HIGHLIGHTS

ASX ANNOUNCEMENT

- Neometals completes review of 11 Nickel Mineral Resources across the Mt Edwards Project at Widgiemooltha;
- Nine Mineral Resources have been re-estimated between November 2019 and June 2021 using new and existing data;
- Assessment of Cooke and Widgie 3 Mineral Resources deemed that no re-estimation is required; and
- Global contained nickel tonnes at the Mt Edwards Project now 162,560 tonnes, from 10.220 million tonnes at 1.6% Ni.

Neometals Ltd (**ASX: NMT**) ("**Neometals**" or "**the Company**") is pleased to announce completion of a review of all eleven nickel Mineral Resource estimates at its Mt Edwards Nickel Project ("**Mt Edwards**"). The review commenced mid-2019 with the first estimate completed on the Munda deposit in November 2019. Since this time Neometals has been progressively reviewing all available data, including government and third party sourced, to increase its understanding of Mt Edwards.

The increase for the Mt Edwards 26N Mineral Resource announced 30 June 2021 is the last re-estimation considered necessary with the current information (*for further details see Neometals ASX announcement titled "Updated 26 North Resource at Mt Edwards Increases by 51% dated 30 June 2021*). An assessment of the Cooke¹ and Widgie 3² Mineral Resources was completed by Richard Maddocks from Auralia Mining Consultants. In Mr Maddock's assessment, the current estimates do not warrant reinterpretation given the available data.

Table 1 – The reviewed Mt Edwards Project with 11 Nickel Mineral Resource estimates for 162,560 contained nickel tonnes

		<u>jeet</u>					
	Indic	ated	Infe	rred	тот	AL Mineral R	esources
Deposit	Tonne (kt)	Nickel (%)	Tonne (kt)	Nickel (%)	Tonne (kt)	Nickel (%)	Nickel Tonnes
Widgie 3 ²			626	1.5	626	1.5	9,160
Gillett⁵			1,306	1.7	1,306	1.7	22,500
Widgie Townsite ⁹	1,183	1.7	1,293	1.5	2,476	1.6	39,300
Munda ³			320	2.2	320	2.2	7,140
Mt Edwards 26N			871	1.4	871	1.4	12,400
132N ⁶	34	2.9	426	1.9	460	2	9,050
Cooke ¹			154	1.3	154	1.3	2,000
Armstrong ⁴	526	2.1	107	2	633	2.1	13,200
McEwen ⁸			1,133	1.4	1,133	1.4	15,340
McEwen Hangingwall ⁸			1,916	1.4	1,916	1.4	26,110
Zabel ^{7&8}	272	1.9	53	2	325	2	6,360
TOTAL	2,015	1.9	8,205	1.5	10,220	1.6	162,560

Mineral Resources quoted using a 1% Ni block cut-off grade, except Munda at 1.5% Ni. Small discrepancies may occur due to rounding

Note 1. refer announcement on the ASX: NMT 19 April 2018 titled - Mt Edwards JORC Code (2012 Edition) Mineral Resource 48,200 Nickel Tonnes

Note 2. refer announcement on the ASX: NMT 25 June 2018 titled - Mt Edwards Project Mineral Resource Over 120,000 Nickel Tonnes

Note 5. refer announcement on the ASX: NMT 26 May 2020 titled – Increase in Mt Edwards Nickel Mineral Resource

Note 6. refer announcement on the ASX: NMT 6 October 2020 titled – 132 Nickel Mineral Resource and Exploration Update at Mt Edwards

Note 7. refer announcement on the ASX: NMT 23 December 2020 - Zabel Nickel Mineral Resource Update at Mt Edwards

Note 8. refer announcement on the ASX: NMT 29 June 2021– McEwen Resources at Mt Edwards Increase 45% to 41.5kt Contained Nickel

Note 9. refer announcement on the ASX: NMT 29 June 2021 – Updated Widgie Townsite Nickel Mineral Resources at Mt Edwards

Note 10. refer announcement on the ASX: NMT 30 June 2021– Updated 26 North Resources at Mt Edwards Increase by 51%

ACN 099 116 361 Level 1, 1292 Hay Street West Perth WA 6005 Locked Bag 8 West Perth WA 6872 T: +61 8 9322 1182 F: +61 8 9321 0556 info@neometals.com.au neometals.com.au

All the right elements

Note 3. refer announcement on the ASX: NMT 13 November 2019 titled - Additional Nickel Mineral Resource at Mt Edwards

Note 4. refer announcement on the ASX: NMT 16 April 2020 titled – 60% Increase in Armstrong Mineral Resource

Background

Neometals acquired Mt Edwards in the first half of 2018 and immediately began exploring for nickel and lithium. The Company is targeting new nickel discoveries at Mt Edwards while reviewing and enhancing existing nickel Mineral Resources. The Company owns, or holds nickel rights to, 36 mining tenements with a large land holding of more than 300km² across the Widgiemooltha Dome, a well-recognised nickel sulphide mining province.

Summary and Mineral Resource Estimation

Mr Richard Maddocks from Auralia Mining Consultants has reviewed both the Widgie 3 and Cooke Mineral Resource block models and reports and has not identified any fatal flaws in the geological interpretation nor in the grade estimation. Mr Maddocks asserts that the reporting of the Mineral Resource for each deposit has been underreported since 2018 due to rounding errors, with Widgie 3 having 626,000 tonnes (up from 625,000 tonnes) of mineralisation at 1.5% nickel, and Cooke 154,000 tonnes (up from 150,000 tonnes) at 1.3% nickel for 2,003 contained nickel tonnes (up from 1,950 nickel tonnes). The Widgie 3 and Cooke Mineral Resource estimate are summarised in Table 2.

Deposit	Mineral Resource Category	Cut-off Grade Ni %	Tonnes	Ni %	Nickel Tonnes
Widgie 3	Inferred	1.0	626,000	1.5	9,160
Cooke	Inferred	1.0	154,000	1.3	2,003

Table 2 - Widgie 3 & Cooke Mineral Resource Estimate

The Mineral Resource estimates are reported in accordance with the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves' prepared by the Joint Ore Reserves Committee of The Australasian Institute of Mining and Metallurgy, Australian Institute of Geoscientists and Minerals Council of Australia (JORC Code) and follows a detailed interrogation and review of the available data, including the earlier reported Mineral Resource estimates by the previous holders of the tenement.

The Widgie 3 and Cooke Mineral Resources were previously estimated by Titan Resources in 2005 and Apollo Phoenix in 2016. The 2005 estimates were completed by consultants Hellman and Schofield using ordinary kriging to estimate nickel and arsenic grades. The 2016 estimates were essentially an update using the same parameters as the 2005 estimate. These estimates were accompanied by the required JORC tables and tabulated drilling information to enable it to be quoted as compliant with the 2012 JORC Code, and they were reported on the ASX shortly after Neometals acquired the deposits in April 2018 (refer Note 1 to Table 1 above) and June 2018 (refer Note 2 to Table 1 above).

A summary of information relevant to the Widgie 3 and Cooke Mineral Resource estimate at the Mt Edwards Project is provided in these appendices attached to this announcement:

Appendix 1. Table 1 as per the JORC Code Guidelines (2012) Appendix 2. Drill holes used in the Mt Edwards Widgie 3 and Cooke block model estimates Appendix 3. Significant and Mineralised Drill Intersections at Widgie 3 and Cooke

Requirements applicable to reports of Mineral Resources for material mining projects

This announcement clarifies the Cooke and Widgie 3 Mineral Resources are in accordance with requirements applicable to reports of Mineral Resources for material mining projects, including location, geology and interpretation, sampling and drilling techniques, sample and assay analysis, classification, estimation methodology, cut-off grades, mining and metallurgical parameters and recommendations.

Location

The Widgie 3 Deposit is located about 75 kilometres south-south-easterly of Coolgardie in the Goldfields region of Western Australia and about 2.6km south-east from the townsite of Widgiemooltha. Access to the Widgie 3 Deposit ("**Widgie 3**") from the Coolgardie to Esperance Highway is via the Caves Hill Road and then well-established roads used for previous mining and exploration in the area. The Cooke Deposit ("**Cooke**") is located about 64 kilometres south-south-easterly of Coolgardie in the Goldfields region of Western Australia and about 7km north-west from the townsite of Widgiemooltha. Access to Cooke from the Coolgardie to Esperance Highway is via well-established roads used for previous mining and exploration in the area.

2

Figure 1 - *Mt Edwards Project tenure over geology, showing the locations of the Widgie 3 Mineral Resource on M15/94 and the Cooke Mineral Resource on M15/101.*

Geology and Geological Interpretation

The Widgiemooltha area lies within the southern part of the Norseman-Wiluna greenstone belt. The area is dominated by the Widgiemooltha Dome which is interpreted to be a syn-kinematic granitoid diapir. The granitoid core is flanked by ultramafics and mafic metavolcanics comprising tholeiitic and komatiitic extrusives, interflow sediments and minor high MgO mafic flows.

Three phases of ductile deformation have been defined and are characterised by open to tight folding and cleavage development. Late-stage brittle deformation is characterised by north northwest and east west faults.

Figure 2 – *Plan of geology, drill traces and open pit workings at the Widqie 3 deposit.*

Figure 3 – Cross section of Widgie 3 and the adjacent Gillett Mineral Resource showing drill traces, geology, DHEM targets and significant intercepts.

Widgie 3 deposit geology

Widgie 3 is located on the northeast flank of the Widgiemooltha Dome, within a sequence of intercalated mafic and ultramafic rocks.

At the deposit scale the main ultramafic formation (Widgiemooltha Komatiite) is a maximum of 600m thick, and consists of numerous flows of picritic to peridotitic composition with minor interflow cherty sediments. The sequence generally strikes north-south, faces east and dips to the east at around 70°, steepening to 90° at depth and to the north. Rhyolitic porphyry dykes with a general north-northwest strike intrudes the sequence and in places stopes out mineralisation. The footwall rocks, west of the ultramafic sequence consists of relatively undeformed amphibolite (Mt Edwards Basalt).

Mineralisation is located along the contact of the amphibolite and ultramafics. The more massive higher grade mineralisation is developed within a serpentinite lens at the base of the ultramafics, in an embayment on the contact (the Widgie 3 embayment). The lens is 110m long, 30m thick and extends to a depth of at least 140m below surface. Matrix and disseminated mineralisation is located immediately above the more massive mineralisation and extends beyond the serpentinite lens at depth. The depth of oxidation ranges from 15 metres at the south end of the deposit to 30 metres below surface at the north end.

Mineralisation consists of contact massive sulphides (pyrite, pyrrhotite, pentlandite, chalcopyrite, gersdorffite) typically <1m thick, overlain by matrix sulphides and disseminated sulphides. The mineralised envelope can be up to 19 metres thick (decreasing with depth) and 200 metres strike length and is located within or at the base of the serpentinite lens.

The more massive basal mineralised lens is typically less than 2.5m thick; while the more disseminated hanging wall mineralised zones are typically greater than 3m thick depending on the cut-off used to define the mineralised boundary.

Δ

Cooke Geology

Nickel sulphide mineralisation developed on and above the ultramafic-amphibolite contact at Cooke is associated with a steep northerly plunging synclinal structure. Both the east and west contact are mineralised and the entire structure dips steeply to the west. The syncline plunges at about 50 degrees to the north and dips steeply to the east. WMC geologists recognised three mineralised surfaces;

- 1. Western inner synclinal contact, within which mineralisation is variable, from heavy matrix contact mineralisation in the synclinal keel, to lower tenor disseminated mineralisation in the north.
- 2. Eastern inner contact, which consists of high-grade low tonnage mineralised zone that has limited strike and down dip potential.
- 3. Southern outer contact, which is typically heavy matrix in character, with minor massive mineralisation.

Figure 4 – Plan of geology, drill traces, and EM plates at Cooke.

Sampling

Sampling and sub-sampling techniques and procedures for Anaconda, Metals Exploration and WMC at Widgie 3 are not known. Sampling procedures for INCO and WMC drilling at Cooke are not known .

Titan Resources samples from RC drilling at both Cooke and Widgie 3 were collected via a cyclone and riffle split 75:25. One metre samples were laid out on the ground in rows of 20. Four metre composites or 1 metre splits were submitted to the laboratory at the geologist's discretion. Four metre composites were sampled using a spear by taking an equal portion from each one metre sample. Zones of interest were sampled at 1 metre intervals. Nickel mineralisation was sampled for 10 metres above and 5 metres below the contact. Samples, typically weighing between 3 and 5kg, were submitted to the laboratory. Four metre composite samples assaying greater than 0.3% nickel or 0.3g/t gold were re-sampled at one metre intervals.

5

At Widgie 3 diamond core drilled by Titan was sampled according to lithology at the geologist's discretion. The core was oriented and geotechnical logging was carried out prior to the core being cut. Half core or quarter core samples were submitted for analysis.

For RC drilling at both Cooke and Widgie 3 one metre geological reference samples were collected and stored in chip tray boxes. The location of these chip trays is not known.

At the end of each RC hole at Cooke an Eastman single-shot camera was used to record the dip. This was taken in the drill rod so azimuths were not recorded due to magnetic interference. Selected holes were then surveyed at 10m intervals down hole, by Surtron Technologies, using either a gyro or electronic multi-shot.

Drilling techniques - Widgie 3

The Widgie 3 Mineral Resource has been estimated from 110 drill holes totalling 14,768m. Of these 21 holes for 4,456m were drilled by Anaconda between 1967 and 1974, 3 holes for 245m by Metals Exploration and 78 holes for 8,295m were drilled by Western Mining (WMC) between 1980 and 1999. Finally Titan Resources drilled 8 holes for 1,772m in 2004.

Anaconda drilled 19 Diamond Core holes and 2 percussion holes. Titan drilled 4 RC holes and 4 Diamond Core holes.

Figure 6 – Long section of the Widgie 3 Mineral Resource showing drill traces and nickel grade, significant intercepts and EM Plates.

The Titan RC holes at Widgie 3 were drilled by McKay Drilling of Kalgoorlie using a 1996 Hydco 1350 with an 1150/350 onboard compressor, a 1999 Western Air 1150/350 silenced compressor and 1800/900 Hurricane booster. One RC pre-collar was drilled by McKays and the remainder were drilled by Redmond Drilling or Ausdrill using a T685W Schramm with 1000 CFM @ 500PSI on board air along with auxiliary and booster compressors. A single RC pre-collar was drilled by Drillcorp Western Deephole using a late model UDR 1000 heavy duty multi-purpose rig with on board Sullair 900cfm x 350psi compressor. Diamond drilling was carried out by Drillcorp Western Deephole used a late model UDR 1000 heavy duty multi-purpose rig.

The Widgiemooltha database suggests all the WMC holes at Widgie 3 are Diamond Core but the shallow nature of the holes indicates that some, at least, are more likely to be percussion holes.

Samples from all holes have been considered in the Mineral Resource estimation of Widgie 3.

Drilling techniques - Cooke

Three metallurgical test holes were drilled at Cooke for a total of 314.5 metres of HQ3 diamond core. All holes were cored from surface by Drillcorp Western Deephole utilising a UDR 1000 heavy duty multi-purpose rig with a 900cfm x 350psi onboard compressor. Sixty-seven samples (Sample numbers WD2810 to WD2876), obtained from the drilling, were forwarded to AMMTEC Ltd for metallurgical test work.

Figure 7 – Long section of the Cooke Mineral Resource showing drill traces and nickel grade, significant intercepts and EM Plates.

Four geotechnical holes were drilled at Cooke (M15/101), WDGT01 to WDGT04, for a total of 305.4 metres of HQ3 diamond core.

The Cooke Mineral Resource has been estimated from 114 drill holes totalling 14,105m. Of these 37 holes for 3,193m were drilled by INCO in 1970, 63 holes for 9,729m were drilled by Western Mining (WMC) between 1980 and 1999. Finally, Titan Resources drilled 14 holes for 1,193m in 2004.

Titan drilled 7 RC holes, 4 Diamond Core Geotechnical holes and 3 Diamond Core metallurgical holes. The Widgiemooltha database suggests all the INCO and WMC holes at Cooke are Diamond Core but the shallow nature of the holes indicates that some, at least, are more likely to be percussion holes.

Samples from all holes have been considered in the Mineral Resource estimation of Cooke.

Classification Criteria

The Widgie 3 and Cooke Mineral Resource estimates have been classified as Inferred. The historical nature of most of the drilling and the lack of supporting data means that a higher classification cannot be considered.

At Cooke the oxide material has not been classified due to potential metallurgical issues with supergene nickel species. Additional test-work is required in order for nickel oxide material to be considered for Mineral Resource classification.

Sample Analysis

Analysis of INCO and WMC drilling samples at Cooke is not known. Sample analysis for Anaconda, Metals Exploration and WMC at Widgie 3 are not known.

Analysis of Titan Resources samples for Cooke and Widgie 3 was undertaken by ALS Chemex, Perth. The entire sample was prepared by crushing and pulverising to a nominal 90% passing 75 microns. Analytical schemes and detection limits are as follows:

- ME-ICP61s (formerly IC587) four acid digestion, HF-HNO3-HCLO4 acid digestion, HCL leach and ICP-AES, detection limits in brackets. Cu (1ppm), Co (1ppm), Ni (1ppm), Cr (1ppm), As (5ppm), Mn (5ppm), Al (0.01%), S (100ppm), Mg (0.01%) and Fe (0.01%);
- Copper and nickel values in excess of 1% (considered to be Ore grade) were re-assayed using ME-OG62 four acid digest as above, elements determined by ICP-AES with lower detection limits of 0.01%;
- After preparation a split or check sample was taken by ALS from every 20th sample and sent to Ultratrace Analytical Laboratories in Perth. The analytical method and detection limits at Ultratrace are as follows:
- Four acid digest, detection limits in brackets. Cu (1ppm), Co (1ppm), Ni (1ppm), Cr (5ppm), As (5ppm), Mn (1ppm), Al (0.01%), S (0.01%), Mg (0.01%) and Fe (0.01%); and
- Select samples from Widgie 3 were submitted at ALS for 50g fire assay with ICP-MS for Au, Pt, Pd (PGM-MS24).

Estimation Methodology

Widgie 3 and Cooke have been estimated using Ordinary Kriging estimation techniques.

