

Date: 29 September 2021

ASX Code: MAN

Capital Structure

Ordinary Shares: 477,450,570 Unlisted Options: 81,049,350 (3c exercise) Current Share Price: 5.6c Market Capitalisation: \$27M

Debt: Nil

Directors

Patrick Burke Non-Executive Chairman

James Allchurch Managing Director

Lloyd Flint Non-Executive Director Company Secretary

Contact Details

First Floor
10 Outram Street
West Perth WA 6005
Australia
Tel: +61 9200 3743
mandrakeresources.com.au

Encouraging Results at Newleyine – Further Drilling Planned

Highlights

- Assay results received for first three holes drilled at the Newleyine Prospect which include:
 - 7.4m @ 0.29% Ni from 96m (MNEWDD002);
 - 8m @ 0.21% Ni from 122m (MNEWDD002); and
 - 6.6m @ 0.19% Ni and 853ppm Cu from 315.4m (MNEWDD003).
- Results provide impetus for further drilling targeting EM Conductor C drilling scheduled for November 2021.
- Mandrake fully funded with approx \$16.5M in cash

Mandrake Resources Managing Director, James Allchurch, commented:

"Anomalous nickel values associated with ultramafics in Mandrake's second hole are encouraging, suggesting that further drilling is required at Newleyine. Our third and final FLEM conductor (plate C) will be drilled in November with additional holes dependent on further interpretation and drill results'.

'Mandrake will also be continuing investigations into virgin ultramafic bodies located at Tolarno North and Tolarno South. In parallel with the work underway at Jimperding, Mandrake will also be assessing further opportunities when they present'.

Mandrake Resources Limited (ASX: MAN) (**Mandrake** or **the Company**) advises that assay results have been received for the initial drilling programme completed at the Newleyine PGE-nickel-copper prospect.

The drilling programme tested two of three discrete, late-time electromagnetic (EM) bedrock anomalies that geophysical interpretation suggested could be the

response of massive sulphides consistent with Julimar-style PGE-Ni-Cu mineralisation.

DHEM surveys at completed holes provided further conductors that necessitated additional drill testing.

Core was sampled over selected intervals based on lithology and potential mineralisation. All assay results are provided in Table 1.

MNEWDD001

MNEWDD001, targeting the eastern-most conductor plate B, encountered almost exclusively ultramafic rock (serpentinite) with regular zones of disseminated and vein-filled sulphides (primarily pyrite and pyrrhotite) up to 4% by volume sulphides.

The down-hole electromagnetic (DHEM) survey at MNEWDD001 identified a very strong, late-time off-hole conductor plate with ~7,000 Siemens conductance. MNEWDD003 targeted this off-hole conductor.

MNEWDD001 returned 2.6m @ 0.21% Ni from 134.37m in an ultramafic serpentinite-dunite.

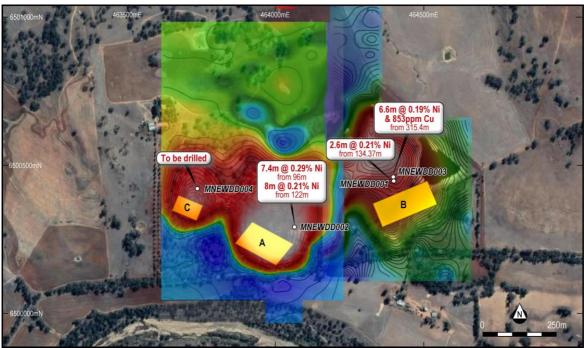


Figure 1 – Newleyine prospect showing FLEM EM conductors (A, B and C) and drill results

MNEWDD002

MNEWDD002 targeted fixed loop electromagnetic (FLEM) conductor plate A and returned zones of semi-massive sulphides with visible chalcopyrite (see ASX release dated 14 July 2021).

Two broad intervals of nickel mineralisation were identified within peridotite and serpentinite zones:

- 7.4m @ 0.29% Ni from 96m (MNEWDD002); and
- 8m @ 0.21% Ni from 122m (MNEWDD002).

The down-hole electromagnetic survey (DHEM) at MNEWDD002 identified a very strong, late-time off-hole conductor plate with \sim 5,000 Siemens conductance. The conductor is strongly confined and measures approximately of 40 x 30m. This conductor is yet to be drilled.

MNEWDD003

MNEWDD003 primarily comprised mafic-ultramafic rocks serpentinite and amphibolite with zones of disseminated and vein-filled sulphides (primarily pyrite and pyrrhotite) up to 2% sulphides by volume.

