

ABOUT AURUMIN

Aurumin Limited (ACN 639 427 099) (Aurumin or Company) is an Australian gold exploration company with advanced projects.

BOARD & MANAGEMENT

Piers Lewis Non Executive Chairman

Brad Valiukas Managing Director

Shaun Day Non Executive Director

Darren Holden Non Executive Director

Mark Rowbottam Manager – Corporate Development

Shane Tomlinson Manager – Exploration

CAPITAL STRUCTURE

- 86.7 million shares
- 13.5 million options

PROJECTS

- Mt Dimer
- Mt Palmer
- Johnson Range
- Karramindie

CONTACT US

- **T:** +61 8 6555 2950
- E: admin@aurumin.com.au
- W: www.aurumin.com.au
- P: PO Box 446, Subiaco WA 6904

64,700oz JOHNSON RANGE MINERAL RESOURCE ESTIMATE

803,000t @ 2.51g/t Au for 64,700 ounces Au (Inferred)

Aurumin Limited (ASX: AUN) ("Aurumin" or "the Company") is pleased to announce a **JORC-2012 compliant Mineral Resource estimate** for its 100% owned **Johnson Range Project**.

The Johnson Range Project is located approximately 170km north of Southern Cross in Western Australia (see Figure 3) and 6km northwest of the Ramelius Resources Ltd owned historical Evanston Mine (see Figure 4). The Johnson Range Project consists of 6 km² of granted tenements and contains the shallowly mined Gwendolyn deposit.

The Mineral Resource estimate for the Johnson Range Project has been completed following extensive data validation and on ground survey work. The Mineral Resource has been reported at a cut-off grade of 1.0g/t Au and within 100m of natural ground surface. The Mineral Resource has been classified as Inferred.

Table 1 – Johnson Range Mineral Resource August 2021

		Max Depth	h		
Deposit	Cut-off (g/t Au)	Below Surface (m)	Tonnes	Grade (g/t Au)	Au Ounces
Gwendolyn	1.0	100	803,000	2.51	64,700

1. Data has been rounded to the nearest 1,000 tonnes, .01g/t and 100 ounces. Rounding variations may occur.

Aurumin's Managing Director, Brad Valiukas, commented:

"Johnson Range is our third project, and it is pleasing to have the Mineral Resource completed. We will now look at ways that we can extract value from the ounces we have in the ground."

"We expect to be releasing first assays from the recently completed Mt Dimer drilling within the next week."

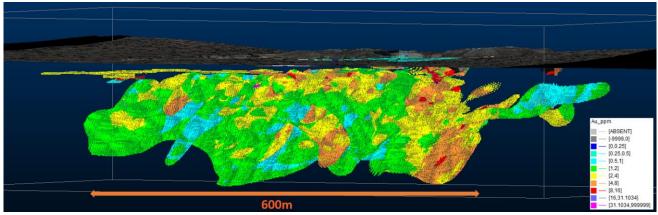


Figure 1 – Gwendolyn mineralisation interpretation, looking east



Figure 2 – Previously mined open pits at Johnson Range

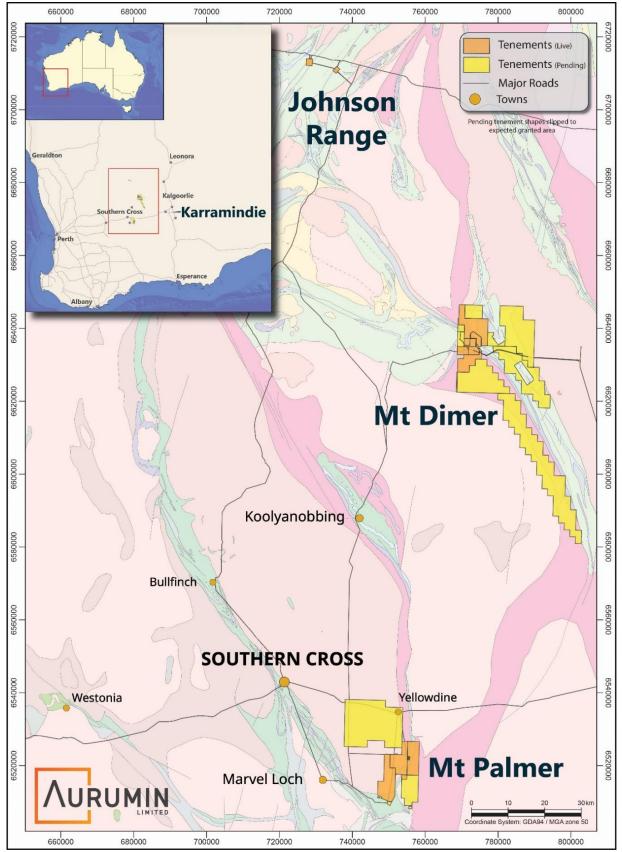


Figure 3 – Project location

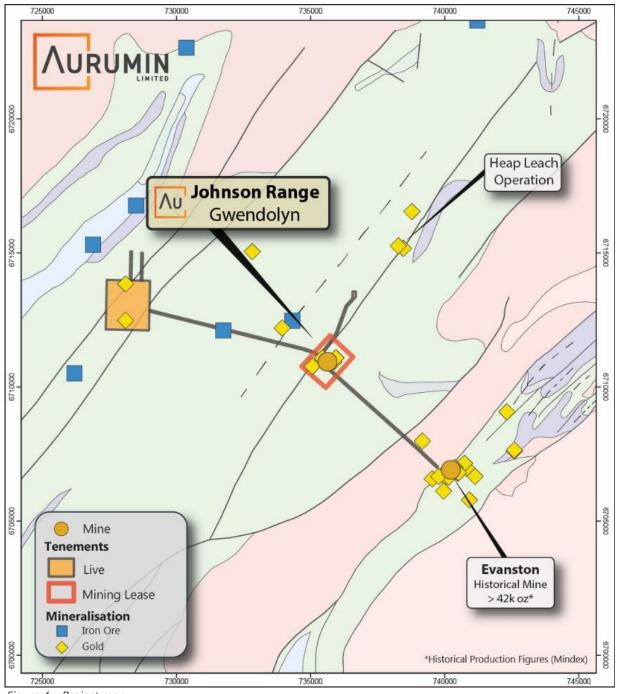


Figure 4 – Project map

25 August 2021 ASX:AUN

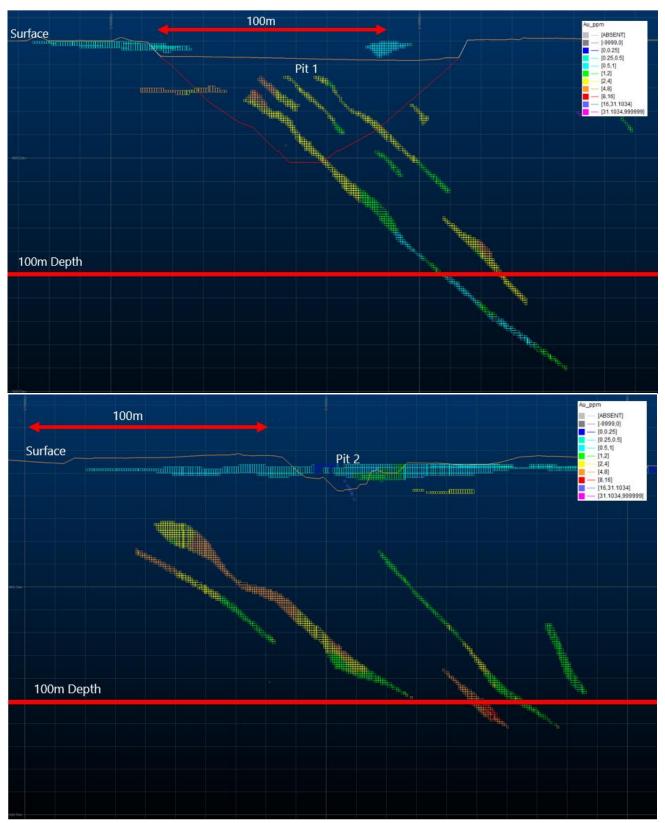


Figure 5 – Gwendolyn mineralisation interpretation, indicative cross sections, looking north-east

Mineral Resource Summary

The following information is provided to meet the requirements under listing rule 5.8.1. This information is provided in greater detail in the attached JORC Table 1 (Annexure A).

Geology and Geological Interpretation

The Gwendolyn gold project is hosted in a moderately North-West dipping Banded Iron Formation (BIF)/Mafic/Ultramafic sequence within the Marda-Diemals Greenstone Belt. Primary mineralisation is hosted by sheared quartz and breccias with lateritic (<5m depth) and supergene mineralisation also present in the near surface. A significant proportion of the mineralisation is confined within the transitional and oxide zones.

The Gwendolyn Mineral Resource has a total strike length of 750m, is 80m wide and extends to approximately 150m depth based on current drilling.

A total of 45 mineralisation wireframes, 4 BIF wireframes and 2 weathering surfaces (base of complete oxidation (BOCO) and top of fresh rock (TOFR)) have been interpreted and constructed using geologically guided implicit modelling within Datamine RM software.

Multiple as-built wireframes (open pit shapes, waste dumps and backfill) were constructed from surface and drone surveys. Open Pit 1 has tailings backfill and mining limits have been estimated. There are no known underground workings. Mineralisation within open pits has been depleted from the Mineral Resource estimate.

Drilling techniques

A number of drilling methods have been used throughout the project's history including Air Core (AC), Rotary Air Blast (RAB), Reverse Circulation (RC) and Diamond Drilling (DD). Drilling was completed in two main phases, the mid to late 1980s (via the AGE joint venture) leading to a shallow open pit (Pit 1) being mined, and the early to mid-2010s (through Vector Resources Ltd (VEC)) leading to a bulk sample mining phase (mining of open pits 2 and 3).

Only RC and DD have been used in the interpretation and estimation of the Gwendolyn Mineral Resource. A total of 716 holes were used, consisting of 699 RC and 17 DD holes at spacings ranging between approximately 25m x 25m, down to 5m x 5m within the mined pits.

Sampling and Sub Sampling Techniques

Multiple operators have been responsible for drilling and sampling at the Project over its life and data collection has varied throughout this time. Much work has gone into detailing sampling methodology through reference to historic documentation. Assay and lithology data are consistent between the two main drilling phases and all data used for estimation is considered representative and equivalent.

Sample recoveries

RC drill sample recovery prior to VEC is not recorded; VEC recording of sample recovery varied but largely reported recoveries as good (nearing 100%) when recorded. VEC noted lesser recoveries in grade control drilling at shallower depths. DD recoveries were record by all companies and are considered adequate.

Sub Sampling

Sampling and sub sampling techniques (RC and DD) by all operators have been recorded and assessed; all methodology is considered sound. VEC's sampling techniques and data were reviewed several times by different

25 August 2021 ASX:AUN

independent consultancies such as SRK, Ravensgate, Baltica, Geobase and Mining Plus. SRK provided advice to improve the quality of the sampling after the first round of VEC drilling. This was implemented for further drilling.

Classification

All mineralisation reported is deemed as Inferred category, principally due to the reliance on historical data generated by multiple companies.

Mineral Resource wireframes constructed with less than two informing drill holes, have been deemed unclassified have not been reported.

Current drillhole spacing in many areas is adequate for the reporting of an Indicated Mineral Resource. If validation drilling is conducted by Aurumin, it may allow portions of the Mineral Resource to be upgraded from Inferred to Indicated.

Sample Analysis Method

VEC routinely assayed for gold using 50g charge fire assay with Atomic Absorption Spectroscopy (AAS) finish at Aurum Laboratories whilst the early analyses were completed by a mixture of fire assay and acid digestions with AAS finish. Reputable laboratories have been used for analyses throughout the project life.

VEC had sound QAQC policies for drilling programmes throughout their project tenure and these protocols were audited by a variety of consulting firms; improvements were implemented when suggested.

A round of umpire samples were sent to two laboratories (Intertek and ALS) during VEC's grade control drilling phase. Repeatability between laboratories was consistent within usual expected variability for gold systems.

Specific details of QAQC protocols for work prior to VEC's work is largely not available, although repeat assays are available show a good degree of reproducibility.

Estimation Methodology (Mineral Resource Estimate)

Three-dimensional wireframes (geological and mineralised) were constructed using geologically guided implicit modelling. These wireframes were used in the construction of a rotated block model with parent block sizes of 10m (x) by 25m (y) by 25m (z). The model was sub-blocked to 1m x 1m x 1m to ensure block model representation of constructed wireframes volumes.

Statistical analysis of the mineralised intervals determined that 1m was an appropriate composite length for top cut, variogram modelling and estimation.

Analysis on grade outliers was conducted for each domain and used to determine appropriate top cut values. These top cuts values (ranging from 5-60g/t) were applied to the composite file before estimation.

Variogram modelling was completed with Snowden's Supervisor software, with good correlation between calculated directions and geological observations. The parameters determined from this analysis were used in the estimation interpolation process.

The block model grades were estimated using ordinary kriging (OK) grade interpolation techniques constrained within the mineralisation wireframes, with inverse distance (ID1.5 and ID2) and nearest neighbour (NN) also estimated for validation and comparison purposes.

A three-pass estimation strategy was employed for all domains as shown below. After these three passes, all un-estimated blocks were assigned a nearest neighbor estimate value using a seam composite.

	_ ·	Search Range		Min	Max	Max	
	Domain	Х	Y	z	Samples	Samples	Samples/drillhole
Pass 1	Laterite	21	17	11			
F a 55 T	Oxide	60	45	22	11	32	F
	Primary	36	35	28	11	32	2
	Pit_Mz	14	5	5			

Table 2 – Block model estimation parameters used per pass for the Gwendolyn gold project

Domain		Search Range			Min	Max	Max
	Domain	х	Y	z	Samples	Samples	Samples/drillhole
Pass 2	Laterite	21	17	11			
	Oxide	60	45	22	6	22	F
Primary 36	36	35	28	0	32	5	
	Pit_Mz	14	5	5			

	Domain	Search Range			Min	Max	Мах
	Domain	х	Y	z	Samples	Samples	Samples/drillhole
Pass 3	Laterite	42	34	22			
	Oxide	120	90	44	6 3	32	5
	Primary	72	70	56			
	Pit_Mz	28	10	10			

Bulk densities were adapted from previously reported estimates (Ravensgate) and were assigned according to weathering state. Waste dumps and tails were assigned a bulk density of 2.0t/m³. No grade was applied to waste dumps or tails.

Table 3 – Bulk densities used for the Gwendolyn gold project

Domain	Bulk Density (t/m³)
Laterite	2.3
Oxide	2.5
Transitional	2.7
Fresh Rock	3

Block model validation was completed to ensure modelling and estimation techniques were appropriate for the deposit. These methods include visual validation, swath plots, model/volume checks and composite vs model grades analysis.

Cut off Grades

The Mineral Resource is reported at a 1g/t Au cut-off grade, to allow for potential haulage and processing costs.

Mining and Metallurgical Methods and Parameters (Modifying Factors)

Mining is assumed to be by open pit methods. The maximum depth reported has been limited to 100m as a conceptual maximum open pit mining depth.

Open pit optimisations have not been completed and no modifying factors (mining dilution and recovery or processing recovery) have been applied to the reported Mineral Resource.

Eight (8) PQ holes were historically drilled to determine the metallurgical parameters and showed very favourable results for the extraction of gold where the ore is oxidised (averaging 95.8% recovery), with a high gravity component.

Further details on the Johnson Range Project can be found in the Aurumin Limited 2020 Prospectus and in the Table 1 included in the annexures.

Authorisation for release

The Aurumin Board has authorised this announcement for release.

For further information please contact

Brad Valiukas Managing Director T: +61 (8) 6555 2950 E admin@aurumin.com.au W www.aurumin.com.au

Competent Person Statement

The information in this announcement that relates to exploration results and data quality for the Johnson Range Project is based on information compiled by Peter Aldridge, a Competent Person who is a Member of the Australian Institute of Geoscientists and a full-time employee of Aurumin Limited. Mr Aldridge has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr Aldridge consents to the inclusion in this announcement of the matters based on this information in the form and context in which it appears.

