other	All HQ3 core sizes.
	type, whether core is oriented and if so, by what method, etc).	Wire-line triple/split tube diamond core drilling.Downhole Survey using ProShot Gen 4 Camera.
		Hole depths for the Tanjung program varied from 27m to 119m depth with
		average hole depth of 68.1m while hole depths for the Mapacing program
		varied from 18m to 59m depth, with average hole depth of 37m. The Salu
		Bulo program had hole depths varying from 20m to 98m depth with average
		hole depth of 54.5m.
		Historic core drilling (1991-2012) at Awak Mas consisted of 732 drill holes for
		86,932m:
		 Dominantly HQ core sizes but has included BQZ, NQ2, HQ2, HQ3, PQZ and PQ3.
		 Orientation spear used for structural orientations, and Depths varied from 11m to 450m, average depth of 126m.
		Historic RC drilling (1995-1996) of 158 holes for 16,290 metres was
		completed:
		 Using a 5.25" face sampling hammer, limited holes used a 4.75" hammer, and
		• Depths varied from 23m to 202m, average drill depth of 103m.
Drill Sample	Method of recording and assessing core and chip sample recoveries	Core recovery and drill meterage recorded by field geologists and trained core
Recovery	and results assessed.	checkers at drill site, prior to transfer of the core to the core shed, and

Criteria	JORC Code explanation	Commentary
		Recovery percentage (%) was recorded in the geotechnical records as
		equivalent to the length of core recovered, as a percentage of the drill run.
		Overall recovery within the mineralised zones is >96%.
	Measures taken to maximize sample recovery and ensure	Wireline triple/split tube system and large diameter PQ/HQ core were utilised
	representative nature of the samples.	(subject to depth restrictions) to maximise recovery and ensure that the
		samples are representative of the material being sampled.
	Whether a relationship exists between sample recovery and grade	The DDH sample recovery in the transitional and fresh rock zones is very high
	and whether sample bias may have occurred due to preferential	and no significant bias is apparent. Recoveries in oxidised rock are lower.
	loss/gain of fine/coarse material.	
Logging	Whether core and chip samples have been geologically and	Drill core for the Close Spaced program was photographed and logged prior
	geotechnically logged to a level of detail to support appropriate	to sampling whole core, no half core was preserved.
	Mineral Resource estimation, mining studies and metallurgical	Core has been geologically and geotechnically logged to a level of detail
	studies.	appropriate to support mineral resource estimation and mining studies.
		Lithology, mineralisation, alteration, foliation trend, fracturing, faulting,
		weathering, depth of soil and total oxidation were recorded.
		Orientation of fabrics and structural features were logged.
		Visually mineralised zones were able to be logged and interpreted before the
		assays were available. These observations were used to update the
		mineralisation model which is a valuable targeting tool for successive hole
		planning although the Close Spaced program was drilled at pre-determined
		collar positions to provide the resultant 15m x 15m in-fill drill spacing.
L		

Criteria	JORC Code explanation	Commentary
	Whether logging is qualitative or quantitative in nature. Core (or costean, channel etc) photography.	Logging has been conducted both qualitatively and quantitatively – full description of lithologies, alteration and comments are recorded, as well as percentage estimates on veining and sulphide amount. All Nusantara diamond core has been digitally photographed.
	The total length and percentage of the relevant intersections logged.	Total length of the Awak Mas Tanjung, Mapacing and Salu Bulo Domain close spaced drilling completed by Nusantara is 11,845m (229 holes) of which 100% has been logged.
Sub-Sampling Techniques	If core, whether cut or sawn and whether quarter, half or all core taken.	Whole core samples were taken generally on metre intervals, dependent on logged geological contacts.
and Sample Preparation	If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.	All sampling was from diamond core.
	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	Samples for this program of drilling have been cut and bagged on site and despatched to either the Geoservices or Intertek assay laboratory in Jakarta. All sample preparation was completed at the respective lab in Jakarta; the process involved:
		 Samples weighed and dried at 105°C; Jaw and Boyd crushed to nominal 2-3mm; 1kg sub-sample rotary split for final preparation; Sub-sample pulverised by LM2 ring mill pulverisers to 95% passing 75microns for lab analysis, and 200g pulp aliquot for analytical analysis.
		The nature, quality and appropriateness of the sample preparation technique is consistent with industry standard practices.

Criteria	JORC Code explanation	Commentary
	Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.	For core sampling from the Close Spaced drill program, whole core is sampled.
	Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.	Coarse reject duplicate, coarse blanks, and both intra and umpire laboratory pulp duplicates were used by Nusantara to ensure the sampling was representative and un-biased. Control duplicate samples constitute 10-15% of the total submitted samples. For historical drilling programmes, duplicate sampling and check assaying was completed and no significant bias was identified.
	Whether sample sizes are appropriate to the grain size of the material being sampled.	A sample size of 3-5kg is considered appropriate and representative of the material being sampled given the width and continuity of the intersections and the grain size of the material being collected.
Quality of Assay Data and Laboratory Tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	Current gold analysis by Nusantara has used a 40g charge fire assay method with an AAS finish. The primary assay laboratory used is Geoservices in Jakarta however, some of the primary sampling from the Salu Bulo program was performed at the Intertek laboratory in Jakarta (the usual 'check' laboratory) due to operational issues. There is no additional element analysis included for this close spaced drilling program.
		The gold fire-assay analysis is a total assay method, which is an industry standard for gold analysis, and an appropriate assay method for this type of deposit.

Criteria	JORC Code explanation	Commentary
	For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	No geophysical tools were used or data analysed.
	Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.	 The following QC sampling protocols and insertion rates have been adopted for the current diamond drilling; Certified Refence Material (5%). Coarse Blank Material (2.5%). Coarse Duplicate Samples (5-10%). Blind pulp assay check duplicates, resubmitted to primary laboratory (2%). Umpire pulp assay check duplicates (5%). Random primary laboratory inspections undertaken on a monthly to quarterly basis however due to Covid-19 restrictions this was reduced somewhat. Performance of the control samples are regularly monitored, with any disparities investigated and remedied, regular QAQC reporting and meetings are held on at least a monthly basis. Results to date demonstrate an acceptable level of accuracy and precision.
Verification of Sampling and Assaying	The verification of significant intersections by either independent or alternative company personnel.	Significant intersections were reviewed by the Geology Manager and Senior Geologists following receipt of the assay results. All assay results are processed and validated by the GIS/Database Administrator prior to loading into the database. This includes plotting the standard and blank performances, and review of duplicate results.

Criteria	JORC Code explanation	Commentary
		Original assay certificates are issued as PDFs for all results and compared
		against digital CSV files as part of data loading procedure into the database.
		The General Manager Geology reviews all tabulated assay data as the
		Competent Person for the reporting of Exploration Results.
	The use of twinned holes.	No twinned holes have been drilled by Nusantara.
	Documentation of primary data, data entry procedures, data	Field drilling data is recorded directly into logging templates in Excel
	verification, data storage (physical and electronic) protocols.	spreadsheet format on laptop computers. Excel spreadsheets are imported to
		MS Access format for validation and management by the GIS/Database
		Administrator onsite.
		All drilling data is uploaded and managed via a centralised Dropbox facility
		with restricted access.
		Database is audited by an external consultant (Cube Consulting) prior to
		reporting of Exploration Results and Mineral Resource estimates.
	Discuss any adjustment to assay data.	All data below detection limit (<0.01 ppm Au) and " 0 " values have been
		entered as a small value of 0.005ppm Au which is half the detection limit for
		the gold analysis.
		Negative values, missing samples, interval gaps denoted by no sample (" NS ")
		and cavities were assigned as nulls (blanks) and ignored when extracting
		composites for grade interpolation.
		Samples not received by the laboratory, or with insufficient sample weight for
		analysis had the interval left blank in the database.

Criteria	JORC Code explanation	Commentary
Location of Data Points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	 Collars were initially located by handheld Global Positioning System ("GPS") with an accuracy of approximately 5-15m, dependent on the satellite coverage. Additionally, hole positions were validated by tape and compass measurement from nearby surveyed historic drill collars. All Nusantara drill collar will be located by third party surveyors using Differential Global Positioning System ("DGPS") or total station Electronic Distance Measuring ("EDM") survey equipment to an accuracy of approximately 0.1m. Down-hole surveys were routinely carried out, generally on 30m intervals using a digital multi-shot instrument Coretell ORIshot (Gen4). The 3D location of the individual samples is considered to be adequately established, and consistent with accepted industry standards.
	Specification of the grid system used.	All drillhole data is referenced in the UTM WGS 84 Zone 51 (Southern Hemisphere) coordinate system.
	Quality and adequacy of topographic control.	Topographic mapping of the Awak Mas Gold Project area by Airborne Laser Scanning (" LIDAR ") survey has been carried out by P.T. Surtech in November 2017. Topographic control now exists to a vertical and horizontal accuracy of 0.15m and is incorporated into all mineral resource estimates.
	Data spacing for reporting of Exploration Results.	As highlighted in the 2018 Definitive Feasibility Study (DFS), the Company believes there is potential for the Project to realise a grade uplift when the ore body is mined. As explained in the DFS, the existing Reserve drill spacing,

Criteria	JORC Code explanation	Commentary
Data Spacing and		and block modelling is believed to have the potential to under-report higher grade vertical vein structures.
Distribution		Following the 2019 close spaced drilling program designed to deliver a nominal 12.5-15m spacing at the Rante area of the Awak Mas deposit, during November 2020 to January 2021 a further close spaced drilling exercise has been completed within the Awak Mas deposit to drill and sample the potential high-grade subvertical vein structures within the Tanjung domain and infill the predominantly flat-lying mineralisation at the Mapacing deposit. A similar close spaced drilling program was also conducted at the Salu Bulo deposit during the October 2020 to March 2021 period to infill the northern area of the Biwa and Bandoli structures within the potential pit as well as the Lelating deposit to the west with the aim being to improve ore-body knowledge at a mining scale and provide Measured resource in line with the requirement of the ITE reviewers.
		Sampling of drill core has generally been at 1m intervals.
	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	Drill hole spacing is sufficient to imply geological and grade continuity with the lateral extents of mineralisation not fully defined by the current drilling.
	Whether sample compositing has been applied.	Sample compositing has not been applied.
Orientation of Data in Relation to	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	Drilling sections are orientated perpendicular to the strike of the mineralised host rocks.

Criteria	JORC Code explanation	Commentary
Geological Structure		Drill holes were inclined between -40° and -85° to optimise intercepts of mineralisation with respect to thickness and distribution of the targeted subvertical to shallow dipping zones. Current diamond drilling has confirmed that the drilling orientation has not introduced any sampling bias.
	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	The mineralisation occurs in multiple orientations as a stockwork system, with a dominant shallow to moderate N-NE dipping, foliation parallel, flat-lying orientation, and less well developed narrow sub-vertical structures at Awak Mas with clearly defined N-NE dipping flat, breccia hosted zones and steeper, N-S striking narrow vein to stockwork zones at Salu Bulo. Drilling with steep angled holes in most instances provides a representative sample across the mineralisation.
Sample Security	The measures taken to ensure sample security.	 Chain of Custody is managed by Nusantara whereby; All samples are placed into calico bags with sample tickets and clear sample ID numbering on the outside. Samples were bagged into polyweave sacks, zip tied, with the sample numbers written on the outside of the sack. Samples were stored onsite within a locked facility ready for dispatch; Prior to sample dispatch, the sample numbers, duplicates, standards were checked against the dispatch form. Samples were freighted by road to Belopa, and then air freighted to the Geoservices laboratory in Jakarta, and Geoservices in Jakarta notified Nusantara when the samples had been securely received intact.
Audits or Reviews	The results of any audits or reviews of sampling techniques and data.	The sampling procedures and drilling data were reviewed and audited by Denny Wijayadi (Cube Consulting Senior Geologist) while onsite from 11 to 15

Criteria	JORC Code explanation	Commentary
		September 2017. The site visit involved inspection of the drilling in progress, onsite sample preparation facilities (not in use for this Close Spaced drilling program), and an audit of the Geoservices laboratory in Jakarta.
		Cube (2017) has previously independently reviewed, verified and validated data prior to the Mineral Resource estimate in May 2017, as documented in the associated Awak Mas Technical Report (2017).
		There were no adverse material results from any of the reviews or audits.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral	Type, reference name/number, location and ownership including	The Awak Mas Gold Project includes the three main deposit areas of Awak
Tenement and Land Tenure Status	agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	Mas, Salu Bulo and Tarra for which current mineral Resources exist and have been reported to JORC Code (2012) guidelines. Nusantara holds a 75% beneficial interest in the Awak Mas Gold Project via a 7 th Generation Contract of Work (" CoW ") through its 75% owned subsidiary PT Masmindo Dwi Area.
		PT Masmindo Dwi Area is an Indonesian foreign investment company, which owns the exploration and mining rights to the Awak Mas Project through the CoW with the Government of the Republic of Indonesia. The Awak Mas Gold Project has a long history involving multiple companies
		through direct ownership, joint venture farm-ins, option to purchase agreements, or equity arrangements;
		 Battle Mountain discovered the Awak Mas deposit in 1991 after earning a 60% equity in the original partnership between New Hope and PT Asminco. Lone Star (1994) acquired the equity of both Battle Mountain and New Hope. Gascoyne structured an agreement which combined the various equities under Masmindo. Placer (1998) entered, and then later withdrew from a Joint Venture ("JV") with Masmindo. Vista Gold (2004) purchased 100% of Masmindo. Pan Asia (2009), now One Asia, acquired a 60% interest via a JV with Vista Gold upon completion of a Feasibility Study ("FS") and Environmental Impact Assessment ("AMDAL"). One Asia (2013) through its subsidiary Awak Mas Holdings purchased