Widgie 3 – Estimation Details

For Widgie 3 data was composited to 1m lengths for grade estimation. Analysis of the composite data resulted in a top cut of 7% being applied to nickel grades. This resulted in 9 samples out of 469 being cut to a nickel grade of 7%.

The variogram model details that was applied to the estimate is shown in Table 3. Nickel and arsenic were modelled. Search parameters used for the Widgie 3 estimation are contained in Table 4. A three-pass estimation was used. Block sizes were 5m X, 10mY, 10mZ with sub-blocks of 0.3125mX, 2.5mY, 2.5mZ. The modelled mineralised domains were all hard boundaries for the purpose of estimation.

The Widgie 3 block model was validated using swath plots and visually by section.

Table 3 - Widgie 3 Variogram Model details

			Summa	ary of Vario	ogram mod	els			
Grade Item	Nugget	Sill	Range (m))		Sill	Range (m)		
	Co	C1	Major	Semi Major	Minor	C ₂	Major	Semi Major	Minor
Ni_pct	0.20	0.38	37	5	3.5	0.42	62	9	21
Ars_ppm	0.24	0.32	39	3	6.5	0.44	94	11.75	62

Table 4 - Search Parameters used in the Widgie 3 estimation

			Primary S	Search parameter	s		
Estimated	Search	h Orientatio	on	Search	Sample	Numbers	15
Element	1	2	3	Radii	Min	Max	Per Dillhole
Ni	0	-30	90	30x30x10	8	32	1
As	0	-30	90	30x30x10	8	32	1

Cooke – Estimation Details

Drill data from Cooke was composited to 1.5m lengths as this corresponds to the majority sampling interval of 5 feet (1.52m) in the older INCO and WMC drilling.

The variogram model that was applied is shown in Table 5. Search parameters used for the Cooke estimation are contained in Table 6. A three pass estimation was used. Block sizes were 5m X, 10mY, 10mZ with sub-blocks of 0.3125mX, 2.5mY, 2.5mZ.

The modelled mineralised domains were all hard boundaries for the purpose of estimation.

Table 5 - Cooke Variogram Model details

Grade	Nugget	Sill	Range (m)		Sill	Range (m)			
Item	Co	C1	x	у	z	C2	x	у	z
nickel	0.20	0.65	6	10	10	0.15	6	50	10

Table 6 - Search Parameters used in the Cooke estimation

	Sea	ırch Dimensio	ons	San Nun	nple nbers	Rotat	ion
Search	East	North	RL	Min	Max	Axis	Angle
		1				Z	25
1	10	30	30	8	32	X	-40
					Y	-	
						Z	25
2 20	60	60	8	32	Х	-40	
					Y	-14	
						Z	25
3	30	90	90	4	24	Х	-40
					Y	-	

8

Nm

Cut-off grades

The Cooke and Widgie 3 Mineral Resource estimates have been reported at a 1% nickel cut-off grade. This cut-off grade is consistent with other nickel producing companies in the Widgiemooltha region. This cut-off grade is appropriate when considering potential open pit and/or underground mining scenarios however the inferred classification precludes such assessments.

Mining or Metallurgical Parameters

No mining or metallurgical parameters or modifying factors have been applied to the Widgie 3 Mineral Resource estimation.

At Cooke metallurgical test-work was conducted by Titan in 2004. The flotation tests were conducted using WMC Resources Ltd - Kambalda Nickel Operations (KNO) standard flotation conditions. KNO process water was used.

The flotation test results indicated that the expected recoveries from processing of the Cooke mineralised material would be of the order of 70 to 80%. Nickel recovery and grade was poor for all of the tests conducted, with Composite 3, at natural pH, giving the best result of 77.2% at 8.98% nickel.

As the metallurgical assessment is preliminary no mining or metallurgical parameters have been applied to the model for the Cooke estimation.

Summary – Widgie 3

Richard Maddocks from Auralia has reviewed the existing model for Widgie 3 and has determined there are no fatal flaws in the geological interpretation or the grade estimation. Drilling data and wireframe mineralised shapes were loaded into Vulcan software for review. The reported tonnes and grade from the 2016 Marshall report were replicated when the model was transferred for review in Vulcan v20.2.

The Inferred Mineral Resource classification is appropriate given the historical nature of the drilling and the lack of supporting data i.e., QAQC, downhole surveys, sampling and assaying methods.

The geological interpretation has accounted for the intrusion of barren post-mineralisation porphyry dykes. In addition, there has been allowance for previous mining activity in both the open pit and underground mines, however the underground survey is of low confidence.

The grade estimation techniques and parameters are appropriate for this style of mineralisation. Ordinary kriging has been used with the application of a 7% nickel top cut.

Summary – Cooke

Richard Maddocks from Auralia has reviewed the existing model for Cooke and has determined there are no fatal flaws in the geological interpretation or the grade estimation. Given the small size of the Mineral Resource, Cooke has been poorly documented.

There is little information on the deposit geology and there appear to be no geology sections or plans available. There is sufficient drilling data and wireframe modelling data to enable a review of the modelled geology. This data was loaded into Vulcan v20.2 for review.

The 2005 Hellman and Schofield Mineral Resource at a 1% Ni cut-off was 196,000t @ 1.28% nickel. In the 2016 update by Apollo Phoenix the competent person, Mr Luke Marshall, reported 154,000t @ 1.34% nickel. This difference is due to Marshall not including several small modelled mineralised shapes that contained less than three drill-holes (Figure 2). Auralia agrees that these shapes are not included in the Mineral Resource due to lack of supporting drilling.

In addition, the oxide portion of the Mineral Resource was not classified due to potential metallurgical issues. Auralia agrees with this approach, and this is consistent with Auralia's classification of oxide mineralisation in other Widgiemooltha deposits.

The Inferred Mineral Resource classification is appropriate given the historical nature of the drilling and the lack of supporting data i.e., QAQC, downhole surveys, sampling and assaying methods.

The grade estimation techniques and parameters are appropriate for this style of mineralisation. Ordinary kriging has been used with no top cuts applied.

9

Nm

Figure 8 - Oblique view of Cooke drilling and wireframes looking NE. The 3 wireframes identified have not been included in the Mineral Resource estimate.

Recommendations - Cooke and Widgie 3

Auralia recommends additional drilling to infill the current drill density at both Cooke and Widgie 3. This should be predominantly diamond core drilling so that a thorough structural interpretation of the deposit can be completed. Controls on high grade nickel mineralisation appear to be complex so closer spaced drilling, along with an increased understanding of the structural history of the deposit should result in increased confidence in the distribution of high-grade nickel mineralisation.

Arsenic is an important element due to its deleterious impact on processing. The drilling described above should also focus on increased understanding on the distribution of arsenic mineralisation.

The additional drill core will enable dry bulk density measurements to be taken throughout the deposits.

It is recommended that drilling in the oxide and transitional zones be carried out for the purpose of mineralogical and metallurgical test-work. Oxide and secondary nickel minerals can impact metallurgical response, so it is important to determine the presence of these minerals.

Competent Person Attribution

The information in this report that relates to the Cooke and Widgie3 Mineral Resources is based on, and fairly represents, information compiled by Richard Maddocks,; MSc in Mineral Economics, BAppSc in Applied Geology and Grad Dip in Applied Finance and Investment, who is a Competent Person. Mr. Maddocks is a consultant to Auralia Mining Consulting and is a Fellow of the Australasian Institute of Mining and Metallurgy (member no. 111714) with over 30 years of experience. Mr. Maddocks has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the JORC Code. Mr. Maddocks consents to the inclusion in this report of the matters based on his information in the form and content in which it appears.

Compliance Statement

The information in this report that relates to Exploration Results and Mineral Resources for Neometals other than those discussed in this report relevant to Cooke and Widgie 3 are extracted from the ASX Announcements listed in the table below, which are also available on the Company's website at www.neometals.com.au

19/04/2018	Mt Edwards Nickel - Mineral Resource Estimate
25/06/2018	Mt Edwards - Mineral Resource Over 120,000 Nickel Tonnes
05/08/2019	Mt Edwards Nickel – Drill Results
13/11/2019	Additional Nickel Mineral Resource at Mt Edwards
11/12/2019	Mt Edwards Nickel - Drill Results from Widgie South Trend
31/01/2020	Further Massive Nickel Sulphide Results from Mt Edwards
16/04/2020	Mt Edwards Nickel - Armstrong Resource increases 60%
26/05/2020	Mt Edwards Nickel - Gillett Resource increases 30%
06/10/2020	Mt Edwards Nickel - Mineral Resource and Exploration Update
23/12/2020	Mt Edwards Nickel - Zabel Mineral Resource Update
29/06/2021	Mt Edwards – McEwen Mineral Resources increase 45%
29/06/2021	Mt Edwards – Widgie Townsite Mineral Resource Update
30/06/2021	Mt Edwards – 26 North Mineral Resources Increase 51%

The Company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcements and that all material assumptions and technical parameters underpinning the estimates in the market announcements continue to apply and have not materially changed. The Company confirms that the form and context in which the Competent Persons' findings are presented have not been materially modified from the original market announcements.

Authorised on behalf of Neometals by Christopher Reed, Managing Director.

ENDS

For further information, please contact:

Chris Reed

Managing Director Neometals Ltd T: +61 8 9322 1182 E: info@neometals.com.au Jeremy Mcmanus General Manager - Commercial and IR Neometals Ltd T: +61 8 9322 1182 E: jmcmanus@neometals.com.au

About Neometals Ltd

Neometals innovatively develops opportunities in minerals and advanced materials essential for a sustainable future. With a focus on the energy storage megatrend, the strategy focuses on de-risking and developing long life projects with strong partners and integrating down the value chain to increase margins and return value to shareholders.

Neometals has three core projects that support the global transition to clean energy and span the battery value chain:

Recycling and Resource Recovery:

- Lithium-ion Battery Recycling a proprietary process for recovering nickel, cobalt and other valuable materials from spent and scrap lithium batteries. Completing construction
 of demonstration scale plant with 50:50 JV partner SMS group. Targeting a development decision in Mar Q 2022; and
- Vanadium Recovery—sole funding evaluation studies to form a 50:50 joint venture with Critical Metals Ltd to recover high-purity vanadium pentoxide from processing by-products ("Slag") from leading Scandinavian steelmaker SSAB. Underpinned by a 10-year Slag supply agreement, Neometals is targeting an investment decision to develop a 200,000tpa processing plant in DecQ 2022.

Upstream Industrial Minerals:

• Barrambie Titanium and Vanadium Project - one of the world's highest-grade hard-rock titanium-vanadium deposits, working towards a development decision in 2022 with potential operating JV partner IMUMR and potential cornerstone product off-taker, Jiuxing Titanium Materials Co.

APPENDIX 1: Table 1 as per the JORC Code Guidelines (2012) for Widgie 3

Section 1 Sampling Techniques and Data

(Cultoute to the exact on even by the all even even entry	
	1 2
ICFILERIA IN LINS SECTION ADDIVITO AN SUCCEEDING SECTION	15.1

Criteria	JOF	RC Code explanation	Commentary
Sampling techniques	•	Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling.	 The Widgie 3 Mineral Resource has been drilled by percussion, diamond drilling and RC drilling. Drilling data exists for 110 drill holes for 14,733.96 metres. A total of 33 holes had one or more intercepts over 1% Ni. The majority of these holes were drilled by Western Mining Corporation and date from the 1980s – 1990s period. The Mineral Resource has been drilled on a spacing of about 50m by 25m in the mineralisation. Diamond holes were selectively sampled through the visible mineralised zone on a nominal 1m sample length, adjusted to geological and domain boundaries. Sample lengths vary from 0.30m to about 1.5m. Diamond core sampling techniques are not known but assumed to be industry standard at the time of collection.
	•	Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.	 Sample representivity for diamond core and RC samples is unknown but assumed to be industry standard at the time of collection.
	٠	Aspects of the determination of mineralisation that are material to the Public Report.	• Sample lengths for diamond drilling range from 0.3 to 1.5 m with the modal value approximately 1.0 m. RC samples ranged from 4 metres in waste material to 1 metre in or near mineralisation.
	•	In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information	 Mineralisation consists of contact massive sulphides (pyrite, pyrrhotite, pentlandite, chalcopyrite and gersdorffite) typically less than 1 metre thick overlain by matrix sulphides and disseminated sulphides The majority of the drilling, sampling and assaying was completed by Western Mining Corporation during the late 1980's through to the early 1990's. How the samples were collected and which laboratory completed the analysis is unknown. Minor copper, cobalt and arsenic occur in the mineralisation.
Drilling techniques	•	Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	 The database used in the area of the mineral resource is comprised of diamond drilling samples (57), RC drilling samples (273), and unspecified (3746). Diamond drilling diameter is unknown.
Drill sample recovery	•	Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	 It is unknown whether core recoveries were recorded by WMC RC samples recoveries or weights were not recorded. No sample recovery data exits for the historical drilling.
Logging	•	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged.	 Detailed drill hole logs are available for the majority of the drilling. The logging is of a detailed nature, and of sufficient detail to support the current Mineral RTesource estimate categories. The total length of drill intersections within the modelled domains used in the Mineral Resource estimate is 463.36 metres.
Sub-sampling techniques and sample preparation	•	If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split,	 Core sampling techniques are unknown but are assumed to have been industry standard at the time of collection. RC drilling sampling techniques are unknown but are assumed to be industry standard

etc and whether sampled wet or dry.

samples.

For all sample types, the nature, quality and

Quality control procedures adopted for all sub-

sampling stages to maximise representivity of

Measures taken to ensure that the sampling is

representative of the in situ material collected,

Whether sample sizes are appropriate to the grain size

including for instance results for field

duplicate/second-half sampling.

of the material being sampled.

appropriateness of the sample preparation technique.

at the time.

.

- Sample conditions are unknown
 - Sample preparation is unknown but assumed to have been industry standard for the time.
- Quality control procedures are unlikely to have been used. considering the time period (the late 1980's through to the early 1990's) the majority of drilling and sampling occurred.
- The host rock is mainly a serpentinite lens at the base of an ultramafic sequence. It is assumed that WMC's sampling would have been appropriate for the style of mineralisation.

Criteria	JORC Code explanation	Commentary
Quality of assay data and laboratory tests	 For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 No Quality control procedures were used at the time No geophysical methods or hand-held XRF units have been used for determination of grades in the Mineral Resource estimate.
Verification of sampling and assaving	The verification of significant intersections by either independent or alternative company personnel.	• Multiple intersections reported have been checked back to original logs and assay data.
ussaying	• The use of twinned holes.	No twin holes have been drilled.
	 Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. 	• Drill hole data were sourced from digital sources and original hard-copy sampling and assay records, and imported into a central electronic database. Datashed software was used by Apollo Phoenix to validate and manage the data.
	Discuss any adjustment to assay data.	• Assays were composited to 1m lengths and where necessary, top cuts applied for Mineral Resource estimation. Nickel and Arsenic grades were cut to account for outliers in the populations.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. 	 Surface topography is derived from drill hole collars and the historical WMC pick-ups of the Widgie 3 open pit and underground workings. It is assumed that the majority of the drillholes were downhole surveyed by a single shot tool and by collar measurement with a clinometer and compass. A minority of holes were down hole surveyed by a gyro. Survey type is not recorded for most of the drilling.
	• Specification of the grid system used.	• Original surveying was undertaken in Kambalda Nickel Operations Grid and then later in GDA94 grid
	Quality and adequacy of topographic control.	• Topographic control is considered poor and should be re-done using modern methods.
Data spacing and distribution	Data spacing for reporting of Exploration Results.	• The Mineral Resource area has been drilled on a regular pattern and spacing by WMC. The average spacing is estimated to be approximately 50m by 25m within the Mineral Resource
	• Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	The drill data spacing and sampling is adequate to establish the geological and grade continuity required for the current Mineral Resource estimate.
	Whether sample compositing has been applied	• Diamond drill hole samples were composited to 1.0 m down-hole intervals for resource modelling. RC Samples used in the estimate were composited to 1m intervals already.