The information in this announcement that relates to geological interpretations and Mineral Resource estimations for the Johnson Range Project is based on information compiled by Graeme Bland, a Competent Person who is a Member of the Australian Institute of Geoscientists and a full-time employee of Aurumin Limited. Mr Bland has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr Bland consents to the inclusion in this announcement of the matters based on this information in the form and context in which it appears.

About Aurumin Limited

Aurumin Limited is an Australian company, listed on the ASX in December 2020, as a mineral exploration company. The Company has four gold projects including two historical high-grade production centres, Mt Dimer and Mt Palmer:

- Mt Dimer Over 125,000 ounces of gold produced, including open pit and underground production of approximately 600,000 tonnes @ 6.4 g/t, and a substantial tenure footprint.
- Mt Palmer Historical open pit and underground production for approximately 158,000 ounces of gold at an average grade of 15.9 g/t.

The Company is actively exploring its tenements and will pursue further acquisitions which complement its existing focus and create additional Shareholder value.

Subscribe for Announcements

To keep abreast of the Company's latest announcements and developments available to investors please subscribe to our mailing list at https://aurumin.com.au/contact/

Annexure A - JORC Code, 2012 Edition – Table 1

Johnson Range Mineral Resource

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 All down hole drillhole data presented predates Aurumin Limited's (Aurumin or AUN) involvement in the Johnson Range Gold Project. Data is sourced from past explorers' databases and historic reports, both open file and internal. See Section 2 for project exploration history. Sampling methods used during exploration at the Johnson Range Gold Project were various forms of drilling. Throughout the history of the project diamond (DD), Reverse circulation (RC), Aircore (AC) and Rotary Air Blast (RAB) drilling have been completed. Samples collected from these methods of drilling were core samples and drill cuttings. AC and RAB have not been used in the estimation process. Specific procedures for sampling of historic samples were not uniformly recorded in the database acquired by AUN, however much work has gone into detailing sampling methodology through reference to historic documentation. Assay and lithology data are consistent with results from more recent Vector Resources (VEC) work and all data used for estimation is considered representative and equivalent. <u>RC Drilling</u> VEC 2011-2012 samples were taken from a cyclone and cone splitter and deposited directly into plastic bags for storage and reference. 4m composite samples were then taken for analysis using a 5-inch stainless scoop; a standard spearing method was consistently used through the profile to obtain the sample. These samples were later resampled at 1m intervals using the same standard spearing method where mineralisation (above 0.08ppm) was encountered. Some sampled directly at 1m intervals. The cyclone and cone splitter were cleaned after every 6m rod. VEC 2014 samples were split at the rig using a rotary cone splitter. The sample was split into 2 calico bags at the drill rig, each one receiving 12.5% (2-3kg) of the entire sample. The rest of the sample was stored into a green plastic reject bag and kept on site. The cyclone and cone splitter were cleaned after every metre.

Criteria	JORC Code explanation	Commentary
		 Sons of Gwalia (SOG) and St Joe Bornite Pty Ltd (SJB) routinely split and bagged samples into 2m composites on site; these were assayed and intervals returning greater than 0.2ppm were resampled and assayed at 1m intervals.
		 All geological logging was completed using the 1m interval samples.
		<u>Diamond Drilling</u>
		 VEC core samples were cut to half and quarter core samples. The quarter core samples were sent for standard fire assay analysis. Samples were taken every metre. The half core samples were used for metallurgical study by METS Engineering.
		 Core Samples from SOG's 1987 drilling programme were half cut and sent for analysis; sample intervals were of variable length with length determined according to logged geology.
		 SOG's 1989 diamond drilling programme assayed whole core samples with sample intervals of varying length and defined according to geology.
		Core was logged prior to sampling in all cases
Drilling techniques	• Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other	• Drilling has occurred using a variety of drill rigs over the project life; DD, RC, AC and RAB techniques have been used. Not all specifics of the drilling prior to the work conducted by Vector Resources Limited (VEC) are known.
	<i>type, whether core is oriented and if so, by what method, etc).</i>	<u>RC Drilling</u>
		• SJB used Schram T66 rig, with BP minerals Australia as the drilling company for the 1985 programme and an Ingersoll Rand TH60 rig, with DrillCorp as the drill company for their 1986 programme.
		 SOG used both a Schram T66 rig and an Ingersoll Rand TH60 rig provided by DrillCorp for their 1987 programme and a Gemcodrill H22A rig from and Billon Pty Ltd for the 1988 and 1989 programmes.
		• VEC completed drilling in 2011 with JSW drilling Australia of Perth using a Miller Mining 450 drill rig with an onboard compressor with 1050cfm @ 350psi and an onboard booster with 500psi capacity.
		• VEC drilling in 2012 was completed by Orbit drilling using several Schramm rig booster-compressor setups.
		 VEC drilling in 2014 was completed by SBD Drilling using an Atlas Copco Explorac E220RC with an onboard Atlas Copco XRX compressor 1050cfm @ 450psi. This was accompanied by a Hurricane 6T

Criteria	JORC Code explanation	Commentary
		Booster and Atlas Copco XRVS 466 Auxiliary Compressors. <u>Diamond Drilling</u>
		 SOG contracted WDD to complete the 1987 diamond drilling programme using a using a JACRO 1000 rig. After precollars of varying depths, HQ core was drilled for the remainder of the hole.
		• SOG's 1989 diamond drilling programme was completed using a Gemcodrill H22A drill rig from drilling contractor Billion Pty Ltd. After precollars of varying depths PQ3 core was drilled for the remainder of the hole.
		• VEC completed diamond drilling in 2012 with Orbit Drilling as the contractor; a Hydco - 8 x 4 Fuso drill rig. Drilling was PQ3 from surface.
Drill sample	Method of recording and assessing core	<u>RC Drilling</u>
recovery	and chip sample recoveries and resultsassessed.Measures taken to maximise sample	 Recovery of drill cutting material is often not recorded.
	 Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse 	• VEC did not systematically record sample recovery but reported recovery rates as good, generally nearing 100%. Recoveries were poorer at shallow depths and as such were reported to be slightly less in the grade control drill holes due to the shallow nature of these holes.
	material.	Diamond Drilling
		• VEC logged core recovery systematically and reported the recovery to generally be good.
		• SOJ's 1987 programme often reported friable and broken core, with recoveries averaging an estimated 68% over the five holes.
		• SOJ's 1989 programme reported good core recovery in all holes, with recoveries provided by the PQ3 core proving much better than the previous drilling programme. Recoveries reported around 90-95%.
Logging	• Whether core and chip samples have been geologically and geotechnically logged to a	• All drilling (RC and diamond) was geologically logged by a geologist at the time of drilling.
	 level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. 	• Geological logging was incomplete in the database AUN received from VEC; scanned and hard copy historic logging sheets have been consulted to confirm geological detail and data entry work has been completed for missing information.
	 The total length and percentage of the relevant intersections logged. 	• All holes have geological logging captured in AUN's database. This comprises 98% of drillholes.
		Logged geology variation between different project

Criteria	JORC Code explanation	Commentary
		operators is considered to be within acceptable limits.
		• Logging was largely qualitative in nature. Percussion drilling was logged on a 1m basis and DD was logged by observed geological boundaries.
		 Structural and geotechnical logging was undertaken by SRK Consulting on core from the 8 VEC diamond drill holes.
		 Photos VEC diamond core were taken before sampling, firstly dry sample then wet. AUN has access to this data.
		• AUN considers the geological logging to be at a standard appropriate to support Mineral Resource estimation.
Sub-	• If core, whether cut or sawn and whether	<u>RC Drilling</u>
sampling techniques and sample preparation	 quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all 	• VEC 2011-2012 samples, where sampled initially as 1m intervals, were taken directly from the cone splitter at the rig. Where composites were taken, samples were speared/scooped using a 5-inch stainless steel scoop; a standardised method of spearing through the sample profile was used to provide consistency of sampling.
	 sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ 	 Anomalous samples (above 0.08ppm) were later resampled at 1m intervals using the same standard spearing method. The cyclone and cone splitter was cleaned after every 6m rod.
	 material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	• VEC 2014 samples were split at the rig using a rotary cone splitter. The sample was split into 2 calico bags at the drill rig, each one receiving 12.5% (2-3kg) of the entire sample. The rest of the sample was stored into a green plastic reject bag and kept on site. The cyclone and cone splitter was cleaned after every metre.
		• VEC took two field duplicate samples for every 100 samples taken. Samples were taken in the same manner as those taken for regular analysis.
		• Sub sampling techniques are still being compiled from historic sources.
		• SOG and SJB routinely split and bagged samples into 2m composites on site; these were assayed and intervals returning greater than 0.2ppm were resampled and assayed at 1m intervals.
		Diamond Drilling
		• VEC DD samples were taken every metre and were cut to half and quarter core. The quarter core samples were sent to the lab for 50g fire assays and the half core samples were used for geotechnical study at

Criteria	JORC Code explanation	Commentary
		 METS Engineering, for characterisation of the rocks. SOG 1987 DD samples were half cut and sent for analysis; intervals of variable length were determined according to logged geology. SOG 1989 DD samples were whole core; intervals of variable length were determined according to logged
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 VEC routinely assayed for gold using a 50g charge fire assay with Atomic Absorption Spectroscopy (AAS) finish at Aurum Laboratories. Early analyses were completed by a mixture of fire assay and acid digestions with AAS finish. Reputable laboratories have been used for analyses throughout the project life. VEC had a standardised quality control quality assurance (QAQC) procedure by which certified reference materials (CRMs), blanks and field duplicates were inserted according to the last two digits of the SampleID. For drilling prior to 2014 three CRMs, two field duplicates and one blank sample per 100 samples were inserted. SRK notified the company that the number of CRMs should be increased to a ratio of at least 10%. This ratio was applied from 2014 onwards.
		 For VEC's grade control drilling phase, field duplicates were taken at the rig and sent to two umpire laboratories (Intertek and ALS). Repeatability between labs was good. QAQC procedures were reviewed by qualified staff at SRK, Ravensgate, Baltica and Mining Plus at points throughout VEC's tenure and were considered to be in line with industry standards
		 Specific details of QAQC protocols for pre VEC work is largely not available. Repeat assays have been assessed and a good degree of reproducibility is seen in both VEC and pre VEC work.
Verification	• The verification of significant intersections	 No geophysical/spectrometers etc. have been used in the estimation process. Significant intersections are part of a data set that
verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Significant intersections are part of a data set that include multiple holes and drilling from multiple previous operators. There is no indication that any single data set is not in line with other datasets. VEC logged all data onto paper; subsequently data was entered into spreadsheets and imported into Microsoft Access database. AUN has transferred this

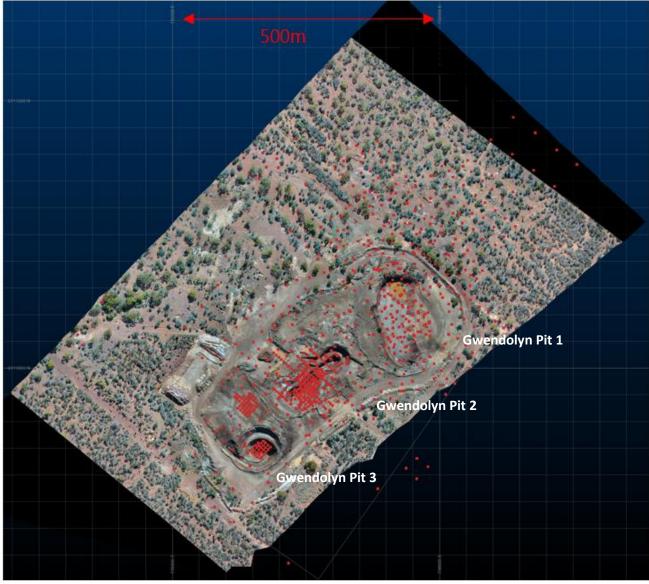
Criteria	JORC Code explanation	Commentary
		data to a MS SQL Server database.
		• Original documentation has been referenced to current data within the database and the company is confident in the accuracy of data.
		• Pre-VEC data was logged on paper and subsequently reported. AUN has captured this data from primary logging and sampling documentation. This data has been entered by hand and validated prior to database import.
		• All data is stored by AUN and backed up to a cloud- based storage system. The database is tended by a single database administrator.
		 No adjustments were introduced to the analytical data.
<i>Location of data points</i>	• Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource	• Drilling completed by VEC between 2011-2012 had collar information surveyed with the use of a DGPS system established onsite by Southern Cross Surveys in 2012.
	<i>estimation.</i> • <i>Specification of the grid system used.</i> • <i>Quality and adequacy of topographic control.</i>	• Additional survey work was completed by Minecomp in 2014 with the establishment of further survey control. 2014 drilling was surveyed by DGPS by Minecomp.
		• The exact nature of the survey method for each hole prior to VEC was not included in the reporting of results. These drillholes were captured in a local grid.
		• AUN has worked to recreate the local grid and ensure accurate conversion of data to MGA94. Mine Survey Plus was engaged to complete grid recreation work onsite and has provided AUN with a grid transform suitable for use for the work presented.
		• The majority of VEC drillholes greater than 30m depth had downhole surveys captured using either a multi- shot tool or gyro tool (Gyromax). Due to the magnetic nature of the geology the azimuth information is considered unreliable for the multi- shot work.
		Pre-VEC drillholes did not have downhole surveys completed.
		• A detailed topographic survey of the project area was completed by Southern Cross Surveys in 2012. This data was used to create a surface topography DTM of the site.
		• Further survey work was completed in 2016 to capture current topography, post-mining phase.
		• The grid system used is GDA94/MGA94 Zone 50.

Criteria	JORC Code explanation	Commentary
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity 	 All most all mineralisation is drilled to a density of at least 25m by 25m; some areas are drilled to significantly greater density. The drilling density is sufficient for an Inferred Mineral Resource
	 appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been 	 Grade control drilling was completed over portions of the resource at a 5m by 5m spacing which was subsequently mined within the open pits.
	applied.	Samples were composited to 1m prior to estimation.
<i>Orientation of data in relation to</i>	• Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is	 Mineralisation largely strikes in a north-easterly direction with a shallow to moderate dip to the west.
geological structure	 If the relationship between the drilling orientation and the orientation of key 	 To accurately sample this the majority of drilling profiles were oriented across the mineralised bodies strike at a bearing of 130°, with a dip of -60°
	mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	 Several of the earlier exploration holes are orientated at different orientations to the normal grid. Early RAB holes (not included in estimation work) and later grade control holes have been drilled vertically.
		 Several diamond holes have been orientated according to the varying targets of the holes
		• Overall, there is considered to be no sampling bias from the orientation of the drilling.
Sample security	• The measures taken to ensure sample security.	 VEC sampling was overseen by VEC staff. Samples were packaged onto pallets by VEC staff and transported directly to the laboratory. No sample security issues were reported. Pre VEC sample arrangements are unknown but are considered to be low risk.
Audits or reviews	• The results of any audits or reviews of sampling techniques and data.	 VEC sampling techniques and data have been reviewed several times by different independent consultancies such as SRK, Ravensgate, Baltica, Geobase and Mining Plus. SRK provided advice to improve the quality of the sampling after the first phase of VEC drilling. This was implemented.
		 AUN has reviewed sampling procedures and associated QAQC data as part of the mineral estimation process. No fatal flaws were noted, and it is believed that industry standard practices have been adhered to throughout the project life.