Semi massive and massive sulphide zones were observed from 286.2m downhole depth associated primarily with banded iron formation with minor ultramafic rocks and mafic metasediments. The sulphide zones appear proximal to the overlying ultramafic contact (with some ultramafic zones within the sulphidic zone) and are composed primarily of pyrrhotite and minor chalcopyrite.

The best results from within this zone include:

6.6m @ 0.19% Ni and 853ppm Cu from 315.4m

Next Steps

Drilling is scheduled for November 2021, with MNEWDD004 (testing conductor plate C) the next hole to be drilled.

Mandrake will also be continuing investigations into the virgin ultramafic bodies located at Tolarno North and Tolarno South. In parallel with the work underway at Jimperding, Mandrake will also be assessing further opportunities when they present.

This announcement has been authorized by the board of directors of Mandrake.

About Mandrake Resources

Mandrake is a junior exploration company established with the purpose of exploring and developing gold, nickel, copper and PGE opportunities. The Company controls 100% of a 140km² exploration licence prospective for PGE-Ni-Cu in the exciting Jimperding Metamorphic Belt, 70km NE of Perth.

Mandrake also owns a mineral exploration project located in the prolific Pine Creek Orogen of the Northern Territory prospective for gold, silver and base metals.

For further information visit www.mandrakeresources.com.au

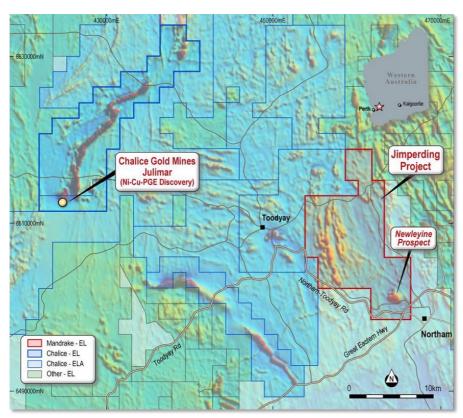


Figure 2 - Regional aeromagnetics – Jimperding Project

Competent Persons Statement

The technical information in this announcement complies with the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (JORC Code) and has been compiled and assessed under the supervision of Mr James Allchurch, Managing Director of Mandrake Resources. Mr Allchurch is a Member of the Australian Institute of Geoscientists. He has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the JORC Code. Mr Allchurch consents to the inclusion in this announcement of the matters based on his information in the form and context in which it appears.

Table 1: Drill Hole Details

Hole_ID	East*	North*	Azimuth (deg)	Dip (deg)	RL (m)	Total Depth (m)
MNEWDD001	464397	6500470	146	65	160	320.2
MNEWDD002	464064	6500292	165	58	240	214.75
MNEWDD003	464395	6500464	148	58	164	362.9

^{* -} Coordinates are in GDA94 MGA Zone 52

Table 2: Assay Results

Sample ID	Drill hole	From	То	Interval	Ni (ppm)	Cu (ppm)	Pt (ppb)	Pd (ppb)
MN001	MNEWDD001	125.1	126	0.9	1280	168	10	25
MN002	MNEWDD001	126	127.3	1.3	1080	274	<lor< td=""><td>25</td></lor<>	25
MN003	MNEWDD001	127.3	127.68	0.38	814	243	<lor< td=""><td>15</td></lor<>	15
MN004	MNEWDD001	126.68	129	2.32	728	205	<lor< td=""><td>15</td></lor<>	15
MN005	MNEWDD001	129	130.06	1.06	724	161	<lor< td=""><td>10</td></lor<>	10
MN006	MNEWDD001	130.06	130.42	0.36	356	74	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
MN007	MNEWDD001	130.42	130.82	0.4	2170	363	10	35
MN008	MNEWDD001	131.82	131.3	1.48	148	55	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
MN009	MNEWDD001	131.3	132	0.7	280	126	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
MN011	MNEWDD001	132	133	1.0	516	237	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
MN012	MNEWDD001	133	133.75	0.75	822	241	<lor< td=""><td>10</td></lor<>	10
MN013	MNEWDD001	133.75	134.37	0.62	78	7	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
MN014	MNEWDD001	134.37	137	2.63	1390	74	<lor< td=""><td>10</td></lor<>	10
MN015	MNEWDD001	137	138	1.0	2230	68	10	<lor< td=""></lor<>
MN016	MNEWDD001	138	139	1.0	1980	82	35	45
MN017	MNEWDD002	95.5	96	0.5	2070	94	35	65
MN018	MNEWDD002	96	97	1.0	2550	117	45	50
MN019	MNEWDD002	97	98	1.0	2300	85	50	30
MN020	MNEWDD002	98	99	1.0	2540	92	30	30
MN021	MNEWDD002	99	100	1.0	2990	152	35	35
MN022	MNEWDD002	99	100	1.0	2780	136	25	25
MN023	MNEWDD002	100	101	1.0	3030	161	30	30
MN024	MNEWDD002	101	102	1.0	2760	164	35	35
MN025	MNEWDD002	102	102.4	0.4	2870	143	25	25