Orientation of data in relation to geological structure	•	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	•	The drill line and drill hole orientation is oriented as close as practicable to perpendicular to the orientation of the general mineralised orientation. A majority of the drilling intersects the mineralisation at close to 90 degrees ensuring intersections are representative of true widths.
Sample security	•	The measures taken to ensure sample security.	•	Sample security measures are unknown for WMC drilling.
			•	industry standard sample security standards were followed for fittan Resources drilling.
Audits or reviews	٠	The results of any audits or reviews of sampling	٠	Sample data reviews are unknown
		techniques and data.	•	Visualisation of drilling data was completed in three dimensional software (Micromine and Surpac). Although these reviews are not definitive, they provide confidence in the general reliability of the data.
			٠	Auralia undertook a review of the Mineral Resource usng Vulcan software in June 2021

Section 2 Reporting of Exploration Results

(Criteria listed in the pre	ceding section also apply to this section.)	· · · · · · · · · · · · · · · · · · ·
Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 Widgie 3 is on Mining Lease M15/94, beneficially owned by Mincor Resources Neometals has held an interest in M15/94 since June 2018, hence all prior work has been conducted by other parties. Neometals holds nickel mineral rights on Mining Lease M15/94.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 Anaconda discovered Widgie 3 in 1967 as a result of gossan sampling. Diamond drilling by Anaconda and CRA delineated the first Mineral Resource in the late 1970s. Exploration has been undertaken by previous holders, but predominantly Western Mining Corporation (WMC) during the 1980s and early 1990s Programs of RC and diamond drilling were undertaken by WMC as well as Mineral Resource estimates, metallurgical test work and economic evaluations. WMC mined Widgie 3 between 1988 to 1992.
Geology	 Deposit type, geological setting and style of mineralisation. 	 The Widgie 3 deposit is located on the northeast flank of the Widgiemooltha Dome within a sequence of intercalated mafic and ultramafic rocks. Nickel mineralisation is located along the contact of basalt and ultramafic rocks. The more massive higher grade mineralisation is developed within a serpentinite lens at the base of the ultramafic sequence within an embayment along the contact. The stratigraphy at a deposit scale consists of the Archaean Mt Edwards basalt overlain by the Widgiemooltha Komatiite. The ultramafic succession consists of a series of flows with intercalated sediments. It is approximately 250m thick and displays carbonate alteration and serpentinisation. The mineral assemblages are talc-antigorite-chlorite-magnetite and talc-magnesite-amphibolite-magnetite. Mineralisation at Widgie 3 consists of contact massive sulphides (pyrite, pyrrhotite, pentlandite, chalcopyrite and gersdorffite) typically less than 1 metre thick overlain by matrix sulphides and disseminated sulphides. The mineralised envelope can be up to 19 metres thick (decreasing with depth) and 200 metres strike. Depth of complete oxidation ranges from 15 to 30 metres.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in 	See Drilling InformationNo information is excluded

Nm

	metres) of the drill hole collar	
	o dip and azimuth of the hole	
	o down hole length and interception depth	
	o hole length.	
	• If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be 	 Drill hole summary results are included in appendices to this report. The results reported include all intersections included in the estimation of the Mineral Resource. A nominal cut off of 1.0% Ni was used to define the drill intersections composites.
	stated.	• The table in the report contains all weighted composites included in the Mineral
	• Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	Resource estimate. Higher grade intersections within the composites are included in the table.
	• The assumptions used for any reporting of metal equivalent values should be clearly stated.	No metal equivalents are used in this Mineral Resource estimate.
Relationship between	These relationships are particularly important in the reporting of Exploration Results.	• The drill line and drill hole orientation is oriented as close to 90 degrees to the orientation of the anticipated mineralised orientation as practicable.
mineralisation widths and intercept lengths	• If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.	• The majority of the drilling intersects the mineralisation between 30 to 70 degrees.
	• If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').	
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	Appropriate maps and tables are included in the body of the Reports.
Balanced reporting	• Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should	• All drill intercepts used in the estimation of the resource envelope irrespective of grade are reported in Table 3. The resource envelope is constructed using a nominal 1.0% Ni cut-off.
	be practiced to avoid misleading reporting of Exploration Results.	All drill hole collars are reported in Appendix 2
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): 	 Mineral Resources were estimated from drill hole assay data, with geological logging used to aid interpretation of mineralised contact positions.
	geochemical survey results; bulk samples – size and	Geological observations are included in the report.
	method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics: notential deleterious or	• Multi-element assay suites have been analysed and arsenic has been identified as a potentially deleterious element.
	contaminating substances.	• Bulk density measurements have been taken by WMC. Bulk density were assigned to the block model using the formula. Bulk Density (t/m3) = 167.0654/(57.6714-Ni%)
		• Waste bulk density was assigned as 2.897. it is unknown how this figure was derived.
Further work	The nature and scale of planned further work (eg	• No further work is planned at this stage.
	tests for lateral extensions or depth extensions or large-scale step-out drilling).	There is potential for possible extensions in the down plunge position to the current mineral resource, but the grades are considered far too low to be economic at those dopted
	Diagrams Geary ingringring the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	Drill spacing is currently considered adequate to undertake limited high level economic evaluations on the project.

Section 3 Estimation and Reporting of Mineral Resources

Criteria	JORC Code explanation	Commentary
Database integrity	• Measures taken to ensure that data has not been corrupted by, for example, transcription or keying errors, between its	The drill hole database was sourced from original hard-copy sampling and assay records
	initial collection and its use for Mineral Resource estimation purposes.	 Validation measures included spot checking between database and hard copy drill logs and sections and plans in historic reports.
	Data validation procedures used.	• The database is an extract from an Industry Standard SQL Server database using a normalised assay data model produced by Datashed Software.
Site visits	• Comment on any site visits undertaken by the Competent Person and the outcome of those visits.	• The Competent Person visited the Widgie 3 pit in March 2020 and inspected the mineralised exposures in the historic open pit.
	• If no site visits have been undertaken indicate why this is the case.	
Geological interpretation	• Confidence in (or conversely, the uncertainty of) the geological interpretation of the mineral deposit.	• The Widgie 3 deposit was discovered in the 1967 by Anaconda. WMC acquired the deposit by 1984 and mined it by open pit and underground methods between 1988 - 1991. Titan Resources acquired the deposit in
	• Nature of the data used and of any assumptions made.	 Historical assay and geological data was used in the interpretations.
	• The effect, if any, of alternative interpretations on Mineral Resource estimation.	 For this Mineral Resource estimate a 1% Ni cut-off was used, with the interpretation based on structural and stratigraphic controls. The only valid departure from this interpretation would be to apply a different made and off the effort of children are for and in the America.
	• The use of geology in guiding and controlling Mineral Resource estimation.	 Wireframe boundaries were regularised on sections, with the use of
	• The factors affecting continuity both of grade and geology.	geological logging being used as a guide when considering the interpretation of the mineralised wireframe. Interpretations were prepared on 20m section spacings cut at bearing 90 degrees on a rotated MGA94 zone 51 grid.
		• Given the drill spacing, pinching, swelling and truncation of the mineralisation is possible between the drillholes, as observed in many of the other nickel mining operations in the area.
		• The boundaries of the broader mineralised zone are consistent, but within these zones, higher/lower grade and thicker/thinner zones occur.
Dimensions	• The extent and variability of the Mineral Resource expressed as length (along strike or otherwise), plan width, and depth below surface to the upper and lower limits of the Mineral Resource.	• The Mineral Resource extends over a strike length of approximately 360 m. The Mineral Resource models extend to about 350 m depth below surface.
		• The near surface Mineral Resource has been mined
Estimation and modelling techniques	 The nature and appropriateness of the estimation technique(s) applied and key assumptions, including treatment of extreme grade values, domaining, interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a description of computer software and parameters used. 	 Grades were estimated predominantly by ordinary kriging estimation of 1.0m down-hole composited nickel assay grades from diamond and RC holes within mineralised domain wireframes.
		 Surpac software was used by Apollo Phoenix for data compilation, domain wire-framing, and coding of composite values, statistics, geostatistics and Mineral Resource estimation
	• The availability of check estimates, previous estimates and/or mine production records	• Previous Mineral Resource estimates have been made by several companies from 1970s onwards.
	and whether the Mineral Resource estimate takes appropriate account of such	• 1080Kt @ 1.21% Ni late 1970s by Anaconda
	data.	• 144Kt @ 1.80% Ni in 1991 (post mining) by WMC
		Production data from WMC
		1988-1989 61,906 tonnes @ 1.9% Ni (open pit)
		1989-1990 6,597 tonnes 0.59% Ni (open pit)
		An additional 40K tones @ 0.9% Ni was stockpiled as low grade oxide

• Th of

•

•

•

.

•

	1990-1	1991 12,074 tonnes @ 4.18	% Ni (underground)		
	1991-1	1992 2,084 tonnes @ 3.35%	6 Ni (underground)		
	WMC exploite all lenses conti one of the sur tonnes	d 3 surfaces at Widgie 3. Th inuous however with open j faces was discontinuous res	e original interpretation had pit mining it was found that ulting in about a 20% drop in		
The assumptions made regarding recovery	No considerat	ion has been made for the r	ecovery of by-products.		
of by-products.	Arsenic is a sig	nificant deleterious elemer	t It is quoted in drill results in		
Estimation of deleterious elements or other non-grade variables of economic	Appendix 3.				
significance (eg sulphur for acid mine drainage characterisation).	 No considerat waste materia nature of ecor 	 No consideration has been made with regard to sulphur levels in the waste material but the assays are available. This is due to the preliminary nature of economic evaluation to date. 			
In the case of block model interpolation, the block size in relation to the average sample spacing and the search employed.	 Mineral Resource x 5m parent b MGA94 zone 5 	rces were estimated into th locks (strike, cross strike, ver 51 grid.	e block model with 10m x 2.5m tical,) aligned N-S on a rotated		
	• For precise vo x0.3125m x 2.	olume representation, sub-l 5m	blocking was allowed to 2.5m		
	• The modelling requirements estimation use 30m x 10m	g used an anisotropic search of 8 data points and a ma ed a 3 pass expanding appro	n ellipsoid with minimum data ximum of 32 data points. The oach. The first pass was 30m x		
Any assumptions behind modelling of selective mining units.	• The estimates could be amer	are not intended to refle nable to several mining tech	ct a fixed mining method but niques.		
	• Details of pote the early stage	ential mining parameters ha e of the project evaluation.	ve been considered but reflect		
Any assumptions about correlation between variables.	Correlations b density and ni	etween variable were not ckel	t considered apart from bulk		
Description of how the geological interpretation was used to control the resource estimates.	• The geology a mineralised do define the mir	and grade information wa omain wireframes. A nomir neralisation outline within ge	s used in the creation of the hal 1.0% Ni cut-off was used to cological units.		
Discussion of basis for using or not using grade cutting or capping.	• Grade cutting outliers in the	of the input samples was us sample population on the e	ed to down grade the effect of stimation.		
	Nickel				
		Uncut	Cut		
	Min	0.024%	0.024%		
	Max	20.65%	7.00%		
	Mean	1.294%	1.194%		
	Varianco	0.740%	1.646		
	Coef of	1 491	1 074		
	Variation	1.401	1.074		
	Number	469	9 samples cut		
	Samples				
	Arsenic				
		Uncut	Cut		
	Min	1.0 ppm	1.0 ppm		
	Max	11000.00	7000.00 ppm		
	Mean	547.703 ppm	501.533 ppm		
	Median	45.00 ppm	45.00 ppm		
	Variance	2588413.127	1838803.376		
	Coef. of	2.937	2.704		
	Variation				
	Number	235	5 samples cut		
	Samples				

Moisture	 The process of validation, the checking process used, the comparison of model data to drill hole data, and use of reconciliation data if available. Whether the tonnages are estimated on a 	 Model validation included visual comparison of model estimates and composite grades using section analysis with the raw drilling data and the composite data. It is likely that the Ni grades are slightly overestimated due to more than one sample population in the data despite the high grade cuts. Tonnages are estimated on a dry tonnage basis
	dry basis or with natural moisture, and the method of determination of the moisture content.	
Cut-off parameters	• The basis of the adopted cut-off grade(s) or quality parameters applied.	 The cut off grades reflect Apollos perception of the potential range of operating costs and prices of nickel. The mineralised envelope is modelled using a nominal 1.0% Ni cut-off grade
Mining factors • or assumptions	Assumptions made regarding possible mining methods, minimum mining dimensions and internal (or, if applicable, external) mining dilution. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider notential mining methods but	 Apollo Phoenix considered the possibility of both open cut and underground mining on the project. Dependent on the cost parameters used and the nickel price, Mineral Resource, or part thereof, is potentially amenable to open cut or underground mining.
	the assumptions made regarding mining methods and parameters when estimating Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the mining assumptions made.	
Metallurgical • factors or assumptions	The basis for assumptions or predictions regarding metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential metallurgical methods, but the assumptions regarding metallurgical treatment processes and parameters made when reporting Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the metallurgical assumptions made.	 There were no metallurgical test work results available for Widgie 3 for this report The high arsenic levels need to be controlled with greater understanding on the controls of its distribution.
Environmen-tal • factors or assumptions	Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and processing operation. While at this stage the determination of potential environmental impacts, particularly for a greenfields project, may not always be well advanced, the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the environmental assumptions made.	 Mine waste from previous mining is currently held in an above ground waste dump. It would be expected that this practice was continued when mining recommences. High talc and carbonate content and the low sulphide content in the waste rock suggest that ARD should not be a problem.
Bulk density •	 Whether assumed or determined. If assumed, the basis for the assumptions. If determined, the method used, whether wet or dry, the frequency of the measurements, the nature, size and representativeness of the samples. The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs, porosity, etc), moisture and differences between rock and alteration zones within the deposit. Discuss assumptions for bulk density estimates used in the evaluation process of the different materials. 	 Bulk density measurements have been taken by WMC. Bulk density were assigned to the block model using the formula. Bulk Density (t/m3) = 167.0654/57.6714*Ni% Waste bulk density was assigned as 2.897. it is unknown how this figure was derived but it seems reasonable for the rock type and sufficient for the classification of the Mineral Resource.
Classification •	The basis for the classification of the Mineral Resources into varying confidence categories. Whether appropriate account has been taken of all relevant factors (ie relative confidence in tonnage/grade estimations, reliability of input data, confidence in continuity of geology and	 Mineral Resource classification was assigned on the basis of geological continuity and confidence. The Mineral Resource classification accounts for all relevant factors in the opinion of the Competent Person
	metal values, quality, quantity and distribution of the data).	

	• Whether the result appropriately reflects the Competent Person's view of the deposit.	Classification of the estimates reflects the Competent Person's views of the deposit
Audits or reviews	• The results of any audits or reviews of Mineral Resource estimates.	• A detailed audit was completed by Auralia Mining Consulting on the Mineral Resource estimate to prepare this JORC 2012 statement
Discussion of relative accuracy/ confidence	 Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate. The statement should specify whether it relates to global or local estimates, and, if local, state the relevant tonnages, which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used. These statements of relative accuracy and confidence of the estimate should be compared with production data, where available. 	 Confidence in the relative accuracy of the estimates is reflected by the classifications of the Mineral Resource resource. The geostatistical procedures used to estimate, quantify and qualify the block model were completed to a reasonable standard however only nickel and arsenic were estimated. Usually a nickel estimate will include other attributes including non-sulphide nickel, copper, cobalt, MgO, iron and sulphur. Only nickel has been reported. There is a low – moderate level of confidence in the spatial accuracy of the datasets used in the Mineral Resource estimate as the survey control is unknown Significant production data is available for the Widgie 3 deposit that would feed back in an economic evaluation of the deposit

APPENDIX 2: Table 1 as per the JORC Code Guidelines (2012) for Cooke

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
 Sampling Nature and quality of sampling (e.g. cut channels or specific specialised industry standard mappropriate to the minerals under investigat hole gamma sondes, or handheld XRF instruments and solutions and the store at the store a	 Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of 	 The Cooke are has been drilled by Aircore, percussion, diamond drilling and RC drilling. Accurate drilling data exists for 147 drill holes for 18,888.48 metres. A total of 58 holes had one or more intercepts over 1% Ni. The holes have been drilled on irregular spacing as tight as 30m by 15m in the
	sampling.	 central high grade part of the mineralisation. Diamond holes were selectively sampled through the visible mineralised zone on a nominal 1.5m sample length for historic drilling, and 1m for Titan Resources drilling, adjusted to geological and domain boundaries. Sample lengths vary from 0.2m to 5.3m.
		• Diamond core samples have been sampled by a combination of quarter core and half core cut samples and a combination of BQ, NQ and HQ diameter.
		• For Titan Resources drilling RC drill holes were sampled by 1m riffle split composites. RC drilling was 5 ½ inch in diameter. Samples were composited over 4 metre intervals in waste and 1 metre in mineralisation. For historic drilling RC sampling techniques were not confirmed.
	 Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. 	• Sample representivity for diamond core was ensured by the sampling of an average length of 1m or 1.5m of core, which was then cut to quarter or half, depending on the company operating at the time, for laboratory analysis.
		• RC sampling was riffle split from 1m composite bulk samples, producing a nominal 3kg – 5kg representative sample for Titan drilling.
	• Aspects of the determination of mineralisation that are material to the Public Report.	• Sample lengths for diamond drilling range from 0.05 to 5.3 m and average approximately 1.5 m from historical drilling. Titan drilling was sampled on a nominal 1m length, adjusted to geological domains.
		• Mineralised intervals were determined by visual inspection and logging prior to any sampling. Laboratory assays are then compared to the visual estimates and logging to determine if any adjustments were required.

	 In cases where 'industry standard' work has been done the would be relatively simple (eg 'reverse circulation drilling we used to obtain 1 m samples from which 3 kg was pulverised produce a 30 g charge for fire assay'). In other cases mone explanation may be required, such as where there is coarse go that has inherent sampling problems. Unusual commodities mineralisation types (eg submarine nodules) may warrand disclosure of detailed information 	 Mineralisation is identified pyrrhotite, pentlandite, violarite and pyrite with minor chalcopyrite hosted in talc-carbonate ultramafics. For Titan, representative samples from RC and diamond drilling were collected and sent to accredited laboratories for analysis. Accredited laboratories in Kalgoorlie and Perth crushed and pulverised the samples in entirety, and took a 50g pulp for analysis. This process cannot be established for drilling completed before the acquisition by Titan in 2001. For Titan samples, analysis was performed by 4 acid digest and a combination of ICP-MS and ICP-OES multi element analysis techniques. Gold and PGEs were determined by a fire assay fusion followed by aqua regia digest and atomic absorption spectrometer (AAS) finish. Analysis techniques were not established for samples taken before 2001, but the results generally correlate well with newer data. Minor copper, cobalt and arsenic occur in the mineralisation. International Nickel Australia Limited (INAL) and WMC Resources sampling and assay techniques are unknown. These companies completed the majority of the exploration and drilling work in the 1960's and 1990's respectively
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rota air blast, auger, Bangka, sonic, etc.) and details (eg core diameter triple or standard tube, depth of diamond tails, face-sampling or other type, whether core is oriented and if so, by wh method, etc.). 	 The database used in the mineral resource is comprised of diamond drilling samples (11253), RC drilling samples (4768), Percussion (904), Auger (64). Most of the unspecified samples are actually historic diamond drilling drilled predominantly by Western Mining during the early 1990s. Diamond drilling included NQ, HQ and BQ diameter core.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due preferential loss/gain of fine/coarse material. 	 Core recoveries were recorded for all resource database diamond core collected by Titan. Handwritten geotechnical logging sheets were kept of all drilling activities. Core recoveries are recorded in the database, however no information on the Cooke deposit could be located RC samples recoveries or weights were not recorded. No relationship could be established between sample recovery and reported grade. RC samples report a lower average grade than core samples overall which is related their being drilled as RC pre-collars intersecting lower grades portions outside of main body of the mineralisation, and diamond drilling focusing on higher grade portions of the mineralisation.
Logging	 Whether core and chip samples have been geologically ar geotechnically logged to a level of detail to support appropria Mineral Resource estimation, mining studies and metallurgic studies. Whether logging is qualitative or quantitative in nature. Core (costean, channel, etc.) photography. The total length and percentage of the relevant intersectio logged. 	 Detailed drill hole logs (all drilling), geotechnical and structural logs (core only) are available for the drilling completed by Titan Resources Limited. Separate sample logging sheets were kept including samples numbers for duplicates, standards and blanks taken for QA/QC purposes. The logging is of a detailed nature, and of sufficient detail to support the current mineral resource estimate categories. The total length of drill intersections used in the Mineral Resource estimate is 14,104.50m and 100% of those intersections are logged.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all cottaken. If non-core, whether riffled, tube sampled, rotary split, etc. an whether sampled wet or dry. For all sample types, the nature, quality and appropriateness the sample preparation technique. Quality control procedures adopted for all sub-sampling stages maximise representivity of samples. Measures taken to ensure that the sampling is representative 	 The core was halved or quartered, depending on which company and phase of work, by sawing before sampling For Titan Resources, RC drilling was riffle split directly from the sample collection cyclone on the drilling rig. For Titan Resources, Sample condition field to record moisture and sample recovery is included in the sampling log sheet and populates the assay table of the database. Unfortunately, only a very small percentage of the logs have captured this information so no determination can be made about the quality of the RC samples.
	the in situ material collected, including for instance results f field duplicate/second-half sampling.Whether sample sizes are appropriate to the grain size of the material being sampled.	 For Titan Resources, quality control procedures included the inclusion of field duplicates, standard samples and blank samples into the sampling stream for laboratory analysis. 32 QAQC samples are included in the dataset used for this

mineral resource estimate.