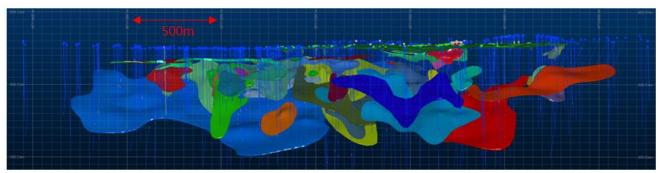
Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status Exploration	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. Acknowledgment and appraisal of 	 The Johnson Range Gold project is located on granted tenements M77/1263, E77/2595, G77/119, L77/245, L77/247, L47/248. These tenements are wholly owned by AUN. The project is located in the Yilgarn Shire, approximately 170 kilometres north of Southern Cross in Western Australia. No impediments are known at the time of reporting. The Johnson Range Gold Project area was first
done by other parties	exploration by other parties.	 actively explored by SJB in the mid-1980s. SOG took over the project in 1987 and started mining the Gwendolyn mine via a shallow open pit in the early 1990s. In the mid-1990s Herbert Mining acquired the project and setup a CIP plant onsite. Tailings from the nearby Evanston Mine were also disposed of in the pits onsite at this time. Little further work was completed until Golden Iron Resources (GIR) and VEC took over the project in 2009 whereby VEC completed drilling, resource definition and bulk sampling work. GIR/AUN has been the sole operator of the Project
Geology	• Deposit type, geological setting and style of mineralisation.	 since 2016. The Johnson Range Gold Project is located within the northern area of the Marda-Diemals Greenstone Belt within the Southern Cross Domain of the Yilgarn Craton. Within this project area is the Gwendolyn Mine which for the basis of this resource model
		• The primary mineralisation within the Mineral Resource area is hosted by quartz veins and breccias within mafic/ultramafic and BIF lithologies. The lithologies are shallowly (30-40 degrees) dipping to the North-West.
		• The alteration in the orebody includes quartz-silica- carbonates veins, pyrite (or pseudomorphs of pyrite), hematite and goethite, rare fuchsite, ankerite and sericite.
		• The area has been sheared, and the metamorphism reaches commonly greenschist to upper greenschist facies.
		 Lateritic and supergene mineralisation is also present at shallow depths.
		Outcrop is limited within the area.


Criteria	JORC Code explanation	Commentary
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated. The assumptions used for any reporting of metal equivalent values should be clearly 	 Refer to Annexures for list of used holes in project area. Only RC and diamond holes used for the Mineral Resource. Exclusion of non RC or diamond hole information will not detract from the understanding of the report as it has been superseded by the RC or diamond drilling. Not applicable for reporting of Mineral Resources. No metal equivalents have been used.
Relationshi p between mineralisati on widths and intercept lengths	 stated. These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 The majority of drill holes intersect the mineralised bodies orthogonally, or close to orthogonally to the of the body.
Diagrams	• Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional	Plan view and long section view of Gwendolyn mine area showing drill collars is attached.

25 August 2021



Criteria	JORC Code explanation	Commentary
	views.	
Balanced reporting	• Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	 Not applicable for reporting of mineral resources. All drill RC and diamond drill holes within modelling area are tabulated in Annexure.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	No other meaningful data to report
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	Confirmation and extensional drilling to be investigated during the 2021/22 financial year.

Plan view of drillhole collars used

Long-section of drillholes used and modelled mineralisation, looking east

Section 3 Estimation and Reporting of Mineral Resources

(Criteria listed in section 1, and where relevant section 2, also apply to this section.)

Criteria	JORC Code explanation	Commentary
Database integrity	 Measures taken to ensure that data has not been corrupted by, for example, transcription or keying errors, between its initial collection and its use for Mineral Resource estimation purposes. Data validation procedures used. 	 Data is stored in a Microsoft SQL Server database with Maxgeo's DataShed to aid database administration and validation. The database is administered by one database administer. Data for Mineral Resource estimation was exported from this database and used for mineral estimation purposes. Throughout the history of AUN's tenure of the project significant work has been directed towards validating data within the database through comparison with the primary logging and sampling information. Minimal errors have been uncovered; where errors have been found they have been corrected and logged.
		 A copy of the company database is kept locally, and a backup is stored in a cloud-based storage environment. The database is regularly backed up.
		• Drill holes that are missing critical information have been excluded from work.
		Data has been checked for:
		Overlapping sample intervals
		Duplicate Hole IDs
		Duplicate Sample IDs
		Duplicate/erroneous collar locations
Site visits	 Comment on any site visits undertaken by the Competent Person and the outcome of those visits. If no site visits have been undertaken indicate why this is the case. 	 The competent person has undertaken a site visit to Johnson Range Gold Project.
<i>Geological interpretation</i>	 Confidence in (or conversely, the uncertainty of) the geological interpretation of the mineral deposit. Nature of the data used and of any assumptions made. The effect, if any, of alternative interpretations on Mineral Resource estimation. The use of geology in guiding and controlling Mineral Resource estimation. 	 The geological interpretation of the Gwendolyn Mineral Resource was carried out using a systematic approach to ensure continuity of the geology and estimated mineral resource. All Gwendolyn wireframes were constructed using implicit modelling techniques in Datamine RM software on approximately 25m spacing sections. Checks were made to ensure that the wireframed volume agreed with the true ore widths of drillhole intersections. There is a medium to high level of confidence in the geological interpretation.
	 The factors affecting continuity both of grade and geology. 	 All available geological data was used in the interpretation including mapping, drill hole logs and previous interpretations.
		 No alternative interpretations were completed for the Gwendolyn Mineral Resource.
		Geological controls and relationships are used to define

Criteria	JORC Code explanation	Commentary
		and orientate mineralised domains. A circa 0.5g/t Au limit was used as a guide to model the mineralised envelopes for the resources.
		• On a deposit scale the primary mineralisation is hosted by quartz veins and breccias within sheared mafic/ultramafic and BIF lithologies which dip shallowly towards the North-West. A deep weathering profile especially around the BIF units has resulted in significant mineralisation occurring above fresh rock. A large laterite is also modelled over the majority of the primary mineralisation.
Dimensions	• The extent and variability of the Mineral Resource expressed as length (along strike or otherwise), plan width, and depth below surface to the upper and lower limits of the Mineral Resource.	• The mineralised portion of the Gwendolyn Mineral Resource extend over 750m strike and an 80m width, up to a depth of 150m based on current drilling. A broad laterite blanket is also evident over a significant portion of the deposit and can measure up to 5m in thickness, with areas of significant mineralisation apparent.
		Primary mineralisation strikes 35 degrees (NNE)
Estimation and modelling techniques	 The nature and appropriateness of the estimation technique(s) applied and key assumptions, including treatment of extreme grade values, domaining, interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a description of computer software and parameters used. The availability of check estimates, previous estimates and/or mine production records and whether the Mineral Resource estimate takes appropriate account of such data. The assumptions made regarding recovery of by-products. Estimation of deleterious elements or other non-grade variables of economic significance (eg sulphur for acid mine drainage characterisation). In the case of block model interpolation, the block size in relation to the average sample spacing and the search employed. Any assumptions about correlation between variables. Description of how the geological 	 Ordinary kriging (OK), inverse distance (ID^{1.5} and ID²) and nearest neighbour (NN) block estimation techniques were employed on all domains using Datamine RM software. The ordinary kriging and inverse distance estimation methods use a 1m composite, while the Nearest Neighbour uses a seam composite. Variogram modelling was completed with Snowden's Supervisor software, with good correlation between those directions and geological observations. The parameters determined from this analysis were used in the interpolation process. Estimation of the sub-cells was employed for all estimated domains. After these passes, any unestimated blocks were assigned a nearest neighbour estimate value. Ordinary kriging (OK), inverse distance (ID^{1.5}, ID²) and nearest neighbour (NN) estimates were completed on all domains and used for validation and selection of appropriate estimation technique. No assumptions have been made with respect to the recovery of by-products. No estimate of deleterious elements has been done on this deposit.

Criteria	JO	RC Code explanation	Commentary							
		interpretation was used to control the	Search Range Min Max Min						Max	
		resource estimates.		Domain	Х	Y	z	Samples	Samples	Samples/
			Pass 1	Laterite	21	17	11			drillhole
	•	Discussion of basis for using or not	Pass I	Oxide	60	45	22	1	22	-
		using grade cutting or capping.		Primary	36	35	28	- 11	32	5
	•	The process of validation, the checking		Pit_Mz	14	5	5			
		process used, the comparison of model			c	Search Ran	ae	A dia	Maria	Max
				Domain	<u>х</u>	Y	Z	Min Samples	Max Samples	Samples/
		data if available.						Sumples	Bampies	drillhole
			Pass 2	Laterite Oxide	21 60	17 45	11 22	-		
				Primary	36	35	28	6	32	5
				Pit_Mz	14	5	5	1		
										Max
				Domain		Search Ran		Min Samples	Max Samples	Samples/
				Latarita	X	Y 24	Z 22	Sumples	Sumples	drillhole
			Pass 3	Laterite Oxide	42 120	34 90	22 44	-		
				Primary	72	70	56	6	32	5
				Pit_Mz	28	10	10	1		
			be Ha ho mi im Wi ma ge A : ou to Th • Th • • • • • • • • • • • • •	le datab neralisa plicit me ireframe odelled ology. statistica ttliers wi p cut va e Top cu Disin Log p variatio Outlid pact on p cuts w timate w number sure mc propriat	ariable vall and oase w tion w odellin s show minera al analy th eac lues. utting tegration tegration tegration the Co vere ap vas cor of blo odelling te for t l valid	es. d footwere use irefram g modu ved a stalised d vsis was h doma strategy on anal ility plc ysis: rep ov of do pplied to nductec ck mod g and e he dep ation m	vall poin d to cru- es utilis ule in a trong c omain s under in and y used lysis of ot, histo ot, histo omain. o the c d. lel valio stimati osit. T nethods	nts derivered to the section or relation or relations of the section of the secti	ved fro th geo Datan nal envion on betw terpret o revie ine ap plied in togram lata and te data were con niques ethods aring b	im the dri logical an nine RM ironment. ween the ated w grade propriate ncludes: n. d coefficie analysis o a, before a ompleted
			blo	g-proba	bility a posite	nd swa	th plot	s as wa	y a	histogram imation

Criteria	JORC Code explanation	Commentary				
		Block model/wireframe volume checks.				
		• The validation showed the block model estimates appropriately reflect the composites, showing a reasonable global estimate.				
Moisture	• Whether the tonnages are estimated on a dry basis or with natural moisture, and the method of	• Tonnages are estimated on a dry basis. Moisture content within the ore is expected to be low				
Cut-off parameters	• The basis of the adopted cut-off grade(s) or quality parameters applied.	 Mineral Resources are reported at a 1g/t cut-off grade and above the 360m RL. 				
Mining factors	• Assumptions made regarding possible	• Mining is assumed to be by Open pits methods.				
or assumptions	<i>mining methods, minimum mining dimensions and internal (or, if applicable, external) mining dilution. It</i>	 Maximum depth assumption of 100m below original surface based on knowledge from other deposits. 				
	is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential mining methods, but the assumptions made regarding mining methods and parameters when estimating Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the mining assumptions made.	• No mining dilution or recovery have been applied.				
Metallurgical factors or assumptions	• The basis for assumptions or predictions regarding metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential metallurgical methods, but the assumptions regarding metallurgical treatment processes and parameters made when reporting Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the metallurgical assumptions made.	 Previous owners drilled 8 PQ holes to be used to determine the metallurgical characteristic of the Gwendolyn Mine. The showed the deposit is very favourable for the extraction of gold where the ore is oxidised (averaging 95.8% recovery), with a high gravity component. No processing recovery has been applied to Resource estimate. 				
Environmental factors or assumptions	 Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and processing operation. While at this stage the determination of potential environmental impacts, particularly for a greenfields project, 	 No environmental factors or assumptions have been applied. Based on the location, granted mining lease and previous mining no environmental detractions are expected to apply eventual extraction. 				

25 August 2021 ASX:AUN

Criteria	JORC Code explanation	Commentary
	may not always be well advanced, the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the environmental assumptions made.	
Bulk density	 Whether assumed or determined. If assumed, the basis for the assumptions. If determined, the method used, whether wet or dry, the frequency of the measurements, the nature, size and representativeness of the samples. The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs, porosity, etc), moisture and differences between rock and alteration zones within the deposit. Discuss assumptions for bulk density estimates used in the evaluation process of the different materials. 	 The bulk densities used in the estimate were adopted from previous published estimates and reports and look reasonable for the material and weathering type. Little is known about this data set, which is reflected in the Mineral Resource classification being limited to inferred. The method to determine bulk density or the drill hole/interval is unknown. Bulk densities were assigned to the block model according to is weathering type. All care has been taken to account for relevant factors influencing the mineral resource estimate.
Classification	 The basis for the classification of the Mineral Resources into varying confidence categories. Whether appropriate account has been taken of all relevant factors (ie relative confidence in tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity and distribution of the data). Whether the result appropriately reflects the Competent Person's view of the deposit. the basis for the classification of the Ore Reserves into varying confidence categories. 	 Definitions for Mineral Resource categories are consistent with those defined by JORC (2012). The classifications were determined based on geological confidence and continuity, drill spacing and search volume (pass) as well the data source(s). All mineralisation reported is deemed inferred, principally due to the reliance on historical data generated by multiple companies. There are no Measured or Indicated resources reported for the Gwendolyn Mine. The results appropriately reflect the Competent Persons view of the deposit.
Audits or reviews.	• The results of any Audits or reviews of Mineral Resource estimates.	• Internal reviews have been conducted for this Mineral Resource estimate. It concluded that the processes used to estimate and classify the mineral resource are appropriate.
<i>Discussion of relative accuracy/ confidence</i>	• Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the	• The Mineral Resource for Gwendolyn has been reported in accordance with the guidelines established in the 2012 edition of the JORC code. The Mineral Resource estimates have undergone a validation process and as such, the competent person is satisfied that the resources estimated in the block model are a true representation of the in-situ resources on a global scale.

Criteria JC	ORC Code explanation	Commentary
•	resource within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate. The statement should specify whether it relates to global or local estimates, and, if local, state the relevant tonnages, which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used. These statements of relative accuracy and confidence of the estimate should be compared with production data, where available.	 The statements relate to a global estimate of tonnes and grade for the Gwendolyn Mineral Resource.