MNO26	Sample ID	Drill hole	From	То	Interval	Ni (nnm)	Cu (nnm)	Pt (mmh)	Pd (nnh)
MNO27 MNEWDD002 121 122 1.0 494 385 10 15 MN028 MNEWDD002 122 123 1.0 1860 69 25 40 MN029 MNEWDD002 123 124 1.0 2650 41 25 55 MN030 MNEWDD002 123 124 1.0 2650 41 25 55 MN031 MNEWDD002 126 127 1.0 1810 77 <tc>LCR 15 MN031 MNEWDD002 126 127 1.0 1910 35 25 50 MN033 MNEWDD002 126 127 1.0 1690 79 10 30 MN034 MNEWDD002 129 130 1.0 2120 35 20 40 MN036 MNEWDD002 130 130.6 0.6 1310 123 20 35 MN038 MNEWDD002 131 132 <</tc>						(ppm)	(ppm)	(ppb)	(ppb)
MNO28 MNEWDDO02 122 123 1.0 1860 69 25 40 MNO29 MNEWDDO02 123 124 1.0 2650 41 25 55 MN030 MNEWDDO02 124 125 1.0 1810 77 <lor< th=""> 15 MN031 MNEWDDO02 126 127 1.0 1910 35 25 50 MN033 MNEWDD002 126 127 1.0 1910 35 25 50 MN033 MNEWDD002 128 1.0 2770 60 20 40 MN033 MNEWDD002 128 129 1.0 1690 79 10 30 MN034 MNEWDD002 130 130.6 0.6 1310 123 20 40 MN035 MNEWDD002 130 130.6 0.6 1310 123 20 35 MN037 MNEWDD002 131 132 1.0 <</lor<>			120.15	121	0.85	204	151	<lor< td=""><td>10</td></lor<>	10
MNO29 MNEWDDO02 123 124 1.0 2650 41 25 55 MN030 MNEWDD002 124 125 1.0 1810 77 < LOR 15 MN031 MNEWDD002 124 125 1.0 1810 77 < LOR 15 MN031 MNEWDD002 124 127 1.0 1910 35 25 50 MN033 MNEWDD002 128 129 1.0 1690 79 10 30 MN034 MNEWDD002 128 129 1.0 1690 79 10 30 MN035 MNEWDD002 130 130.6 0.6 1310 123 20 35 MN037 MNEWDD002 130.6 131 0.4 1040 460 20 25 MN038 MNEWDD002 131 132 1.0 1160 527 10 35 MN040 MNEWDD002 133 134			121	122	1.0	494	385	10	15
MN030 MNEWDD002 124 125 1.0 1810 77 < LOR 15 MN031 MNEWDD002 125 126 1.0 2450 47 25 45 MN032 MNEWDD002 126 127 1.0 1910 35 25 50 MN033 MNEWDD002 127 128 1.0 2770 60 20 40 MN034 MNEWDD002 129 130 1.0 2120 35 20 40 MN035 MNEWDD002 130 130.6 0.6 1310 123 20 35 MN036 MNEWDD002 130.6 131 0.4 1040 460 20 25 MN037 MNEWDD002 131 132 1.0 1160 527 10 35 MN038 MNEWDD002 133 134 1.0 712 202 10 25 MN040 MNEWDD002 134 135.09			122	123	1.0	1860	69	25	40
MN031 MNEWDD002 125 126 1.0 2450 47 25 45 MN032 MNEWDD002 126 127 1.0 1910 35 25 50 MN033 MNEWDD002 127 128 1.0 2770 60 20 40 MN034 MNEWDD002 128 129 1.0 1690 79 10 30 MN035 MNEWDD002 130 130.6 0.6 1310 123 20 35 MN036 MNEWDD002 130.6 131 0.4 1040 460 20 25 MN037 MNEWDD002 131 132 1.0 1160 527 10 35 MN039 MNEWDD002 131 132 1.0 1160 527 10 35 MN040 MNEWDD002 133 134 1.0 712 202 10 25 MN041 MNEWDD002 134 135.09			123	124	1.0	2650	41	25	55
MN032 MNEWDD002 126 127 1.0 1910 35 25 50 MN033 MNEWDD002 127 128 1.0 2770 60 20 40 MN034 MNEWDD002 128 129 1.0 1690 79 10 30 MN035 MNEWDD002 130 130.6 0.6 1310 123 20 35 MN037 MNEWDD002 130.6 131 0.4 1040 460 20 25 MN038 MNEWDD002 131 132 1.0 1160 527 10 35 MN039 MNEWDD002 133 134 1.0 712 202 10 25 MN041 MNEWDD002 133 134 1.0 712 202 10 25 MN041 MNEWDD002 134 135.09 1.09 1060 450 20 35 MN042 MNEWD0002 134 135.09	MN030	MNEWDD002	124	125	1.0	1810	77	<lor< td=""><td>15</td></lor<>	15