- Host rock is mainly a talc-carbonate ultramafic with minor interflow sediments (black shales). Samples of diamond core and RC samples produce appropriate size samples to be representative for the style of mineralisation and rock type encountered.
- International Nickel Australia Limited (INAL) and WMC Resources sampling and assay techniques are unknown. These companies completed the majority of the exploration and drilling work in the 1960's and 1990's respectively

Quality of assay data and laboratory tests	 For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been establiched 	 For Titan Resources, quality control procedures included the inclusion of field duplicates, standard samples and blank samples into the sampling stream for laboratory analysis. For Titan Resources, one standard, blank and field duplicate were inserted into the sample stream every 20 samples. These were offset through the sampling stream and placed in areas of interest i.e. high grade standards and blanks in the ore zone where possible.
	Deen established.	 For Titan Resources, overall, standards used reported values within 2 standard deviations of the expected values with a few exceptions. These were usually found to be sample miss labelling in the field and were largely able to be rectified in the database.
		• It is unknown whether INAL or WMC used QAQC procedures.
		• No geophysical methods or hand-held XRF units have been used for determination of grades in the mineral resource estimate.
Verification of sampling and assaving	• The verification of significant intersections by either independent or alternative company personnel.	Intersections reported have been checked back to original logs and assay data.
ussuying	• The use of twinned holes.	No twin holes have been drilled.
	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	• Drill hole data were sourced from digital sources and original hard-copy sampling and assay records, and imported into a central electronic database. Datashed software was used to validate and manage the data.
	• Discuss any adjustment to assay data.	Assays were composited to 1.5m lengths for Mineral Resource estimation.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Descence activations 	Surface topography appears to be derived from the surface position of drill holes.
	locations used in Mineral Resource estimation.	• Collar co-ordinates were picked up by Spectrum Surveys in 2006.
		 A majority of the drill holes were downhole surveyed with gyroscopic survey tool. The remaining holes were surveyed by single shot tool and by collar measurement with a clinometer and compass.
	• Specification of the grid system used.	Original surveying was undertaken in MGA94
	• Quality and adequacy of topographic control.	• Topographic control is considered adequate for the current Mineral Resource estimate as it was completed by a licenced surveyor using a RTKDGPS.
Data spacing and distribution	Data spacing for reporting of Exploration Results.	• The Mineral Resource area has been drilled on a regular pattern and spacing by different companies over an extended period. The average spacing is estimated to be approximately 30m by 15m within the mineral resource
	 Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. 	• The drill data spacing and sampling is adequate to establish the geological and grade continuity required for the current Mineral Resource estimate.
	Whether sample compositing has been applied	Diamond drill hole samples were composited to 1.5 m down-hole intervals for Mineral Resource modelling.

Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 The drill line and drill hole orientation is oriented as close as practicable to perpendicular to the orientation of the general mineralised orientation. A majority of the drilling intersects the mineralisation at close to 60 to 90 degrees ensuring intersections are representative of true widths.
Sample security	• The measures taken to ensure sample security.	 For Titan Resources, sample security measures adopted include the daily movement of core samples in trays to the Kalgoorlie Office, where core was kept in a secure area before cutting and sampling.
		 For Titan Resources, RC split samples were transported from site daily and delivered to the accredited laboratory depot in Kalgoorlie for preparation and analysis.
		 For Titan Resources, Reports and original log files indicate at a thorough process of logging, recording, sample storage and dispatch to labs was followed at the time of drilling.
		The measures taken by INAL and WMC are unknown
Audits or reviews	• The results of any audits or reviews of sampling techniques and data.	 Sample data reviews have included an inspection and investigation of all available paper and digital geological logs to ensure correct entry into the drill hole database.
		 Visualisation of drilling data in three dimensional software (Micromine) and QA/QC sampling review using Maxwell Geoservices QAQCR Software was undertaken by Apollo Phoenix. Although these reviews are not definitive, they provide confidence in the general reliability of the data.
		Auralia Mining Consulting reviewed the Mineral Resource Estimation and determined there were no fatal flaws with the estimate and interpretation.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third partie such as joint ventures, partnerships, overriding royalties native title interests, historical sites, wilderness or national park and environmental settings. 	 Neometals, either it its own right or through its 100% owned subsidiary Mt Edwards Lithium Pty Ltd, holds all mineral rights other than gold on Mining Lease M15/101. There are no known impediments to operate in the area.
	 The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	2
Exploration done by other parties	 Acknowledgment and appraisal of exploration by othe parties. 	 Neometals has held an interest in M15/101 since April 2018, hence all prior work has been conducted by other parties. Exploration has been undertaken by previous holders, but predominantly Western Mining Corporation (WMC) during the 1980s and early 1990s.
		• Programs of diamond and RC drilling were undertaken by WMC as well as Mineral Resource estimates, metallurgical test work and economic evaluations.
Geology	Deposit type, geological setting and style of mineralisation	The Widgiemooltha area lies within the southern part of the Norseman-Wiluna greenstone belt.
		• The stratigraphy at a deposit scale consists of the Archaean Mt Edwards basalt overlain by the Widgiemooltha Komatiite. The ultramafic succession consists of a series of flows with intercalated sediments. It is approximately 250m thick and displays carbonate alteration and serpentinisation. The mineral assemblages are talc-antigorite-chlorite-magnetite and talc-magnesite-amphibolite-magnetite. Stronger carbonate –chlorite alteration is noted around the mineralised lenses.
		• The nickel mineralisation at Cooke occurs on or above the ultramafic/mafic contact and is associated with a steep northerly plunging synclinal structure. The syncline plunges at about 50 degrees to the north and dips steeply to the east.

		WMC geologists recognised three mineralised surfaces;
		 Western inner synclinal contact, within which mineralisation is variable, from heavy matrix contact mineralisation in the synclinal keel, to lower tenor disseminated mineralisation in the north. Eastern inner contact, which consists of high grade low tonnage mineralised zone that has limited strike and down dip potential. Southern outer contact, which is typically heavy matrix in character, with minor massive mineralisation. The nickel mineralisation has been defined over a strike of 180 metres and to a depth of 350 metres below the surface. True thickness of mineralisation varies from 2 metres to up to 10 metres.
		• Depth of oxidation is up to 40 metres.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: 	See Appendix 2- Drilling InformationNo information is excluded
	 easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar 	
	o dip and azimuth of the hole	
	 down hole length and interception depth 	
	o hole length.	
	• If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be 	 Drill hole summary results are included in this report. The results reported include all intersections included in the estimation of the resource. A nominal cut off of 1.0% Ni was used to define the drill intersections composites. A 2m maximum internal dilution was used. Appendix 3 in the report contains all composites included in the Mineral Resource estimate. Higher grade intersections within the composites are included in the table.
	Shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated.	No metal equivalents are used in this Mineral Resource estimate.
Relationship between mineralisation widths	These relationships are particularly important in the reporting of Exploration Results.	• The drill line and drill hole orientation is oriented as close to 90 degrees to the orientation of the anticipated mineralised orientation as practicable.
and intercept lengths	• If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.	
	• If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').	
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	Appropriate maps and tables are included in the body of the Report.
Balanced reporting	• Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and	• All drill intercepts used in the estimation of the mineralised resource envelope irrespective of grade are reported in Appendix 3. The mineralised resource

		high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.		envelope is constructed using a nominal 1.0% Ni cut-off and a maximum drilled internal dilution of 2m.
			٠	All drill hole collars are reported in Appendix 2
Other substantive exploration data	Other ex- be repo- observat survey r treatmen groundw potentia	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics:	٠	Mineral Resources were estimated from drill hole assay data, with geological logging used to aid interpretation of mineralised contact positions.
			•	Geological observations are included in the report. All core drilled at Cooke was available for review by Apollo Phoenix and is stored at the Fisher mine offices in Kambalda.
		potential deleterious or contaminating substances.	•	Multi-element assay suites have been analysed and arsenic has been identified as a potentially deleterious element.
			•	Bulk density measurements have been taken and analysed. SGs were assigned to the block model using the formula Bulk density (t/m3) = 167.0654/ (57.6714 – Ni %).
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale stepout drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	The nature and scale of planned further work (eg tests for	٠	No further work is planned at this stage.
		•	There is potential for possible extensions in the down plunge position to the current mineral resource, but the grades are considered far too low to be	
			economic at those depths.	
		•	Drill spacing is currently considered adequate to undertake limited high level economic evaluations on the project. Infill drilling would be required if more detailed feasibility studies were to be undertaken.	

Section 3 Estimation and Reporting of Mineral Resources

	IT Section 1, and where relevant in section 2, also a	
Criteria	JORC Code explanation	Commentary
Database integrity	 Measures taken to ensure that data has not been corrupted by, for example, transcription or keying 	• The drill hole database was sourced from original hard-copy sampling and assay records
	errors, between its initial collection and its use for Mineral Resource estimation purposes.	 Validation measures included spot checking between database and hard copy drill logs and sections and plans in historic reports.
	Data validation procedures used.	• The database used by Apollo Phoenix in 2016 was an extract from an Industry Standard SQL Server database using a normalised assay data model produced by Datashed Software.
Site visits	• Comment on any site visits undertaken by the Competent Person and the outcome of those visits.	• The Competent Person visited the Armstrong and 132N deposits in March 2020. These two open pit mines are located along strike to the north and south respectively of the
•	• If no site visits have been undertaken indicate why this is the case.	unmined Cooke deposit and display very similar geological characteristics.
Geological interpretation	• Confidence in (or conversely, the uncertainty of) the geological interpretation of the mineral deposit.	• The Cooke deposit was discovered in the 1960's. The project was acquired by WMC in 1979 and actively explored until the 1990's. The project was acquired by Titan
	• Nature of the data used and of any assumptions made.	Resources Limited in 2001 as part of the acquisition of the Widgiemooltha North tenement package. Titan Resources were subsequently taken over by Consolidated
The effect, if any, of alternative interpretations on Mineral Resource estimation.	Minerals (Consmin) in 2006. Consmin do not appear to have completed any meaningful work. An extensive body of knowledge exists for the project and therefore confidence in interpretations is relatively high.	
	The use of geology in guiding and controlling Mineral Resource estimation.	 Historical data as well as recent data collected by Titan were used in the interpretations. The data from different companies and time periods correlated very well.
	• The factors affecting continuity both of grade and geology.	• For this Mineral Resource estimate a 1% Ni cut-off was used, with the interpretation based on structural and stratigraphic controls. The only valid departure from this interpretation would be to apply a different grade cut-off.
		• Wireframe boundaries do not appear to be "snapped" to drilling intercepts using the sample positions. Interpretations were prepared on 30m section spacing cut at bearing 90 degrees on the MGA94 grid zone 51 grid.
		• The drill spacing is relatively wide and introduces sufficient uncertainty for the short range variability and continuity in the deposit. The mineralisation is hosted in a high strain environment which can adversely affect the continuity of the mineralisation and mine reconciliations back to the Mineral Resource model.
		• Given the current wide drill spacing, pinching, swelling and truncation of the mineralisation is possible between the drill holes, as observed in many of the nickel mining operations in the area.

		 The bound of the higher drilling 	oundaries o / lower gr ; will define	of the broad ade and the the distrik	der minera hicker/ thir oution and	llised zone nner zone nature of	e are consi es occur. I f this varial	stent, but with t is expected ⁻ pility.	in these zones, that additional
Dimensions	• The extent and variability of the Mineral Resource expressed as length (along strike or otherwise), plan width, and depth below surface to the upper and lower limits of the Mineral Resource.	The M resourThe N	ineral Reso ce models ineral Reso	ource mod s extend to ource is un	el extends 350 m dep mined	over a str oth below	ike length / surface.	of approximat	ely 180 m. The
Estimation and modelling techniques	• The nature and appropriateness of the estimation technique(s) applied and key assumptions, including treatment of extreme grade values, domaining, interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a description of computer software and parameters used.	 Grades were estimated by ordinary kriging estimation of 1.5m down-hole composited nickel and inverse distance squared for arsenic assay grades from diamond and RC holes within mineralised domain wireframes. Micromine software was used for data compilation, domain wire-framing, and coding of composite values, statistics, geostatistics and Mineral Resource estimation 							
	 The availability of check estimates, previous estimates and/or mine production records and whether the Mineral Resource estimate takes appropriate account of such data. 	 Previo 1990's follow 	us Minera onwards. s; o o	I Resource The mor 126,00 163,98	e estimates e recent e 2000 tonnes 39 tonnes (s have be stimates s @ 1.85% @ 1.62% I	een made compare v 6 Ni (WMC Ni (Titan Re	by several co well with the o C circa 1990's) esources 2004	ompanies from current one as .)
	The assumptions made regarding recovery of by- products.	No corArseni	nsideratior c is a signif	n has been ìcant delet	made for t erious eler	he recove nent.	ery of by-p	roducts.	
	 Estimation of deleterious elements or other non-grade variables of economic significance (eg sulphur for acid mine drainage characterisation). 	 No co but th evaluation 	nsideration e assays tion to dat	n has been are availab te.	i made wit ble. This i	h regard s due to	to sulphur the preli	levels in the minary nature	waste material e of economic
	in relation to the average sample spacing and the search employed.	 Vertica For p 0.312! The r requir pass th of 24. to 60r (X) on 	 vertical, cross strike) aligned around N-S on MGA94. For precise volume representation, sub-blocking was allowed to 2.5m x2.5m x 0.3125m The nickel modelling used an anisotropic search ellipsoid with minimum data requirements of 8 data points and a maximum of 32 points for pass 1 & 2. On the third pass the number of samples was reduced to a minimum of 4 samples and a maximum of 24. The starting search ellipse was 30m (Y) by 30m (Z) by 10m (X). This was increased to 60m (Y) by 60m (Z) by 20m (X) on the second pass and 90m (Y) by 90m (Z) by 30m 						
			Search Dimensions		Sample Numbers		Rotation		
		Search	East	North	RL	Min	Max	Axis	Angle
		1	10	30	30	8	32	X Y Z	-40 -25
		2	20	60 90	60 90	8	32	X Y Z X	-40 - 25 -40
	Any assumptions behind modelling of selective mining units.	g The estimates are not intended to reflect a fixed mining method but could be amonghile to coveral mining techniques.							
		• Details of the	of potent project ev	ial mining p aluation.	parameters	have bee	en conside	red but reflect	the early stage
	Any assumptions about correlation between variables.	 There is a strong correlation between nickel and copper; nickel and cobalt; and nickel and sulphur (fresh rock). Further there is strong evidence that there is a good correlation between nickel mineralisation and bulk density. 						balt; and nickel ere is a good	
	 Description of how the geological interpretation was used to control the resource estimates. 	 The ge wirefra units. mineral 	ology and ames. A no The select alisation bo	grade infor ominal 1.09 ion of this oundaries.	rmation wa 6 Ni cut-off 6 cut-off is	as used in f was used natural a	the creation d to define and corres	on of the mine the outline w ponds with re	ralised domain ithin geological elatively "hard"
	Discussion of basis for using or not using grade cutting or capping.	 No gradefine affect 	 No grade cutting or capping has been used. Grades are relatively uniform within a defined range, with no order of magnitude outlying high grades that would materially affect the resource. 						
	• The process of validation, the checking process used, the comparison of model data to drill hole data, and use	• The bl to the	ock mode samples.	l was valida Declustere	ated by vie ed sample	wing in v grades w	ertical sect vere comp	ion and plan a ared to the re	and comparing esource model

	of reconciliation data if available.	block grades.
		• There is no production information to reconcile against the model
Moisture	 Whether the tonnages are estimated on a dry basis or with natural moisture, and the method of determination of the moisture content. 	• Tonnages are estimated on a dry tonnage basis
Cut-off • parameters	• The basis of the adopted cut-off grade(s) or quality parameters applied.	 The cut off grades reflect Apollos perception of the potential range of operating costs and prices of nickel and Auralia agrees that this view is acceptable. The mineralised envelope is modelled using a 1.0% Ni cut-off grade
	-	·
Mining factors or assumptions	 Assumptions made regarding possible mining methods, minimum mining dimensions and internal (or, if applicable, external) mining dilution. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential mining methods, but the assumptions made regarding mining methods and parameters when estimating Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the mining assumptions made. 	 The Mineral Resource has considered the possibility of both open cut and underground mining on the project. High level scoping studies have been completed by Titan Resources in 2006. Cooke was found to be sub economic at the time, however there is the view that economic extraction could occur in the future. Dependent on the cost parameters used and the nickel price, Mineral Resource, or part thereof, is potentially amenable to open cut or underground mining.
Metallurgical factors or assumptions	• The basis for assumptions or predictions regarding metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential metallurgical methods, but the assumptions regarding metallurgical treatment processes and parameters made when reporting Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the metallurgical assumptions made.	 Metallurgical test work was conducted by Western Mining in 1998 from nearby deposits such as Widgiemooltha Townsite. The study indicated a nickel recovery of 90% producing a concentrate grade of 8% Ni, 5% MgO and 5000ppm As from a head grade of 2.5% to 2.6% Ni. Bond Work index was low at 7.8KWhr/t which would result in lower processing costs Talc content is approximately 45% in the mineralisation so suppression of talc would be of utmost importance. The high arsenic levels could present a problem if the concentrate was to feed the NickelWest Smelter
Environmen-tal factors or assumptions	 Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and processing operation. While at this stage the determination of potential environmental impacts, particularly for a greenfields project, may not always be well advanced, the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the environmental assumptions made. 	 Precise details of potential waste and process residue disposal options are unclear reflecting the early stage of project evaluation. High talc and carbonate content and low sulphide content in the waste rock suggest that ARD should not be a problem, but further evaluation would be required for approvals.
Bulk density	 Whether assumed or determined. If assumed, the basis for the assumptions. If determined, the method used, whether wet or dry, the frequency of the measurements, the nature, size and representativeness of the samples. The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs, porosity, etc.), moisture and differences between rock and alteration zones within the deposit. Discuss assumptions for bulk density estimates used in the evaluation process of the different materials. 	 Bulk density was derived from WMC's historical regression where; Bulk density (t/m3) = 167.0654/ (57.6714 – Ni%) Bulk density is quoted on a dry basis Waste bulk density was not estimated (reason not known)
Classification	The basis for the classification of the Mineral Resources into varying confidence categories.	• Mineral Resource classification was assigned on the basis of geological continuity and confidence and the number of drill hole intersections.