25 August 2021
ASX:AUN

Annexure B – Drillhole Table

Hole #	Easting (MGA94_ 50)	Northing (MGA94_ 50)	RL (MGA94_ 50)	Dip (degrees)	Azimuth (MGA94_ 50)	Hole Depth (m)	Interval From (m)	Interval To (m)	Interval (m)	Au (ppm)	Hole Type
G001	735991	6711239	451	-60	130	109	32	36	4	0.03	RC
						109	54	60	6	7.54	RC
						109	78	80	2	1.57	RC
G003	735909	6711327	452	-60	130	120	19	23	4	4.46	RC
						120	28	30	2	1.19	RC
G004	735911	6711251	450	-60	130	114	16	19	3	2.29	RC
						114	95	96	1	1.17	RC
G005	735953	6711214	450	-60	130	90	38	40	2	3.06	RC
						90	44	45	1	0.09	RC
						90	61	63	2	2.22	RC
						90	83	85	2	1.18	RC
G006	735987	6711177	450	-60	130	90	34	35	1	2.63	RC
						90	46	47	1	0.98	RC
						90	49	50	1	0.79	RC
G007	735923	6711186	450	-60	130	123	37	38	1	2.75	RC
						123	88	89	1	0.10	RC
G008	735982	6711152	450	-60	130	66	36	40	4	1.71	RC
G010	735888	6710991	456	-60	130	100	6	8	2	0.43	RC
						100	37	38	1	2.05	RC
G011	735851	6711025	460	-60	130	96	8	9	1	0.35	RC
						96	24	26	2	0.35	RC
						96	54	55	1	0.60	RC
						96	74	75	1	0.62	RC
G012	735813	6711068	460	-60	130	108	0	1	1	2.72	RC
						108	9	12	3	0.74	RC
						108	89	90	1	0.26	RC
G013	735743	6711065	458	-60	130	120	2	7	5	0.64	RC
						120	78	80	2	1.93	RC
G014	735787	6711021	456	-60	130	108	1	9	8	0.58	RC
						108	72	76	4	1.79	RC
						108	82	92	10	4.13	RC
G015	735714	6711023	454	-60	130	120	0	8	8	0.49	RC
0010	100111	0111020	101		100	120	99	102	3	1.47	RC
G016	735748	6710968	455	-60	130	126	0	6	6	1.00	RC
0010	155140	0/10500	-55	00	150	126	11	17	6	26.55	RC
						126	20	22	2	1.36	RC
						126	67	69	2	17.86	RC
						126	71	74	3	0.70	RC
G017	735678	6710985	456	-60	140	128	0	4	4	0.70	RC
0017	133010	0710905		-00	140	114	60	4 64	4	3.58	RC
						114	71	73	2	11.95	RC
						114	82	83	1	0.62	RC
									5		
G018	725716	6710054	459	-60	120	114 90	102	107 9	5	2.26	RC RC
	735716	6710954			130		4			0.71	
G019	735785	6710961	453	-60	130	100	0	4	4	2.71	RC
						100	45	48	3	57.91	RC
6000	705000	6740005	4==	62	420	100	52	54	2	0.73	RC
G020	735823	6710935	455	-60	130	84	0	5	5	0.49	RC
G021	735853	6710964	458	-60	130	84	6	10	4	0.66	RC
						84	45	47	2	4.16	RC
G022	735763	6710920	458	-60	130	102	4	5	1	0.73	RC
G023	735796	6710892	455	-60	130	80	2	4	2	1.23	RC

25 August 2	2021
-------------	------

Hole #	Easting (MGA94_ 50)	Northing (MGA94_ 50)	RL (MGA94_ 50)	Dip (degrees)	Azimuth (MGA94_ 50)	Hole Depth (m)	Interval From (m)	Interval To (m)	Interval (m)	Au (ppm)	Hole Type
G024	735817	6711008	458	-60	130	114	9	12	3	0.36	RC
						114	58	59	1	0.01	RC
						114	71	76	5	1.74	RC
G025	735786	6711102	459	-60	130	150	9	10	1	0.16	RC
						150	99	100	1	0.65	RC
						150	115	118	3	0.79	RC
G027	735886	6711222	450	-60	130	150	47	49	2	1.24	RC
						150	54	58	4	2.51	RC
						150	69	74	5	2.53	RC
						150	122	124	2	1.09	RC
G028	735841	6711180	451	-60	130	150	104	110	6	3.54	RC
						150	124	126	2	0.01	RC
G029	735867	6711158	451	-60	130	120	72	74	2	1.65	RC
						120	103	104	1	0.13	RC
G030	735803	6711141	452	-61	130	185	69	70	1	0.66	RC
						185	75	76	1	0.29	RC
						185	125	126	1	0.26	RC
G031	735751	6710859	456	-60	130	80	2	4	2	0.59	RC
G032	735713	6710821	456	-60	130	84	1	3	2	0.72	RC
G034	735614	6710847	459	-60	130	120	47	49	2	0.95	RC
G037	735673	6710861	468	-60	130	100	12	17	5	0.43	RC
G038	735690	6710884	468	-60	130	108	14	17	3	0.36	RC
G039	735645	6710879	468	-60	130	130	13	14	1	0.46	RC
						130	65	66	1	5.40	RC
						130	78	79	1	1.04	RC
						130	90	91	1	3.02	RC
G040	735610	6710910	469	-60	130	150	85	86	1	0.35	RC
G040 G041	735833	6711105	460	-60	130	120	9	11	2	0.33	RC
0041	155055	0/11105	-00	00	150	120	45	48	3	3.71	RC
						120	93	95	2	3.84	RC
						120	98	99	1	0.26	RC
G043	736017	6711211	450	-60	130	120	43	47	4	2.41	RC
0045	750017	0711211	450	-00	150	100	43	51	2	1.16	RC
G046	736025	6711290	453	-60	130		53	54	2		
G040	750025	0711290	455	-00	150	120 120	77	79	2	3.90 0.83	RC RC
C047	725092	6711210	450	60	120	120	120	121	2	0.85	RC
G047	735983	6711318	452	-60	130						
G048	736025	6711358	454	-60	130	150	108	112	4	1.68	RC
G049	736068	6711324	455	-60	130	120	69	70	1	0.33	RC
G050	736105	6711295	455	-60	130	108	42	44	2	0.76	RC
G052	735643	6710952	465	-60	130	150	10	11	1	0.32	RC
C052	705070	(710010	107	<u> </u>	430	150	81	88	7	11.87	RC
G053	735676	6710919	467	-60	130	120	13	14	1	0.26	RC
C 05 1	705055	671165			100	120	99	100	1	2.28	RC
G054	735656	6711004	456	-60	130	150	0	2	2	0.49	RC
00						150	104	106	2	4.68	RC
G059	735876	6711351	451	-60	130	96	26	27	1	0.73	RC
G065	736030	6711241	452	-60	130	100	56	58	2	0.93	RC
G066	736004	6711265	451	-60	130	100	36	38	2	10.48	RC
						100	61	63	2	4.63	RC
						100	82	84	2	0.86	RC
G067	735986	6711282	452	-61	130	114	42	48	6	1.91	RC
						114	99	101	2	1.11	RC
G068	735919	6711344	452	-61	130	108	22	23	1	0.91	RC
G070	735914	6711378	452	-62	130	120	21	22	1	0.47	RC

Hole #	Easting (MGA94_ 50)	Northing (MGA94_ 50)	RL (MGA94_ 50)	Dip (degrees)	Azimuth (MGA94_ 50)	Hole Depth (m)	Interval From (m)	Interval To (m)	Interval (m)	Au (ppm)	Hole Type
G073	735914	6711286	451	-61	130	100	16	19	3	1.14	RC
						100	33	34	1	2.34	RC
G075	735860	6711328	451	-62	130	100	21	26	5	22.68	RC
G078	735848	6711237	450	-60	130	132	78	81	3	0.97	RC
G079	735825	6711200	450	-61	130	185	40	41	1	1.05	RC
						185	129	131	2	1.88	RC
						185	141	143	2	0.85	RC
G080	735990	6711008	451	-60	130	75	0	3	3	0.48	RC
G081	735970	6710997	451	-61	130	78	0	3	3	0.26	RC
G082	736010	6711045	450	-61	130	100	0	4	4	0.42	RC
G083	735736	6711133	452	-60	130	192	118	119	1	4.13	RC
						192	125	131	6	8.51	RC
						192	143	146	3	1.28	RC
G084	735719	6711115	452	-61	130	150	96	97	1	3.43	RC
						150	108	109	1	0.73	RC
						150	117	119	2	12.44	RC
						150	144	145	1	1.10	RC
G085	735704	6711100	453	-61	130	174	0	4	4	0.22	RC
						174	83	87	4	0.65	RC
						174	108	110	2	0.29	RC
G086	735688	6711082	454	-62	130	168	1	4	3	0.22	RC
						168	111	112	1	0.35	RC
						168	124	133	9	9.97	RC
G087	735667	6711068	454	-61	130	126	0	4	4	0.15	RC
						126	54	61	7	1.11	RC
						126	73	74	1	3.37	RC
						126	110	113	3	0.37	RC
G088	735651	6711049	455	-61	130	150	0	4	4	0.46	RC
						150	64	67	3	1.42	RC
						150	106	112	6	0.68	RC
						150	122	125	3	1.54	RC
G089	735643	6711019	456	-61	130	156	0	4	4	0.18	RC
						156	105	107	2	0.78	RC
						156	111	115	4	8.38	RC
G090	735678	6711015	455	-61	130	150	0	3	3	0.20	RC
						150	80	84	4	3.75	RC
						150	108	112	4	0.25	RC
G091	735698	6711035	454	-61	130	84	0	8	8	0.41	RC
G092	735725	6711081	458	-61	130	55	5	8	3	0.20	RC
G093	735820	6711162	451	-61	132	150	74	76	2	1.57	RC
						150	123	128	5	1.41	RC
G094	735796	6711182	451	-62	130	150	142	145	3	0.62	RC
G097	735777	6711140	452	-60	130	120	77	79	2	7.21	RC
						120	83	84	1	2.11	RC
						120	93	95	2	1.79	RC
						120	100	102	2	3.25	RC
G103	735864	6711249	450	-61	130	179	49	51	2	1.35	RC
						179	78	83	5	0.85	RC
						179	147	149	2	0.79	RC
G104	735844	6711274	451	-61	130	212	39	40	1	0.84	RC
						212	102	103	1	0.47	RC
G105	735821	6711259	451	-61	130	209	56	58	2	1.60	RC
				5.		209	168	169	1	0.59	RC
G106	735797	6711282	451	-60	130	100	62	63	1	5.20	RC

25 August	2021
-----------	------

Hole #	Easting (MGA94_ 50)	Northing (MGA94_ 50)	RL (MGA94_ 50)	Dip (degrees)	Azimuth (MGA94_ 50)	Hole Depth (m)	Interval From (m)	Interval To (m)	Interval (m)	Au (ppm)	Hole Type
G107	735776	6711300	451	-60	130	100	57	100	43	2.85	RC
G110	735821	6711387	452	-60	130	100	82	83	1	10.30	RC
G114	736046	6711303	454	-60	130	100	77	78	1	0.85	RC
G115	736028	6711320	454	-60	130	108	62	67	5	1.14	RC
						108	94	99	5	3.02	RC
G116	736043	6711271	453	-60	130	108	61	63	2	0.55	RC
G118	735630	6711027	455	-60	130	185	0	2	2	0.66	RC
						185	111	112	1	0.47	RC
						185	122	124	2	0.57	RC
G119	735620	6710999	456	-60	130	173	1	2	1	0.28	RC
						173	112	114	2	3.11	RC
G120	735605	6710988	457	-60	130	191	0	2	2	0.32	RC
						191	110	113	3	4.08	RC
G127	735583	6710805	461	-60	130	120	46	48	2	1.20	RC
G129	735643	6710916	468	-60	130	110	71	72	1	1.17	RC
						110	103	104	1	1.26	RC
G130	735633	6710930	468	-60	130	110	4	8	4	11.57	RC
0.00	100000	0110550	100		100	110	82	83	1	0.85	RC
						110	109	110	1	2.39	RC
G131	735739	6710893	457	-60	130	100	3	4	1	0.04	RC
G132	735735	6710913	462	-60	130	100	6	8	2	0.33	RC
G132	735695		462	-60	130	100	7	10		0.55	RC
		6710931					6	8	3	0.87	RC
G134	735675	6710951	462	-60	130	100			2		
6 405		6740060	161	60	420	100	93	95	2	0.23	RC
G135	735653	6710968	461	-60	130	120	4	8	4	0.08	RC
						120	86	87	1	1.52	RC
						120	104	106	2	0.83	RC
G136	735634	6710980	460	-60	130	120	4	7	3	0.08	RC
						120	88	91	3	0.75	RC
						120	98	103	5	16.29	RC
						120	107	108	1	4.26	RC
G137	735705	6710893	466	-60	130	110	12	16	4	0.19	RC
G138	735626	6710893	468	-60	130	120	62	64	2	1.50	RC
G139	735662	6710840	465	-60	130	100	8	12	4	0.74	RC
G140	735650	6710850	466	-60	130	110	24	29	5	263.95	RC
						110	74	75	1	0.49	RC
G141	735627	6710870	466	-60	130	148	48	49	1	0.83	RC
						148	74	76	2	2.93	RC
						148	96	100	4	3.89	RC
G142	735613	6710882	467	-60	130	120	61	62	1	0.33	RC
G143	735621	6710945	467	-60	130	120	12	15	3	0.10	RC
						120	84	88	4	1.69	RC
G144	735595	6710862	460	-60	130	100	58	59	1	0.85	RC
G147	735787	6710849	454	-60	130	96	0	1	1	0.28	RC
G148	735820	6710900	454	-60	130	100	1	5	4	1.30	RC
G150	735878	6710942	457	-61	130	100	4	8	4	0.30	RC
G163	735754	6711123	452	-61	130	112	103	104	1	8.15	RC
G164	735732	6711100	453	-61	130	124	0	3	3	0.49	RC
						124	67	72	5	1.19	RC
						124	92	93	1	61.62	RC
G165	735891	6710956	456	-62	130	100	1	6	5	0.50	RC
0105	133031	0110000	-55	02	150	100	29	30	1	1.51	RC
G166	735908	6710943	455	-61	130	100	0	3	3	0.35	RC
0100	155500	0/10945	455	-61	130	100	2	3	1	0.33	RC

25 August	2021
-----------	------

Hole #	Easting (MGA94_ 50)	Northing (MGA94_ 50)	RL (MGA94_ 50)	Dip (degrees)	Azimuth (MGA94_ 50)	Hole Depth (m)	Interval From (m)	Interval To (m)	Interval (m)	Au (ppm)	Hole Type
G168	735927	6710956	454	-61	130	100	1	3	2	0.37	RC
G169	735949	6710975	452	-61	130	100	0	2	2	0.25	RC
G170	735933	6710988	452	-61	130	100	1	3	2	0.30	RC
G173	735721	6710981	455	-59	132	138	0	6	6	1.25	RC
						138	75	77	2	0.19	RC
						138	89	91	2	1.33	RC
G174	735699	6710999	455	-61	132	130	0	9	9	0.95	RC
						130	92	94	2	12.35	RC
						130	107	108	1	0.42	RC
G175	735756	6710874	456	-61	132	100	3	5	2	0.56	RC
G179	735787	6710924	455	-60	132	106	0	4	4	0.74	RC
G180	735681	6710830	462	-61	130	90	8	10	2	0.84	RC
G181	735631	6710964	465	-60	120	120	7	8	1	9.15	RC
						120	10	11	1	0.25	RC
						120	89	90	1	3.10	RC
						120	93	98	5	6.36	RC
G182	736061	6711289	453	-60	130	100	60	61	1	0.78	RC
G188	735838	6711205	450	-60	130	106	35	36	1	5.21	RC
0.00		0	.50	50		106	89	90	1	3.71	RC
G189	735942	6711329	452	-61	130	173	20	22	2	0.52	RC
G105	735895	6711239	450	-62	130	173	26	28	2	2.39	RC
0190	133093	0711239	450	-02	152	120	60	63	3	1.36	RC
								66	2	1.30	RC
						120	64				
6400	705.000	6740000	160	60	420	120	98	100	2	1.49	RC
G192	735663	6710902	468	-60	130	100	12	16	4	0.32	RC
G193	735785	6710990	453	-60	130	100	0	3	3	0.17	RC
						100	61	69	8	21.11	RC
G194	735767	6711013	453	-60	130	120	0	10	10	1.23	RC
						120	84	89	5	2.51	RC
G195	735745	6711029	453	-59	130	120	0	8	8	0.87	RC
						120	12	15	3	10.94	RC
						120	100	103	3	1.13	RC
G196	735834	6710950	456	-62	130	100	4	7	3	0.69	RC
						100	37	42	5	1.96	RC
G197	735817	6710968	456	-61	130	100	3	6	3	0.91	RC
						100	44	52	8	7.82	RC
G198	735694	6711075	454	-60	130	150	0	3	3	0.61	RC
						150	112	116	4	4.59	RC
						150	121	128	7	4.06	RC
G199	735726	6711052	457	-60	130	140	4	6	2	0.24	RC
						140	80	81	1	1.84	RC
						140	98	99	1	1.05	RC
						140	118	120	2	1.60	RC
G201	735920	6711105	442	-61	130	100	40	44	4	3.13	RC
G203	735927	6711031	445	-62	130	100	19	24	5	3.38	RC
G206	735825	6711299	451	-60	130	222	63	64	1	3.83	RC
						222	123	125	2	1.28	RC
G207	735860	6711192	450	-61	130	186	109	111	2	0.66	RC
						186	121	122	1	2.52	RC
G208	735849	6711000	460	-60	130	100	7	8	1	0.07	RC
			,			100	55	56	1	0.83	RC
G209	735828	6711020	459	-60	130	100	5	10	5	0.03	RC
0200		0	.55	50		100	69	70	1	0.12	RC
G210	735805	6711040	459	-61	130	100	6	13	7	0.65	RC