Criteria	JORC Code explanation	Commentary
		 100% of the Project from Vista Gold, and Nusantara Resources Limited (formerly Awak Mas Holdings) demerged from One Asia with a 100% interest in the Awak Mas Gold Project and listed on the Australian Securities Exchange ("ASX") on the 2nd August, 2017.
		The 7 th Generation CoW was granted on 19 February 1998 and covers an area
		of 14,390 ha.
		The CoW allows for 100% ownership and is located within a non-forested area
		– (APL) Land for Other Uses.
		The AMDAL for the project has been approved and Environment Permit Issued
		April 2017. The Competent Person is not aware of any other agreements that
		are material to the Project.
	The security of the tenure held at the time of reporting along with	The CoW defines a construction period of 3 years and an operating period of
	any known impediments to obtaining a licence to operate in the	30 years.
	area.	The Competent Person has not been advised of any environmental liabilities
		associated with the Awak Mas Project at this time.
Exploration Done	Acknowledgment and appraisal of exploration by other parties.	Since the discovery of the Awak Mas deposit by Battle Mountain in 1991, a
by Other Parties		number of historical resource assessments have been completed.
		Previous exploration work in the project area includes systematic exploration
		by several operators, including Asminco and New Hope in 1987, followed by
		Battle Mountain, Lone Star, Gasgoyne, JCI, Masmindo Mining and Placer Dome
		between 1991 and 2004.
		Vista Gold and One Asia undertook the most recent exploration work between
		2004 and 2013 which included the compilation and cataloguing of historic

Criteria	JORC Code explanation	Commentary
		data, completion of significant infill resource drilling, and re-estimation of the contained, classified mineral resources.
		A mineral resource estimate (" MRE ") update was completed by Tetra Tech in 2013 based on the results of the One Asia infill and metallurgical testwork drilling program. The MRE was reported in accordance with the JORC Code (2012) guidelines.
Geology	Deposit type, geological setting and style of mineralization.	Awak Mas deposit
		A high level, low sulphidation hydrothermal system has developed at Awak Mas which is overprinted by a strong sub-vertical fracture control which has channelled the mineralising fluids.
		The mineralising fluids have exploited these pathways and migrated laterally along foliation parallel shallowly dipping favourable strata.
		In addition to the conformable style of mineralisation there is a late-stage hydrothermal overprint that has also deposited gold in some of the major sub vertical structures.
		The multi-phase gold mineralisation is characterised by milled and crackle breccias, vuggy quartz infill, and stockwork quartz veining with distinct sub-vertical feeder structures.
		Host lithologies for mineralisation are mainly the cover sequence of meta- sedimentary rocks and to a lesser degree the underlying basement sequence of diorites and biotite dominant schists. The cover and basement sequences are separated by an unconformable and sheared contact.
		are separated by an uncomormable and sheared contact.

Criteria	JORC Code explanation	Commentary
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:	 A tabulation of location details for the recent drill holes which form the basis for this ASX Release are included in Appendix 1. The historical drilling database consists of; One Asia Drilling (2011-2012) - 87 drill holes for 5,956m. Historic core drilling (1991-2007) of 645 drill holes for 81,045m, and Historic RC drilling (1995-1996) of 158 holes for 16,290 metres.
	If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	 The Phase 1 infill resource drilling completed by Nusantara in 2017-2018 at Awak Mas (25 holes for 4,263m) has been previously reported and incorporated in the most recent MRE update to the ASX; Awak Mas Resource Increased by 0.2Moz. Dated 31 January 2018; <i>Table 1, Appendix 1 Awak Mas Rante Domain - Exploration Results Tabulation.</i>
		The complete historical dataset of 890 holes at Awak Mas, that were previously drilled have not been included as they are not Material to the reporting of the current close spaced Exploration Results. All historical drilling information has been previously reported in the following
		 ASX release; Awak Mas Gold Project Resource Update. Dated 9 May 2017, Mineral Resource (JORC 2012) – 1.74 Moz, New Geological Model;
Data Aggregation Methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high	Exploration results are reported as length weighted averages of the individual sample intervals.

Criteria	JORC Code explanation	Commentary
	grades) and cut-off grades are usually Material and should be stated.	 The following criteria have been applied in reporting of the Exploration results: Intercepts reported are intervals of Au >1g/t with intervals of <1g/t Au up to 3m included. Where no individual intercepts >1g/t exist, the intercepts reported are intervals of Au >0.1g/t with intervals of <0.1g/t Au up to 3m included. No high-grade capping has been applied, or was necessary, and All downhole intersection lengths and grades are reported to one decimal place.
	Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated.	Any zones of significantly high-grade gold mineralisation have been separately reported in Appendix 1. Metal equivalent values have not been used.
Relationship between Mineralization Widths and Intercept Lengths	These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralization with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').	The mineralisation geometry is complex and variable, but generally has a main shallow orientation parallel to the foliation at ~30° towards the northeast. A secondary mineralisation orientation is steeply east dipping to sub-vertical north-south feeder structures. The drilling orientation is a compromise to target both mineralisation orientations, and generally the downhole length approximates the true width for the dominant broad and shallow dipping mineralised zones. Downhole intercepts of the steep sub-vertical structures will have a downhole length significantly longer than the true width.

Criteria	JORC Code explanation	Commentary
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Relevant drill hole location plans, representative drill sections are included within the main text of this release. All mineralised intersections used for the reporting of the Exploration Results are tabulated in Appendix 1.
Balanced Reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	All exploration results from the recently completed drilling program that relate to the Awak Mas Tanjung and Mapacing Domains and the Salu Bulo Biwa, Bandoli and Lelating Domains have been reported.
Other Substantive Exploration Data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	 Metallurgical testwork for the Awak Mas Gold Project by Minnovo (2017) has indicated improved gold recoveries of 92%-98% based on Whole of Ore ("WOL") leaching on samples composited from onsite drill core. Full details on the WOL testwork been reported in the following ASX release; Awak Mas Gold DFS Optimisation – Metallurgical Breakthrough, dated 10 October 2017.
Further Work	The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	The Awak Mas Gold Project is an active growth project with additional areas identified for infill (25m x 25m) and extensional drilling, including targets at depth and outside of the current mineral resource limits. Drilling has focussed on upgrading the majority of the current Inferred Mineral Resources to the Indicated category, as well as growth of the Mineral Resource outside of the currently delineated mineralised domains.

Criteria	JORC Code explanation	Commentary
		The close-spaced drill program as reported focussed on bringing Initial Mining
		Areas at Awak Mas Tanjung and Mapacing domains and the Salu Bulo Biwa,
		Bandoli and Lelating domains to a Measured classification.
		Planned future drilling will continue to target extensions to the east, and at
		depth at the Awak Mas Rante domain and along strike to the north and south
		of Salu Bulo, in areas where the trend of mineralisation is open and untested
		by historical drilling. The main objective is growth of the Mineral Resource
		outside of the currently delineated mineralised domains.
		All drill collars from the current drill program will be surveyed using DGPS or
		total station EDM equipment.
		Further detailed core re-logging and development of a structural model will
		help progress the current geological model and enable its use as a drill
		targeting tool both for resource delineation and definition of new exploration
		targets within the CoW area.
		An updated Awak Mas Project mineral resource estimate will be completed
		once all assay, survey and logging data from the close-spaced in-fill drilling
		program are finalised, the geological interpretation refined, and interpretation
		modifications based on refinements to the geological model are available.

Section 3 Estimation and Reporting of Mineral Resources

(Criteria listed in section 1, and where relevant in section 2, also apply to this section.)

Criteria	JORC CODE Explanation	Commentary
Database integrity	Measures taken to ensure that data has not been corrupted by, for example, transcription or keying errors, between its initial collection and its use for Mineral Resource estimation purposes.	Drill data were supplied by Nusantara as a Microsoft Access database. Random checks were made comparing between the database and the original digital data spreadsheets for collar, survey, assay and lithology data. The check data were selected to cover the whole of the deposits and critical areas such as mineralisation boundaries and high-grade zones.
	Data validation procedures used.	 Data validation procedures included: Check for erroneous hole collar outliers - easting, northing, elevation. Check actual versus planned collar coordinates. Downhole survey checks. Check sampling and logging overlaps, gaps, end of hole discrepancies between data tables. Check for unique sampling identification and identification of any duplicate samples. Management of preferred assays and precedence numbering. Lookup fields and data coding management. Assay table was checked for negative assays (other than below detection limit values), missing assays or assays outside of expected ranges. Visual inspection of the drill holes in Surpac 3D workspace to identify spatial inconsistencies of drill hole.
Site visits	Comment on any site visits undertaken by the Competent Person and the outcome of those visits.	 Nusantara's sampling procedures and drilling data were reviewed and audited by Denny Wijayadi (Cube Consulting Senior Geologist) while onsite from 11 to 15 September 2017. The site visit involved inspection of the drilling in progress, onsite sample preparation facilities, and an audit of the Geoservices laboratory in Jakarta. Cube Consulting Senior Consultant Geologists Adrian Shepherd and Denny Wijayadi were onsite from the 27th to the 30th of January 2017, prior to the May 2017 Mineral Resource estimate and undertook the following: Independent summary check logging of 3,500 metres of diamond drill core from 19 selected representative drill holes.

Criteria	JORC CODE Explanation	Commentary
		 Collection of 111 independent check core samples were to verify the tenor of mineralisation. Field verification by handheld GPS of 19 selected collar locations at Awak Mas and Salu Bulo. Retrieval of additional hardcopy and digital data from site personnel. Michael Millad, Cube director and Principal Geologist/Geostatistician, is the Competent Person for the Mineral Resource estimation and Reporting (i.e. Section 3) portion of the work undertaken.
	If no site visits have been undertaken indicate why this is the case.	Site visits were completed by Cube personnel.
Geological interpretation	Confidence in (or conversely, the uncertainty of) the geological interpretation of the mineral deposit.	Systematic and regular drilling provide a degree of confidence in both geological and mineralisation continuity within the gross mineralised zones. However, there is degree of uncertainty in the grade continuity at less than the current average drill hole spacing, which is a result of the complex mineralisation style of multiple veining orientations and high short scale grade variability. A campaign of close spaced drilling, to approximately 15 mN x 15 mE, was completed for parts of Mapacing and Tanjung domains at the Awak Mas deposit as well as parts of the Biwa, Bandoli and Lelating domains at the Salu Bulo deposit. This increased the confidence in the definition of mineralised domains and supported the detailed definition of ore and waste boundaries in these areas, while
		also shedding light on the local grade architecture, which informed the grade interpolation in more widely drilled areas.
	Nature of the data used and of any assumptions made.	The mineralisation was primarily defined by diamond drill core, with the aid of surface mapping and outcrop locations.

Criteria	JORC CODE Explanation	Commentary
	The effect, if any, of alternative interpretations on Mineral Resource estimation.	Previous interpretations prior to 2017 have focussed on the definition of multiple narrow complex zones based on a nominal grade cut-off of 0.5g/t Au which is close to the anticipated economic grade cut-off.
		Close spaced drilling (15 mN x 15 mE) in IMAs of the Awak Mas and Salu Bulo deposits has given a better understanding of the mineralisation and a sharp definition of ore and waste boundaries. The close spaced drilling leaves some room for alternative interpretations but there would be little difference to the volumes of the mineralised domains.
		In areas away from the close spaced drilling there is still some assumption of grade continuity between adjacent holes. However, the knowledge gained from the close spaced drilling has resulted in the gold grade interpolation parameters for areas of more widely spaced drilling being refined to better reflect the observed local grade architecture. This has resulted in grade models that show a sharper contrast between the ore and waste than previous models. The current interpretation is considered to be a low-risk robust model which reflects the likely outcome from open pit selective mining.
	The use of geology in guiding and controlling Mineral Resource estimation.	Incorporation and interpretation of the historical geological data from high quality surface mapping, trenches and drilling have been paramount in developing the geological model for Awak Mas which forms the basis for the interpretation of the mineralised domains for estimation. Structural and lithological interpretation provided a guiding framework for the modelling of the estimation domains. Robust geometrically simple domains were interpreted, incorporating internal dilution to ensure grade continuity and using a

Criteria	JORC CODE Explanation	Commentary
		length of 2m (which equates to 1.5m true width) was employed in the
		interpretation of the estimation domains.
		In the areas of Mapacing and Tanjung where close spaced drilling (15 mN x 15 mE)
		has been completed, sub-domains have been created using a nominal geological
		based lower grade cut-off of 0.3 g/t Au. With the close spaced drilling, areas of
		internal waste were able to be defined and excluded from the mineralised
		wireframe. These had to have a minimum with of 2m downhole and include 2 or
		more holes to be considered as waste. A similar approach was applied to the use c
		geology to control the mineral resource modelling process at Salu Bulo where clos
		spaced drilling was undertaken.
		The current mineralisation interpretation and geological models have continued to
		be confirmed by infill and extensional drilling completed by Nusantara. Confidence
		in the geological framework and extrapolation outside of the resource limits
		resulted in the discovery of additional significant mineralisation extensions into th
		Highwall area of the Awak Mas deposit.
		At Salu Bulo, Infill drilling has confirmed the spatial correlation of shallow dipping
		thrust zones, sub-vertical structures, and the footwall contact of the hematitic
		mudstone unit with gold mineralisation.
		The additional data supports the interpretation of a broad lower grade halo which
		also encapsulates narrower higher-grade zones along low angle thrust zones
		proximal to the sub-vertical structures.
		The revised geological interpretation warranted the application of a non-linear
		estimation technique at Salu Bulo to better characterise the local grade variability
		at the SMU scale.