	•	Whether appropriate account has been taken of all relevant factors (ie relative confidence in tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity and distribution of the data).	•	The Mineral Resource classification accounts for all relevant factors in the opinion of the Competent Person
	٠	Whether the result appropriately reflects the Competent Person's view of the deposit.	•	Classification of the estimates reflects the Competent Person's views of the deposit
Audits or reviews	٠	The results of any audits or reviews of Mineral Resource estimates.	•	A detailed audit was completed on the Mineral Resource estimate to prepare this JORC 2012 statement
Discussion of relative accuracy/ confidence	٠	Where appropriate a statement of the relative accuracy and confidence level in the Mineral	•	Confidence in the relative accuracy of the estimates is reflected by the classifications assigned in the block model
	Resource estimate using an approach or proceed deemed appropriate by the Competent Person. example, the application of statistical or geostatist procedures to quantify the relative accuracy of resource within stated confidence limits, or, if such	Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits, or, if such an	•	The geostatistical procedures used to estimate, quantify and qualify the block model were completed to a reasonable standard. Usually a nickel estimate will include other attributes including non-sulphide nickel, copper, cobalt, MgO, iron and sulphur. These elements can be estimated with additional drilling, sampling and assaying data
		approach is not deemed appropriate, a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate.	•	No blocks have been assigned an indicated or measured category which reflects the relative confidence, or lack thereof, in the accuracy of the interpretations
	٠	 The statement should specify whether it relates to global or local estimates, and, if local, state the relevant tonnages, which should be relevant to tacherial and execution production. 		Significant doubts about the validity of the wireframe interpretations exist as the Mineral Resource is located in a structurally complex and highly strained environment. This has been demonstrated by mining activity on other similar deposits in the Widgiemooltha area
		should include assumptions made and the procedures used.	•	There is a low - moderate level of confidence in the spatial accuracy of the datasets used in the mineral resource estimate as the survey control is unknown
	•	These statements of relative accuracy and confidence of the estimate should be compared with production data, where available.	•	No production data are available for reconciliation as no mining has been undertaken on the project

APPENDIX 3 : Drillholes used in the Widgie 3 Mineral Resource estimate

Hole ID	MGA94_North	MGA94_East	RL	Depth	Azimuth	Dip
DWT121	6512105.59	365813.5	331.157	222	258.535	-45
DWT124	6512129.84	365838.97	331	84	258.535	-45
DWT125	6512130.53	365840.35	331	113	258.535	-60
DWT132A	6512077.24	365854.15	335.323	80	258.535	-45
DWT133	6512099.58	365877.13	332.477	132	258.535	-57
DWT136	6512041.87	365888.85	338.578	121	258.535	-45
DWT138	6512103.91	365949.96	330.73	211	253.535	-45
DWT141	6511991.53	365914.78	345.163	110.5	258.535	-45
DWT142	6512011.85	365934.63	340.557	201	250.535	-57
DWT143	6512011.35	365934.18	340.651	153	253.535	-50
DWT145	6511950.72	365941	348.162	120.12	258.535	-52
DWT146	6511971.24	365962.16	344.329	177	258.535	-60
DWT149	6512011.59	365893.44	343.28	96.36	248.535	-45
DWT150	6512091.05	365853.4	333.961	100	258.535	-60
DWT151	6511904.64	365896.1	350.597	60.5	78.535	-60
DWT152	6511907.64	365897.7	351.062	32	73.535	-49
DWT152A	6511907.64	365897.7	351.062	32	73.535	-59
DWT152B	6511907.64	365897.7	351.062	32	73.535	-59
DWT153	6511928.98	365850.15	349.223	54	81.535	-55

Hole ID	MGA94_North	MGA94_East	RL	Depth	Azimuth	Dip
DWT153A	6511928.98	365850.15	349.223	53.5	81.535	-55
DWT153B	6511928.98	365850.15	349.223	53.5	81.535	-55
DWT154	6511933.51	365854.36	350.258	31.5	84.535	-55
DWT154A	6511933.51	365854.36	350.258	31.5	84.535	-55
DWT154B	6511933.51	365854.36	350.258	31.5	84.535	-55
DWT155	6511936.51	365857.6	350.935	30.5	87.535	-60
DWT155A	6511936.51	365857.6	350.935	30.5	87.535	-60
DWT155B	6511936.51	365857.6	350.935	30.5	87.535	-60
DWT156	6512000.87	365847.98	345.762	38	78.535	-60
DWT156A	6512000.87	365847.98	345.762	37.5	78.535	-60
DWT156B	6512000.87	365847.98	345.762	37.5	78.535	-60
DWT157	6512005.75	365852.92	345.676	34	83.535	-60
DWT157A	6512005.75	365852.92	345.676	34	83.535	-60
DWT157B	6512005.75	365852.92	345.676	34	83.535	-60
DWT158	6512054.18	365830.71	336.915	38	82.535	-66
DWT158A	6512054.18	365830.71	336.915	38	82.535	-66
DWT158B	6512054.18	365830.71	336.915	38	82.535	-66
DWT159	6512055.241	365831.75	336.812	31	83.535	-60
DWT159A	6512055.241	365831.75	336.812	30.5	83.535	-60
DWT159B	6512055.241	365831.75	336.812	30.5	83.535	-60
DWT320	6512129.84	365907.56	330	60	258.535	-60
DWT321	6512117.34	365894.31	330.563	60	258.535	-60
DWT322	6512098.95	365878.03	332.431	60	258.535	-60
DWT323	6512087.02	365866.559	334.247	60	258.535	-60
DWT324	6512040.59	365748.81	336.968	55	258.535	-60
DWT325	6512025.589	365735.34	338.622	50	258.535	-60
DWT326	6512011.8	365719.79	340.275	60	258.535	-60
DWT327	6511997.1	365704.18	342.044	60	258.535	-60
DWT328	6511987.42	365692.18	342.91	60	258.535	-60
DWT329	6511935.25	365970.05	345.303	60	258.535	-60
DWT330	6511921.14	365956.17	349.16	60	258.535	-60
DWT331	6511907.02	365942.29	352.668	60	258.535	-60
DWT355	6512049.39	365927.21	334.951	169	219.535	-61.5
DWT356	6512049.39	365927.21	334.951	201	258.535	-55
DWT357	6511924.47	365804.06	344.111	217	83.535	-54.4
DWT358	6511924.47	365804.06	344.111	17	78.535	-60
DWT668	6511746.73	365972	330.39	744	78.535	-60
DWT670	6512213.49	366143.79	328.67	279	253.535	-55
HH569	6511950.21	365845.94	347.791	57.3	260.535	-60
HH570	6511979.23	365848.7	346.592	36.58	260.535	-50
WDC236	6512095	365895	332.044	180	259.905	-57.55
WDC237	6512162	365892	330	192	260.545	-49.96
WDC257	6512067	365907	Missing	120	Missing	Missing
WDC258	6512085	365896	Missing	130	Missing	Missing

Hole ID	MGA94_North	MGA94_East	RL	Depth	Azimuth	Dip
WDD080	6512054	365994	332.101	339.4	256.615	-56.24
WDD081	6512090.001	365972	330.585	330.6	258.205	-58
WDD082	6512140	365910	330	345.6	259.87	-62.99
WDD090	6512077.5	365922.5	Missing	100	Missing	Missing
WPH54	6511995.49	365882.47	350.725	0	258.535	-45
WPH55	6511995.49	365882.47	350.725	54.03	258.535	-45
WPH56	6511985.81	365883.75	352.889	58.22	258.535	-45
WPH57	6511978.34	365887.13	354	30.33	258.535	-45
WPH60	6511858.36	365983.67	356	46.79	258.535	-45
WPH61	6511654.42	366108.35	324.89	41.91	258.535	-60
WPH62	6511727.37	366103.751	331.103	48.16	258.535	-60
WPH63	6511641.55	366123.45	324.89	32	258.535	-60
WPH64	6511669.5	366239.21	324.89	36.58	258.535	-60
WPH65	6511847.05	365943.78	352.697	58.06	303.535	-60
WPH66	6511694.83	366038.03	344.89	64.92	258.535	-60
WPS1	6512108.64	365841.61	331.672	82.3	258.535	-60
WPS2	6512090.51	365851.34	334.105	92.96	258.535	-60
WPT1	6512013.18	366167.69	329.411	75	258.535	-60
WPT2	6511713.54	366365.82	322.007	75	258.535	-62
WPT3	6511788.86	366370.57	322.327	95	258.535	-60
WWD1	6511993.05	365911.8	345.303	96.01	258.535	-45
WWD10	6512061.18	365980.24	331.925	155.14	78.535	-45
WWD11	6511953.079	366004.57	339.241	203.61	258.535	-45
WWD12	6512165.72	365949.871	330	247.35	258.535	-45
WWD13	6512269.93	365897.35	330	250.09	253.535	-43
WWD14	6511727.29	366236.69	322.39	156.51	258.535	-45
WWD15	6512064.6	365910.89	334.546	160.03	258.535	-45
WWD16	6511964.42	365904.67	352.615	77.05	258.535	-45
WWD17	6512167.73	365951.75	330	366.98	258.535	-60
WWD18	6511777.94	366100.3	330.866	150.27	258.535	-60
WWD19	6512245.93	365910.96	330	424.89	258.535	-65
WWD2	6512061.18	365980.24	331.925	206.96	258.535	-50
WWD20	6512104.3	366022.48	330.177	500.12	258.535	-60
WWD21	6512391.98	365915.67	337.49	455.98	258.535	-65
WWD22	6512058.74	366107.67	331.976	489.2	258.535	-60
WWD23	6511875.25	366062.74	336.691	181.66	258.535	-45
WWD24	6512127.43	365971.52	330	265	258.535	-46
WWD25	6511971.97	365958.89	344.4	344.2	258.535	-48
WWD26	6511991.67	366009.57	334.949	284	258.535	-61
WWD27	6511935.36	365954.18	347.841	142	258.535	-40
WWD28	6511786.01	366362.65	322.351	485	258.535	-65
WWD3	6511976.91	366028.461	334.877	286.66	258.535	-60
WWD30	6511942.85	366090.57	335.82	362	263.535	-65
WWD4	6512100.84	365885.48	331.814	134.11	258.535	-45

Hole ID	MGA94_North	MGA94_East	RL	Depth	Azimuth	Dip
WWD5	6512183.03	365822.17	331.089	120.24	258.535	-45
WWD6	6512292.42	365799.73	329.96	168.1	258.535	-45
WWD7	6511760.36	366083.42	330	120.58	258.535	-45

All coordinates are in MGA94_51S

APPENDIX 4 : Drillholes used in the Cooke Mineral Resource estimate

Hole_ID	North_GDA94	EAST_GDA94	RL	Depth	Azimuth	Dip
WD3216	6519981.98	361260.36	349	18.29	359.53	-90
WD3217	6519984.48	361275.39	348.03	30.48	359.53	-90
WD5000	6519979.49	361245.32	349.58	15.24	359.53	-90
WD5326	6519817.53	361386.21	347.11	153.01	260.53	-44
WD5335	6519827.07	361443.64	343.34	238.66	260.53	-44.59
WD5336	6519877.16	361371.53	346.35	150.88	260.53	-40.73
WD5339	6519847.36	361193.17	354.14	333.45	80.53	-65
WD5340	6519909.38	361195.19	355.6	238.96	89.12	-40.8
WD5348	6519996.78	361348.62	343.57	183.79	257.26	-45.28
WD5350	6519944.08	361404.02	344	232.87	245.9	-46.74
WD5408	6519781.52	361355.43	350.06	45.72	359.53	-90
WD5409	6519784.02	361370.46	348.99	18.29	359.53	-90
WD5410	6519786.52	361385.5	347.92	25.91	359.53	-90
WD5419	6519839.15	361330.42	349.18	42.67	80.53	-80
WD5420	6519808.59	361332.4	350.41	51.82	80.53	-80
WD5421	6519810.34	361342.93	349.82	39.62	80.53	-80
WD5422	6519806.59	361320.38	351.18	19.81	80.53	-80
WD5423	6519865.69	361307.22	348.89	51.82	80.53	-85
WD5424	6519869.21	361325.42	347.87	47.24	359.53	-90
WD5425	6519872.21	361343.47	347.45	24.38	359.53	-90
WD5426	6519864.72	361298.36	349.37	41.15	359.53	-90
WD5427	6519779.03	361340.41	351.06	22.86	359.53	-90
WD5428	6519810.59	361344.42	349.73	18.29	260.53	-50
WD5429	6519812.08	361353.45	349.21	44.2	260.53	-50
WD5430	6519810.59	361344.42	349.73	45.72	260.53	-50
WD5431	6519976.98	361230.3	350.22	36.58	359.53	-90
WD5432	6519974.49	361215.27	351.16	27.43	359.53	-90
WD5433	6519972	361200.23	352.19	13.72	359.53	-90
WD5665	6519923.1	361277.87	349.7	51.82	260.53	-70
WD5666	6519926.85	361300.41	347.66	56.39	260.53	-70
WD5802	6520006.9	361410.38	342.04	349	260.53	-61
WD6059	6519897.37	361327.54	346.72	88.39	260.53	-60
WD6256	6519786.52	361385.5	347.92	64.01	260.53	-60
WD6257	6519870.21	361331.43	347.73	60.96	260.53	-60
WD6258	6519931.6	361328.97	345.89	109.73	260.53	-60
WD6543	6519775.24	361392	347.72	118.87	260.53	-60
WD6544	6519842.15	361348.45	348.47	80.77	260.53	-65

Hole_ID	North_GDA94	EAST_GDA94	RL	Depth	Azimuth	Dip
WDC145	6519869.964	361316.873	354.444	80	270	-60
WDC146	6519834.985	361323.817	355.444	100	360	-90
WDC147	6519813.336	361357.72	355.444	94	270	-60
WDC148	6519798.659	361360.101	355.644	100	270	-60
WDC149	6519765.248	361365.488	352.744	70	270	-60
WDC150	6519781.956	361360.212	347.244	70	270	-60
WDC159	6519786.556	361355.985	350.444	49	360	-90
WDGT01	6519816.08	361280.584	360.044	60.2	268.78	-60.55
WDGT02	6519849.389	361268.942	363.944	120.2	90.87	-60.26
WDGT03	6519802.772	361360.95	345.744	60	80.48	-59.49
WDGT04	6519879.883	361320.718	350.444	65	88.35	-60.47
WDMT01	6519821.092	361355.867	354	114.5	268.69	-59.5
WDMT02	6519785.963	361361.395	349.044	80	270	-55.46
WDMT03	6519805.75	361359.754	346.844	120	270	-60
WID1237	6519810.86	361271.15	359.25	200	83.4	-65
WID1238	6519810.6	361411.44	345.73	200	262.52	-60.79
WID1423	6519912.51	361389.66	344.77	240.5	273.53	-57
WID1425	6519810.17	361398.71	346.53	211	269.53	-62
WID1645	6519783.76	361363.12	349.49	30	269.53	-60
WID1646	6519784.02	361373.15	348.81	50	269.53	-60
WID1647	6519784.87	361381.82	348.2	70	269.53	-60
WID1648	6519807.89	361343.63	349.87	60	271.53	-60
WID1649	6519806.84	361353.09	349.43	80	269.53	-60
WID1650	6519806.77	361361.18	348.97	100	269.53	-60
WID1651	6519832.22	361333.8	349.38	30	269.53	-60
WID1652	6519833.61	361344.08	348.97	50	269.53	-60
WID1653	6519834.26	361352.95	348.52	70	269.53	-60
WID1654	6519857.38	361311.51	349.12	30	269.53	-60
WID1655	6519857.89	361322.28	348.45	58	269.53	-60
WID1656	6519858.21	361329.74	348.27	80	269.53	-60
WID1657	6519880.74	361290.7	348.57	30	269.53	-60
WID1658	6519881.96	361300.78	348.12	52	269.53	-60
WID1659	6519883.18	361311.73	347.72	70	269.53	-60
WID1675	6519806.98	361385.47	347.45	150	261.22	-44.06
WID1779	6519884.51	361341.71	347.02	157.3	269.8	-61
WID1781	6519784.19	361360.97	349.63	111	269.53	-59
WID1791	6519839.71	361363.52	347.8	100	269.53	-60
WID1792	6519840.95	361373.9	347.19	100	269.53	-60
WID1793	6519858.95	361336.5	348.08	118	269.53	-60
WID1794	6519883.89	361321.06	347.41	92	269.53	-60
WID1795	6519885.1	361329.59	347.14	120	269.53	-60
WID1796	6519858.87	361357.38	347.47	146	269.53	-60
WID1797	6519912.48	361287.21	348.59	40	269.53	-60
WID1798	6519911.23	361296.72	347.74	60	269.53	-60