25 August	2021
-----------	------

Hole #	Easting (MGA94_ 50)	Northing (MGA94_ 50)	RL (MGA94_ 50)	Dip (degrees)	Azimuth (MGA94_ 50)	Hole Depth (m)	Interval From (m)	Interval To (m)	Interval (m)	Au (ppm)	Hole Type
						115	79	81	2	1.27	RC
						115	88	89	1	1.96	RC
G211	735760	6711080	459	-60	130	109	7	11	4	0.70	RC
G212	735782	6711061	459	-59	130	127	6	8	2	0.71	RC
						127	51	56	5	4.29	RC
						127	94	96	2	1.63	RC
						127	103	104	1	0.81	RC
G215	736082	6711282	454	-60	130	100	43	44	1	3.54	RC
G216	736085	6711310	455	-61	130	100	55	56	1	0.56	RC
G218	736045	6711342	455	-60	130	120	90	92	2	3.08	RC
G219	736044	6711378	455	-60	130	108	102	105	3	1.96	RC
G221	736059	6711367	455	-60	130	102	91	96	5	1.30	RC
G224	736011	6711339	453	-59	130	132	107	112	5	1.05	RC
G228	735767	6710936	458	-63	125	97	4	6	2	0.44	RC
G229	735738	6711004	454	-60	130	109	1	9	8	0.93	RC
						109	79	82	3	3.59	RC
						109	88	89	1	2.91	RC
G230	735683	6711053	455	-59	130	133	0	3	3	0.79	RC
GLSU	155005	0111035	155	33	150	133	100	106	6	1.05	RC
						133	116	120	4	2.38	RC
G231	735661	6711036	455	-60	130	145	0	2	2	0.48	RC
9231	733001	0711030	455	-00	130		48	49	1		
						145				1.11	RC
						145	101	109	8	4.79	RC
						145	115	116	1	1.15	RC
						145	120	121	1	6.39	RC
G237	735740	6710936	460	-59	130	97	6	10	4	0.32	RC
						97	54	55	1	3.67	RC
G238	736017	6711063	450	-60	130	100	1	4	3	0.30	RC
G239	735930	6710970	453	-60	130	30	1	2	1	0.25	RC
G240	735842	6711082	459	-59	130	114	9	11	2	0.68	RC
						114	28	29	1	1.13	RC
						114	81	82	1	0.44	RC
G241	735821	6711103	460	-60	130	114	101	102	1	0.28	RC
						114	107	108	1	0.48	RC
G242	735803	6711085	460	-59	130	102	8	10	2	0.90	RC
						102	100	102	2	1.06	RC
G243	735835	6711043	460	-59	130	111	9	12	3	0.60	RC
						111	67	68	1	2.70	RC
G245	736036	6711136	450	-59	130	102	31	32	1	3.40	RC
G247	735982	6711021	450	-60	130	72	0	2	2	0.26	RC
G249	735963	6711017	451	-65	130	50	0	1	1	0.65	RC
G250	735868	6711062	454	-61	130	100	5	6	1	0.36	RC
						100	45	47	2	3.33	RC
						100	60	62	2	1.30	RC
						100	67	68	1	2.77	RC
G251	735842	6711145	455	-60	130	100	62	64	2	0.82	RC
G252	735801	6711145	459	-60	130	100	54	55	1	1.13	RC
0232	133001	071110	-55		130	100	75	76	1	3.65	RC
G253	725827	6711070	461	-59	120	100	10		3	0.64	RC
9203	735827	6711079	401	-29	130			13			
						120	28	30	2	1.09	RC
C 2 T 1	705755	C7111	150	= 0	100	120	83	86	3	2.21	RC
G254	735790	6711115	459	-59	130	140	74	77	3	0.51	RC
						140	100	102	2	0.62	RC
	1					140	122	123	1	0.64	RC

25 August	2021
-----------	------

Hole #	Easting (MGA94_ 50)	Northing (MGA94_ 50)	RL (MGA94_ 50)	Dip (degrees)	Azimuth (MGA94_ 50)	Hole Depth (m)	Interval From (m)	Interval To (m)	Interval (m)	Au (ppm)	Hole Type
G256	735864	6711125	453	-60	130	114	39	40	1	3.24	RC
						114	84	92	8	1.38	RC
G263	735960	6710959	453	-60	130	37	0	2	2	0.51	RC
G271	736034	6711055	449	-60	130	31	0	1	1	0.28	RC
G272	735660	6710860	468	-61	130	115	29	32	3	14.45	RC
						115	53	54	1	0.62	RC
G273	735665	6711098	453	-60	130	228	107	111	4	1.56	RC
						228	116	119	3	2.43	RC
						228	130	132	2	0.90	RC
G274	735599	6711052	455	-60	130	216	149	150	1	0.43	RC
G275	735595	6711016	456	-61	130	186	0	4	4	0.24	RC
						186	133	137	4	19.79	RC
G276	735636	6710858	465	-60	130	104	87	88	1	1.44	RC
G279	735689	6711117	452	-63	130	200	1	2	1	0.25	RC
G280	735619	6711076	454	-60	130	190	134	136	2	0.97	RC
						190	143	144	1	1.91	RC
G281	735872	6710978	457	-60	130	103	7	10	3	0.69	RC
						103	46	48	2	4.20	RC
G282	736003	6710995	451	-60	130	31	0	1	1	0.33	RC
G283	736019	6711022	450	-60	130	37	0	2	2	0.58	RC
G284	735810	6711098	460	-61	130	133	10	11	1	0.35	RC
						133	56	58	2	3.04	RC
						133	107	108	1	0.96	RC
						133	112	113	1	0.59	RC
G294	735714	6711155	452	-61	130	234	43	45	2	2.78	RC
G296	735639	6711092	453	-61	130	192	132	133	1	0.26	RC
G297	735746	6710989	453	-61	130	108	1	6	5	0.87	RC
						108	66	68	2	4.19	RC
						108	76	77	1	0.09	RC
G298	735758	6711034	454	-60	130	132	0	6	6	0.55	RC
						132	14	15	1	0.99	RC
						132	51	53	2	1.34	RC
						132	95	103	8	2.63	RC
G299	735799	6710980	454	-60	130	102	5	7	2	0.50	RC
						102	61	62	1	0.09	RC
						102	64	69	5	2.83	RC
G302	735764	6710950	455	-61	130	126	0	6	6	0.68	RC
G306	735643	6710952	465	-81	130	139	9	10	1	0.02	RC
						139	83	84	1	4.85	RC
6205					45.5	139	94	95	1	0.15	RC
G307	735645	6711112	453	-60	130	210	125	126	1	0.62	RC
G308	735618	6711045	455	-60	130	210	88	91	3	42.79	RC
						210	124	126	2	4.10	RC
6262	705500	(7110			100	210	133	137	4	2.11	RC
G309	735583	6711026	456	-60	130	180	0	2	2	0.35	RC
C210	705710	6744050	457		400	180	143	144	1	10.94	RC
G310	735710	6711050	457	-60	130	156	5	7	2	0.90	RC
						156	91	92	1	1.41	RC
						156	109	111	2	4.52	RC
						156	138	139	1	10.29	RC
G311	735694	6710972	458	-60	130	108	3	7	4	0.43	RC
						108	55	56	1	2.58	RC
						108	98	99	1	1.12	RC

Hole #	Easting (MGA94_ 50)	Northing (MGA94_ 50)	RL (MGA94_ 50)	Dip (degrees)	Azimuth (MGA94_ 50)	Hole Depth (m)	Interval From (m)	Interval To (m)	Interval (m)	Au (ppm)	Hole Type
						181	111	112	1	0.66	RC
G313	735768	6711043	455	-61	130	156	0	6	6	0.59	RC
						156	11	12	1	1.31	RC
						156	48	53	5	1.84	RC
						156	89	91	2	0.79	RC
G314	735660	6710931	467	-60	130	162	12	14	2	1.01	RC
G315	735826	6711056	460	-60	130	138	10	11	1	0.87	RC
						138	79	80	1	0.01	RC
G316	735832	6710991	459	-60	130	108	6	10	4	0.07	RC
						108	34	35	1	3.98	RC
						108	43	45	2	2.68	RC
						108	62	64	2	2.63	RC
G317	735593	6710888	464	-60	130	186	80	81	1	1.57	RC
G318	735807	6711001	458	-60	130	156	4	9	5	0.19	RC
						156	64	66	2	22.92	RC
						156	75	78	3	0.41	RC
G319	735567	6711038	455	-61	130	216	0	1	1	0.11	RC
						216	154	156	2	4.92	RC
G320	735556	6711019	456	-60	130	214	0	3	3	0.80	RC
0520	133330	0111015	150		130	214	152	155	3	1.91	RC
G321	735827	6711151	453	-60	130	220	70	71	1	0.01	RC
0321	133021	0711131	455	-00	150	220	113	118	5	3.33	RC
G322	735778	6711264	451	-61	130	174	133	134	1	1.14	RC
G323	735878	6711185	450	-61	130	180	113	114	1	0.69	RC
G324	735812	6711237	451	-61	130	159	34	42	8	1.79	RC
G325	735635	6710854	465	-61	130	108	90	92	2	1.35	RC
G326	736018	6711369	454	-61	130	168	122	124	2	1.00	RC
G327	735966	6711260	451	-61	130	144	48	50	2	1.70	RC
						144	99	101	2	1.15	RC
G328	735767	6710975	453	-60	130	150	0	7	7	1.06	RC
						150	62	64	2	39.64	RC
						150	70	71	1	0.54	RC
G329	735859	6711231	450	-61	130	173	44	45	1	1.00	RC
						173	141	143	2	0.40	RC
G330	735807	6711241	451	-90	0	114	102	105	3	3.48	RC
G332	735941	6711114	442	-62	130	114	34	37	3	2.30	RC
G334	735938	6711092	442	-61	130	96	26	29	3	3.18	RC
G335	735970	6711012	450	-80	130	72	0	1	1	0.35	RC
G337	735903	6711192	450	-61	130	120	16	19	3	0.78	RC
						120	38	40	2	1.78	RC
						120	45	46	1	1.49	RC
						120	62	65	3	1.31	RC
						120	75	76	1	1.95	RC
						120	100	102	2	0.92	RC
G338	735867	6711229	450	-60	130	156	127	136	9	3.41	RC
G339	735869	6711211	450	-60	130	156	56	59	3	0.53	RC
						156	122	127	5	2.13	RC
G340	735870	6711331	451	-80	130	96	18	19	1	0.62	RC
				20		96	63	64	1	2.01	RC
G342	735883	6711184	450	-56	145	132	78	82	4	2.25	RC
0.042	100000	0711104		-50	UFJ	132	104	105	4	0.32	RC
G343	735885	6711188	450	-56	160	132	82	84	2	1.58	RC
0043	155005	0/11100	450	-20	100						
6 3.17	705055	67100-55			100	136	109	110	1	0.25	RC
G344	735806	6710980	455	-61	130	96	4	10	6	0.64	RC

Hole #	Easting (MGA94_ 50)	Northing (MGA94_ 50)	RL (MGA94_ 50)	Dip (degrees)	Azimuth (MGA94_ 50)	Hole Depth (m)	Interval From (m)	Interval To (m)	Interval (m)	Au (ppm)	Hole Type
						96	58	59	1	0.11	RC
						96	66	69	3	1.96	RC
G345	735887	6711182	450	-56	130	126	67	69	2	1.77	RC
						126	77	82	5	1.60	RC
						126	100	102	2	0.85	RC
G346	735791	6710968	453	-76	130	84	0	3	3	0.55	RC
						84	55	56	1	2.10	RC
G347	735884	6711320	451	-80	130	52	40	41	1	1.98	RC
G348	735904	6711314	451	-79	130	54	15	20	5	4.82	RC
						54	23	25	2	11.13	RC
G349	735718	6710950	459	-90	0	36	4	8	4	1.11	RC
G351	735656	6710855	467	-80	130	50	10	11	1	0.29	RC
G352	735748	6710960	455	-79	130	84	0	6	6	1.05	RC
						84	10	16	6	89.67	RC
						84	18	21	3	1.61	RC
						84	63	66	3	1.25	RC
						84	77	79	2	1.21	RC
G353	735753	6710969	455	-79	130	84	0	3	3	8.82	RC
0555	155155	0110505	155	15	150	84	10	15	5	4.08	RC
						84	20	23	3	2.46	RC
						84	54	57	3	1.33	RC
						84			1		RC
							65	66		0.94	
6202	705750	6740050	455	70	120	84	78	79	1	0.19	RC
G382	735759	6710958	455	-70	130	72	0	6	6	3.08	RC
						72	60	63	3	1.03	RC
						72	65	68	3	6.70	RC
G383	735742	6710961	456	-80	130	73	0	6	6	1.49	RC
						73	10	13	3	1.18	RC
						73	22	24	2	13.13	RC
						73	66	67	1	0.01	RC
G384	735767	6710956	454	-77	130	72	1	5	4	0.90	RC
						72	58	59	1	0.13	RC
						72	63	64	1	1.47	RC
GC020	735648	6710926	468	-90	0	12	11	12	1	0.18	RC
GC021	735644	6710930	468	-90	0	15	10	12	2	0.22	RC
GC022	735639	6710935	468	-90	0	15	10	12	2	0.42	RC
GC026	735651	6710929	468	-90	0	11	10	11	1	0.45	RC
GC027	735646	6710933	467	-90	0	15	9	11	2	0.43	RC
GC028	735642	6710939	467	-90	0	14	9	11	2	1.16	RC
GC029	735639	6710943	467	-90	0	12	8	10	2	0.62	RC
GC030	735647	6710943	466	-90	0	13	10	11	1	0.38	RC
GC033	735652	6710939	467	-90	0	13	10	11	1	0.33	RC
GC034	735634	6710938	468	-90	0	13	10	12	2	0.74	RC
GC040	735735	6710977	455	-90	0	12	0	5	5	3.26	RC
GC041	735739	6710974	455	-90	0	15	0	5	5	1.26	RC
GC041 GC042	735743	6710970	455	-90	0	19	0	5	5	1.16	RC
GC042	735748	6710966	455	-90	0	27	0	5	5	0.71	RC
30043	133140	0710500	-55	50	0	27	6	10	4	1.71	RC
GC044	735752	6710962	455	-88	294	33	0	5	5	0.85	RC
GC044	133132	0/10902	455	-00	294						
						33	11	15	4	5.86	RC
666.15	7057	(7100			0.54	33	20	23	3	9.05	RC
GC045	735757	6710958	455	-88	256	33	0	5	5	0.67	RC
						33	17	18	1	0.44	RC
GC046	735770	6710954	454	-90	0	12	1	3	2	0.79	RC