Criteria	JORC CODE Explanation	Commentary
	The factors affecting continuity both of grade and geology.	The complex interaction of multi-phased stockwork and breccia mineralisation associated with at least two dominant structural orientations (shallow thrusts and sub-vertical feeders) results in rapid local changes in the grade tenor and orientation at a scale of less than the current average drill hole spacing (25m to 50m).
		Areas of Mapacing and Tanjung that have had close spaced drilling completed show that there is a relatively hard boundary between the ore and internal waste at the local scale. There is, however, a complex interaction between the ore and waste with 'fingers' of waste, some extending over 50m, intruding throughout the mineralised zones.
		Grade and geological continuity is dependent on the interplay of the mineralising structures, preferred host lithology, alteration and veining intensity and the effect of later bounding and offsetting structures. In areas of wider spaced drilling, the local structural complexity is still poorly understood.
		The ladder stockwork vein system developed at Salu Bulo is analogous to that at Awak Mas where there is the inherent complexity of two mineralisation orientations and short scale grade continuity at generally less than the drillhole spacing.
Dimensions	The extent and variability of the Mineral Resource expressed as length (along strike or otherwise), plan width, and depth below surface to the upper and lower limits of the Mineral Resource.	The Awak Mas deposit has been subdivided into five broad geologically based domains: from west to east these are Mapacing, Ongan, Lematik, Tanjung and Rante.

Criteria	JORC CODE Explanation	Commentary
		These predominantly north-south to north-east striking domains lie adjacent to
		each other, and cover an extent of 1,450m EW by 1,050m NS and extend to a
		maximum vertical depth of 400m (~820mRL):
		 Mapacing – Single shallowly NE dipping domain with a strike length 810m, plan width 230m width and average thickness ranging from 5-30m. Ongan – Shallowly dipping and sub-vertical domains with strike extent of 730m, plan width of 150m. Shallow domains vary in average thickness from 5-30m and sub-vertical domains have an average thickness of 5-10m. Lematik – Mainly sub-vertical domains with strike extent of 740m, plan width of 220m and average thickness of 5-60m. A central north plunging (at 60^o) pipe has dimensions of 80m x 80m along a strike of 280m. Tanjung - Shallowly dipping and sub-vertical domains with strike extent of 910m, plan width of 340m. Shallow domains vary in average thickness from 5-40m and sub-vertical domains have an average thickness of 5-10m. Rante - Shallowly dipping and sub-vertical domains with strike extent of 700m, plan width of 320m. Shallow domains vary in average thickness from 20-70m and sub-vertical domains have an average thickness of 5-10m.
		The mineralised domains at Salu Bulo are orientated north-south and have an
		overall combined strike length of approximately 800m.
		Individual interpreted mineralisation domains are between 150 to 500m in strike
		length. Sub-vertical mineralised zones vary from 1.5 to 20m in thickness, however,
		are more commonly between 3 to 10m in thickness. The broader shallowly dipping
		mineralised zones vary in average thickness from 20 to 60m.
		At Tarra , the interpreted mineralised domain is tabular, orientated NW-SE, has an overall strike length of approximately 440m, and dips 70° to the NE.

Criteria	JORC CODE Explanation	Commentary		
		The mineralised domain width varies from 10 to 15m in thickness and extends from the near surface to 300m below the surface.		
Estimation and modelling techniques	The nature and appropriateness of the estimation technique(s) applied and key assumptions, including treatment of extreme grade values, domaining, interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a description of computer software and parameters used.	The grade estimation approach for the Awak Mas deposit used a combined Localised Uniform Conditioning ("LUC") and Ordinary Kriging ("OK") technique. OK was applied to the areas of close spaced drilling and the narrow steep sub- vertical domains with a thickness of less than 10m. In the close spaced drill areas, the internal waste could be confidently sub-domained to separate it from the mineralisation.		
		LUC is a recoverable estimation technique typically used for estimation into small blocks using wider spaced resource definition drilling.		
		The LUC technique was considered appropriate for the areas of wider spaced drilling outside of the close spaced drilling volume, given the high short scale grade variability and the uncertainty associated with the estimation of the local grade tonnage distribution. The risk of sub-domaining out the internal waste in the wider		
		spaced drilled areas was considered to be too high given the highly localised nature of the grade transitions:		
		 The LUC method provides a more accurate representation of the recoverable grade and tonnage at the Selective Mining Unit ("SMU") scale for non-zero grade cut-offs within the broad shallow domains than would typically be achieved by a traditional linear estimator such as OK. In addition, the close spaced drilling has demonstrated that the continuity of mineralisation and internal waste is often less than 50m, which would make sub-domaining of internal waste to enable the use of OK unacceptably risky. The LUC technique is suited specifically for the estimation of grades into blocks that are small relative to the data spacing. The LUC technique works well where the spatial continuity between sections is uncertain based on the current drill spacing. The observations from the recent close spaced drilling resulted in the 		

Criteria	JORC CODE Explanation	Commentary
		modification of interpolation search parameters for the LUC, in order to produce a more rapid grade transition from waste to mineralised zones in the block model. Robust geometrically simple domains were interpreted for areas outside of the
		close spaced drilled volume, incorporating internal dilution to ensure grade
		continuity and using a nominal geological based lower grade cut-off.
		Grade interpolation used 1m composited samples constrained by hard boundaries within the mineralisation zones.
		An appropriate top cutting strategy was used to minimise the influence of isolated high-grade outliers.
		Interpolation parameters were derived using standard exploratory data analysis
		techniques of statistical and continuity analysis. Appropriate interpolation
		strategies were developed on a domain basis using kriging neighbourhood analysis
		("KNA"), which included:
		 Oriented ellipsoidal search radii ranged from 100m to 280m depending on the deposit and estimation domain. Minimum number of samples was set at 10, and the maximum varied from 16
		to 20.
		A change of support correction was applied to produce a recoverable resource
		estimate at the local SMU scale for the LUC estimate.
		The maximum extrapolation distance from last data points was no more than
		100m, which is twice the average drill hole spacing for most of the deposits.
		Computer software used were:
		 Leapfrog Geo v5.0.4 was used for geological interpretation. Surpac version 6.9.1 for domain interpretation, compositing and block modelling. Isatis version 2020 used for statistical and continuity analysis, and grade

Criteria	JORC CODE Explanation	Commontory
Criteria	JOKC CODE Explanation	Commentary
		estimation.
		OK estimates were completed at the Awak Mas domains of Mapacing, and Tanjung
		and at the Salu Bulo Biwa, Bandoli and Lelating domains within the areas of the
		close spaced drilling (15 mN x 15 mE). OK was considered appropriate given the
		closer spaced drilling and the better definition of ore and waste sub-domains.
		Grade interpolation used 1m composited samples constrained by hard boundaries
		within the mineralisation zones.
		An appropriate top cutting strategy was used to minimise the influence of isolated
		high-grade outliers.
		Interpolation parameters were derived using standard exploratory data analysis
		techniques of statistical and continuity analysis. Appropriate interpolation
		strategies were developed on a domain basis using kriging neighbourhood analysis
		("KNA"), which included:
		Oriented ellipsoidal search radii ranged from 10m to 30m depending on the
		deposit and estimation domain.Minimum number of samples varied from 2 to 8, with the maximum set at 16.
		 Estimation was into blocks 5 mN x 5 mE x 2.5mRL.
		Computer software used were;
		Surpac version 7.3 for domain interpretation.
		 Datamine StudioRM 1.7.100 was used for compositing and block modelling Supervisor 8.13.12 used for statistical and continuity analysis.
		• Supervisor 6.15.12 used for statistical and continuity analysis.

Criteria	JORC CODE Explanation	Commentary			
		The block model was restricted to the area immediately within and adjacent to the			
		close spaced drilling. Once estimates were completed the block model was			
		exported to a CSV file from Datamine. The CSV file was then imported into Isatis			
		and 'stamped over' the LUC estimated blocks, replacing the LUC in the close spaced			
		drilling area with the OK estimated blocks.			
	The availability of check estimates, previous estimates and/or mine	Check estimates using Inverse Distance Squared ("ID2") were completed and			
	production records and whether the Mineral Resource estimate takes	compared to the final LUC estimate.			
	appropriate account of such data.	The LUC estimates were compared against the previous MRE's.			
		OK estimates in the areas of close spaced drilling at Mapacing, Tanjung and Rante			
		were compared against the previous MRE's.			
		No mining production has taken place at any of the deposits, other than minor			
		artisanal workings along fault structures.			
	The assumptions made regarding recovery of by-products.	No by-product recoveries were considered.			
	Estimation of deleterious elements or other non-grade variables of	Estimations of any deleterious elements were not completed for the Mineral			
	economic significance (eg sulphur for acid mine drainage	Resource estimate.			
	characterisation).				
	In the case of block model interpolation, the block size in relation to	Awak Mas			
	the average sample spacing and the search employed.	 Non-rotated block model with an azimuth of 000°TN. The LUC panel was set at 20m by 20m by 5m (XYZ) with a block size for local estimation to a SMU size of 5m by 5m by 2.5m (XYZ). The bulk of the drilling data is on 25m by 50m to 50m by 50m grid spacings with local 25m by 25m to 15m by 15m infill holes in several areas (Mapacing, Tanjung and Rante). At Mapacing and Tanjung, in the areas of close spaced drilling (15 mN x 15 mE), a block size of 5m x 5m x 2.5m (XYZ) was used. 			

Criteria	JORC CODE Explanation	Commentary			
		 Appropriate search ellipses were derived using Search were derived from KNA with an average search radius of 140m and anisotropy of 4:4:1 (major/semi/minor). Salu Bulo 			
		 Non-rotated block model with an azimuth of 000°TN. The LUC panel was set at 20m by 20m by 10m (XYZ) with a local estimation, SMU size of 5m by 5m by 2.5m (XYZ) and further sub-blocked to 1.25m by 2.5m by 1.25m (XYZ) for volume resolution. Drill holes are spaced along a 50m by 50m grid, with a 25m by 25m infill pattern. Effective data spacing ranges between 30m to 100m as a result of the mineralisation orientation. Appropriate search ellipses were derived from KNA with search radii varying from 60m to 120m and anisotropy of 3.5:3.5:1 (major/semi/minor). 			
		 Rotated (-60^o) block model with an azimuth of 320^oTN. Panel block size used was 5m by 20m by 20m (XYZ) and resultant SMU block size of 2.5m by 5m by 5m (XYZ). The bulk of the drilling data was on 40m (strike) by 60m to 100m (dip) spaced sections. An omni directional search radii of 150m was used within the plane of mineralisation. 			
	Any assumptions behind modelling of selective mining units.	Selection of the SMU size was based on the geometry of the mineralisation and the likely degree to which selective mining can be successfully applied to the visual geologically based grade boundaries.			
	Any assumptions about correlation between variables.	No assumptions were made as gold was the only variable that had sufficient data available to support an estimation.			
	Description of how the geological interpretation was used to control the resource estimates.	Geological interpretation guided the creation of constraining mineralised domains. Mineralised domains were used as hard boundaries and were informed only by composited samples lying within those domains.			

Criteria	JORC CODE Explanation	Commentary Necessity for grade cutting was based on basic exploratory data analysis, including the level of grade variability as expressed by the coefficient of variation ("CV"). Grade cutting completed on a domain basis using log normal probability plots of the grade distribution to determine appropriate level of cutting to minimise the influence of extreme grade outliers.			
	Discussion of basis for using or not using grade cutting or capping.				
-	The process of validation, the checking process used, the comparison of model data to drill hole data, and use of reconciliation data if available.	 All MRE models was validated using the following techniques: Visual 3D checking and comparison of informing samples and estimated values. Global statistical comparisons of raw sample and composite grades to the block grades. Validation 'swath' plots by northing, easting and elevation for each domain; Analysis of the grade tonnage distribution. Comparative estimates using ID2. 			
Moisture	Whether the tonnages are estimated on a dry basis or with natural moisture, and the method of determination of the moisture content.	Tonnages were estimated on a dry basis. Moisture was not considered in the density assignment.			
Cut-off parameters	The basis of the adopted cut-off grade(s) or quality parameters applied.	The adopted cut-off grade ("COG") for reporting is 0.5 g/t Au is based on the Ore Reserve reporting cut-off grade (0.5 g/t Au) from the 2018 DFS.			
Mining factors or assumptions	Assumptions made regarding possible mining methods, minimum mining dimensions and internal (or, if applicable, external) mining dilution. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential mining methods, but the assumptions made regarding mining methods and parameters when estimating Mineral Resources may not always be rigorous.	 Mineralisation is near surface and of grades amenable to conventional open pit mining methods. The assumed mining method would use drill and blast, utilising 2.5m mining flitches to a maximum vertical depth of 300m. An overall pit slope of 40° is assumed to be attainable based on the Maiden Ore Reserve (April 2018). Mineralised domains were developed on the basis of continuity in diffuse styles of mineralisation and thus included some lower grade zones. 			