MN033 MNEWDD002 127 128 1.0 2770 60 20 40 MN034 MNEWDD002 128 129 1.0 1690 79 10 30 MN035 MNEWDD002 129 130 1.0 2120 35 20 40 MN036 MNEWDD002 130.6 0.6 1310 123 20 35 MN037 MNEWDD002 130.6 131 0.4 1040 460 20 25 MN038 MNEWDD002 131 132 1.0 1160 527 10 35 MN040 MNEWDD002 133 134 1.0 712 202 10 25 MN041 MNEWDD002 134 135.09 1.09 1060 450 20 35 MN042 MNEWDD002 134.1 135.09 1.09 1000 424 10 35 MN043 MNEWDD002 134.1 135.09 1.	MN031	MNEWDD002	125	126	1.0	2450	47	25	45
MN034 MNEWDD002 128 129 1.0 1690 79 10 30 MN035 MNEWDD002 129 130 1.0 2120 35 20 40 MN036 MNEWDD002 130 130.6 0.6 1310 123 20 35 MN037 MNEWDD002 130.6 131 0.4 1040 460 20 25 MN038 MNEWDD002 131 132 1.0 1160 527 10 35 MN039 MNEWDD002 133 134 1.0 712 202 10 25 MN040 MNEWDD002 134 135.09 1.09 1060 450 20 35 MN041 MNEWDD002 134 135.09 1.09 1000 424 10 35 MN042 MNEWDD002 138.42 138.72 0.3 520 203 10 10 MN044 MNEWDD002 139.2 1	MN032	MNEWDD002	126	127	1.0	1910	35	25	50
MNO35 MNEWDD002 129 130 1.0 2120 35 20 40 MN036 MNEWDD002 130 130.6 0.6 1310 123 20 35 MN037 MNEWDD002 130.6 131 0.4 1040 460 20 25 MN038 MNEWDD002 131 132 1.0 1160 527 10 35 MN040 MNEWDD002 132 133 1.0 804 176 10 25 MN041 MNEWDD002 133 134 1.0 712 202 10 25 MN041 MNEWDD002 134 135.09 1.09 1060 450 20 35 MN042 MNEWDD002 138.42 138.72 0.3 520 203 10 10 MN043 MNEWDD002 139.2 140.19 0.99 800 345 10 15 MN045 MNEWDD002 140.19 <td< td=""><td>MN033</td><td>MNEWDD002</td><td>127</td><td>128</td><td>1.0</td><td>2770</td><td>60</td><td>20</td><td>40</td></td<>	MN033	MNEWDD002	127	128	1.0	2770	60	20	40
MN036 MNEWDD002 130 130.6 0.6 1310 123 20 35 MN037 MNEWDD002 130.6 131 0.4 1040 460 20 25 MN038 MNEWDD002 131 132 1.0 1160 527 10 35 MN039 MNEWDD002 132 133 1.0 804 176 10 25 MN040 MNEWDD002 133 134 1.0 712 202 10 25 MN041 MNEWDD002 134 135.09 1.09 1060 450 20 35 MN042 MNEWDD002 134 135.09 1.09 1000 424 10 35 MN043 MNEWDD002 138.42 138.72 0.3 520 203 10 10 MN044 MNEWDD002 139.2 140.19 0.99 800 345 10 15 MN045 MNEWDD002 140.19	MN034	MNEWDD002	128	129	1.0	1690	79	10	30
MN037 MNEWDD002 130.6 131 0.4 1040 460 20 25 MN038 MNEWDD002 131 132 1.0 1160 527 10 35 MN039 MNEWDD002 132 133 1.0 804 176 10 25 MN040 MNEWDD002 133 134 1.0 712 202 10 25 MN041 MNEWDD002 134 135.09 1.09 1060 450 20 35 MN042 MNEWDD002 134 135.09 1.09 1000 424 10 35 MN042 MNEWDD002 138.42 138.72 0.3 520 203 10 10 MN043 MNEWDD002 138.72 139.2 0.48 1650 923 <lor< td=""> <lor< td=""> MN044 MNEWDD002 139.2 140.19 0.99 800 345 10 15 MN046 MNEWDD002 140.19<td>MN035</td><td>MNEWDD002</td><td>129</td><td>130</td><td>1.0</td><td>2120</td><td>35</td><td>20</td><td>40</td></lor<></lor<>	MN035	MNEWDD002	129	130	1.0	2120	35	20	40