Hole #	Easting (MGA94_ 50)	Northing (MGA94_ 50)	RL (MGA94_ 50)	Dip (degrees)	Azimuth (MGA94_ 50)	Hole Depth (m)	Interval From (m)	Interval To (m)	Interval (m)	Au (ppm)	Hole Type
GC047	735765	6710958	454	-90	0	17	0	4	4	1.53	RC
GC048	735761	6710962	454	-90	0	23	0	4	4	3.04	RC
						23	14	16	2	0.35	RC
GC049	735769	6710963	454	-90	0	13	0	4	4	0.61	RC
GC050	735773	6710967	453	-90	0	7	0	4	4	0.54	RC
GC051	735765	6710966	454	-90	0	20	0	3	3	0.39	RC
GC052	735756	6710966	455	-90	0	23	0	3	3	0.47	RC
						23	8	14	6	40.49	RC
						23	19	23	4	29.22	RC
GC053	735752	6710970	454	-90	0	18	0	6	6	12.00	RC
						18	6	9	3	11.66	RC
GC054	735747	6710974	454	-90	0	18	0	7	7	3.31	RC
GC055	735743	6710978	454	-90	0	14	1	7	6	2.33	RC
GC056	735738	6710982	454	-90	0	12	0	4	4	1.35	RC
GC057	735758	6711013	453	-90	0	16	0	6	6	1.84	RC
						16	11	12	1	2.93	RC
GC059	735750	6711004	453	-90	0	10	0	6	6	2.15	RC
GC060	735746	6710999	453	-90	0	12	0	6	6	2.64	RC
GC061	735742	6710995	453	-90	0	11	2	5	3	0.94	RC
GC064	735754	6711000	452	-90	0	12	0	6	6	8.27	RC
GC065	735754	6710996	452	-90	0	12	0	6	6	1.78	RC
GC065				-90	0		0	5	5		RC
	735746	6710991	453			10	1			0.81	
GC067	735742	6710986	453	-90	0	11		6	5	0.77	RC
GC071	735755	6710991	452	-90	0	11	0	5	5	0.47	RC
GC072	735751	6710987	453	-90	0	11	1	5	4	1.06	RC
GC073	735747	6710982	453	-90	0	11	0	5	5	0.73	RC
GC074	735751	6710978	453	-90	0	13	1	5	4	1.16	RC
GC075	735755	6710983	453	-90	0	11	2	4	2	0.61	RC
GC076	735759	6710987	452	-90	0	11	1	4	3	0.58	RC
GC078	735767	6710996	452	-90	0	15	0	4	4	0.94	RC
GC079	735772	6710992	453	-90	0	12	0	6	6	0.70	RC
GC080	735771	6711001	453	-90	0	16	0	7	7	1.36	RC
GC081	735775	6710997	452	-90	0	16	0	7	7	0.73	RC
GC082	735780	6710993	452	-90	0	13	0	7	7	1.58	RC
						13	12	13	1	1.45	RC
GC083	735785	6710989	453	-90	0	5	0	5	5	0.40	RC
GC084	735781	6710985	453	-90	0	5	0	3	3	0.36	RC
						5	4	5	1	0.54	RC
GC085	735777	6710980	453	-90	0	7	0	5	5	0.25	RC
GC086	735772	6710984	453	-90	0	11	0	7	7	1.11	RC
						11	7	11	4	4.00	RC
GC088	735776	6710989	453	-90	0	12	1	7	6	1.23	RC
						12	8	12	4	2.04	RC
GC089	735773	6710976	453	-90	0	7	0	5	5	1.56	RC
GC090	735768	6710979	453	-90	0	12	0	6	6	2.10	RC
						12	11	12	1	0.86	RC
GC091	735764	6710983	453	-90	0	11	0	6	6	1.19	RC
GC092	735768	6710903	453	-90	0	9	0	6	6	0.90	RC
GC093	735764	6710975	453	-90	0	11	2	5	3	1.24	RC
22033		0.10075	155	50	U U	11	9	11	2	1.04	RC
GC094	735760	6710979	453	-90	0	11	0	4	4	1.04	RC
30074	133100	0/10//5		-50	U	11	4	7	3	7.60	RC
CCOOL	725700	6710071	ΛΕΛ	00	0			3	3		
GC095	735760	6710971	454	-90	U	23 23	0	3 16	3	2.63 5.83	RC RC

25 August 2	2021
-------------	------

Hole #	Easting (MGA94_ 50)	Northing (MGA94_ 50)	RL (MGA94_ 50)	Dip (degrees)	Azimuth (MGA94_ 50)	Hole Depth (m)	Interval From (m)	Interval To (m)	Interval (m)	Au (ppm)	Hole Type
						23	19	21	2	0.86	RC
GC096	735755	6710975	453	-90	0	17	0	4	4	0.85	RC
						17	4	8	4	7.93	RC
GC097	735738	6710999	453	-90	0	6	1	6	5	0.92	RC
GC098	735779	6710937	455	-90	0	6	0	5	5	1.29	RC
GC099	735776	6710933	455	-90	0	6	0	3	3	0.63	RC
GC100	735774	6710942	455	-90	0	10	0	4	4	0.44	RC
GC101	735770	6710945	455	-90	0	12	0	5	5	0.46	RC
GC102	735766	6710950	455	-90	0	16	0	5	5	0.58	RC
GC103	735757	6710949	455	-90	0	21	0	3	3	0.84	RC
GC104	735762	6710954	455	-90	0	19	0	5	5	1.35	RC
GC105	735736	6710961	455	-90	0	21	0	6	6	1.55	RC
GC105	735741	6710957	456	-90	0	28	2	5	3	0.67	RC
90100	155141	0/1095/	450	-90	0	28	9	13	4	20.01	RC
CC107	725746	6710054	156	80	252		3	5	2		
GC107	735746	6710954	456	-89	252	35				0.52	RC
GC107	735746	6710954	456	-89	252	35	13	19	6	6.52	RC
GC108	735739	6710965	455	-90	0	18	0	5	5	1.17	RC
GC109	735744	6710961	455	-90	0	26	0	6	6	1.42	RC
						26	10	17	7	2.24	RC
GC110	735748	6710957	456	-89	241	33	0	5	5	1.40	RC
						33	13	18	5	7.13	RC
GC111	735753	6710953	456	-89	127	35	0	5	5	0.54	RC
						35	18	19	1	1.52	RC
GC112	735769	6710936	458	-90	0	10	3	4	1	0.43	RC
GC113	735766	6710939	458	-90	0	13	4	6	2	0.52	RC
GC114	735762	6710937	458	-90	0	12	4	6	2	0.97	RC
GC115	735758	6710933	458	-90	0	18	4	6	2	1.55	RC
GC116	735757	6710941	458	-90	0	17	3	5	2	0.48	RC
GC117	735754	6710937	458	-90	0	18	4	6	2	0.48	RC
GC118	735753	6710945	458	-90	0	21	3	4	1	0.70	RC
						21	16	19	3	0.86	RC
GC119	735754	6710928	458	-90	0	13	3	6	3	0.52	RC
GC120	735749	6710941	458	-90	0	21	4	5	1	0.41	RC
GC121	735747	6710947	458	-90	100	35	5	6	1	0.32	RC
00.2.	100111	0110011	150	50	100	35	17	24	7	1.11	RC
GC122	735745	6710945	458	-90	0	22	3	5	2	0.25	RC
OCILL	155115	0110313	150	50	Ū	22	17	22	5	1.51	RC
GC123	735740	6710949	458	-90	0	22	3	5	2	0.57	RC
JC123	133140	0710349	450	-50	U	22	13	20	7	11.39	RC
GC124	735735	6710953	458	-90	0	22	3	6	3	0.64	RC
GC124 GC124			458	-90					5		
	735735	6710953			0	21	6	11 7		8.20	RC RC
GC125	735731	6710957	458	-90	0	21	4		3	0.55	
GC126	735750	6710932	458	-90	0	16	3	5	2	0.18	RC
GC127	735745	6710936	458	-90	0	21	3	5	2	0.17	RC
GC128	735741	6710940	458	-90	0	22	3	5	2	0.23	RC
						22	17	19	2	1.01	RC
GC129	735736	6710944	458	-90	0	22	3	6	3	0.44	RC
						22	13	21	8	4.37	RC
GC130	735732	6710948	458	-90	0	20	3	7	4	1.12	RC
						20	7	20	13	10.20	RC
GC131	735727	6710952	459	-90	0	20	4	6	2	1.34	RC
GC132	735750	6710923	458	-90	0	11	3	6	3	0.58	RC
GC133	735747	6710925	458	-90	0	15	3	6	3	0.57	RC
GC134	735745	6710921	458	-90	0	12	3	6	3	1.35	RC

25 August 2	2021
-------------	------

Hole #	Easting (MGA94_ 50)	Northing (MGA94_ 50)	RL (MGA94_ 50)	Dip (degrees)	Azimuth (MGA94_ 50)	Hole Depth (m)	Interval From (m)	Interval To (m)	Interval (m)	Au (ppm)	Hole Type
GC135	735741	6710931	460	-90	0	18	5	8	3	0.33	RC
GC136	735737	6710927	460	-90	0	15	5	8	3	0.27	RC
GC139	735655	6710837	465	-89	121	30	8	11	3	0.32	RC
						30	23	24	1	2.28	RC
GC140	735659	6710833	465	-89	172	30	8	12	4	0.56	RC
						30	13	15	2	1.36	RC
GC141	735665	6710831	464	-90	0	25	7	10	3	0.29	RC
GC143	735654	6710846	465	-90	300	40	27	28	1	1.36	RC
GC144	735658	6710842	465	-89	77	32	20	27	7	3.28	RC
GC145	735663	6710838	465	-89	279	30	8	12	4	1.05	RC
						30	12	22	10	7.53	RC
GC146	735667	6710834	464	-87	268	30	7	11	4	0.35	RC
GC148	735658	6710851	465	-88	274	40	7	9	2	0.51	RC
GC149	735662	6710847	465	-87	72	35	7	9	2	0.89	RC
00115	100002	0.1001		•••		35	24	25	1	33.61	RC
GC150	735661	6710855	466	-88	326	42	10	12	2	0.78	RC
GC150	735667	6710833	465	-87	95	32	9	12	2	0.83	RC
GCIJI	133001	0710042	405	-07	35	32	19	22	3	0.52	RC
66153	725666	6710851	100	00	200						
GC152	735666		466	-86	206	40	10	11	1	0.33	RC
GC153	735671	6710839	465	-88	3	30	9	11	2	0.79	RC
						30	19	21	2	8.30	RC
GC154	735671	6710847	466	-87	109	35	10	12	2	0.63	RC
						35	21	25	4	36.59	RC
GC155	735675	6710843	465	-87	61	32	9	12	3	0.92	RC
GC156	735679	6710847	466	-85	93	34	10	12	2	0.74	RC
GC157	735683	6710852	466	-86	289	32	9	13	4	0.66	RC
GC158	735666	6710859	467	-88	55	38	9	12	3	0.59	RC
GC159	735670	6710863	467	-90	61	35	10	12	2	0.43	RC
GC160	735670	6710855	466	-87	264	38	9	12	3	0.58	RC
GC161	735674	6710859	467	-89	302	35	10	14	4	0.34	RC
GC162	735679	6710855	466	-90	222	35	9	13	4	0.48	RC
GC163	735675	6710851	466	-89	125	37	10	12	2	0.86	RC
GC164	735762	6710947	455	-90	0	17	0	6	6	0.35	RC
GDH001	735674	6710990	456	-60	128	149.5	0	6	6	1.04	DD
						149.5	57	58	1	2.58	DD
						149.5	68	70	2	3.92	DD
						149.5	86	87	1	0.14	DD
GDH002	735743	6710972	455	-60	130	120	0	5.5	5.5	1.63	DD
						120	12	13	1	0.04	DD
						120	17	21	4	0.47	DD
						120	25	26	1	0.01	DD
						120	66	67	1	6.28	DD
						120	72	73	1	0.01	DD
GDH003	735950	6711217	450	-61	139	120.1	42	43	1	2.16	DD
5011005	, 55550	0711217	-50	01	155	120.1	42	43	1	10.05	DD
						120.1	83	84	1	2.11	DD
GDH004	735842	6710971	458	-61	127	119.3	7.3	11	3.7	0.95	DD
301004	133042	0/109/1	430	-01	127						
						119.3	31	39	8	1.66	DD
CDUIGE	70.5755	(7110	150		100	119.3	51	53	2	16.60	DD
GDH005	735792	6711020	456	-61	130	120.8	1	9	8	0.75	DD
						120.8	17	18	1	17.99	DD
						120.8	70	71	1	0.18	DD
						120.8	89	92	3	1.67	DD
GDH006	735880	6711220	450	-60	130	93.1	48	50	2	0.92	DD

25 August 2021

Hole #	Easting (MGA94_ 50)	Northing (MGA94_ 50)	RL (MGA94_ 50)	Dip (degrees)	Azimuth (MGA94_ 50)	Hole Depth (m)	Interval From (m)	Interval To (m)	Interval (m)	Au (ppm)	Hole Type
						93.1	57	60	3	1.56	DD
						93.1	72	73	1	4.18	DD
GDH007	735838	6711183	451	-60	130	200.3	36	37	1	191.00	DD
						200.3	110	113	3	2.26	DD
						200.3	127	128	1	0.19	DD
GDH008	735831	6711107	460	-61	130	201.8	1	8	7	3.39	DD
						201.8	98	100	2	1.33	DD
						201.8	103	105	2	0.98	DD
JR2192	735693	6710938	456	-90	0	5	0	4	4	0.68	RC
JR2193	735696	6710942	456	-90	0	5	0	2	2	0.51	RC
JR2194	735700	6710946	456	-90	0	5	0	2	2	0.36	RC
JRD001	735797	6711033	453	-60	130	95	69.3	71.9	2.6	18.30	RC
						95	86.57	87.61	1.04	4.10	RC
JRD002	735923	6711121	453	-60	130	46.85	28.3	28.84	0.54	8.97	RC
JRD003	735905	6711206	450	-60	130	70.1	22	22.22	0.22	6.16	RC
						70.1	37	37.36	0.36	6.21	RC
						70.1	60.55	61.05	0.5	2.38	RC
JRD005	735942	6711105	451	-90	0	56	49.4	50.4	1	3.50	RC
JRD007	735922	6711124	451	-90	0	30	28.15	30	1.85	9.55	RC
JRD008	735975	6711077	451	-90	0	27.05	0	2	2	0.18	RC
						27.05	18.27	21.55	3.28	8.33	RC
JRD009	735926	6711136	451	-90	0	43.75	20.95	23.96	3.01	0.90	RC
						43.75	31.78	42.59	10.81	2.59	RC
JRD010	735945	6711070	451	-90	0	32	0	2	2	0.25	RC
						32	21.04	25.25	4.21	3.22	RC
						32	26.05	28.6	2.55	1.56	RC
JRD011	735908	6711049	452	-90	0	38	2	4	2	0.36	RC
			-			38	14	16	2	0.07	RC
						38	32.05	35.76	3.71	4.93	RC
JRR001	735705	6710914	456	-60	130	70	63	65	2	3.00	RC
JRR003	735696	6710989	455	-60	130	69	53	55	2	5.92	RC
JRR004	735771	6710989	454	-60	130	63	0	9	9	6.43	RC
JRR006	735786	6711043	453	-60	130	99	78	83	5	8.02	RC
5141000	100100	0111010	155		100	99	91	97	6	1.38	RC
JRR008	735879	6711027	453	-60	130	69	16	18	2	1.12	RC
	100010	0.11021	155		100	69	31	32	1	8.56	RC
						69	38	39	1	3.00	RC
						69	50	55	1	3.08	RC
JRR009	735892	6711082	452	-60	130	99	50	51	1	0.88	RC
		0.1100L	132		150	99	53	55	2	0.93	RC
JRR010	735930	6711049	452	-60	130	74	28	31	3	8.47	RC
JRR010	735930	6711049	452	-60	130	69	26	31	6	6.77	RC
JRR012	735914	6711129	450	-60	130	69	27	32	5	5.47	RC
2111012	133314	0111125	130	00	130	69	63	65	2	6.02	RC
JRR032	735932	6711114	451	-60	130	72	0	2	2	0.02	RC
3111032	133355	0711114	-10	-00	130	72	22	2	2	3.44	RC
						72	45	47	2	2.50	RC
JRR033	735893	6711148	450	-60	130	102	36	47	9	1.17	RC
3111033	133033	0711140	-+50	-00	130	102	52	54	2	1.17	RC
						102	64 80	69 82	5	1.24	RC
	725000	6711000	45.4	<u> </u>	120	102	80	82	2	0.16	RC
JRR034	735809	6711023	454	-60	130	95	0	4	4	0.59	RC
						95	66	68	2	5.42	RC
						95	78	82	4	0.89	RC