Criteria	JORC CODE Explanation Commentary				
	Where this is the case, this should be reported with an explanation	A minimum width of 2m was used in interpretation of the mineralisation in order			
	of the basis of the mining assumptions made.	to preserve 3D wireframe integrity and continuity. Outside the mineralised			
		domains, a 'mineralised waste' estimate was made.			
		Domaining for LUC estimation incorporates zones of internal dilution to ensure			
		grade continuity and produces robust geometrically simple zones amenable to			
		selective open mining.			
		Domaining within the close spaced drilled areas was based on upon nominally 15m			
		x 15m drilling which allowed for the definition of discrete ore and waste zones			
		based upon hard boundaries. The level of mining dilution applied to the OK model			
		in the close spaced drill areas will therefore need to be greater than in the LUC			
		portion of the model in wider drilled areas.			
		The basis for eventual economic extraction was the use of optimisation shells using			
		Whittle software with all-in cost parameters and a base gold price of US\$1,450.			
		Cost parameters used for calculation of the cut-off grade and optimisation of the			
		shells included:			
		• Total Ore Costs - \$15.10/t, this included process costs of \$9.99/t, and Grade Control costs of \$0.08/t.			
		• Mining recovery 100%, Dilution 0%.			
		 Metallurgical recovery of 93.2% for Rante/Tanjung/Lematik and 92.2% for Mapacing/Ongan. 			
		• Royalty 3.75%.			
		 Transport \$4.45/oz. Refining \$1.93/oz. 			
		• Refining \$1.93702. The Awak Mas mineral resource estimate was reported within a US\$1,600/oz gold			
		price shell.			

Criteria	JORC CODE Explanation	Commentary
Metallurgical factors or assumptions	The basis for assumptions or predictions regarding metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential metallurgical methods, but the assumptions regarding metallurgical treatment processes and parameters made when reporting Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the metallurgical assumptions made.	 The Awak Mas Gold Project has previously been extensively studied on the basis of a gold flotation circuit with carbon in leach ('ClL') on reground flotation concentrate. Historical testwork provided recoveries in the range of 85% to 91% with a historical plant design value of 90%. The Definitive Feasibility Study ('DFS') Optimisation Study has focused on opportunities for improved recoveries and economic outcomes through the use of Whole of Ore Leaching. Minnovo Pty Ltd completed metallurgical testwork in July 2019 based on a 2.5Mtpa process plant as defined in the 2018 DFS. Using both the historical and recent DFS test work that had been conducted on the Project, and based on ClL processing of the known mineral resources with gravity and flotation circuits, resulted in an overall expected recovery of 93.3% for the Awak Mas deposit. The process plant comprises of primary crushing, wet grinding in a SAG and ball milling circuit (SAB circuit), gravity gold recovery, cyanide carbon in leach gold recovery and elution, reagents, air and water services. ClL tailings would be thickened and cyanide detoxified prior to disposal in the Tailings Storage Facility. The process plant would produce a gold doré product. Full details on the DFS leach testwork been reported in the following ASX release: Awak Mas Gold DFS Optimisation – Metallurgical Breakthrough, dated 10 October 2017.
Environmental factors or assumptions	Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the	The location of waste dumps, tailing storage facilities, haulage and access roads, power and processing plants have been determined in the Maiden Ore Reserves for the Awak Mas Gold Project.

Criteria	JORC CODE Explanation	Commentary					
	mining and processing operation. While at this stage the determination of potential environmental impacts, particularly for a greenfields project, may not always be well advanced, the status of early consideration of these potential environmental impacts			<i>April 2018.</i> infrastructure			
	considered this should be reported with an explanation of the environmental assumptions made.with the proposed mining activities Extensive environmental and socia Project site from 2013 to 2017.All major approvals/permits for the location is classified as "land for ot				c		
Bulk density	Whether assumed or determined. If assumed, the basis for the assumptions. If determined, the method used, whether wet or dry, the frequency of the measurements, the nature, size and representativeness of the samples.	Bulk density was of principle) density Based on analysis Material Colluvium Oxide Transition Fresh	measurements of	on recent and his	torical drill core	samples.	

Criteria	JORC CODE Explanation	Commentary
		Nusantara collected 1,030 bulk density measurements by water immersion technique from the 2017-2018 core drilling, which was incorporated into the current MREs.
	The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs, porosity, etc), moisture and differences between rock and alteration zones within the deposit.	Density samples were wax coated or coated in plastic where necessary to account for porosity and void space. All samples were then weighed in both air and when immersed in water. Samples were statistically evaluated by both mineralised and waste material types and by the weathering profile.
	Discuss assumptions for bulk density estimates used in the evaluation process of the different materials.	Given the distribution of the density samples, the density values were assigned in the block model and not estimated. It is assumed that historical density measurements are representative of the different material types.
Classification	The basis for the classification of the Mineral Resources into varying confidence categories.	 The Mineral Resource has been classified as Measured, Indicated and Inferred on the basis of a range of qualitative criteria. data support as defined by drill spacing. confidence in the domain interpretation. data quality issues affecting particular zones. quality of the estimate (slope of regression), and reasonable prospects for eventual economic extraction considerations. Quantitative classification using geostatistical simulation was initially used in the May 2017 MRE to better clarify the risk associated with the MRE. Classification of the Mineral Resource has only been changed in the areas recently drilled by Nusantara, with the remainder being unchanged from the May 2018 MRE.

Criteria	JORC CODE Explanation	Commentary
		Classification of the respective February and April 2021 MREs has only been changed in the areas of the close spaced drilling in Mapacing and Tanjung domains at Awak Mas and the Biwa, Bandoli and Lelating domains at Salu Bulo. The remainder of the classification remains unchanged. Areas classified as Measured apply to the abovementioned domains where the close spaced drilling to 15m x 15m has been completed, where the level of understanding of the mineralisation continuity and quality was considered to be sufficient to allow for mine planning and final evaluation of the economic viability. Areas classified as Indicated generally applied to regions of 50m or less drill intercept spacing, where the level of understanding of the mineralisation continuity and quality was considered to be sufficient to allow for mine planning and
		evaluation of the economic viability. Areas classified as Inferred generally applied to regions of 50 m or greater drill spacing (up to 100m), where the geological evidence was sufficient to imply but not verify the geological and grade continuity. All remaining estimated material is unclassified and not reported as part of the Mineral Resource.
	Whether appropriate account has been taken of all relevant factors (ie relative confidence in tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity and distribution of the data).	Classification of the Mineral Resource has taken into account all relevant factors through the qualitative approach as described above.
	Whether the result appropriately reflects the Competent Person's view of the deposit.	Classification of the Mineral Resource reflects the Competent Person's view of the deposit.

Criteria	JORC CODE Explanation	Commentary
Audits or reviews	The results of any audits or reviews of Mineral Resource estimates.	 External independent reviews of the Awak Mas Gold Project MRE's have been previously completed by reputable third-party mining industry consultants as listed below: June 2019 - SRK Consulting (Australasia) Pty Ltd. January 2018 - AMC Consultants Pty Ltd. November 2017 - AMC Consultants Pty Ltd, and June 2017 - CSA Global Pty Ltd. Internal peer review of the estimation methodology was conducted. The reviews to date have not identified any fatal flaws or material issues with the Mineral Resources.
relative accuracy/ confidence	Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate.	The relative accuracy of the Mineral Resource estimate has been determined by the application of qualitative criteria and by consideration of the estimation quality (slope of regression). Descriptions of drilling techniques, survey, sampling/sample preparation, analytical techniques and database management/validation indicate that assay data collection, quality control and management is within industry standards. On balance the database represents an accurate record of the drilling undertaken at the deposit. The inherent complexity of multiple mineralisation orientations and short scale
		grade continuity at generally less than the drillhole spacing, will contribute to high local grade variability and could lead to poor relative accuracy at the SMU scale when selectively mining.

Criteria	JORC CODE Explanation	Commentary
	The statement should specify whether it relates to global or local estimates, and, if local, state the relevant tonnages, which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used.	The Mineral Resource estimates are local estimates. Measured and Indicated Mineral Resources (40.9Mt @ 1.47g/t Au for 1.93Moz) are relevant for economic evaluation.
	These statements of relative accuracy and confidence of the estimate should be compared with production data, where available.	No production data is available as the Awak Mas, Salu Bulo and Tarra deposits have not been mined on a commercial basis.

CLOSE-SPACED DRILLING RESULTS REPORTING CRITERIA

- Intercepts reported are intervals of Au >1g/t with intervals of <1g/t Au up to 3m included.
- Where no individual intercepts >1 g/t exist, the intercepts reported are intervals of Au >0.1g/t with intervals of <0.1g/t Au up to 3m included.
- Downhole and estimated true thickness reported to one decimal place. Au grades reported to two significant figures.
- Samples are from diamond core drilling which is generally HQ diameter.
- Some intercepts may be of larger or smaller core size than HQ due to drilling logistics.
- Core is photographed and logged by the geology team before being sampled.
- Whole core is submitted for sampling, no core has been retained.
- Each assay batch is submitted with duplicates and standards to monitor laboratory quality.
- Samples analysed for gold using the fire assay (FAA40) technique only.

APPENDIX 1 SIGNIFICANT ASSAY RESULTS FROM NUSANTARA DRILLING AT TANJUNG DOMAIN UNDERTAKEN DURING SEPTEMBER TO NOVEMBER 2020 AND AT MAPACING DOMAIN UNDERTAKEN DURING NOVEMBER 2020 TO JANUARY 2021

Reporting Criteria: Intercepts reported are intervals of Au >0.1 g/t with intervals of <0.1 g/t Au up to 3m included. Downhole and estimated true thickness reported to one decimal place. Au reported to two significant figures. Samples are from diamond core drilling which is generally HQ diameter. Core is photographed and logged by the geology team before sample. Whole core samples are prepared for assay. Each assay batch is submitted with duplicates and standards to monitor laboratory quality. Samples analysed for gold only using the fire assay (FAA40) technique.

Hole ID	Hole Type	Easting UTM Grid	Northing UTM Grid	Elevation (m)	Total Depth (m)	Azimuth (Mag)	Dip	From (m)	To (m)	Interval (m)	Au g/t	Ag g/t	Re ma
		(m)	(m)										rks
TANJUNG D	OMAIN												
TGD001	DDH	179,605	9,627,095	1,383	55	264	-51	0.0	1.0	1.0	0.16	NA	
								12.0	14.0	2.0	1.27	NA	
								27.0	30.0	3.0	0.97	NA	
								37.0	49.0	12.0	0.80	NA	
							Including	47.0	48.0	1.0	3.15	NA	
TGD002	DDH	179,594	9,627,050	1,405	68	283	-45	17.0	18.0	1.0	0.13	NA	
								20.0	23.0	3.0	0.14	NA	
								45.0	48.0	3.0	1.21	NA	
							Including	47.0	48.0	1.0	2.72	NA	
								60.0	65.0	5.0	1.01	NA	
							Including	60.0	61.0	1.0	2.88	NA	
TGD003	DDH	179,627	9,627,076	1,386	62	280	-46	0.0	19.0	19.0	1.26	NA	
							Including	8.0	15.0	7.0	2.76	NA	

Hole ID	Hole	Easting	Northing	Elevation	Total	Azimuth	Dip	From	To (m)	Interval	Au	Ag	Re
	Туре	UTM Grid	UTM Grid	(m)	Depth (m)	(Mag)		(m)		(m)	g/t	g/t	ma rks
		(m)	(m)										
								22.0	29.0	7.0	0.29	NA	
								34.0	41.0	7.0	0.66	NA	
								49.0	51.0	2.0	0.38	NA	
								59.0	60.0	1.0	0.63	NA	
TGD004	DDH	179,675	9,627,155	1,390	111	270	-52	15.0	19.0	4.0	1.18	NA	
							Including	18.0	19.0	1.0	3.77	NA	
								42.0	57.0	15.0	1.50	NA	
TGD004								55.0	56.0	1.0	3.52	NA	
								63.0	64.0	1.0	0.39	NA	
								71.0	82.0	11.0	1.56	NA	
							Including	78.0	81.0	3.0	4.42	NA	
								84.0	85.0	1.0	0.26	NA	
								104.0	109.0	5.0	0.85	NA	
							Including	108.0	109.0	1.0	3.29	NA	
TGD005	DDH	179,585	9,627,176	1,342	40	295	-70	0.0	7.0	7.0	0.27	NA	
								27.0	32.0	5.0	1.61	NA	
							Including	31.0	32.0	1.0	4.07	NA	
TGD006	DDH	179,696	9,627,193	1,366	84	270	-51	15.0	16.0	1.0	0.11	NA	
								34.0	44.0	10.0	1.62	NA	

Hole ID	Hole	Easting	Northing	Elevation	Total	Azimuth	Dip	From	To (m)	Interval	Au	Ag	Re
	Туре	UTM Grid (m)	UTM Grid (m)	(m)	Depth (m)	(Mag)		(m)		(m)	g/t	g/t	ma rks
							Including	41.0	44.0	3.0	4.24	NA	
								45.0	54.0	9.0	0.28	NA	
								68.0	73.0	5.0	0.97	NA	
								80.0	83.0	3.0	0.69	NA	
TGD007	DDH	179,569	9,627,180	1,347	103	270	-68	0.0	3.0	3.0	0.18	NA	
								17.0	29.0	12.0	0.73	NA	
							Including	24.0	26.0	2.0	2.28	NA	
								37.0	43.0	6.0	0.24	NA	
								51.0	56.0	5.0	0.10	NA	
								57.0	78.0	21.0	1.31	NA	
							Including	59.0	63.0	4.0	2.14	NA	
								80.0	103.0	23.0	1.19	NA	
TGD008	DDH	179,675	9,627,138	1,395	70	270	-68	9.0	15.0	6.0	0.31	NA	
								27.0	39.0	12.0	1.02	NA	
							Including	29.0	33.0	4.0	2.00	NA	
TGD008								43.0	54.0	11.0	2.32	NA	