Hole_ID	North_GDA94	EAST_GDA94	RL	Depth	Azimuth	Dip
WID1799	6519909.75	361308.72	347.05	80	269.53	-60
WID1799Z	6519909.75	361308.71	347.05	80	269.53	-60
WID1800	6519907.94	361319.75	346.54	100	269.53	-60
WID1801	6519901.88	361329.34	346.5	112	269.53	-60
WID1803	6519762.64	361372.23	349.11	42	269.53	-60
WID1804	6519761.47	361384.18	348.31	80	269.53	-60
WID1836	6519811.03	361274.23	359.05	184.9	88.53	-56.8
WID1837	6519829.58	361285.05	354.49	144.5	86.53	-67.3
WID1838	6519832.83	361334.78	349.33	88	269.53	-60
WID1839	6519834	361343.78	348.97	100	269.53	-60
WID1840	6519932.11	361278.21	349.95	50	269.53	-60
WID1841	6519932.52	361287.68	348.91	70	269.53	-60
WID1842	6519932.93	361297.74	347.88	90	269.53	-60
WID1843	6519933.51	361309.6	347.14	106	269.53	-60
WID1844	6519934.09	361320.1	346.47	116	269.53	-60
WID2209	6519833.27	361336.2	349.27	215	257.53	-74.5
WID2211	6519913.52	361389.53	344.75	248.8	263.16	-52.05
WID2213	6519913.52	361389.62	344.75	234.3	266.53	-47
WID2215	6519781.56	361282.93	358.58	150	89.53	-44.5
WID2217	6519781.55	361281.01	358.85	175	90.53	-53.6
WID2221	6519953.63	361365.97	344	209.5	267.27	-46.61
WID2223	6519953.63	361365.97	344	228	265.5	-52.29
WID2225	6519953.63	361365.97	344	244	268.88	-57.74
WID2227	6519953.63	361365.18	344	326	264.53	-64
WID2229	6519956.24	361444.31	343.86	462	264.53	-60
WID2231	6520001.02	361377.67	342.66	469	266.55	-61.19
WID2267	6519936.31	361444.69	344	531	269.53	-64
WID2269	6519905.22	361434.48	343.37	451	263.53	-60
WID2271	6519905.21	361433.82	343.4	505	273.53	-62.9
WID2273	6519909.39	361060.31	372	540	84.53	-55.9
WID2350	6519829.78	361283.01	354.72	125	86.53	-46.9
WID2351	6519829.78	361283.01	354.72	133	86.5	-54.12
WID2351A	6519829.78	361283.01	354.72	133	89.53	-56

All coordinates are in MGA94_51S

APPENDIX 5: Drill Intersections in Mineralised Domains at Widgie 3

Drill hole Intersection Information. All composited intersections used in the Mineral Resource estimation. Composites created using the mineralisation wireframe boundaries as the cut-off. Note that not all historic holes have As assays

Hole_ID	GDA94_North	GDA94_East	RL	Ni_pct	As_ppm	From	То	Width (m)
DWT121	6512101.30	365809.25	325.17	0.26		8	9	1
DWT124	6512108.52	365817.53	301.13	0.49		42	43	1
DWT124	6512108.00	365817.03	300.44	0.42		43	44	1
DWT124	6512107.48	365816.52	299.75	0.66		44	45	1
DWT125	6512106.35	365814.06	271.39	0.42		69	70	1

Hole_ID	GDA94_North	GDA94_East	RL	Ni_pct	As_ppm	From	То	Width (m)
DWT125	6512105.98	365813.66	270.55	0.97		70	71	1
DWT132A	6512064.94	365842.70	318.90	0.50		23	24	1
DWT132A	6512064.41	365842.21	318.20	1.28		24	25	1
DWT132A	6512063.87	365841.73	317.51	0.47		25	26	1
DWT132A	6512063.34	365841.25	316.82	0.47		26	27	1
DWT132A	6512062.80	365840.76	316.13	0.42		27	28	1
DWT132A	6512062.26	365840.27	315.44	0.37		28	29	1
DWT132A	6512061.73	365839.79	314.75	0.54		29	30	1
DWT132A	6512061.19	365839.30	314.06	0.69		30	31	1
DWT132A	6512060.66	365838.81	313.37	2.88		31	32	1
DWT132A	6512060.13	365838.32	312.68	2.27		32	33	1
DWT133	6512054.98	365836.74	239.80	0.68		110	111	1
DWT133	6512054.58	365836.37	238.96	0.97		111	112	1
DWT133	6512054.19	365836.00	238.12	1.28		112	113	1
DWT133	6512053.79	365835.62	237.28	1.15		113	114	1
DWT133	6512053.40	365835.25	236.44	0.76		114	115	1
DWT133	6512053.00	365834.88	235.60	0.37		115	116	1
DWT133	6512052.61	365834.51	234.76	0.33		116	117	1
DWT133	6512052.22	365834.13	233.92	2.70		117	118	1
DWT133	6512051.82	365833.76	233.08	1.30		118	119	1
DWT133	6512051.43	365833.39	232.24	1.63		119	120	1
DWT136	6512015.97	365864.10	302.98	0.75		50	51	1
DWT136	6512015.46	365863.60	302.29	0.53		51	52	1
DWT136	6512014.95	365863.09	301.59	0.37		52	53	1
DWT136	6512014.44	365862.59	300.89	1.61		53	54	1
DWT136	6512013.93	365862.08	300.20	1.67		54	55	1
DWT138	6512010.24	365869.63	214.58	0.75		169	170	1
DWT138	6512009.70	365869.13	213.92	1.16		170	171	1
DWT138	6512009.15	365868.63	213.25	1.04		171	172	1
DWT138	6512008.60	365868.13	212.58	1.05		172	173	1
DWT138	6512008.04	365867.63	211.91	1.33		173	174	1
DWT138	6512007.49	365867.13	211.24	2.19		174	175	1
DWT138	6512006.94	365866.63	210.57	5.27		175	176	1
DWT138	6512006.39	365866.14	209.90	0.86		176	177	1
DWT141	6511962.78	365888.07	305.92	0.82		55	56	1
DWT141	6511962.25	365887.59	305.21	0.62		56	57	1
DWT141	6511961.73	365887.11	304.50	0.69		57	58	1
DWT141	6511961.21	365886.64	303.80	0.48		58	59	1
DWT141	6511960.69	365886.16	303.09	0.45		59	60	1
DWT141	6511960.17	365885.68	302.38	0.46		60	61	1
DWT141	6511959.65	365885.20	301.68	0.76		61	62	1
DWT141	6511959.13	365884.72	300.97	0.79	11	62	63	1
DWT141	6511958.61	365884.24	300.26	1.50	27	63	64	1
DWT141	6511958.09	365883.76	299.55	1.72	34	64	65	1

Hole ID	GDA94 North	GDA94 East	RL	Ni pct	As ppm	From	То	Width (m)
 DWT141			292.48	0.75	377	74	75	1
DWT141	6511952.37	365878.49	291.78	0.38	65	75	76	1
DWT141	6511951.86	365878.00	291.07	0.90	22	76	77	1
DWT141	6511951.34	365877.52	290.36	0.73		77	78	1
DWT141	6511950.82	365877.04	289.65	0.63	25	78	79	1
DWT141	6511950.30	365876.56	288.95	0.50	20	79	80	1
DWT141	6511949.78	365876.08	288.24	0.39	11	80	81	1
DWT141	6511949.26	365875.60	287.53	9.20	227	81	82	1
DWT141	6511948.75	365875.12	286.83	3.23	101	82	83	1
DWT142	6511962.04	365893.48	249.75	0.52		111	112	1
DWT142	6511961.61	365893.07	248.95	0.36		112	113	0.82
DWT143	6511960.78	365892.59	273.98	0.59		93	94	1
DWT143	6511960.23	365892.12	273.28	0.20		94	95	1
DWT143	6511959.69	365891.65	272.59	0.50		95	96	1
DWT143	6511959.14	365891.18	271.90	0.76		96	97	1
DWT143	6511958.59	365890.71	271.20	0.76		97	98	1
DWT143	6511958.04	365890.24	270.51	0.64		98	99	1
DWT143	6511957.49	365889.77	269.82	0.96		99	100	1
DWT143	6511956.95	365889.31	269.13	0.35		100	101	1
DWT143	6511956.40	365888.84	268.44	1.03		101	102	1
DWT143	6511955.85	365888.37	267.74	0.53		102	103	1
DWT143	6511955.30	365887.90	267.05	0.55		103	104	1
DWT143	6511954.75	365887.44	266.36	0.57		104	105	1
DWT143	6511950.88	365884.18	261.51	0.47		111	112	1
DWT143	6511950.33	365883.72	260.81	1.26		112	113	1
DWT143	6511949.78	365883.26	260.12	0.47		113	114	1
DWT143	6511949.23	365882.80	259.43	4.11		114	115	1
DWT143	6511948.67	365882.34	258.74	5.68		115	116	1
DWT145	6511922.53	365914.33	296.64	0.63		64	65	1
DWT145	6511922.10	365913.91	295.84	0.50		65	66	1
DWT145	6511921.66	365913.50	295.04	0.43		66	67	1
DWT145	6511921.23	365913.08	294.25	0.39		67	68	1
DWT145	6511920.79	365912.67	293.45	1.12		68	69	1
DWT145	6511920.35	365912.25	292.65	0.68		69	70	1
DWT145	6511919.92	365911.84	291.85	0.90		70	71	1
DWT145	6511919.48	365911.42	291.05	0.73		71	72	1
DWT145	6511919.04	365911.01	290.25	1.63		72	73	1
DWT145	6511918.61	365910.59	289.46	2.50		73	74	1
DWT146	6511921.78	365912.90	229.26	0.40		134.14	135.14	1
DWT146	6511921.38	365912.50	228.44	0.68		135.14	136.14	1
DWT146	6511920.98	365912.11	227.61	0.61		136.14	137.14	1
DWT146	6511920.58	365911.71	226.79	0.43		137.14	138.14	1
DWT146	6511920.17	365911.31	225.97	0.45		138.14	139.14	1
DWT146	6511919.77	365910.91	225.14	0.55		139.14	140.14	1

Hole_ID	GDA94_North	GDA94_East	RL	Ni_pct	Nipct As ppm		То	Width (m)
DWT146	6511919.36	365910.51	224.32	0.79		140.14	141.14	1
DWT146	6511918.96	365910.12	223.50	0.83		141.14	142.14	1
DWT146	6511918.55	365909.72	222.67	0.83		142.14	143.14	0.86
DWT149	6511985.21	365874.08	311.67	0.74		45	46	1
DWT149	6511984.63	365873.64	310.98	0.72		46	47	1
DWT149	6511984.04	365873.20	310.30	0.63		47	48	1
DWT149	6511983.46	365872.76	309.62	0.50		48	49	1
DWT149	6511982.87	365872.32	308.94	0.75		49	50	1
DWT149	6511982.29	365871.88	308.26	1.10		50	51	1
DWT149	6511981.70	365871.43	307.58	0.63		51	52	1
DWT149	6511981.11	365870.99	306.90	0.33		52	53	0.86
DWT149	6511968.53	365861.65	292.68	14.06		73.16	74.16	1
DWT149	6511967.94	365861.21	292.01	12.27		74.16	75.16	1
DWT149	6511967.34	365860.77	291.34	3.44		75.16	76.16	1
DWT149	6511966.74	365860.32	290.67	0.26		76.16	77.16	0.84
DWT150	6512070.22	365834.98	288.26	0.22		53	54	1
DWT150	6512069.82	365834.61	287.42	0.58		54	55	1
DWT150	6512069.42	365834.25	286.58	0.52		55	56	1
DWT150	6512069.02	365833.89	285.74	0.33		56	57	1
DWT150	6512068.61	365833.52	284.90	0.57		57	58	1
DWT150	6512068.21	365833.15	284.06	0.54		58	59	1
DWT150	6512067.81	365832.79	283.22	0.89		59	60	1
DWT150	6512067.41	365832.42	282.39	0.92		60	61	1
DWT150	6512067.01	365832.05	281.55	1.06		61	62	1
DWT150	6512066.60	365831.68	280.71	1.48		62	63	1
DWT150	6512066.20	365831.30	279.88	0.54		63	64	1
DWT150	6512065.80	365830.93	279.04	1.72		64	65	1
DWT150	6512065.39	365830.56	278.20	1.39		65	66	1
DWT150	6512064.99	365830.18	277.37	1.59		66	67	1
DWT150	6512064.58	365829.81	276.54	1.79		67	68	1
DWT150	6512064.18	365829.43	275.70	0.70		68	69	1
DWT150	6512063.78	365829.06	274.87	1.03		69	70	1
DWT150	6512063.37	365828.68	274.03	1.81		70	71	1
DWT150	6512062.97	365828.30	273.20	1.28		71	72	1
DWT150	6512062.56	365827.92	272.37	3.49		72	73	1
DWT150	6512062.16	365827.54	271.54	0.62		73	74	1
DWT150	6512059.36	365824.89	265.81	0.71		79.9	80.9	1
DWT150	6512058.95	365824.50	264.99	0.71		80.9	81.9	1
DWT150	6512058.55	365824.11	264.16	5.95		81.9	82.9	1
DWT152	6511920.66	365908.85	330.85	1.03	116	26	27	1
DWT152	6511921.14	365909.27	330.08	1.09	121	27	28	1
DWT152	6511921.62	365909.70	329.31	1.14	126	28	29	1
DWT152	6511922.10	365910.12	328.55	0.96	185	29	30	1
DWT152	6511922.58	365910.54	327.78	0.97	162	30	31	1

Hole ID	GDA94 North	GDA94 East	RL	Ni pct	As ppm	From	То	Width (m)
 DWT152			327.01	0.97	139	31	32	1
DWT153	6511946.65	365869.82	310.36	20.65	186	46.5	47.5	1
DWT153	6511947.02	365870.23	309.53	19.15	164	47.5	48.5	1
DWT153	6511947.38	365870.63	308.69	10.90	90	48.5	49.5	1
DWT153	6511947.75	365871.04	307.86	4.49	35	49.5	50.5	1
DWT153	6511948.11	365871.45	307.02	1.13	12	50.5	51.5	1
DWT153	6511948.48	365871.86	306.18	1.13	12	51.5	52.5	1
DWT153	6511948.84	365872.27	305.35	1.13	12	52.5	53.5	1
DWT154	6511938.25	365860.12	339.61	0.47	2	12.5	13.5	1
DWT154	6511938.62	365860.56	338.79	0.47	2	13.5	14.5	0.5
DWT154	6511939.89	365862.11	335.92	0.46	34	17	18	1
DWT154	6511940.26	365862.55	335.10	0.46	34	18	19	0.5
DWT154	6511941.89	365864.56	331.42	0.83	4	22.5	23.5	1
DWT154	6511942.25	365865.02	330.61	3.99	32	23.5	24.5	1
DWT154	6511942.61	365865.48	329.80	7.25	65	24.5	25.5	1
DWT154	6511942.96	365865.95	328.99	5.67	61	25.5	26.5	1
DWT154	6511943.32	365866.41	328.18	3.38	46	26.5	27.5	1
DWT154	6511943.67	365866.89	327.37	3.23	38	27.5	28.5	1
DWT154	6511944.02	365867.36	326.56	2.39	33	28.5	29.5	1
DWT154	6511944.37	365867.84	325.76	1.44	30	29.5	30.5	1
DWT154	6511944.71	365868.33	324.95	1.44	30	30.5	31.5	1
DWT155	6511940.82	365863.43	338.38	1.71	49	14	15	1
DWT155	6511941.12	365863.83	337.51	3.76	75	15	16	1
DWT155	6511941.41	365864.24	336.65	5.80	101	16	17	1
DWT155	6511941.71	365864.64	335.78	3.73	99	17	18	1
DWT155	6511942.01	365865.04	334.91	2.82	114	18	19	1
DWT155	6511942.31	365865.44	334.05	1.90	129	19	20	1
DWT155	6511942.60	365865.84	333.18	1.27	57	20	21	1
DWT155	6511942.90	365866.25	332.32	1.44	45	21	22	1
DWT155	6511943.20	365866.65	331.45	1.61	32	22	23	1
DWT155	6511943.50	365867.05	330.58	2.00	29	23	24	1
DWT155	6511943.79	365867.45	329.72	1.87	27	24	25	1
DWT155	6511944.09	365867.85	328.85	1.74	24	25	26	1
DWT155	6511944.39	365868.26	327.99	1.52	28	26	27	1
DWT155	6511944.68	365868.66	327.12	1.41	25	27	28	1
DWT155	6511944.98	365869.06	326.25	1.29	21	28	29	1
DWT155	6511945.28	365869.46	325.39	0.87	19	29	30	1
DWT155	6511945.58	365869.87	324.52	0.87	19	30	31	0.5
DWT156	6512010.91	365858.51	321.84	2.00	386	27.5	28.5	1
DWT156	6512011.26	365858.90	320.99	3.02	107	28.5	29.5	1
DWT156	6512011.61	365859.30	320.14	2.86	160	29.5	30.5	1
DWT156	6512011.96	365859.69	319.30	1.00	128	30.5	31.5	1
DWT156	6512012.32	365860.09	318.45	0.52	285	31.5	32.5	1
DWT156	6512012.67	365860.49	317.60	0.58	239	32.5	33.5	1