25 August 202	21
---------------	----

Hole #	Easting (MGA94_ 50)	Northing (MGA94_ 50)	RL (MGA94_ 50)	Dip (degrees)	Azimuth (MGA94_ 50)	Hole Depth (m)	Interval From (m)	Interval To (m)	Interval (m)	Au (ppm)	Hole Type
JRR036	735852	6710984	454	-60	130	60	47	49	2	0.87	RC
JRR037	735901	6711007	453	-60	130	54	22	24	2	0.96	RC
JRR038	735858	6711045	453	-60	130	88	22	24	2	1.40	RC
						88	61	62	1	0.91	RC
						88	73	74	1	5.17	RC
JRR039	735912	6711064	452	-60	130	60	18	22	4	3.02	RC
						60	25	27	2	12.19	RC
						60	32	33	1	4.17	RC
						60	40	43	3	0.94	RC
JRR041	735871	6711101	452	-60	130	90	42	44	2	7.54	RC
						90	53	54	1	1.75	RC
						90	70	74	4	5.82	RC
JRR042	735753	6711005	454	-60	130	66	0	8	8	1.58	RC
JRR044	735691	6711061	454	-60	130	108	104	105	1	2.08	RC
JRR045	735741	6710949	460	-60	130	54	5	8	3	1.75	RC
JRR046	735750	6710873	455	-60	130	102	77	99	22	2.86	RC
JRR050	735765	6711061	453	-60	130	120	59	60	1	1.00	RC
JRR051	735837	6711064	453	-60	130	100	75	79	4	1.38	RC
JRR052	735849	6711121	452	-60	130	105	95	97	2	0.78	RC
JRR053	735970	6711080	451	-60	130	36	0	4	4	0.22	RC
						36	20	24	4	17.73	RC
JRR054	735872	6711167	450	-60	130	102	76	80	4	1.01	RC
JRR055	735981	6711137	450	-60	130	60	33	35	2	2.55	RC
JRR056	735959	6711157	450	-60	130	80	53	56	3	1.82	RC
JRR057	735937	6711176	450	-60	130	90	32	34	2	1.39	RC
						90	72	76	4	5.45	RC
JRR058	735916	6711195	450	-60	130	102	19	21	2	1.73	RC
						102	27	30	3	2.23	RC
						102	43	44	1	1.05	RC
						102	48	50	2	5.46	RC
						102	64	66	2	0.86	RC
						102	96	98	2	2.09	RC
JRR059	735894	6711215	450	-60	130	114	36	38	2	3.55	RC
						114	45	49	4	1.81	RC
						114	65	68	3	0.75	RC
JRR060	735872	6711234	450	-60	130	84	40	42	2	1.07	RC
						84	68	70	2	0.86	RC
JRR061	735920	6711196	450	-90	0	66	15	17	2	4.04	RC
					-	66	30	32	2	1.23	RC
						66	47	49	2	1.18	RC
						66	53	61	8	2.21	RC
JRR062	736014	6711175	450	-60	130	60	29	31	2	0.37	RC
						60	32	34	2	1.69	RC
JRR063	735992	6711194	450	-60	130	83	46	48	2	2.09	RC
						83	52	58	6	1.75	RC
JRR064	735971	6711213	450	-60	130	96	33	42	9	3.18	RC
						96	77	78	1	1.50	RC
JRR065	735949	6711233	450	-60	130	102	57	58	1	0.41	RC
						102	96	98	2	1.57	RC
JRR066	735927	6711252	450	-60	130	90	81	82	1	0.36	RC
JRR069	736004	6711252	451	-60	130	89	32	36	4	2.01	RC
5111005	, 30004	57 TLJT	1.01	00	150	89	53	54	4	0.34	RC
						89	77	78	1	0.96	RC
	735918	6711327	451	-60	130	90	21	24	3	0.96	RC

25 August 2021

Hole #	Easting (MGA94_ 50)	Northing (MGA94_ 50)	RL (MGA94_ 50)	Dip (degrees)	Azimuth (MGA94_ 50)	Hole Depth (m)	Interval From (m)	Interval To (m)	Interval (m)	Au (ppm)	Hole Type
		-				90	65	66	1	1.67	RC
JRR073	735944	6711136	451	-60	130	60	51	55	4	1.18	RC
JRR074	735952	6711063	451	-60	130	36	2	4	2	0.34	RC
JRR075	735930	6711082	451	-60	130	48	2	4	2	0.46	RC
						48	19	21	2	2.19	RC
						48	25	32	7	8.68	RC
						48	32	35	3	1.83	RC
JRR076	735873	6710965	454	-60	130	45	2	4	2	0.16	RC
51(1070	133013	0/10505	тл	00	150	45	41	42	1	0.30	RC
JRR078	735687	6710863	457	-60	130	88	59	60	1	3.58	RC
JRR078	735695		452	-60	130	88	24	26	2	5.49	RC
		6711392									
JRR085	735815	6711285	451	-60	130	86	54	55	1	3.00	RC
						86	58	66	8	9.33	RC
JRR089	735938	6711309	451	-60	310	94	21	24	3	2.45	RC
JRR092	735807	6711225	451	-60	130	94	31	33	2	4.49	RC
JRR093	736025	6711231	451	-60	130	65	56	58	2	0.10	RC
JRR094	735982	6711270	451	-60	130	88	38	42	4	4.09	RC
						88	57	58	1	0.01	RC
JRR096	735909	6711101	451	-60	130	70	2	3	1	0.12	RC
						70	32	33	1	2.42	RC
						70	53	55	2	0.68	RC
JRR100	735708	6710844	457	-60	130	55	1	7	6	3.43	RC
	100100	0.10011	107		100	55	42	43	1	3.18	RC
JRR101	735665	6710883	457	-60	130	94	59	60	1	3.58	RC
JRR131	735662		456	-60	130	94		74			RC
		6710953					72		2	3.16	
JRR133	735793	6710969	454	-60	130	86	55	58	3	6.07	RC
JRR134	735796	6711235	451	-60	130	66	59	60	1	2.60	RC
JRR139	735908	6711337	451	-60	130	64	20	24	4	11.83	RC
						64	34	35	1	0.90	RC
JRR140	735886	6711356	451	-60	130	80	45	46	1	1.32	RC
JRR141	735912	6711366	452	-60	130	50	22	24	2	7.83	RC
						50	45	46	1	6.48	RC
JRR142	735891	6711385	452	-60	130	80	20	21	1	1.65	RC
JRR143	735906	6711405	452	-60	130	84	22	24	2	3.29	RC
JRR144	736001	6711253	451	-60	130	66	35	37	2	1.02	RC
						66	54	56	2	0.15	RC
JRR145	735972	6711279	451	-60	130	84	53	55	2	1.36	RC
						84	67	70	3	1.04	RC
JRR146	736031	6711193	450	-60	130	44	28	30	2	0.83	RC
51(1)140	730031	0/11155	430	-00	150						
	726000	6711212	450	60	120	44	33	34	1	0.89	RC
JRR147	736009	6711213	450	-60	130	72	49	52	3	1.50	RC
1004.00	705007	6746000	150	C 2	420	72	54	56	2	0.95	RC
JRR148	735987	6711232	450	-60	130	60	32	34	2	0.52	RC
						60	57	60	3	1.39	RC
JRR150	735981	6711204	450	-60	130	46	21	25	4	0.63	RC
JRR151	735960	6711223	450	-60	130	70	47	51	4	0.70	RC
JRR152	735774	6711121	452	-60	130	84	53	55	2	1.33	RC
						84	65	67	2	3.86	RC
						84	72	74	2	4.98	RC
JRR154	735997	6711156	450	-60	130	48	33	36	3	5.59	RC
JRR155	735974	6711174	450	-60	130	72	55	58	3	0.87	RC
JRR156	735954	6711195	450	-60	130	60	37	41	4	1.23	RC
JRR157	735932	6711214	450	-60	130	74	41	43	2	1.60	RC
5111157	155552	0711214	430	00	150	74	41	43	1	2.17	RC

25 August	2021
-----------	------

Hole #	Easting (MGA94_ 50)	Northing (MGA94_ 50)	RL (MGA94_ 50)	Dip (degrees)	Azimuth (MGA94_ 50)	Hole Depth (m)	Interval From (m)	Interval To (m)	Interval (m)	Au (ppm)	Hole Type
						74	62	68	6	1.05	RC
JRR158	735911	6711233	450	-60	130	75	18	21	3	10.32	RC
						75	53	55	2	2.65	RC
						75	60	61	1	0.45	RC
						75	65	68	3	1.89	RC
JRR159	735970	6711147	450	-60	130	54	43	44	1	3.00	RC
JRR161	735939	6711041	452	-60	130	40	2	4	2	0.55	RC
JRR162	735921	6711056	452	-60	130	45	0	3	3	0.69	RC
						45	22	24	2	1.73	RC
						45	33	34	1	4.17	RC
JRR163	735941	6711072	451	-60	130	46	2	3	1	0.33	RC
5111105	100011	0.11012			100	46	24	30	6	4.15	RC
JRR164	735960	6711089	451	-60	130	40	25	29	4	1.20	RC
JRR165	735982	6711005	450	-60	130	40	2	6	4	0.37	RC
JKK 103	133902	0/110/0	430	-00	130	46	23	26	3	2.03	RC
172	735896	6711146	450	60	120			26			RC
JRR172	735896	6711146	450	-60	130	54	22		3	33.09	
						54	35	40	5	12.34	RC
						54	50	52	2	0.01	RC
JRR173	735904	6711139	451	-60	130	84	28	34	6	1.13	RC
						84	41	43	2	1.45	RC
						84	72	75	3	1.00	RC
JRR174	735919	6711092	451	-60	130	60	2	4	2	0.26	RC
						60	22	23	1	1.97	RC
						60	28	31	3	34.63	RC
						60	34	37	3	5.50	RC
						60	39	43	4	4.15	RC
JRR175	735897	6711111	451	-60	130	76	2	4	2	0.26	RC
						76	17	23	6	7.43	RC
						76	38	40	2	1.71	RC
						76	62	64	2	0.91	RC
JRR176	735887	6711121	451	-60	130	84	0	2	2	3.10	RC
			-			84	53	54	1	1.43	RC
						84	71	77	6	3.22	RC
JRR177	735902	6711073	452	-60	130	60	0	2	2	0.47	RC
51(((177	133302	0/110/5	456	00	150	60	20	22	2	2.22	RC
						60	42	43	1	1.02	RC
						60	42	43	2	1.31	RC
170	725015	6711000	450	60	120	75	2		2		
JRR178	735915	6711028	452	-60	130			4		0.50	RC
						75	24	26	2	2.35	RC
100470	735000	6746949	450	62	420	75	32	36	4	2.41	RC
JRR179	735898	6711043	452	-60	130	77	0	5	5	0.51	RC
						77	18	20	2	1.71	RC
						77	27	32	5	4.48	RC
						77	37	38	1	0.93	RC
						77	46	47	1	2.98	RC
JRR180	735876	6711063	452	-60	130	72	0	4	4	0.36	RC
						72	49	51	2	1.25	RC
						72	60	61	1	2.05	RC
JRR181	735947	6711168	450	-60	130	74	32	33	1	1.35	RC
						74	62	65	3	2.74	RC
JRR183	735923	6711155	451	-60	130	84	20	25	5	17.23	RC
						84	28	31	3	2.83	RC
						84	37	39	2	2.10	RC
						84	71	73	2	3.44	RC

25 August 2021

Hole #	Easting (MGA94_ 50)	Northing (MGA94_ 50)	RL (MGA94_ 50)	Dip (degrees)	Azimuth (MGA94_ 50)	Hole Depth (m)	Interval From (m)	Interval To (m)	Interval (m)	Au (ppm)	Hole Type
JRR184	735956	6711126	451	-60	130	50	47	48	1	0.59	RC
JRR185	735934	6711145	451	-60	130	74	30	34	4	3.32	RC
						74	62	63	1	1.72	RC
JRR186	735912	6711165	451	-60	130	48	16	19	3	0.53	RC
						48	42	48	6	6.73	RC
JRR187	735901	6711175	450	-60	150	65	17	21	4	4.65	RC
						65	61	65	4	1.60	RC
JRR207	735744	6711081	453	-60	130	90	0	4	4	0.44	RC
JRR208	735796	6711101	452	-60	130	65	0	2	2	0.58	RC
JRR231	735899	6711026	453	-60	130	46	22	24	2	3.82	RC
JIIIEJI	133033	0/11020	455	-00	150	46	34	35	1	0.59	RC
						40	38	35	1	1.07	RC
	725007	6711006	450	60	120						
JRR232	735887	6711036	453	-60	130	46	25	30	5	0.98	RC
100000	725005	6744007	450	60	120	46	44	46	2	0.46	RC
JRR233	735905	6711037	452	-60	130	46	21	25	4	0.91	RC
						46	32	34	2	0.01	RC
						46	38	40	2	1.44	RC
JRR234	735894	6711063	452	-60	130	50	18	20	2	4.07	RC
						50	34	40	6	19.63	RC
JRR235	735905	6711054	452	-60	130	50	17	19	2	0.69	RC
						50	22	24	2	2.87	RC
						50	27	31	4	0.95	RC
						50	42	45	3	3.26	RC
JRR236	735916	6711044	450	-60	130	46	21	24	3	1.54	RC
						46	33	36.5	3.5	3.58	RC
JRR237	735935	6711067	450	-60	130	35	16	20	4	1.14	RC
						35	22	28	6	3.53	RC
JRR238	735924	6711077	450	-60	130	46	17	20	3	8.68	RC
						46	25	31	6	3.79	RC
						46	32	35	3	3.14	RC
JRR239	735914	6711087	450	-60	130	50	34	36	2	0.70	RC
51(1255	155511	0/1100/	150	00	150	50	42	47	5	3.19	RC
JRR240	735892	6711106	451	-60	130	46	20	21	1	0.73	RC
JRR241	735965	6711068	450	-60	130	34	24	26	2	1.44	RC
JRR241	735903	6711087	450	-60	130	44	19	20	2	7.15	RC
JNN242	155545	0/1100/	450	-00	130	44	25	31	6	6.12	RC
100242	725022	6711007	450	60	120						
JRR243	735932	6711097	450	-60	130	46	21	22	1	2.76	RC
						46	28	31	3	1.83	RC
10001	70505	(7 111	150	<u> </u>	100	46	35	38	3	3.05	RC
JRR244	735921	6711106	450	-60	130	46	20	22	2	1.32	RC
10.05						46	31	32	1	2.45	RC
JRR245	735911	6711116	450	-60	130	46	33	34	1	3.73	RC
						46	42	44	2	0.87	RC
JRR246	735889	6711135	451	-60	130	48	34	35	1	2.14	RC
JRR247	735981	6711087	450	-60	130	34	20	22	2	10.27	RC
JRR248	735971	6711096	450	-60	130	40	23	29	6	1.67	RC
JRR249	735960	6711106	450	-60	130	40	24	26	2	14.77	RC
JRR250	735949	6711115	450	-60	130	46	36	38	2	0.01	RC
JRR251	735938	6711125	450	-60	130	26	18	22	4	0.45	RC
JRR252	735927	6711135	450	-60	130	46	24	34	10	8.25	RC
JRR253	735916	6711144	450	-60	130	46	18	20	2	1.01	RC
						46	23	27	4	15.24	RC
						46	28	34	6	9.85	RC
JRR254	735906	6711154	450	-60	130	54	30	36	6	1.32	RC