Hole ID	Hole	Easting	Northing	Elevation	Total Depth (m)	Azimuth (Mag)	Dip	From (m)	To (m)	Interval (m)	Au	Ag	Re ma
	Туре	UTM Grid (m)	UTM Grid (m)	(m)							g/t	g/t	rks
							Including	43.0	44.0	1.0	15.95	NA	
								58.0	60.0	2.0	1.95	NA	
TGD009	DDH	179,560	9,627,034	1,430	72	294	-61	42.0	50.0	8.0	0.25	NA	
								52.0	55.0	3.0	0.44	NA	
								60.0	61.0	1.0	0.67	NA	
								70.0	72.0	2.0	0.46	NA	
TGD010	DDH	179,545	9,627,202	1,330	66	280	-48	0.0	15.0	15.0	1.03	NA	
							Including	13.0	15.0	2.0	2.73	NA	
								19.0	21.0	2.0	1.82	NA	
								31.0	32.0	1.0	0.98	NA	
								39.0	40.0	1.0	0.11	NA	
								43.0	44.0	1.0	0.10	NA	
								48.0	49.0	1.0	0.19	NA	
								62.0	66.0	4.0	6.17	NA	
							Including	64.0	66.0	2.0	11.03	NA	
TGD011	DDH	179,624	9,627,067	1,384	59	270	-46	1.0	11.0	10.0	0.96	NA	
							Including	2.0	5.0	3.0	2.11	NA	

Hole ID	Hole	Easting	Northing	Elevation	Total Depth (m)	Azimuth (Mag)	Dip	From (m)	To (m)	Interval (m)	Au	Ag	Re ma
	Туре	UTM Grid (m)	UTM Grid (m)	(m)	Beptil (iii)	(1110)		(,		(,	g/t	g/t	rks
								33.0	34.0	1.0	0.27	NA	
								45.0	46.0	1.0	0.19	NA	
								50.0	56.0	6	0.13	NA	
TGD012	DDH	179,594	9,627,193	1,338	49	90	-75	0.0	9.0	9.0	0.80	NA	
							Including	2.0	3.0	1.0	2.56	NA	
								15.0	36.0	21.0	1.43	NA	
							Including	23.0	24.0	1.0	3.94	NA	
								44.0	47.0	3.0	0.99	NA	
TGD012							Including	44.0	45.0	1.0	2.17	NA	
TGD013	DDH	179,551	9,627,156	1,362	107	269	-53	0.0	15.0	15.0	0.90	NA	
							Including	2.0	3.0	1.0	3.46	NA	
							Including	7.0	9.0	2.0	2.17	NA	
								18.0	19.0	1.0	0.23	NA	
								54.0	59.0	5.0	0.46	NA	
							Including	54.0	55.0	1.0	1.07	NA	
							Including	58.0	59.0	1.0	1.16	NA	
								61.0	63.0	2.0	0.49	NA	

Hole ID	Hole	Easting	Northing	Elevation	Total	Azimuth	Dip	From	To (m)	Interval	Au	Ag	Re
	Туре	UTM Grid (m)	UTM Grid (m)	(m)	Depth (m)	(Mag)		(m)		(m)	g/t	g/t	ma rks
								67.0	84.0	17.0	0.80	NA	
							Including	73.0	76.0	3.0	1.82	NA	
							Including	79.0	81.0	2.0	2.23	NA	
								90.0	100.0	10.0	2.24	NA	
								103.0	107.0	4.0	2.22	NA	
TGD014	DDH	179,594	9,627,193	1,338	41	270	-89	1.0	7.0	6.0	0.48	NA	
								15.0	22.0	7.0	1.38	NA	
								26.0	30.0	4.0	0.70	NA	
								37.0	39.0	2.0	1.46	NA	
TGD015	DDH	179,490	9,627,105	1,341	60	270	-51	1.0	12.0	11.0	0.13	NA	
								13.0	24.0	11.0	0.77	NA	
							Including	14.0	15.0	1.0	1.98	NA	
							Including	20.0	23.0	3.0	1.28	NA	
								31.0	33.0	2.0	0.96	NA	
								45.0	48.0	3.0	1.08	NA	
							Including	45.0	46.0	1.0	3.00	NA	

Hole ID	Hole Type	Easting UTM Grid	Northing UTM Grid	Elevation (m)	Total Depth (m)	Azimuth (Mag)	Dip	From (m)	To (m)	Interval (m)	Au g/t	Ag g/t	Re ma rks
		(m)	(m)										rks
								57.0	58.0	1.0	0.21	NA	
TGD016	DDH	179,582	9,627,193	1,338	30	269	-46	13.0	19.0	6.0	1.90	NA	
							Including	15.0	19.0	4.0	2.76	NA	
								22.0	25.0	3.0	0.26	NA	
								29.0	30.0	1.0	1.39	NA	
TGD017	DDH	179,528	9,627,179	1,349	62	285	-53	0.0	15.0	15.0	0.15	NA	
								28.0	29.0	1.0	0.15	NA	
								54.0	62.0	8.0	1.27	NA	
							Including	59.0	61.0	2.0	4.41	NA	
TGD018	DDH	179,494	9,627,118	1,343	80	270	-65	2.0	3.0	1.0	0.11	NA	
								22.0	25.0	3.0	3.45	NA	
							Including	24.0	25.0	1.0	8.30	NA	
								32.0	40.0	8.0	2.37	NA	
							Including	36.0	38.0	2.0	5.55	NA	
								45.0	59.0	14.0	0.64	NA	
								62.0	71.0	9.0	1.20	NA	
							Including	62.0	63.0	1.0	5.57	NA	

Hole ID	Hole Type	Easting UTM Grid (m)	Northing UTM Grid (m)	Elevation (m)	Total Depth (m)	Azimuth (Mag)	Dip	From (m)	To (m)	Interval (m)	Au g/t	Ag g/t	Re ma rks
								76.0	80.0	4.0	0.18	NA	
TGD019	DDH	179,675	9,627,155	1,390	76	270	-77	26.0	53.0	27.0	0.95	NA	
							Including	29.0	33.0	4.0	2.11	NA	
							Including	43.0	45.0	2.0	1.67	NA	
							Including	48.0	53.0	5.0	1.75	NA	
								58.0	68.0	10.0	1.39	NA	
							Including	60.0	64.0	4.0	2.97	NA	
								72.0	76.0	4.0	2.75	NA	
							Including	74.0	75.0	1.0	5.94	NA	
TGD020	DDH	179,673	9,627,185	1,382	92	280	-51	34.0	36.0	2.0	0.15	NA	
								42.0	60.0	18.0	1.93	NA	
							Including	54.0	59.0	5.0	5.09	NA	
								62.0	66.0	4.0	1.95	NA	
								72.0	73.0	1.0	0.23	NA	
								78.0	83.0	5.0	0.31	NA	

91.0

92.0

1.0

0.11

NA

TGD021	DDH	179,493	9,627,086	1,351	54	276	-45	0.0	3.0	3.0	0.12	NA	
								6.0	22.0	16.0	0.37	NA	
							Including	6.0	7.0	1.0	2.22	NA	
								25.0	26.0	1.0	0.34	NA	
								27.0	30.0	3.0	0.20	NA	
								33.0	35.0	2.0	0.63	NA	
								36.0	51.0	15.0	0.84	NA	
							Including	42.0	43.0	1.0	2.66	NA	
							Including	47.0	50.0	3.0	2.14	NA	
TGD022	DDH	179,673	9,627,185	1,382	119	261	-48	2.0	3.0	1.0	0.13	NA	
								27.0	28.0	1.0	0.61	NA	
								32.0	38.0	6.0	0.54	NA	
								41.0	56.0	15.0	1.81	NA	
								70.0	80.0	10.0	0.78	NA	
							Including	79.0	80.0	1.0	1.74	NA	
								92.0	94.0	2.0	0.44	NA	
								103.0	106.0	3.0	0.52	NA	
TGD023	DDH	179,520	9,627,168	1,346	73	270	-62	0.0	9.0	9.0	1.02	NA	

							Including	7.0	9.0	2.0	3.28	NA
TGD023								34.0	38.0	4.0	0.18	NA
								44.0	48.6	4.6	0.47	NA
								49.0	56.0	7.0	0.32	NA
TGD024	DDH	179,673	9,627,185	1,382	80	209	-75	22.0	25.0	3.0	0.14	NA
								31.0	37.0	6.0	1.52	NA
							Including	31.0	32.0	1.0	8.15	NA
								38.0	49.0	11.0	2.13	NA
							Including	38.0	41.0	3.0	4.13	NA
							Including	45.0	46.0	1.0	4.61	NA
								66.0	72.0	6.0	0.61	NA
								75.0	77.0	2.0	0.58	NA
TGD025	DDH	179,581	9,627,140	1,366	80	282	-63	2.0	4.0	2.0	2.22	NA
							Including	3.0	4.0	1.0	4.01	NA
								27.0	35.0	8.0	0.77	NA
							Including	33.0	34.0	1.0	3.05	NA
								79.0	80.0	1.0	0.38	NA
TGD026	DDH	179,675	9,627,138	1,395	70	236	-75	8.0	11.0	3.0	0.13	NA
								27.0	41.0	14.0	2.97	NA
							Including	27.0	28.0	1.0	21.00	NA

							Including	37.0	40.0	3.0	4.65	NA	
								45.0	52.0	7.0	2.66	NA	
							Including	45.0	48.0	3.0	6.01	NA	
TGD027	DDH	179,675	9,627,138	1,395	73	316	-83	4.0	5.0	1.0	0.16	NA	
								11.0	23.0	12.0	1.40	NA	
							Including	17.0	19.0	2.0	3.58	NA	
								32.0	52.0	20.0	1.14	NA	
TGD027								41.0	43.0	2.0	3.35	NA	
							Including	45.0	46.0	1.0	3.38	NA	
							Including	49.0	50.0	1.0	3.00	NA	
								62.0	64.0	2.0	0.14	NA	
TGD028	DDH	179,560	9,627,034	1,430	78	290	-47	50.0	56.0	6.0	1.74	NA	
							Including	50.0	51.0	1.0	5.28	NA	
TGD029	DDH	179,704	9,627,118	1,391	72	270	-45	7.0	13.0	6.0	0.34	NA	
								18.0	20.0	2.0	0.26	NA	
								37.0	53.0	16.0	1.85	NA	
							Including	41.0	49.0	8.0	3.04	NA	
								54.0	68.0	14.0	0.98	NA	
							Including	55.0	56.0	1.0	3.05	NA	
TGD030	DDH	179,677	9,627,224	1,359	95	270	-45	30.0	42.0	12.0	1.25	NA	

							Including	30.0	33.0	3.0	2.33	NA
							Including	36.0	37.0	1.0	3.80	NA
								49.0	86.0	37.0	1.58	NA
							Including	54.0	55.0	1.0	4.38	NA
							Including	72.0	80.0	8.0	3.42	NA
TGD031	DDH	179,568	9,627,090	1,398	55	270	-49	27.0	34.0	7.0	1.49	NA
							Including	30.0	32.0	2.0	4.09	NA
								47.0	53.0	6.0	1.08	NA
							Including	49.0	51.0	2.0	2.47	NA
TGD032	DDH	179,581	9,627,140	1,366	60	114	-52	0.0	11.0	11.0	0.78	NA
							Including	6.0	10.0	4.0	1.66	NA
								21.0	36.0	15.0	1.50	NA
							Including	26.0	27.0	1.0	4.01	NA
TGD032							Including	29.0	32.0	3.0	3.55	NA
								42.0	57.0	15.0	1.37	NA
							Including	42.0	43.0	1.0	3.38	NA
							Including	51.0	56.0	5.0	3.03	NA
TGD033	DDH	179,622	9,627,096	1,374	45	259	-60	0.0	1.0	1.0	0.11	NA
								9.0	19.0	10.0	1.22	NA