Hole_ID	GDA94_North	GDA94_East	RL	Ni_pct	As_ppm	From	То	Width (m)
DWT156	6512013.01	365860.89	316.75	0.63	192	33.5	34.5	1
DWT156	6512013.36	365861.29	315.90	0.55	190	34.5	35.5	1
DWT156	6512013.71	365861.69	315.06	0.59	178	35.5	36.5	1
DWT156	6512014.05	365862.09	314.21	0.63	166	36.5	37.5	1
DWT157	6512010.56	365858.55	332.63	3.21	68	14.5	15.5	1
DWT157	6512010.87	365858.92	331.76	3.12	56	15.5	16.5	1
DWT157	6512011.19	365859.29	330.88	3.02	43	16.5	17.5	1
DWT157	6512011.50	365859.66	330.01	2.12	80	17.5	18.5	1
DWT157	6512011.82	365860.03	329.13	1.74	63	18.5	19.5	1
DWT157	6512012.13	365860.40	328.26	1.35	46	19.5	20.5	1
DWT157	6512012.44	365860.77	327.38	0.84	49	20.5	21.5	1
DWT157	6512012.76	365861.13	326.51	0.75	45	21.5	22.5	1
DWT157	6512013.07	365861.50	325.63	0.65	41	22.5	23.5	1
DWT157	6512013.38	365861.86	324.75	0.43	19	23.5	24.5	1
DWT157	6512013.69	365862.23	323.87	0.43	19	24.5	25.5	0.5
DWT158	6512061.75	365839.49	310.33	0.39	126	28.5	29.5	1
DWT158	6512062.01	365839.80	309.42	2.44	2800	29.5	30.5	1
DWT158	6512062.27	365840.11	308.50	1.10	1400	30.5	31.5	1
DWT158	6512062.52	365840.42	307.59	0.71	268	31.5	32.5	1
DWT158	6512062.78	365840.73	306.67	0.63	145	32.5	33.5	1
DWT159	6512061.00	365838.34	321.66	0.95	280	17	18	1
DWT159	6512061.33	365838.72	320.79	1.29	1790	18	19	1
DWT159	6512061.66	365839.09	319.92	1.62	3300	19	20	1
DWT159	6512062.00	365839.46	319.06	1.93	11000	20	21	1
DWT159	6512062.33	365839.83	318.19	1.94	5700	21	22	1
DWT159	6512062.66	365840.21	317.33	1.86	3200	22	23	1
DWT159	6512062.99	365840.58	316.46	0.86	1300	23	24	1
DWT159	6512063.32	365840.96	315.59	0.75	1450	24	25	1
DWT159	6512063.65	365841.33	314.73	0.64	1600	25	26	1
DWT356	6512000.51	365877.96	242.66	0.51		115	116	1
DWT356	6512000.07	365877.51	241.88	0.66		116	117	1
DWT356	6511999.63	365877.05	241.11	0.98		117	118	1
DWT356	6511999.19	365876.60	240.33	1.01		118	119	1
DWT356	6511998.75	365876.15	239.56	3.16		119	120	0.8
HH570	6511973.68	365842.85	336.99	0.12		12.04	13.04	1
HH570	6511973.24	365842.38	336.22	0.06		13.04	14.04	1
HH570	6511972.80	365841.92	335.45	0.02		14.04	15.04	0.74
WDC236	6512049.38	365837.20	228.31	1.62	28	127	128	1
WDC236	6512049.06	365836.63	227.55	2.18	33	128	129	1
WDC236	6512048.75	365836.06	226.79	2.05	35	129	130	1
WDC236	6512048.43	365835.48	226.04	2.36	48	130	131	1
WDC236	6512048.11	365834.91	225.28	1.54	29	131	132	1
WDC236	6512047.80	365834.33	224.53	1.36	27	132	133	1
WDC236	6512047.49	365833.75	223.77	1.11	20	133	134	1

Hole ID	GDA94 North	GDA94 Fast	RI	Ni nct	As nom From		То	Width (m)
WDC236	6512047 17	365833.18	223.02	0.66	74	134	135	1
WDC236	6512046.86	365832 59	222.27	0.80	100	135	136	- 1
WDC236	6512046 55	365832.01	221 52	1 51	448	136	137	1
WDC237	6512107 22	365831 18	236 19	0.54	81	124	125	1
WDC237	6512106.77	365830.69	235.44	0.54	81	125	126	1
WDC237	6512106.33	365830.19	233.44	0.54	81	125	120	1
WDC237	6512105.88	365829.70	233.95	0.54	81	120	128	1
WDC237	6512105.00	365829.70	233.55	1 26	41	128	120	1
WDC237	6512103.43	365828.71	232.46	1.26	41	120	130	1
WDC237	6512104.53	365828.21	231.72	1.26	41	130	131	1
WDC237	6512104.08	365827.72	230.98	1 26	41	131	132	1
WDC237	6512091 74	365814.28	211 07	0.42	124	158	159	1
WDC237	6512091.28	365813.79	210 34	0.38	9	159	160	1
WDC237	6512090.81	365813.29	209.60	0.66	13	160	161	1
WDC237	6512090.34	365812.79	208.87	0.58	14	161	162	1
WDC237	6512089.88	365812.30	208.14	1 49	266	162	163	1
WDC237	6512089.41	365811.80	207 40	1.07	720	163	164	1
WDD080	6511944.81	365891.83	84.38	0.55	17	289	290	1
WDD080	6511944 44	365891 48	83 52	0.73	10	290	291	- 1
WDD080	6511944.06	365891.13	82.66	0.32	13	291	292	1
WDD080	6511943.69	365890.78	81.80	0.36	6	292	293	- 1
WDD080	6511943 31	365890.42	80.95	0.27	68	293	294	- 1
WDD080	6511942.94	365890.07	80.09	0.79	142	294	295	- 1
WDD080	6511942.56	365889.72	79.23	0.65	163	295	296	1
WDD080	6511942.18	365889.36	78.38	0.41	108	296	297	0.77
WDD081	6511983.16	365867.53	72.17	0.32	66	298.2	299.2	1
WDD081	6511982.79	365867.20	71.30	0.50	162	299.2	300.2	1
WDD081	6511982.42	365866.88	70.43	0.43	262	300.2	301.2	1
WDD081	6511982.05	365866.55	69.56	0.32	14	301.2	302.2	1
WDD081	6511981.22	365865.82	67.63	0.44	58	303.42	304.42	1
WDD081	6511980.85	365865.50	66.76	0.68	57	304.42	305.42	0.63
WDD082	6512056.00	365819.41	45.35	0.65	272	310	311	1
WDD082	6512055.74	365819.12	44.43	1.28	91	311	312	0.89
WPH55	6511982.18	365869.37	332.05	0.63	15	25.91	26.91	1
WPH55	6511981.67	365868.88	331.34	0.52	12	26.91	27.91	1
WPH55	6511981.17	365868.38	330.64	0.52	12	27.91	28.91	1
WPH55	6511980.66	365867.88	329.93	0.71	18	28.91	29.91	1
WPH55	6511980.16	365867.39	329.22	0.60	15	29.91	30.91	1
WPH55	6511979.65	365866.89	328.52	0.58	17	30.91	31.91	1
WPH55	6511979.15	365866.40	327.81	0.59	17	31.91	32.91	1
WPH55	6511978.65	365865.90	327.10	0.71	13	32.91	33.91	1
WPH55	6511978.14	365865.40	326.39	0.68	7	33.91	34.91	1
WPH55	6511977.64	365864.91	325.69	0.68	4	34.91	35.91	1
WPH55	6511977.13	365864.41	324.98	0.67	2	35.91	36.91	1

Hole_ID	GDA94_North	GDA94_East	RL	Ni_pct	As_ppm	From	То	Width (m)
WPH55	6511976.63	365863.92	324.27	0.15	5	36.91	37.91	1
WPH56	6511972.80	365870.96	334.65	0.57	8	25.3	26.3	1
WPH56	6511972.30	365870.46	333.94	0.58	8	26.3	27.3	1
WPH56	6511971.79	365869.96	333.23	0.49	8	27.3	28.3	1
WPH56	6511971.29	365869.47	332.52	0.43		28.3	29.3	1
WPH56	6511970.79	365868.97	331.82	0.59		29.3	30.3	1
WPH56	6511970.28	365868.48	331.11	0.47		30.3	31.3	1
WPH56	6511969.78	365867.98	330.40	0.65		31.3	32.3	1
WPH56	6511969.27	365867.48	329.70	0.46		32.3	33.3	1
WPH56	6511968.77	365866.99	328.99	0.58		33.3	34.3	1
WPH56	6511968.27	365866.49	328.28	0.64		34.3	35.3	1
WPH56	6511967.76	365866.00	327.58	0.71		35.3	36.3	1
WPH56	6511967.26	365865.50	326.87	0.74		36.3	37.3	1
WPH56	6511966.75	365865.00	326.16	0.60		37.3	38.3	1
WPH56	6511966.25	365864.51	325.45	0.87		38.3	39.3	1
WPH56	6511965.75	365864.01	324.75	0.73		39.3	40.3	1
WPH56	6511965.24	365863.52	324.04	0.35		40.3	41.3	1
WPH57	6511965.56	365874.56	336.08	0.50		24.84	25.84	1
WPH57	6511965.06	365874.07	335.38	0.64		25.84	26.84	1
WPH57	6511964.56	365873.57	334.67	0.65		26.84	27.84	1
WPH57	6511964.05	365873.08	333.96	0.86		27.84	28.84	1
WPH57	6511963.55	365872.58	333.25	0.74		28.84	29.84	1
WPH60	6511840.74	365966.34	331.29	0.73	18	34.44	35.44	1
WPH60	6511840.24	365965.85	330.59	0.77	8	35.44	36.44	1
WPH60	6511839.74	365965.35	329.88	0.72	18	36.44	37.44	1
WPH60	6511839.23	365964.85	329.17	1.10	45	37.44	38.44	1
WPH65	6511846.89	365924.10	318.61	0.48		38.86	39.86	1
WPH65	6511846.88	365923.60	317.74	0.61		39.86	40.86	1
WPS1	6512089.99	365823.26	286.36	0.23		51.82	52.82	1
WPS1	6512089.63	365822.91	285.50	0.23		52.82	53.82	1
WPS1	6512089.28	365822.56	284.63	0.19		53.82	54.82	1
WPS2	6512071.32	365832.46	287.48	0.25		53.34	54.34	1
WPS2	6512070.96	365832.11	286.61	0.29		54.34	55.34	1
WPS2	6512070.60	365831.76	285.75	0.58		55.34	56.34	1
WPS2	6512070.25	365831.41	284.88	0.63		56.34	57.34	1
WPS2	6512069.89	365831.06	284.01	0.46		57.34	58.34	1
WPS2	6512069.53	365830.71	283.15	0.44		58.34	59.34	1
WPS2	6512069.18	365830.36	282.28	0.41		59.34	60.34	1
WPS2	6512068.82	365830.00	281.42	0.50		60.34	61.34	1
WPS2	6512068.47	365829.65	280.55	0.82		61.34	62.34	1
WPS2	6512068.11	365829.30	279.68	1.21		62.34	63.34	1
WPS2	6512067.75	365828.95	278.82	1.41		63.34	64.34	1
WPS2	6512067.40	365828.60	277.95	0.81		64.34	65.34	1
WPS2	6512067.04	365828.25	277.09	0.67		65.34	66.34	1

Hole_ID	GDA94_North	GDA94_East	RL	Ni_pct	As_ppm	From	То	Width (m)
WPS2	6512066.68	365827.90	276.22	0.76	30	66.34	67.34	1
WPS2	6512066.33	365827.55	275.35	1.37	30	67.34	68.34	1
WPS2	6512065.97	365827.20	274.49	1.19	19	68.34	69.34	1
WPS2	6512065.61	365826.85	273.62	1.10	17	69.34	70.34	1
WPS2	6512065.26	365826.50	272.76	1.30	25	70.34	71.34	1
WPS2	6512064.90	365826.15	271.89	2.03	11	71.34	72.34	1
WPS2	6512064.54	365825.80	271.02	1.58	16	72.34	73.34	1
WPS2	6512064.19	365825.45	270.16	2.45	14	73.34	74.34	1
WPS2	6512063.83	365825.09	269.29	2.96	22	74.34	75.34	1
WPS2	6512063.47	365824.74	268.43	1.13	11	75.34	76.34	1
WPS2	6512063.12	365824.39	267.56	0.77		76.34	77.34	1
WPS2	6512060.45	365821.77	261.08	6.23		83.82	84.82	1
WPS2	6512060.09	365821.42	260.22	6.76		84.82	85.82	1
WPS2	6512059.74	365821.07	259.35	2.89	1200	85.82	86.82	1
WPS2	6512059.38	365820.72	258.48	0.61		86.82	87.82	0.81
WWD1	6511964.22	365883.44	304.86	0.50		56.69	57.69	1
WWD1	6511963.71	365882.94	304.16	0.49		57.69	58.69	1
WWD1	6511963.21	365882.45	303.45	0.04		58.69	59.69	1
WWD1	6511962.71	365881.95	302.74	0.21		59.69	60.69	1
WWD1	6511962.20	365881.45	302.04	0.25		60.69	61.69	1
WWD1	6511961.70	365880.96	301.33	0.13		61.69	62.69	1
WWD1	6511961.19	365880.46	300.62	0.65		62.69	63.69	1
WWD1	6511960.69	365879.97	299.91	0.69		63.69	64.69	1
WWD1	6511960.18	365879.47	299.21	0.31		64.69	65.69	0.99
WWD1	6511957.92	365877.24	296.03	0.56		69.19	70.19	1
WWD1	6511957.41	365876.74	295.32	0.63		70.19	71.19	1
WWD1	6511956.91	365876.25	294.61	0.66		71.19	72.19	1
WWD1	6511956.40	365875.75	293.90	0.52		72.19	73.19	1
WWD1	6511955.90	365875.25	293.20	0.37		73.19	74.19	1
WWD1	6511955.40	365874.76	292.49	0.64		74.19	75.19	1
WWD1	6511954.89	365874.26	291.78	0.79		75.19	76.19	1
WWD1	6511954.39	365873.77	291.08	0.95		76.19	77.19	1
WWD1	6511953.88	365873.27	290.37	0.41		77.19	78.19	1
WWD1	6511953.38	365872.77	289.66	0.56		78.19	79.19	1
WWD1	6511949.92	365869.38	284.82	0.47		85.04	86.04	1
WWD1	6511949.42	365868.88	284.11	8.98		86.04	87.04	1
WWD11	6511886.41	365944.82	255.74	0.14		121.92	122.92	1
WWD11	6511885.87	365944.33	255.06	0.16		122.92	123.92	1
WWD11	6511885.33	365943.84	254.38	0.17		123.92	124.92	1
WWD11	6511865.80	365926.07	229.33	0.05		160.32	161.32	1
WWD11	6511865.27	365925.56	228.64	0.05		161.32	162.32	1
WWD11	6511864.74	365925.06	227.95	0.05		162.32	163.32	1
WWD12	6512059.18	365847.89	192.07	0.85		201.5	202.5	1
WWD12	6512058.63	365847.34	191.44	0.64		202.5	203.5	1

Hole_ID	GDA94_North	GDA94_East	RL	Ni_pct	As_ppm	From	То	Width (m)
WWD12	6512058.08	365846.80	190.81	0.86		203.5	204.5	1
WWD12	6512057.52	365846.26	190.18	1.09	600	204.5	205.5	1
WWD12	6512056.97	365845.71	189.55	1.15	600	205.5	206.5	1
WWD12	6512056.42	365845.17	188.92	1.33		206.5	207.5	1
WWD12	6512055.86	365844.62	188.29	1.34		207.5	208.5	1
WWD12	6512055.31	365844.08	187.66	1.35		208.5	209.5	1
WWD12	6512054.76	365843.54	187.03	1.35		209.5	210.5	1
WWD12	6512054.20	365842.99	186.40	1.24		210.5	211.5	1
WWD12	6512053.65	365842.45	185.77	0.96		211.5	212.5	1
WWD12	6512053.10	365841.90	185.14	1.37		212.5	213.5	1
WWD12	6512052.54	365841.36	184.51	1.05		213.5	214.5	1
WWD12	6512051.99	365840.81	183.88	0.67		214.5	215.5	1
WWD12	6512051.43	365840.27	183.25	0.72		215.5	216.5	1
WWD12	6512050.88	365839.72	182.62	1.18	80	216.5	217.5	1
WWD12	6512050.32	365839.17	181.99	4.34	65	217.5	218.5	1
WWD12	6512049.77	365838.63	181.36	0.61		218.5	219.5	0.56
WWD13	6512142.12	365798.41	199.50	0.13		207.57	208.57	1
WWD13	6512141.43	365797.94	198.96	0.12		208.57	209.57	1
WWD13	6512140.73	365797.47	198.41	0.11		209.57	210.57	1
WWD13	6512140.04	365797.00	197.87	0.17		210.57	211.57	1
WWD13	6512139.35	365796.53	197.32	0.17		211.57	212.57	0.81
WWD13	6512134.54	365793.24	193.54	0.07		218.51	219.51	1
WWD15	6512018.39	365869.04	273.78	0.84	19	86.56	87.56	1
WWD15	6512017.86	365868.56	273.08	0.88	21	87.56	88.56	1
WWD15	6512017.33	365868.09	272.38	0.93	25	88.56	89.56	1
WWD15	6512016.79	365867.62	271.67	0.80	187	89.56	90.56	1
WWD15	6512016.26	365867.15	270.97	0.69	483	90.56	91.56	1
WWD15	6512015.73	365866.68	270.27	3.80	257	91.56	92.56	1
WWD16	6511947.74	365888.26	328.11	0.78	15	33.38	34.38	1
WWD16	6511947.26	365887.79	327.38	1.40	15	34.38	35.38	1
WWD16	6511946.77	365887.31	326.65	0.59	15	35.38	36.38	1
WWD16	6511946.28	365886.83	325.92	0.61	15	36.38	37.38	1
WWD16	6511945.80	365886.35	325.18	0.65	15	37.38	38.38	1
WWD16	6511945.31	365885.87	324.45	0.51	2	38.38	39.38	1
WWD16	6511944.83	365885.40	323.72	0.61	5	39.38	40.38	1
WWD16	6511944.34	365884.92	322.99	0.67	20	40.38	41.38	1
WWD16	6511943.86	365884.44	322.26	0.66	20	41.38	42.38	1
WWD16	6511943.37	365883.96	321.52	1.07	20	42.38	43.38	1
WWD16	6511942.88	365883.48	320.79	1.25	20	43.38	44.38	1
WWD16	6511942.39	365883.00	320.07	0.58	10	44.38	45.38	1
WWD16	6511941.91	365882.52	319.34	0.49	20	45.38	46.38	1
WWD16	6511941.42	365882.04	318.61	0.50	18	46.38	47.38	1
WWD16	6511940.93	365881.56	317.88	0.57	15	47.38	48.38	1
WWD16	6511940.44	365881.08	317.15	0.90	15	48.38	49.38	1