25 August 2	2021
-------------	------

Hole #	Easting (MGA94_ 50)	Northing (MGA94_ 50)	RL (MGA94_ 50)	Dip (degrees)	Azimuth (MGA94_ 50)	Hole Depth (m)	Interval From (m)	Interval To (m)	Interval (m)	Au (ppm)	Hole Type
		-			-	54	43	53	10	5.30	RC
JRR255	735940	6711157	450	-60	130	40	30	33	3	0.84	RC
JRR256	735929	6711167	450	-60	130	48	36	40	4	1.23	RC
G002	735954	6711295	451	-60	130	108				NSA	RC
G009	736018	6711106	449	-60	130	102				NSA	RC
G026	736025	6711146	449	-60	130	80				NSA	RC
G033	735579	6710881	461	-60	130	150				NSA	RC
G035	735645	6710817	458	-60	130	100				NSA	RC
G036	735679	6710786	457	-60	130	84				NSA	RC
G042	736058	6711174	450	-60	130	90				NSA	RC
G044	736104	6711230	453	-60	130	84				NSA	RC
G045	736063	6711250	453	-60	130	100				NSA	RC
G045	736142	6711265	455	-60	130	80				NSA	RC
G055	735375	6711134	454	-90	0	13				NSA	RC
G055	735367	6711123	455	-60	130	13				NSA	RC
G056 G057	735367		455	-60 -90	0	43				NSA	RC
G057 G061	735323	6711063 6711368	455	-90	0	43 97				NSA	RC
G061 G062		6711368 6711043	452	-90 -90	0	97 100				NSA	RC
	735331										
G063	736064	6711200	451	-60	130	100				NSA	RC
G064	736052	6711221	452	-60	130	100				NSA	RC
G069	735937	6711358	452	-61	130	100				NSA	RC
G071	735957	6711250	451	-61	130	102				NSA	RC
G072	735936	6711271	451	-61	130	100				NSA	RC
G074	735892	6711305	451	-62	130	100				NSA	RC
G076	735669	6711403	452	-60	130	84				NSA	RC
G077	735698	6711375	452	-62	130	80				NSA	RC
G095	735720	6711257	451	-61	130	102				NSA	RC
G096	735772	6711204	451	-60	130	96				NSA	RC
G098	735756	6711169	451	-61	130	198				NSA	RC
G099	735750	6711257	451	-60	130	100				NSA	RC
G100	735735	6711293	451	-60	130	78				NSA	RC
G101	735806	6711209	450	-60	130	150				NSA	RC
G102	735820	6711228	450	-60	130	100				NSA	RC
G108	735838	6711341	451	-60	130	90				NSA	RC
G109	735805	6711372	452	-60	130	100				NSA	RC
G111	735845	6711416	452	-60	130	100				NSA	RC
G112	735955	6711339	452	-59	130	103				NSA	RC
G113	735965	6711304	452	-60	130	183				NSA	RC
G117	736003	6711298	452	-60	130	100				NSA	RC
G121	735615	6710712	459	-60	130	80				NSA	RC
G122	735579	6710740	461	-60	130	100				NSA	RC
G122	735547	6710740	463	-60	130	120				NSA	RC
G123	735504	6710811	469	-60	130	150				NSA	RC
G124	735649	6710748	458	-60	130	80				NSA	RC
G125	735613	6710740	459	-60	130	100				NSA	RC
G126	735542	6710773	459	-60	130	150				NSA	RC
G126	735629	6710839	400	-60	130	124				NSA	RC
G146	735563	6710899	462	-60	130	106				NSA	RC
G149	735848	6710912	454	-60	130	100				NSA	RC
G151	736053	6711389	455	-61	130	148				NSA	RC
G152	736172	6711300	456	-61	130	88				NSA	RC
G153	736137	6711329	456	-61	130	106				NSA	RC
G154	736098	6711360	456	-61	130	118				NSA	RC
G155	736215	6711340	459	-62	130	88				NSA	RC

25 August 2	2021
-------------	------

Hole #	Easting (MGA94_ 50)	Northing (MGA94_ 50)	RL (MGA94_ 50)	Dip (degrees)	Azimuth (MGA94_ 50)	Hole Depth (m)	Interval From (m)	Interval To (m)	Interval (m)	Au (ppm)	Hole Type
G156	736176	6711370	458	-61	130	100				NSA	RC
G157	736136	6711400	457	-61	130	120				NSA	RC
G158	736096	6711427	455	-60	130	148				NSA	RC
G159	736257	6711381	460	-61	130	82				NSA	RC
G160	736219	6711408	459	-60	130	100				NSA	RC
G161	736179	6711440	458	-60	130	120				NSA	RC
G162	736138	6711469	456	-61	130	120				NSA	RC
G171	735900	6710926	455	-61	130	100				NSA	RC
G172	735876	6710905	455	-58	132	100				NSA	RC
G176	735856	6710929	455	-60	130	100				NSA	RC
G177	735896	6711267	451	-61	132	186				NSA	RC
G178	735887	6711402	452	-61	130	162				NSA	RC
G183	736057	6711154	450	-60	130	100				NSA	RC
G184	736036	6711173	450	-60	130	100				NSA	RC
G185	736069	6711167	451	-61	130	100				NSA	RC
G186	736049	6711184	451	-61	132	100				NSA	RC
G187	735875	6711288	451	-60	132	100				NSA	RC
G107	736080	6711200	451	-60	130	100				NSA	RC
G200	735960	6711068	443	-61	130	103				NSA	RC
G200	735980	6711086	443	-61	130	103				NSA	RC
G202	735854		442	-61	130	103				NSA	RC
		6711365									
G205	735818	6711362	451	-61	130	103				NSA	RC
G213	736018	6711153	449	-59	130	100				NSA	RC
G214	736102	6711264	454	-60	130	109				NSA	RC
G217	736006	6711132	449	-60	130	114				NSA	RC
G220	736098	6711335	456	-60	130	103				NSA	RC
G222	736080	6711350	456	-60	130	115				NSA	RC
G223	736117	6711318	456	-60	130	108				NSA	RC
G225	735751	6711227	451	-63	130	200				NSA	RC
G226	735983	6711360	453	-60	130	120				NSA	RC
G227	736004	6711378	454	-59	130	120				NSA	RC
G232	735932	6710957	453	-61	130	103				NSA	RC
G233	736080	6711241	453	-61	130	103				NSA	RC
G234	736120	6711246	454	-60	130	85				NSA	RC
G235	736123	6711280	454	-59	130	109				NSA	RC
G236	735856	6711402	452	-60	130	103				NSA	RC
G244	736017	6711120	449	-60	130	102				NSA	RC
G246	736023	6711081	450	-60	130	90				NSA	RC
G248	735958	6711007	451	-65	130	80				NSA	RC
G260	736011	6710951	452	-60	130	30				NSA	RC
G261	736029	6710971	450	-60	130	30				NSA	RC
G262	736055	6711000	450	-60	130	85				NSA	RC
G264	736062	6711028	449	-61	130	31				NSA	RC
G265	736120	6711075	449	-61	130	55				NSA	RC
G266	736105	6711088	449	-60	130	37				NSA	RC
G267	736091	6711104	449	-60	130	37				NSA	RC
G268	736074	6711113	449	-60	130	49				NSA	RC
G269	736059	6711127	449	-61	130	91				NSA	RC
G270	736002	6711139	449	-60	130	31				NSA	RC
G277	736002	6710968	452	-60	130	31				NSA	RC
G278	735990	6710988	452	-60	130	97				NSA	RC
G278 G285	735990	6710981	452	-60	130	31				NSA	RC
G286	736040 736047	6711110 6711137	449 449	-60 -61	130 130	30 40				NSA NSA	RC RC

25 August	2021
-----------	------

Hole #	Easting (MGA94_ 50)	Northing (MGA94_ 50)	RL (MGA94_ 50)	Dip (degrees)	Azimuth (MGA94_ 50)	Hole Depth (m)	Interval From (m)	Interval To (m)	Interval (m)	Au (ppm)	Hole Type
G288	735749	6711148	452	-61	130	210				NSA	RC
G289	735733	6711165	451	-61	130	204				NSA	RC
G290	736065	6711077	449	-61	130	30				NSA	RC
G291	736049	6711043	449	-61	130	30				NSA	RC
G292	736035	6711018	450	-61	130	30				NSA	RC
G293	736014	6710980	451	-61	130	30				NSA	RC
G295	735667	6711119	453	-60	130	210				NSA	RC
G300	735958	6710831	460	-60	130	48				NSA	RC
G301	735978	6710815	459	-61	130	48				NSA	RC
G303	735957	6710793	460	-60	130	48				NSA	RC
G304	735937	6710813	460	-60	130	48				NSA	RC
G305	735884	6710774	461	-89	100	100				NSA	RC
G331	735773	6711214	451	-90	0	102				NSA	RC
G333	735961	6711103	442	-61	130	84				NSA	RC
G336	735926	6711014	446	-51	140	108				NSA	RC
G341	735859	6711318	451	-80	130	84				NSA	RC
G350	735641	6710841	463	-80	130	50				NSA	RC
G354	735922	6710594	458	-60	80	80				NSA	RC
G355	735938	6710598	458	-60	80	60				NSA	RC
G356	735936	6710561	458	-60	80	66				NSA	RC
G357	735959	6710559	457	-60	80	60				NSA	RC
G358	735959	6710519	458	-60	80	60				NSA	RC
G359	735981	6710518	457	-59	80	60				NSA	RC
G360	735996	6710476	458	-60	80	60				NSA	RC
G361	735977	6710475	459	-60	80	60				NSA	RC
G362	735736	6710439	457	-61	90	60				NSA	RC
G363	735779	6710442	457	-60	90	60				NSA	RC
G364	735819	6710439	457	-60	90	66				NSA	RC
G365	735742	6710396	457	-59	90	60				NSA	RC
G366	735781	6710395	457	-60	90	58				NSA	RC
G367	735819	6710398	457	-59	90	60				NSA	RC
G368	735743	6710356	457	-60	90	60				NSA	RC
G369	735782	6710359	457	-60	90	60				NSA	RC
G370	735818	6710356	457	-60	90	60				NSA	RC
G371	735861	6710356	452	-60	90	60				NSA	RC
G372	735723	6710315	453	-60	90	60				NSA	RC
G373	735760	6710317	453	-60	90	60				NSA	RC
G374	735722	6710276	453	-60	50	78				NSA	RC
G375	735759	6710277	453	-59	50	66				NSA	RC
G376	735802	6710275	453	-60	50	66				NSA	RC
G377	735720	6710240	450	-60	50	78				NSA	RC
G378	735759	6710239	450	-60	50	72				NSA	RC
G379	735799	6710240	450	-60	50	72				NSA	RC
G380	735720	6710198	451	-61	50	84				NSA	RC
G381	735757	6710200	450	-61	50	78				NSA	RC
GC001	735640	6710909	468	-90	0	10				NSA	RC
GC002	735636	6710913	468	-90	0	10				NSA	RC
GC003	735632	6710917	468	-90	0	10				NSA	RC
GC004	735627	6710921	468	-90	0	10				NSA	RC
GC005	735623	6710925	469	-90	0	10				NSA	RC
GC006	735644	6710914	468	-90	0	10				NSA	RC
GC007	735640	6710917	468	-90	0	12				NSA	RC
GC008	735635	6710921	468	-90	0	12				NSA	RC
GC009	735631	6710925	468	-90	0	12				NSA	RC

25 August 2	2021
-------------	------

Hole #	Easting (MGA94_ 50)	Northing (MGA94_ 50)	RL (MGA94_ 50)	Dip (degrees)	Azimuth (MGA94_ 50)	Hole Depth (m)	Interval From (m)	Interval To (m)	Interval (m)	Au (ppm)	Hole Type
GC010	735627	6710929	468	-90	0	10				NSA	RC
GC011	735648	6710918	468	-90	0	10				NSA	RC
GC012	735644	6710922	468	-90	0	11				NSA	RC
GC013	735639	6710926	468	-90	0	12				NSA	RC
GC014	735635	6710930	468	-90	0	12				NSA	RC
GC015	735631	6710934	468	-90	0	12				NSA	RC
GC016	735626	6710938	468	-90	0	10				NSA	RC
GC017	735622	6710942	468	-90	0	7				NSA	RC
GC018	735617	6710946	467	-90	0	5				NSA	RC
GC019	735653	6710922	468	-90	0	6				NSA	RC
GC023	735656	6710927	467	-90	0	5				NSA	RC
GC024	735656	6710935	467	-90	0	10				NSA	RC
GC025	735655	6710943	466	-90	0	7				NSA	RC
GC031	735646	6710952	466	-90	0	5				NSA	RC
GC032	735651	6710948	466	-90	0	7				NSA	RC
GC035	735630	6710943	468	-90	0	10				NSA	RC
GC036	735625	6710947	467	-90	0	5				NSA	RC
GC037	735621	6710951	467	-90	0	5				NSA	RC
GC038	735634	6710947	467	-90	0	7				NSA	RC
GC039	735643	6710947	466	-90	0	8				NSA	RC
GC137	735645	6710846	465	-89	75	30				NSA	RC
GC138	735650	6710841	465	-89	14	30				NSA	RC
GC142	735650	6710849	465	-89	181	36				NSA	RC
JRR005	735734	6711022	454	-60	130	80				NSA	RC
JRR007	735718	6711022	453	-60	130	69				NSA	RC
JRR031	735662	6711355	452	-60	130	90				NSA	RC
JRR040	735947	6711034	452	-60	130	40				NSA	RC
JRR040	735712	6711034	454	-60	130	90				NSA	RC
JRR043	735728	6710893	456	-60	130	60				NSA	RC
JRR040	735683	6710933	456	-60	130	90				NSA	RC
JRR049	735906	6711271	450	-60	130	90				NSA	RC
JRR067	736046	6711271	451	-60	130	68				NSA	RC
JRR000	735966	6711213	451	-60	130	42				NSA	RC
JRR072 JRR077	735900		451	-60	130						
		6710855	455	-60	130	40 90				NSA	RC
JRR079	735679	6710803				90 84				NSA	RC
JRR080	735717	6710635	450	-60	130	-				NSA	RC
JRR086	735867	6711239	450	-60	310	82				NSA	RC
JRR087 JRR088	735729 735852	6711429	452 452	-60 -60	130 130	94 103				NSA NSA	RC RC
		6711386								NSA	
JRR091	735848	6711323	451	-60	130	80				NSA	RC
JRR095	735940	6711308	451	-60	130	118 82				NSA NSA	RC
JRR097	735784	6711179	451	-60	130	82				NSA	RC
JRR098	735742	6711283	451	-60	130	70				NSA	RC
JRR099	735750	6711343	451	-60	130	70				NSA	RC
JRR111	735599	6711209	453	-60	130	89				NSA	RC
JRR112	735585	6711155	453	-60	130	110				NSA	RC
JRR113	735555	6711115	454	-60	130	80				NSA	RC
JRR114	735522	6711077	454	-60	130	100				NSA	RC
JRR132	735763	6710929	459	-60	130	80				NSA	RC
JRR135	735809	6711257	451	-60	130	70				NSA	RC
JRR136	735831	6711304	451	-60	130	90				NSA	RC
JRR137	735870	6711303	451	-60	130	60				NSA	RC
JRR149	735944	6711271	451	-60	130	90				NSA	RC
JRR153	735963	6711253	451	-60	130	72				NSA	RC

Hole #	Easting (MGA94_ 50)	Northing (MGA94_ 50)	RL (MGA94_ 50)	Dip (degrees)	Azimuth (MGA94_ 50)	Hole Depth (m)	Interval From (m)	Interval To (m)	Interval (m)	Au (ppm)	Hole Type
JRR160	735932	6711013	452	-60	130	77				NSA	RC
JRR182	735926	6711186	450	-60	130	50				NSA	RC
JRR188	735891	6711184	450	-60	130	70				NSA	RC
JRR189	735676	6711376	452	-60	130	80				NSA	RC
JRR203	735784	6710910	457	-60	130	12				NSA	RC
JRR204	735782	6710912	457	-60	130	42				NSA	RC
JRR205	735836	6710931	454	-60	130	54				NSA	RC
JRR206	735815	6710950	454	-60	130	60				NSA	RC

Drillhole table including all drillholes within project area, including drillholes that are unmineralised and/or not used in mineralisation wireframes.