Image								Including	11.0	13.0	2.0	3.64	NA	
Image: series of the series									37.0	38.0	1.0	0.13	NA	
Normal ArrowNormal ArrNormal ArrowNormal ArrowNormal ArrowNormal ArrowNormal ArrowNormal ArrNormal ArrowNormal ArrowNormal ArrowNormal ArrowNormal Arrow<	TGD034	DDH	179,530	9,627,177	1,349	75	307	-58	0.0	5.0	5.0	1.01	NA	
TGD035DDH179,6269,627,1051,37145270-797.01.00<									67.0	75.0	8.0	0.55	NA	
And CompositionAnd CompositionAnd CompositionAnd CompositionAnd CompositionAnd Composition10001300 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Including</td> <td>74.0</td> <td>75.0</td> <td>1.0</td> <td>2.75</td> <td>NA</td> <td></td>								Including	74.0	75.0	1.0	2.75	NA	
And ConstraintsAnd ConstraintsAnd ConstraintsAnd ConstraintsAnd ConstraintsTGD036DDH179,5819,627,1401,36670796.660.09.009.000.32NATGD036DDH179,5819,627,1401,36670796.660.09.009.000.32NATGD036DDHIncluingIncluing31.0040.009.001.43NATGD037DDHIncluingIncluing1.101.101.101.10NATGD037DDH179,6159,627,1071.3705001.601.003.003.003.01NATGD037DDH179,6159,627,1071.370502.661.501.303.003.013.01NATGD037DDH179,6159,627,1071.370502.661.501.303.603.013.61NATGD037DDH179,6159,627,1071.3705.001.601.303.61NATGD037DDH179,6159,627,1071.3705.001.603.003.603.003.61NATGD037DDH179,6159,627,1071.3705.001.601.603.003.601.60NATGD037DDH179,6159,627,1071.3705.001.603.603.603.603.603.61NATGD037DDH179,6	TGD035	DDH	179,626	9,627,105	1,371	45	270	-79	7.0	18.0	11.0	0.87	NA	
TGD036 DDH 179,581 9,627,140 1,366 70 79 6.66 0.0 9.0 9.0 0.32 NA TGD036 DDH 179,581 9,627,140 1,366 70 79 6.66 0.0 9.0 9.0 0.32 NA ICDD ICD ICD ICD ICD ICD 19.0 26.0 7.0 0.39 NA ICDD ICD ICD ICD ICD ICD 31.0 40.0 9.0 1.43 NA ICDD ICDD ICDD ICDD ICDD ICDD 31.0 40.0 9.0 1.43 NA ICDD ICDD ICDD ICDD ICDD 30.0 30.0 3.00 3.00 3.00 3.01 1.00 NA ICDD37 DDH 179,615 9,627,107 1,370 50 266 -50 13.0 10.0 0.05 0.16 NA ICDD37 DDH 179,615 9,627,107 1,370 50 266 -50 13.0 35.0								Including	10.0	13.0	3.0	1.81	NA	
1 1									37.0	39.0	2.0	0.21	NA	
1 1	TGD036	DDH	179,581	9,627,140	1,366	70	79	-66	0.0	9.0	9.0	0.32	NA	
1 1									19.0	26.0	7.0	0.39	NA	
Image: A rest in the state of the state									31.0	40.0	9.0	1.43	NA	
Image: Constraint of the state of								Including	37.0	40.0	3.0	3.50	NA	
TGD037 DDH 179,615 9,627,107 1,370 50 266 -50 13.0 19.0 6.0 0.35 NA Image: Strain Stra									43.0	50.0	7.0	1.90	NA	
Image: Note of the state o								Including	47.0	50.0	3.0	3.61	NA	
Image: Strain of the strain	TGD037	DDH	179,615	9,627,107	1,370	50	266	-50	13.0	19.0	6.0	0.35	NA	
Including 40.0 43.0 3.0 3.63 NA									30.0	35.0	5.0	0.16	NA	
									36.0	47.0	11.0	1.30	NA	
TGD038 DDH 179,627 9,627,076 1,386 27 90 -75 1.0 4.0 3.0 1.88 NA								Including	40.0	43.0	3.0	3.63	NA	
	TGD038	DDH	179,627	9,627,076	1,386	27	90	-75	1.0	4.0	3.0	1.88	NA	

							Including	3.0	4.0	1.0	4.72	NA
TGD038								9.0	12.0	3.0	0.16	NA
								17.0	18.0	1.0	0.10	NA
								23.0	27.0	4.0	2.75	NA
TGD039	DDH	179,539	9,627,149	1,355	115	264	-45	0.0	1.0	1.0	0.27	NA
								14.0	30.0	16.0	1.11	NA
							Including	22.0	23.0	1.0	2.79	NA
							Including	25.0	26.0	1.0	3.22	NA
								48.0	56.0	8.0	0.73	NA
								82.0	85.0	3.0	0.91	NA
								89.0	103.0	14.0	1.80	NA
							Including	91.0	95.0	4.0	5.39	NA
								105.0	110.0	5.0	0.37	NA
TGD040	DDH	179,539	9,627,149	1,355	85	256	-60	1.0	5.0	4.0	0.24	NA
								11.0	24.0	13.0	1.03	NA
								25.0	28.0	3.0	0.54	NA
								64.0	77.0	13.0	1.25	NA
							Including	66.0	67.0	1.0	6.24	NA
TGD041	DDH	179,581	9,627,061	1,409	70	265	-45	7.0	14.0	7.0	0.68	NA
							Including	8.0	9.0	1.0	3.62	NA

								57.0	63.0	6.0	2.84	NA
							Including	57.0	59.0	2.0	6.34	NA
TGD042	DDH	179,656	9,227,118	1,396	90	270	-52	23.0	24.0	1.0	0.22	NA
								29.0	30.0	1.0	0.13	NA
								50.0	64.0	14.0	4.95	NA
							Including	55.0	64.0	9.0	7.56	NA
								65.0	69.0	4.0	1.69	NA
TGD042								80.0	87.0	7.0	0.73	NA
							Including	80.0	82.0	2.0	2.08	NA
TGD043	DDH	179,594	9,627,170	1,343	45	230	-45	0.0	1.0	1.0	0.10	NA
								3.0	4.0	1.0	0.20	NA
								21.0	23.0	2.0	0.19	NA
								30.0	31.0	1.0	0.23	NA
TGD044	DDH	179,488	9,627,158	1,322	50	265	-50	3.0	4.0	1.0	0.12	NA
								23.0	29.0	6.0	0.16	NA
TGD045	DDH	179,561	9,627,200	1,333	40	296	-68	0.0	5.0	5.0	0.45	NA
								11.0	15.0	4.0	0.31	NA
								28.0	40.0	12.0	0.49	NA
							Including	36.0	38.0	2.0	1.25	NA
TGD046	DDH	179,617	9,627,142	1,354	40	276	-75	0.0	13.0	13.0	1.57	NA

							Including	1.0	2.0	1.0	3.39	NA
							Including	5.0	8.0	3.0	4.01	NA
								22.0	31.0	9.0	0.62	NA
							Including	22.0	23.0	1.0	1.91	NA
TGD047	DDH	179,561	9,627,200	1,333	45	64	-68	0.0	19.0	19.0	0.49	NA
							Including	9.0	11.0	2.0	1.23	NA
								23.0	24.0	1.0	0.25	NA
								33.0	34.0	1.0	0.35	NA
TGD048	DDH	179,559	9,627,064	1,423	78	278	-62	31.0	33.0	2.0	0.32	NA
								38.0	44.0	6.0	0.69	NA
							Including	38.0	39.0	1.0	3.04	NA
								47.0	48.0	1.0	0.12	NA
								52.0	58.0	6.0	0.81	NA
TGD048							Including	54.0	57.0	3.0	1.42	NA
								63.0	64.0	1.0	0.30	NA
								72.0	75.0	3.0	0.19	NA
TGD049	DDH	179,675	9,627,250	1,353	85	262	-55	33.0	34.0	1.0	0.15	NA
								48.0	55.0	7.0	0.73	NA
								59.0	66.0	7.0	0.30	NA

								69.0	81.0	12.0	2.72	NA	
TGD050	DDH	179,588	9,627,107	1,386	51	268	-58	9.0	24.0	15.0	1.33	NA	
							Including	9.0	13.0	4.0	2.86	NA	
							Including	17.0	19.0	2.0	2.60	NA	
								36.0	39.0	3.0	0.24	NA	
TGD051	DDH	179,674	9,627,219	1,365	85	195	-80	34.0	48.0	14.0	2.64	NA	
							Including	36.0	37.0	1.0	5.46	NA	
							Including	41.0	43.0	2.0	4.60	NA	
							Including	45.0	48.0	3.0	4.40	NA	
								58.0	65.0	7.0	1.14	NA	
							Including	62.0	64.0	2.0	2.40	NA	
								74.0	76.0	2.0	0.87	NA	
TGD052	DDH	179,580	9,627,112	1,386	55	282	-55	6.0	20.0	14.0	2.65	NA	
							Including	6.0	7.0	1.0	6.00	NA	
							Including	14.0	15.0	1.0	18.96	NA	
							Including	17.0	18.0	1.0	4.51	NA	
								23.0	29.0	6.0	0.58	NA	
								41.0	48.0	7.0	2.39	NA	
							Including	46.0	47.0	1.0	7.47	NA	

TGD053	DDH	179,561	9,627,095	1,398	53	311	-53	20.0	33.0	13.0	2.50	NA
							Including	24.0	33.0	9.0	3.45	NA
								35.0	37.0	2.0	0.76	NA
								41.0	51.0	10.0	2.04	NA
							Including	41.0	43.0	2.0	4.94	NA
							Including	49.0	50.0	1.0	3.77	NA
TGD054	DDH	179,674	9,627,219	1,365	82	256	-45	31.0	57.0	26.0	3.15	NA
							Including	33.0	34.0	1.0	10.04	NA
							Including	37.0	42.0	5.0	5.14	NA
							Including	50.0	55.0	5.0	5.06	NA
								68.0	78.0	10.0	1.80	NA
							Including	70.0	72.0	2.0	4.28	NA
								81.0	82.0	1.0	0.14	NA

Hole ID	Hole Type	Easting UTM Grid (m)	Northing UTM Grid (m)	Elevation (m)	Total Depth (m)	Azimuth (Mag)	Dip	From (m)	To (m)	Interval (m)	Au g/t	Ag g/t	Re ma rks
MAPACING	DOMAIN												
MGD001	DDH	179,085	9,627,424	1,145	56	59	-79	6.0	13.0	7.0	0.42	NA	
								21.0	23.0	2.0	1.29	NA	

Hole ID	Hole	Easting	Northing	Elevation	Total	Azimuth	Dip	From	To (m)	Interval	Au	Ag	Re
	Туре	UTM Grid (m)	UTM Grid (m)	(m)	Depth (m)	(Mag)		(m)		(m)	g/t	g/t	ma rks
								27.0	45.0	18.0	1.09	NA	
							Including	27.0	32.0	5.0	2.23	NA	
MGD002	DDH	179,067	9,627,454	1,136	49	270	-69	26.0	27.0	1.0	0.53	NA	
								32.0	48.0	16.0	1.45	NA	
							Including	35.0	36.0	1.0	3.77	NA	
							Including	38.0	42.0	4.0	3.33	NA	
MGD003	DDH	179,105	9,627,404	1,148	40	270	-74	14.0	20.0	6.0	0.57	NA	
								29.0	38.0	9.0	1.28	NA	
							Including	30.0	31.0	1.0	5.30	NA	
MGD004	DDH	179,067	9,627,454	1,136	49	90	-83	10.0	16.0	6.0	1.01	NA	
								24.0	48.0	24.0	1.83	NA	
							Including	27.0	37.0	10.0	3.69	NA	
MGD005	DDH	179,105	9,627,405	1,148	43	90	-65	16.0	25.0	9.0	0.16	NA	
								29.0	33.0	4.0	1.41	NA	
							Including	31.0	32.0	1.0	3.20	NA	
								37.0	39.0	2.0	0.54	NA	
MGD007	DDH	179,084	9,627,416	1,145	50	270	-50	11.0	22.0	11.0	1.07	NA	
								30.0	31.0	1.0	2.24	NA	
MGD007								41.0	49.0	8.0	0.70	NA	

Hole ID	Hole	Easting	Northing	Elevation	Total Depth (m)	Azimuth (Mag)	Dip	From (m)	To (m)	Interval	Au	Ag	Re
	Туре	UTM Grid (m)	UTM Grid (m)	(m)	Depth (m)	(Iviag)		(111)		(m)	g/t	g/t	ma rks
MGD008	DDH	179,085	9,627,416	1,145	48	92	-85	7.0	11.0	4.0	0.50	NA	
								15.0	35.0	20.0	2.21	NA	
							Including	25.0	29.0	4.0	8.81	NA	
							Including	26.0	27.0	1.0	27.00	NA	
MGD009	DDH	179,040	9,627,468	1,136	56	90	-67	21.0	22.0	1.0	0.82	NA	
								26.0	54.0	28.0	1.05	NA	
							Including	32.0	35.0	3.0	3.48	NA	
							Including	38.0	40.0	2.0	3.51	NA	
MGD010	DDH	179,115	9,627,636	1,086	20	270	-55	0.0	20.0	20.0	1.06	NA	
							Including	7.0	11.0	4.0	2.30	NA	
MGD011	DDH	179,067	9,627,445	1,141	50	270	-78	18.0	20.0	2.0	0.20	NA	
								26.0	32.0	6.0	0.47	NA	
								36.0	49.0	13.0	0.33	NA	
MGD012	DDH	179,113	9,627,415	1,145	51	270	-65	13.0	17.0	4.0	0.92	NA	
								21.0	25.0	4.0	10.00	NA	
							Including	21.0	23.0	2.0	19.92	NA	
								30.0	34.0	4.0	3.73	NA	