Hole_ID	GDA94_North	GDA94_East	RL	Ni_pct	As_ppm	From	То	Width (m)
WWD16	6511939.95	365880.60	316.43	0.82	19	49.38	50.38	1
WWD16	6511939.46	365880.11	315.70	0.69	21	50.38	51.38	1
WWD16	6511938.97	365879.63	314.98	0.62	25	51.38	52.38	1
WWD16	6511938.47	365879.15	314.25	0.77	31	52.38	53.38	1
WWD16	6511937.98	365878.66	313.53	0.88	35	53.38	54.38	1
WWD16	6511937.49	365878.18	312.81	0.72	20	54.38	55.38	1
WWD16	6511937.00	365877.69	312.08	1.05	5	55.38	56.38	1
WWD16	6511936.50	365877.21	311.36	2.09	14	56.38	57.38	1
WWD16	6511936.01	365876.72	310.64	7.16	27	57.38	58.38	1
WWD17	6512054.03	365824.11	51.18	0.26	50	326.65	327.65	1
WWD17	6512053.68	365823.69	50.34	3.99	2804	327.65	328.65	1
WWD17	6512053.32	365823.27	49.51	0.58	100	328.65	329.65	1
WWD17	6512052.96	365822.85	48.67	0.58	100	329.65	330.65	0.78
WWD19	6512128.31	365795.26	34.79	0.49	1	337.87	338.87	1
WWD19	6512127.91	365794.86	33.96	0.66	2341	338.87	339.87	1
WWD19	6512127.51	365794.47	33.14	1.15	9000	339.87	340.87	1
WWD19	6512127.11	365794.07	32.31	1.08	6240	340.87	341.87	1
WWD19	6512126.70	365793.67	31.49	1.52	3360	341.87	342.87	1
WWD19	6512126.30	365793.28	30.66	1.87	847	342.87	343.87	1
WWD19	6512125.90	365792.88	29.84	4.60	51	343.87	344.87	1
WWD2	6511971.63	365891.32	184.93	0.60		193.24	194.24	1
WWD2	6511971.16	365890.85	184.18	1.58		194.24	195.24	1
WWD2	6511970.68	365890.38	183.44	2.62		195.24	196.24	1
WWD2	6511970.21	365889.92	182.69	1.19		196.24	197.24	1
WWD2	6511969.73	365889.45	181.95	0.73		197.24	198.24	1
WWD2	6511969.25	365888.98	181.20	0.66		198.24	199.24	1
WWD2	6511968.78	365888.51	180.46	0.68		199.24	200.24	0.74
WWD24	6512035.63	365858.70	186.69	0.59	588	204	205	1
WWD24	6512035.10	365858.14	186.06	0.87	1680	205	206	1
WWD24	6512034.57	365857.57	185.43	1.57	1080	206	207	1
WWD24	6512034.05	365857.00	184.80	1.61	573	207	208	1
WWD24	6512033.52	365856.43	184.17	1.33	58	208	209	1
WWD24	6512032.98	365855.86	183.54	2.83	128	209	210	1
WWD24	6512032.45	365855.29	182.92	1.97	115	210	211	1
WWD24	6512031.92	365854.73	182.29	1.52	153	211	212	1
WWD24	6512031.38	365854.16	181.67	1.07	895	212	213	1
WWD24	6512030.84	365853.59	181.04	2.38	2696	213	214	1
WWD24	6512030.31	365853.02	180.42	1.12	2900	214	215	0.6
WWD25	6511923.79	365906.79	265.08	0.21	29	106	107	1
WWD25	6511923.37	365906.26	264.34	0.17	4	107	108	1
WWD26	6511902.99	365919.77	109.59	0.62	1755	258	259	1
WWD26	6511902.58	365919.37	108.76	0.34	370	259	260	1
WWD26	6511902.18	365918.98	107.93	0.47	210	260	261	1
WWD26	6511901.78	365918.59	107.11	1.94	6390	261	262	1

Hole_ID	GDA94_North	GDA94_East	RL	Ni_pct	As_ppm	From	То	Width (m)
WWD26	6511901.38	365918.19	106.28	1.41	7900	262	263	1
WWD26	6511900.98	365917.79	105.46	4.05	10850	263	264	1
WWD26	6511900.58	365917.40	104.63	3.02	588	264	265	1
WWD26	6511900.17	365917.00	103.81	1.65	7100	265	266	1
WWD26	6511899.77	365916.60	102.98	1.42	815	266	267	1
WWD26	6511899.36	365916.21	102.16	1.94	375	267	268	1
WWD26	6511898.96	365915.81	101.34	0.71	6025	268	269	1
WWD27	6511886.10	365905.73	294.16	0.19	8	87	88	1
WWD27	6511885.54	365905.17	293.55	0.57	6	88	89	1
WWD3	6511859.40	365928.16	109.79	0.45		272.86	273.86	1
WWD3	6511858.90	365927.81	109.00	0.99		273.86	274.86	0.86
WWD4	6512057.49	365846.76	276.34	1.50		79.86	80.86	1
WWD4	6512056.95	365846.26	275.67	0.24		80.86	81.86	1
WWD4	6512056.40	365845.76	274.99	0.26		81.86	82.86	1
WWD4	6512055.86	365845.26	274.32	0.83		82.86	83.86	1
WWD4	6512055.31	365844.75	273.65	0.48		83.86	84.86	1
WWD4	6512054.77	365844.25	272.98	0.33		84.86	85.86	1
WWD4	6512054.22	365843.74	272.31	0.95		85.86	86.86	1
WWD4	6512048.86	365838.73	265.74	1.31	1000	95.71	96.71	1
WWD4	6512048.32	365838.22	265.08	0.90	30	96.71	97.71	1
WWD4	6512047.78	365837.70	264.41	1.15	30	97.71	98.71	1
WWD4	6512047.23	365837.19	263.75	2.72	619	98.71	99.71	1
WWD5	6512141.08	365786.44	277.05	0.27		76.69	77.69	1
WWD5	6512140.53	365785.98	276.35	0.23		77.69	78.69	1

Appendix 6: Drill Intersections in Mineralised Domains from Cooke

Drill hole Intersection Information. All composited intersections used in the Mineral Resource estimation. Composites created using the mineralisation wireframe boundaries as the cut-off. Note that not all historic holes have As, Co, Fe, MgO assays

Hole Id	From	То	Length	Ni%	As ppm	Cu ppm	Co ppm	Fe%	MgO%
WD5336	55.78	57.3	1.52	0.50		380			
WD5336	111.4	116.43	5.03	1.77		1690			
WD5339	267.92	269.44	1.52	0.50		470			
WD5340	139.9	148.93	9.03	1.01		994			
WD5340	149.08	152.4	3.32	2.04		1015			
WD5340	172.21	173.74	1.53	0.74		560			
WD5348	131.98	133.5	1.52	0.57		250			
WD5348	150.27	151.79	1.52	0.66		480			
WD5350	192.94	197.51	4.57	0.60		514			
WD5350	207.17	208.48	1.31	2.07		2660			
WD5408	7.62	19.81	12.19	1.05		406			
WD5408	21.34	22.86	1.52	0.61		290			
WD5409	3.05	12.19	9.14	1.09		6265			
WD5419	0	10.67	10.67	1.10		1213			
WD5419	33.53	35.05	1.52	0.55		500			
WD5420	10.67	18.29	7.62	1.68		1935			
WD5420	41.15	51.82	10.67	1.50		1891			

Hole Id	From	То	Length	Ni%	As ppm	Cu ppm	Co ppm	Fe%	MgO%
WD5421	12.19	13.72	1.53	0.50		240			
WD5421	19.81	28.96	9.15	1.00		1063			
WD5423	7.62	21.34	13.72	1.15		2015			
WD5423	27.43	30.48	3.05	0.73		1551			
WD5423	35.05	50.29	15.24	0.99		1417			
WD5424	0	1.52	1.52	0.54		540			
WD5424	3.05	6.1	3.05	0.69		625			
WD5428	10.67	18.29	7.62	1.43		1712			
WD5429	13.72	15.24	1.52	0.86		990			
WD5429	30.48	39.62	9.14	1.63		1694			
WD5429	42.67	44.2	1.53	0.54		520			
WD5430	4.57	7.62	3.05	1.16		1172			
WD5802	266.09	268.83	2.74	0.57		275			
WD5802	313.82	314.95	1.13	0.66		560			
WD5802	329.18	330.71	1.53	0.52		240			
WD5802	331.9	333.54	1.64	0.71		246			
WD6059	77.72	82.3	4.58	0.62		517			
WD6059	85.34	88.39	3.05	0.76		510			
WD6257	30.48	41.15	10.67	0.98		1429			
WD6257	53.34	56.39	3.05	0.95		795			
WD6258	94.49	97.54	3.05	0.72		640			
WD6544	74.68	79.25	4.57	1.12		1320			
WDC145	13	14	1	0.53	51	372	142	5.31	30.35
WDC145	15	21	6	0.77	214	894	297	9.87	23.46
WDC145	22	24	2	0.71	454	1270	321	10.50	30.02
WDC146	13	14	1	0.56	1360	2040	417	17.40	14.05
WDC146	54	55	1	0.50	6	395	184	8.34	19.24
WDC146	77	79	2	0.59	11	1023	236	16.55	5.73
WDC147	36	54	18	1.71	37	1850	456	13.02	19.60
WDC147	64	78	14	1.60	83	2353	474	14.35	21.67
WDC147	79	80	1	0.55	21	876	198	8.64	22.22
WDC147	81	82	1	0.69	286	752	246	10.20	21.23
WDC148	5	6	1	0.58	100	1575	200	14.95	17.66
WDC148	19	38	19	2.49	70	4243	712	19.57	15.21
WDC148	43	44	1	0.59	13	768	225	8.00	23.71
WDC148	53	69	16	1.42	21	1871	419	13.79	23.92
WDC148	72	73	1	1.16	8	1455	338	12.55	21.89
WDC148	74	75	1	1.09	11	1165	315	12.40	22.39
WDC149	18	19	1	0.68	1300	3950	242	13.50	7.26
WDC149	22	24	2	1.05	212	1002	447	11.23	12.83
WDC150	1	15	14	1.40	92	2556	479	16.47	11.95
WDC150	16	28	12	1.09	179	1563	376	10.66	16.22
WDC150	51	53	2	0.61	7	932	214	9.95	23.46
WDC150	54	56	2	2.78	73	3875	857	17.70	11.85
WDC159	0	16	16	3.23	55	5304	835	16.54	12.84
WDGT02	78	83	5	2.13	38	3321	636	16.33	22.65
WDMT01	37.6	44	6.4	2.43	27	2753	707	15.62	21.34
WDMT01	47.7	53	5.3	2.01	156	3558	600	15.86	23.88
WDMT01	70	87	17	1.57	42	1888	506	13.20	25.35

 -		
	v	•
N		L

Hole Id	From	То	Length	Ni%	As ppm	Cu ppm	Co ppm	Fe%	MgO%
WDMT02	8	11	3	4.20	82	5180	824	22.03	6.68
WDMT02	12	22	10	1.54	79	4686	447	19.07	14.13
WDMT02	23	26	3	0.99	114	23	202	7.13	17.74
WDMT02	31	33	2	0.63	111	1458	170	13.90	10.27
WDMT02	39	46	7	1.29	10	1571	419	11.63	27.44
WDMT03	31	47	16	1.99	29	2606	568	14.18	21.11
WDMT03	70	77	7	1.94	13	1614	612	15.49	26.03
WID1237	104	114	10	1.19		1398	320		
WID1237	118	120	2	0.64		770	220		
WID1423	137	138	1	1.23	100	2031	368		
WID1423	142.3	146.2	3.9	2.25	100	2090	451		
WID1423	155.5	156.5	1	0.72	100	1675	295		
WID1423	179.9	180.9	1	0.51	100	220	160		
WID1423	199.5	204	4.5	1.80	100	2017	574		
WID1645	8	30	22	1.58	100	3259	379		
WID1648	27	40.5	13.5	1.53	43	1200	458		
WID1648	42	43.5	1.5	0.50	0	380	170		
WID1649	0	6	6	0.64	100	573	217		
WID1649	8	28	20	0.65	100	802	220		
WID1649	42	60	18	1.47	100	2470	423		
WID1649	68	70	2	0.58	100	730	200		
WID1650	32	52	20	2.08	190	2735	518		
WID1650	66	86	20	1.21	100	1368	363		
WID1651	24	28	4	1.18	100	1365	405		
WID1652	42	50	8	2.36	125	2675	695		
WID1653	16	18	2	0.74	100	1450	370		
WID1653	22	24	2	0.55	100	760	240		
WID1654	10	18	2	0.95	100	1408	378		
WID1655	2	10	8	0.50	100	585	208		
WID1655	22	32	10	1 51	100	1828	496		
WID1655	34	36	2	0.97	100	1310	380		
WID1656	10	16	6	0.57	100	620	227		
WID1656	34	38	4	1 21	150	2135	430		
WID1656	42	46	4	1 10	200	1120	210		
WID1656	54	56	2	0.52	200	350	160		
WID1657	2	6	4	0.52	100	1120	290		
WID1658	14	18	4	0.75	250	1490	445		
WID1658	26	28	2	0.53	100	580	230		
WID1659	20	20	2	0.55	200	800	230		
WID1659	20	46	20	0.54	490	1217	325		
WID1659	56	-10 62	6	0.07	133	953	2/3		
WID1035	60.3	72.3	3	0.71	100	675	243		
WID1675	86 S	, <u>2</u> .5 07	10.2	1 17	2282	1787	217		
WID1675	00.0 QQ 5	100 5	10.2	0.52	100	1160	100		
WID1770	77 25	72 /5	⊥ 1 1	0.52	100	170	100		
WID1779	۶۲۲.55 ۹۸٦	70.43 QE 0	1.1	0.51		470	210		
	04.7	0J.0 110.1F	1.1	2.04		000	210		
WID179	103.1	10.12	10	2.90	105	20/0	000 606		
	0	19	19	2.38	100	3/8L	020		
WIDT/81	39	45	6	1.04	100	1278	328		

	М		~	
	N	н	н	I
117				

Hole Id	From	То	Length	Ni%	As ppm	Cu ppm	Co ppm	Fe%	MgO%
WID1781	46	47	1	0.84	100	730	230		
WID1781	50	52	2	0.71	100	1150	230		
WID1781	53	54	1	0.55	3700	520	180		
WID1791	52	58	6	1.85		1430	553		
WID1791	68	70	2	0.79		1110	260		
WID1793	58	70	12	1.38	4350	1007	290		
WID1793	74	78	4	0.98		1320	285		
WID1794	20	22	2	0.57		610	200		
WID1794	34	54	20	0.83	80	1084	267		
WID1794	58	60	2	0.53		670	210		
WID1794	62	64	2	0.51		390	170		
WID1794	68	78	10	0.71		702	226		
WID1795	22	34	12	0.95		5595	313		
WID1795	64	70	6	0.54		660	203		
WID1795	76	78	2	0.57		500	190		
WID1795	82	92	10	1.99		2430	472		
WID1795	104	106	2	0.56		720	190		
WID1796	58	62	4	0.73		725	240		
WID1796	92	96	4	0.68		1450	310		
WID1796	134	144	10	1.16	60	1774	322		
WID1797	18	22	4	0.72		1155	320		
WID1798	30	32	2	0.53		710	210		
WID1798	36	38	2	1.05		1340	400		
WID1800	58	60	2	0.54		350	190		
WID1800	62	64	2	1.18		790	420		
WID1801	68	70	2	0.59		780	200		
WID1801	74	84	10	0.86		1072	284		
WID1801	94	96	2	0.66		740	220		
WID1836	86.85	91	4.15	2.23					
WID1837	71.35	87.55	16.2	2.07	121	3393	455		
WID1838	28	34	6	1.14	42	2063	370		
WID1839	48	70	22	2.17	252	2724	591		
WID1842	50	52	2	0.60		710	240		
WID1843	48	52	4	0.68		610	245		
WID1843	68	70	2	0.53		440	190		
WID1843	74	78	4	1.07		2340	370		
WID1844	54	56	2	0.55		450	200		
WID1844	94	102	8	0.60		653	258		
WID2209	72.3	101.15	28.85	1.95	100	2356	484		
WID2209	104.35	107.3	2.95	2.18	344	2532	483		
WID2211	164.55	167.7	3.15	2.40	1711	243	661		
WID2221	129	131.9	2.9	0.68	100	540	210		
WID2221	149.5	151.2	1.7	0.58	100	762	245		
WID2223	144.6	147.6	3	0.69	0	893	257		
WID2223	169	170.5	1.5	0.57	233	447	203		
WID2225	151	166.4	15.4	0.65	100	1355	226		
WID2225	179.5	180.5	1	0.60	100	510	265		
WID2225	181	183.5	2.5	0.61	100	574	242		
WID2225	184.5	190.25	5.75	1.25	100	1955	443		

Hole Id	From	То	Length	Ni%	As ppm	Cu ppm	Co ppm	Fe%	MgO%
WID2227	206.6	207.6	1	3.13	74350	975	620		
WID2227	209.4	215.2	5.8	1.40	10758	1108	384		
WID2227	218.2	221.4	3.2	0.56	2288	235	161		
WID2227	224.2	225.2	1	1.08	100	1084	310		
WID2227	226.35	227.5	1.15	0.52	800	340	190		
WID2227	240.65	241.65	1	0.62	200	510	190		
WID2229	412.55	418.6	6.05	3.38	100	4027	610		
WID2231	308.6	319.5	10.9	1.44	100	1734	433		
WID2231	321.7	335.25	13.55	1.38	100	1890	419		
WID2267	210.55	211.65	1.1	0.52	100	980	350		
WID2269	302.7	303.75	1.05	0.63	300	700	250		
WID2271	377	378	1	0.53	100	670	190		
WID2350	48	55	7	1.10	100	1893	310		
WID2351A	57	66	9	2.08	55	2368	551		
WID2652	133	135	2	0.54	100	695	205		
WID2652	136	147	11	0.88	100	1107	322		
WID2652	148	164	16	0.73	100	898	268		
WID2652	165	167	2	0.68	100	715	245		
WID2652	185.3	189	3.7	1.25	1381	1175	372		
WID2653	203.7	205	1.3	1.77	100	2465	580		
WID2653	207.4	208.7	1.3	1.28	100	1370	358		
WID2657	151	153	2	0.55	350	900	205		
WID2657	157	159.8	2.8	1.03	764	891	273		
WID2657	164	169	5	1.34	480	1456	402		
WID2657	169.2	170.2	1	0.75	980	924	198		
WID2658	244	245	1	0.53	35	490			36.15
WID2658	247.5	250.2	2.7	2.27	37	2261			21.77
WID2658	254	261	7	1.15	33	1899			27.15
WID2812	252	254	2	0.85	100	735	370		
WID2814	232.9	235.8	2.9	1.78	46	2707			20.04
WID2814	236.6	241.2	4.6	1.22	31	1308			30.20
WID2815	254.8	256.2	1.4	0.56	314	391	191		
WID2815	269	270	1	0.55	100	1570	170		

Nm