Hole ID	Hole Type	Easting UTM Grid	Northing UTM Grid	Elevation (m)	Total Depth (m)	Azimuth (Mag)	Dip	From (m)	To (m)	Interval (m)	Au g/t	Ag g/t	Re ma
	туре	(m)	(m)	(111)							g/ t	g/ t	rks
MGD013	DDH	179,143	9,627,495	1,104	40	270	-60	0.0	2.0	2.0	0.10	NA	
								9.0	19.0	10.0	1.27	NA	
							Including	10.0	11.0	1.0	2.76	NA	
								26.0	34.0	8.0	2.10	NA	
							Including	27.0	29.0	2.0	5.90	NA	
								38.0	39.0	1.0	0.23	NA	
MGD014	DDH	179,114	9,627,415	1,145	50	90	-65	14.0	23.0	9.0	0.55	NA	
							Including	19.0	20.0	1.0	2.71	NA	
MGD014								29.0	31.0	2.0	0.60	NA	
								36.0	37.0	1.0	0.13	NA	
MGD015	DDH	179,067	9,627,444	1,141	56	90	-78	24.0	49.0	25.0	1.48	NA	
							Including	26.0	27.0	1.0	8.15	NA	
							Including	32.0	33.0	1.0	3.79	NA	
MGD016	DDH	179,144	9,627,495	1,104	38	90	-68	0.0	2.0	2.0	0.16	NA	
								9.0	30.0	21.0	1.18	NA	
							Including	16.0	18.0	2.0	5.67	NA	
								32.0	37.0	5.0	0.86	NA	

Hole ID	Hole	Easting	Northing	Elevation	Total Depth (m)	Azimuth (Mag)	Dip	From (m)	To (m)	Interval (m)	Au	Ag	Re ma
	Туре	UTM Grid (m)	UTM Grid (m)	(m)		((,		(,	g/t	g/t	rks
							Including	36.0	37.0	1.0	2.93	NA	
MGD017	DDH	179,079	9,627,404	1,142	28	270.9	-66.6	12.0	27.0	15.0	1.04	NA	
							Including	25.0	27.0	2.0	5.91	NA	
MGD018	DDH	179,067	9,627,445	1,141	59	90	-57	17.0	19.0	2.0	4.05	NA	
							Including	18.0	19.0	1.0	7.90	NA	
								27.0	58.0	31.0	1.95	NA	
							Including	29.0	46.0	17.0	3.33	NA	
MGD019	DDH	179,080	9,627,404	1,142	33	90	-75	4.0	5.0	1.0	0.22	NA	
								10.0	18.0	8.0	1.05	NA	
							Including	13.0	16.0	3.0	2.10	NA	
								24.0	28.0	4.0	0.52	NA	
MGD020	DDH	179,033	9,627,493	1,133	43	270	-72	24.0	29.0	5.0	0.12	NA	
								34.0	43.0	9.0	0.47	NA	
							Including	42.0	43.0	1.0	1.65	NA	
MGD021	DDH	178,993	9,627,506	1,125	40	90	-62	26.0	39.0	13.0	0.20	NA	
MGD022	DDH	179,107	9,627,572	1,098	38	270	-56	13.0	38.0	25.0	0.84	NA	

Hole ID	Hole Type	Easting UTM Grid	Northing UTM Grid	Elevation (m)	Total Depth (m)	Azimuth (Mag)	Dip	From (m)	To (m)	Interval (m)	Au g/t	Ag g/t	Re ma
	туре	(m)	(m)	(111)							g/ t	g/ t	rks
							Including	16.0	20.0	4.0	2.70	NA	
MGD022							Including	26.0	28.0	2.0	2.40	NA	
MGD023	DDH	179,035	9,627,544	1,126	48	270	-47	28.0	35.0	7.0	0.63	NA	
							Including	28.0	29.0	1.0	3.70	NA	
								40.0	45.0	5.0	1.33	NA	
MGD024	DDH	179,082	9,627,543	1,112	33	300	-71	0.0	31.0	31.0	1.90	NA	
							Including	2.0	5.0	3.0	5.40	NA	
							Including	10.0	14.0	4.0	3.70	NA	
MGD025	DDH	179,115	9,627,650	1,083	25	270	-58	0.0	6.0	6.0	0.53	NA	
								13.0	21.0	8.0	0.94	NA	
							Including	16.0	19.0	3.0	2.00	NA	
MGD026	DDH	179,115	9,627,597	1,089	25	270	-60	1.0	7.0	6.0	0.16	NA	
								17.0	20.0	3.0	0.90	NA	
MGD027	DDH	179,176	9,627,495	1,099	28	270	-77	0.0	26.0	26.0	1.41	NA	
							Including	0.0	7.0	7.0	3.40	NA	
							Including	9.0	12.0	3.0	2.70	NA	
MGD028	DDH	179,035	9,627,545	1,126	43	90	-69	27.0	39.0	12.0	1.66	NA	

Hole ID	Hole	Easting	Northing	Elevation	Total	Azimuth	Dip	From	To (m)	Interval	Au	Ag	Re
	Туре	UTM Grid	UTM Grid	(m)	Depth (m)	(Mag)		(m)		(m)	g/t	g/t	ma rks
		(m)	(m)										TR5
							Including	30.0	33.0	3.0	4.60	NA	
MGD029	DDH	179,145	9,627,521	1,099	35	270	-45	11.0	26.0	15.0	0.77	NA	
							Including	17.0	19.0	2.0	1.90	NA	
								34.0	35.0	1.0	0.57	NA	
MGD030	DDH	179,127	9,627,442	1,129	37	270	-63	0.0	15.0	15.0	3.00	NA	
							Including	1.0	3.0	2.0	7.10	NA	
							Including	6.0	10.0	4.0	4.70	NA	
MGD031	DDH	179,146	9,627,521	1,099	41	90	-75	2.0	28.0	26.0	1.76	NA	
							Including	10.0	14.0	4.0	5.00	NA	
							Including	20.0	22.0	2.0	3.70	NA	
MGD031								35.0	41.0	6.0	1.30	NA	
MGD032	DDH	179,181	9,627,546	1,085	46	270	-62	2.0	41.0	39.0	1.09	NA	
							Including	6.0	7.0	1.0	3.00	NA	
							Including	12.0	17.0	5.0	3.40	NA	
MGD033	DDH	179,128	9,627,442	1,129	34	90	-52	0.0	16.0	16.0	1.88	NA	
							Including	12.0	15.0	3.0	3.14	NA	
								25.0	34.0	9.0	1.25	NA	

Hole ID	Hole Type	Easting UTM Grid	Northing UTM Grid	Elevation (m)	Total Depth (m)	Azimuth (Mag)	Dip	From (m)	To (m)	Interval (m)	Au g/t	Ag g/t	Re ma
		(m)	(m)										rks
							Including	25.0	27.0	2.0	3.40	NA	
MGD034	DDH	179,197	9,627,521	1,092	50	270	-45	0.0	2.0	2.0	0.16	NA	
								11.0	42.0	31.0	1.89	NA	
							Including	15.0	22.0	7.0	3.90	NA	
							Including	33.0	40.0	7.0	2.90	NA	
MGD035	DDH	179,136	9,627,548	1,096	36	270	-50	0.0	33.0	33.0	1.13	NA	
							Including	8.0	10.0	2.0	2.60	NA	
							Including	18.0	21.0	3.0	3.20	NA	
							Including	24.0	25.0	1.0	2.95	NA	
							Including	32.0	33.0	1.0	3.72	NA	
MGD036	DDH	179,144	9,627,572	1,086	35	260	-50	0.0	30.0	30.0	0.78	NA	
							Including	7.0	11.0	4.0	2.20	NA	
MGD037	DDH	179,159	9,627,571	1,086	44	270	-68	1.0	2.0	1.0	0.10	NA	
								13.0	41.0	28.0	0.73	NA	
							Including	13.0	15.0	2.0	1.80	NA	
							Including	31.0	32.0	1.0	2.14	NA	

Hole ID	Hole	Easting	Northing	Elevation	Total Depth (m)	Azimuth (Mag)	Dip	From (m)	To (m)	Interval (m)	Au	Ag	Re
	Туре	UTM Grid (m)	UTM Grid (m)	(m)	Deptil (III)	(IVIAE)		(111)		(111)	g/t	g/t	ma rks
							Including	34.0	35.0	1.0	2.28	NA	
							Including	39.0	40.0	1.0	2.41	NA	
MGD038	DDH	179,099	9,627,456	1,124	36	104	-72	4.0	20.0	16.0	1.47	NA	
MGD038							Including	17.0	19.0	2.0	3.40	NA	
								28.0	36.0	8.0	1.07	NA	
							Including	31.0	32.0	1.0	3.42	NA	
MGD039	DDH	179,140	9,627,596	1,082	27	270	-65	0.0	1.0	1.0	0.10	NA	
								3.0	4.0	1.0	0.17	NA	
								8.0	11.0	3.0	0.73	NA	
								25.0	27.0	2.0	0.22	NA	
MGD040	DDH	179,142	9,627,623	1,084	25	270	-60	0.0	12.0	12.0	3.42	NA	
							Including	3.0	7.0	4.0	9.00	NA	
								17.0	23.0	6.0	6.37	NA	
							Including	21.0	23.0	2.0	17.80	NA	
MGD041	DDH	179,132	9,627,461	1,120	42	302	-66	0.0	18.0	18.0	2.91	NA	
							Including	3.0	6.0	3.0	5.04	NA	
							Including	14.0	17.0	3.0	7.00	NA	

								35.0	42.0	7.0	0.41	NA	
MGD042	DDH	179,137	9,627,611	1,083	28	270	-48	0.0	3.0	3.0	0.36	NA	
								9.0	19.0	10.0	0.60	NA	
							Including	16.0	17.0	1.0	2.99	NA	
MGD043	DDH	179,136	9,627,612	1,083	26	90	-77	0.0	5.0	5.0	0.55	NA	
							Including	2.0	3.0	1.0	2.01	NA	
								11.0	18.0	7.0	0.42	NA	
							Including	12.0	13.0	1.0	1.49	NA	
MGD044	DDH	179,194	9,627,647	1,064	47	90	-65	0.0	14.0	14.0	0.96	NA	
							Including	3.0	5.0	2.0	2.60	NA	
							Including	6.0	7.0	1.0	3.92	NA	
MGD044								18.0	47.0	29.0	1.21	NA	
							Including	18.0	19.0	1.0	2.39	NA	
							Including	27.0	29.0	2.0	4.27	NA	
							Including	35.0	39.0	4.0	3.10	NA	
MGD045	DDH	179,100	9,627,457	1,125	39	236	-84	4.0	24.0	20.0	2.42	NA	
							Including	9.0	11.0	2.0	4.24	NA	
							Including	14.0	16.0	2.0	4.65	NA	
								28.0	29.0	1.0	0.35	NA	

								34.0	35.0	1.0	1.11	NA	
MGD046	DDH	179,160	9,627,439	1,120	18	270	-71	1.0	18.0	17.0	1.33	NA	
							Including	13.0	16.0	3.0	3.64	NA	
MGD047	DDH	179,119	9,627,624	1,086	21	270	-61	0.0	12.0	12.0	2.48	NA	
							Including	1.0	3.0	2.0	5.40	NA	
								17.0	18.0	1.0	0.19	NA	
MGD048	DDH	179,118	9,627,624	1,086	23	90	-69	0.0	19.0	19.0	1.32	NA	
							Including	1.0	7.0	6.0	3.30	NA	
MGD049	DDH	179,157	9,627,454	1,119	25	270	-65	6.0	8.0	2.0	1.99	NA	
								14.0	20.0	6.0	0.46	NA	
MGD050	DDH	179,188	9,627,571	1,078	43	270	-70	14.0	17.0	3.0	2.36	NA	
							Including	15.0	16.0	1.0	6.33	NA	
								24.0	36.0	12.0	0.70	NA	
								40.0	43.0	3.0	0.20	NA	
MGD051	DDH	179,134	9,627,647	1,083	25	286	-60	0.0	25.0	25.0	1.25	NA	
							Including	15.0	16.0	1.0	2.71	NA	
							Including	20.0	22.0	2.0	3.80	NA	
MGD052	DDH	179,115	9,627,455	1,124	30	90	-71	0.0	18.0	18.0	1.94	NA	
												I D o a o	

							Including	7.0	10.0	3.0	5.20	NA	
							Including	17.0	18.0	1.0	3.94	NA	
MGD053	DDH	179,092	9,627,472	1,117	40	270	-69	0.0	1.0	1.0	0.35	NA	
								14.0	39.0	25.0	1.61	NA	
							Including	24.0	28.0	4.0	3.30	NA	
MGD054	DDH	179,106	9,627,612	1,091	28	270	-45	9.0	14.0	5.0	1.75	NA	
								18.0	21.0	3.0	0.17	NA	
MGD055	DDH	179,179	9,627,651	1,066	35	270	-70	7.0	35.0	28.0	0.70	NA	
							Including	7.0	12.0	5.0	2.50	NA	
MGD056	DDH	179,189	9,627,611	1,068	32	270	-70	0.0	25.0	25.0	0.88	NA	
							Including	5.0	10.0	5.0	3.00	NA	
MGD057	DDH	179,208	9,627,623	1,063	27	266	-66	0.0	3.0	3.0	0.14	NA	
								8.0	27.0	19.0	1.27	NA	
							Including	12.0	13.0	1.0	3.35	NA	
MGD058	DDH	179,091	9,627,471	1,119	45	267	-47	17.0	29.0	12.0	1.38	NA	
								39.0	45.0	6.0	0.67	NA	
							Including	41.0	42.0	1.0	1.95	NA	
MGD059	DDH	179,216	9,627,635	1,060	35	277	-56	2.0	35.0	33.0	1.85	NA	
							Including	5.0	7.0	2.0	4.53	NA	
							Including	15.0	20.0	5.0	4.74	NA	

MGD060	DDH	179,140	9,627,637	1,082	29	270	-62	0.0	20.0	20.0	0.92	NA
							Including	3.0	4.0	1.0	3.48	NA
							Including	5.0	7.0	2.0	2.40	NA
MGD061	DDH	179,063	9,627,492	1,121	35	270	-54	17.0	35.0	18.0	3.22	NA
							Including	31.0	34.0	3.0	11.69	NA
MGD062	DDH	179,123	9,627,660	1,080	35	76	-55	0.0	35.0	35.0	0.93	NA
							Including	25.0	27.0	2.0	2.24	NA
							Including	32.0	35.0	3.0	3.35	NA
MGD063	DDH	179,161	9,627,624	1,077	25	270	-66	0.0	21.0	21.0	0.63	NA
							Including	5.0	9.0	4.0	1.60	NA
MGD064	DDH	179,123	9,627,660	1,080	30	284	-46	0.0	12.0	12.0	1.74	NA
							Including	1.0	4.0	3.0	3.88	NA
								19.0	30.0	11.0	0.90	NA
							Including	23.0	25.0	2.0	1.94	NA
MGD065	DDH	179,196	9,627,635	1,066	31	270	-55	7.0	31.0	24.0	0.83	NA
							Including	8.0	11.0	3.0	2.68	NA
MGD066	DDH	179,123	9,627,660	1,080	31	360	-80	0.0	14.0	14.0	1.01	NA
							Including	0.0	3.0	3.0	2.20	NA
								24.0	31.0	7.0	0.68	NA
							Including	24.0	27.0	3.0	1.40	NA

MGD067	DDH	179,066	9,627,492	1,119	36	90	-57	25.0	34.0	9.0	1.48	NA
							Including	26.0	28.0	2.0	4.87	NA
MGD068	DDH	179,176	9,627,598	1,073	38	270	-67	10.0	21.0	11.0	0.85	NA
							Including	11.0	13.0	2.0	2.35	NA
								25.0	29.0	4.0	0.52	NA
							Including	26.0	27.0	1.0	1.08	NA
MGD069	DDH	179,100	9,627,472	1,118	37	92	-84	0.0	22.0	22.0	0.98	NA
							Including	2.0	3.0	1.0	5.33	NA
								33.0	34.0	1.0	0.30	NA
MGD070	DDH	179,058	9,627,520	1,123	39	90	-56	15.0	39.0	24.0	1.18	NA
							Including	23.0	27.0	4.0	2.86	NA
MGD070							Including	31.0	33.0	2.0	3.06	NA
MGD071	DDH	179,211	9,627,667	1,052	35	270	-45	17.0	23.0	6.0	0.73	NA
							Including	20.0	22.0	2.0	1.47	NA
								28.0	35.0	7.0	0.33	NA
							Including	28.0	29.0	1.0	1.03	NA
MGD072	DDH	179,193	9,627,671	1,052	34	262	-42	8.0	9.0	1.0	2.01	NA
								15.0	27.0	12.0	0.33	NA
								32.0	34.0	2.0	0.13	NA

MGD073	DDH	179,193	9,627,670	1,051	37	235	-75	5.0	12.0	7.0	0.32	NA
								19.0	22.0	3.0	1.23	NA
								29.0	32.0	3.0	0.12	NA
MGD074	DDH	179,057	9,627,518	1,125	42	270	-72	19.0	41.0	22.0	0.78	NA
							Including	19.0	22.0	3.0	2.41	NA
MGD075	DDH	179,153	9,627,641	1,077	35	310	-45	5.0	24.0	19.0	1.42	NA
							Including	16.0	22.0	6.0	3.03	NA
MGD076	DDH	179,112	9,627,683	1,063	31	270	-80	0.0	18.0	18.0	0.47	NA
							Including	0.0	2.0	2.0	2.83	NA
								28.0	29.0	1.0	0.21	NA
MGD077	DDH	179,115	9,627,683	1,063	40	90	-40	0.0	19.0	19.0	3.76	NA
							Including	1.0	2.0	1.0	52.0	NA
								23.0	25.0	2.0	0.63	NA
MGD078	DDH	179,168	9,627,672	1,052	25	246	-45	7.0	15.0	8.0	1.58	NA
							Including	7.0	10.0	3.0	3.65	NA
								21.0	25.0	4.0	0.79	NA

Competent Persons Statement

The information in this announcement that relates to the exploration results and Mineral Resources of Nusantara Resources is summarised from publicly available reports as released to the ASX of the respective companies. The results are duly referenced in the text of this report and the source documents noted above.

All stated Mineral Resources have been prepared in accordance with the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves' (the JORC Code 2012).

Exploration and Resource Targets

Any discussion in relation to the potential quantity and grade of Exploration Targets is only conceptual in nature. While Nusantara Resources may report additional Mineral Resources for the Awak Mas Gold Project, there has been insufficient exploration to date to estimate any additional mineral resources to the current Mineral Resources inventory. It is uncertain if further exploration will result in the delineation of additional Mineral Resources.

Exploration Results

The information in this report which relates to Exploration Results is based on, and fairly represents, information compiled by Mr Colin McMillan, (BSc) for Nusantara Resources. Mr McMillan is an employee of Nusantara Resources and is a Member of the Australian Institute of Mining and Metallurgy (AusIMM No: 109791).

Mr McMillan has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr McMillan consents to the inclusion in the report of the matters based on this information in the form and context in which it appears.

Mineral Resources

The information in this report that relates to the Mineral Resource Estimation for Awak Mas Gold Project is based on and fairly represents information compiled by Mr Michael Millad, Principal Geostatistician/Director, (MSc, CFSG), MAIG, for Cube Consulting Pty Ltd. Mr Millad is an employee of Cube Consulting Pty Ltd and a current Member of the Australian Institute of Geoscientists (MAIG No: 5799).

Mr Millad has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as Competent Persons as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr Millad consents to the inclusion in the report of the matters based on this information in the form and context in which it appears.

New Information or Data

Nusantara Resources confirms that it is not aware of any new information or data that materially affects the information included in the original market announcements and, in the case of estimates of Mineral Resources and Ore Reserves that all material assumptions and technical parameters underpinning the estimates in the relevant market announcement continue to apply and have not materially changed. The Company confirms that the form and context in which the Competent Person's findings are presented have not materially changes from the original market announcement.

Competent Person's Consent Form

Pursuant to the requirements of ASX Listing Rules 5.6, 5.22 and 5.24 and Clause 9 of the JORC Code 2012 Edition (Written Consent Statement)

Report name

ASX Release – Awak Mas Gold Project – 05/07/2021: 'AWAK MAS PROJECT MINERAL RESOURCE UPDATE AND HIGHER-GRADE MEASURED RESOURCE AT SALU BULO'

Nusantara Resources Limited

(Insert name of company releasing the Report)

Awak Mas Gold Project

(Insert name of the deposit to which the Report refers)

If there is insufficient space, complete the following sheet and sign it in the same manner as this original sheet.

05/07/2021

(Date of Report)

Statement

Colin Charles McMillan, (BSc. MAusIMM)

(Insert full name(s))

١,

confirm that I am the Competent Person for the Report and:

- I have read and understood the requirements of the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (JORC Code, 2012 Edition).
- I am a Competent Person as defined by the JORC Code, 2012 Edition, having five years' experience that is relevant to the style of mineralisation and type of deposit described in the Report, and to the activity for which I am accepting responsibility.
- I am a Registered Member of The Australasian Institute of Mining and Metallurgy.
- I have reviewed the Report to which this Consent Statement applies.

I am a full-time employee of

Nusantara Resources Limited

(Insert company name)

Or

I/We am a consultant working for

(Insert company name)

and have been engaged by

(Insert company name)

to prepare the documentation for

(Insert deposit name)

on which the Report is based, for the period ended

(Insert date of Resource/Reserve statement)

I have disclosed to the reporting company the full nature of the relationship between myself and the company, including any issue that could be perceived by investors as a conflict of interest.

I verify that the Report is based on and fairly and accurately reflects in the form and context in which it appears, the information in my supporting documentation relating to Exploration Targets, Exploration Results, Mineral Resources and/or Ore Reserves (*select as appropriate*).

Consent

I consent to the release of the Report and this Consent Statement by the directors of:

Nusantara Resources Limited

(Insert reporting company name)

Signature of Competent Person:

Date:

lotoman

05/07/2021

Professional Membership: (insert organisation name) Membership Number:

109791

AusIMM

Signature of Witness:

Print Witness Name and Residence: (eg town/suburb)

Mr Neil Whitaker

Competent Person's Consent Form

Pursuant to the requirements of ASX Listing Rules 5.6, 5.22 and 5.24 and Clause 9 of the JORC Code 2012 Edition (Written Consent Statement)

Report name

ASX Release – Awak Mas Gold Project – 05/07/2021: 'AWAK MAS PROJECT MINERAL RESOURCE UPDATE AND HIGHER-GRADE MEASURED RESOURCE AT SALU BULO'

(Insert name or heading of Report to be publicly released) ('Report')

Nusantara Resources Limited

(Insert name of company releasing the Report)

Awak Mas Gold Project

(Insert name of the deposit to which the Report refers)

If there is insufficient space, complete the following sheet and sign it in the same manner as this original sheet.

5 July 2021

(Date of Report)

Statement

I/We,

Marcus Andrew Osiejak, (BSc MAusIMM)

(Insert full name(s))

confirm that I am the Competent Person for the Report and:

- I have read and understood the requirements of the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (JORC Code, 2012 Edition).
- I am a Competent Person as defined by the JORC Code, 2012 Edition, having five years' experience that is relevant to the style of mineralisation and type of deposit described in the Report, and to the activity for which I am accepting responsibility.
- I am a Registered Member of the Australasian Institute of Mining and Metallurgy (No. 225200).
- I have reviewed the Report to which this Consent Statement applies.

I am a full time employee of

Cube Consulting Pty Ltd

(Insert company name)

Or

I/We am a consultant working for

(Insert company name)

and have been engaged by

Nusantara Resources Pty Ltd

(Insert company name)

to prepare the documentation for

Awak Mas Gold Project, located in Indonesia.

(Insert deposit name)

on which the Report is based, for the period ended

5 July 2021

(Insert date of Resource/Reserve statement)

I have disclosed to the reporting company the full nature of the relationship between myself and the company, including any issue that could be perceived by investors as a conflict of interest.

I verify that the Report is based on and fairly and accurately reflects in the form and context in which it appears, the information in my supporting documentation relating to Exploration Targets, Exploration Results, Mineral Resources and/or Ore Reserves (*select as appropriate*).

Consent

I consent to the release of the Report and this Consent Statement by the directors of:

Nusantara Resources Limited

(Insert reporting company name)

Signature of Competent Person:	Date:				
Miezh	05/07/2021				
Professional Membership: (insert organisation name)	Membership Number:				
MAusIMM	225200				
Signature of Witness:	Print Witness Name and Residence: (eg town/suburb)				
Altaros	Patrick Adams, Sorrento				

Competent Person's Consent Form

Pursuant to the requirements of ASX Listing Rules 5.6, 5.22 and 5.24 and Clause 9 of the JORC Code 2012 Edition (Written Consent Statement)

Report name

ASX Release – Awak Mas Gold Project – 05/07/2021: 'AWAK MAS PROJECT MINERAL RESOURCE UPDATE AND HIGHER-GRADE MEASURED RESOURCE AT SALU BULO'

(Insert name or heading of Report to be publicly released) ('Report')

Nusantara Resources Limited

(Insert name of company releasing the Report)

Awak Mas Gold Project

(Insert name of the deposit to which the Report refers)

If there is insufficient space, complete the following sheet and sign it in the same manner as this original sheet.

5 July 2021

(Date of Report)

Statement

I/We,

Michael George Millad, (MSc CFSG MAIG)

(Insert full name(s))

confirm that I am the Competent Person for the Report and:

- I have read and understood the requirements of the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (JORC Code, 2012 Edition).
- I am a Competent Person as defined by the JORC Code, 2012 Edition, having five years' experience that is relevant to the style of mineralisation and type of deposit described in the Report, and to the activity for which I am accepting responsibility.
- I am a Registered Member of the Australasian Institute of Geoscientists (No. 5799).
- I have reviewed the Report to which this Consent Statement applies.

I am a full time employee of

Cube Consulting Pty Ltd

(Insert company name)

Or

I/We am a consultant working for

(Insert company name)

and have been engaged by

Nusantara Resources Pty Ltd

(Insert company name)

to prepare the documentation for

Awak Mas Gold Project, located in Indonesia.

(Insert deposit name)

on which the Report is based, for the period ended

5 July 2021

(Insert date of Resource/Reserve statement)

I have disclosed to the reporting company the full nature of the relationship between myself and the company, including any issue that could be perceived by investors as a conflict of interest.

I verify that the Report is based on and fairly and accurately reflects in the form and context in which it appears, the information in my supporting documentation relating to Exploration Targets, Exploration Results, Mineral Resources and/or Ore Reserves (*select as appropriate*).

Consent

I consent to the release of the Report and this Consent Statement by the directors of:

Nusantara Resources Limited

(Insert reporting company name)

Signature of Competent Person:	Date:				
June -	05/07/2021				
Professional Membership: (insert organisation name)	Membership Number:				
MAIG	5799				
Signature of Witness:	Print Witness Name and Residence: (eg town/suburb)				
Chaves	Patrick Adams, Sorrento				