MN038 MNEWDD002 131 132 1.0 1160 527 10 35 MN039 MNEWDD002 132 133 1.0 804 176 10 25 MN040 MNEWDD002 133 134 1.0 712 202 10 25 MN041 MNEWDD002 134 135.09 1.09 1060 450 20 35 MN042 MNEWDD002 134 135.09 1.09 1000 424 10 35 MN043 MNEWDD002 138.42 138.72 0.3 520 203 10 10 MN044 MNEWDD002 138.72 139.2 0.48 1650 923 <lor< td=""> <lor< td=""> MN045 MNEWDD002 139.2 140.19 0.99 800 345 10 15 MN046 MNEWDD002 141.2 142 0.8 1150 419 10 15 MN048 MNEWDD002 142</lor<></lor<>	MN036	MNEWDD002	130	130.6	0.6	1310	123	20	35
MN039 MNEWDD002 132 133 1.0 804 176 10 25 MN040 MNEWDD002 133 134 1.0 712 202 10 25 MN041 MNEWDD002 134 135.09 1.09 1060 450 20 35 MN042 MNEWDD002 134 135.09 1.09 1000 424 10 35 MN043 MNEWDD002 138.42 138.72 0.3 520 203 10 10 MN044 MNEWDD002 138.72 139.2 0.48 1650 923 <lor< td=""> <lor< td=""> MN045 MNEWDD002 139.2 140.19 0.99 800 345 10 15 MN046 MNEWDD002 140.19 141.2 1.01 938 547 10 25 MN048 MNEWDD002 142 143 1.0 686 179 10 15 MN050 MNEWDD002 143</lor<></lor<>	MN037	MNEWDD002	130.6	131	0.4	1040	460	20	25
MN040 MNEWDD002 133 134 1.0 712 202 10 25 MN041 MNEWDD002 134 135.09 1.09 1060 450 20 35 MN042 MNEWDD002 134 135.09 1.09 1000 424 10 35 MN043 MNEWDD002 138.42 138.72 0.3 520 203 10 10 MN044 MNEWDD002 138.72 139.2 0.48 1650 923 <lor< td=""> <lor< td=""> MN045 MNEWDD002 139.2 140.19 0.99 800 345 10 15 MN046 MNEWDD002 140.19 141.2 1.01 938 547 10 25 MN048 MNEWDD002 141.2 142 0.8 1150 419 10 15 MN050 MNEWDD002 143 144 1.0 428 154 <lor< td=""> 10 MN051 MNEWDD002 144</lor<></lor<></lor<>	MN038	MNEWDD002	131	132	1.0	1160	527	10	35
MN041 MNEWDD002 134 135.09 1.09 1060 450 20 35 MN042 MNEWDD002 134 135.09 1.09 1000 424 10 35 MN043 MNEWDD002 138.42 138.72 0.3 520 203 10 10 MN044 MNEWDD002 138.72 139.2 0.48 1650 923 <lor< td=""> <lor< td=""> MN045 MNEWDD002 139.2 140.19 0.99 800 345 10 15 MN046 MNEWDD002 140.19 141.2 1.01 938 547 10 25 MN048 MNEWDD002 141.2 142 0.8 1150 419 10 15 MN049 MNEWDD002 142 143 1.0 686 179 10 15 MN050 MNEWDD002 144 145 1.0 166 194 <lor< td=""> <lor< td=""> MN051 MNEWDD002 1</lor<></lor<></lor<></lor<>	MN039	MNEWDD002	132	133	1.0	804	176	10	25
MN042 MNEWDD002 134 135.09 1.09 1000 424 10 35 MN043 MNEWDD002 138.42 138.72 0.3 520 203 10 10 MN044 MNEWDD002 138.72 139.2 0.48 1650 923 <lor< td=""> <lor< td=""> MN045 MNEWDD002 139.2 140.19 0.99 800 345 10 15 MN046 MNEWDD002 140.19 141.2 1.01 938 547 10 25 MN048 MNEWDD002 141.2 142 0.8 1150 419 10 15 MN049 MNEWDD002 142 143 1.0 686 179 10 15 MN050 MNEWDD002 143 144 1.0 428 154 <lor< td=""> 10 MN051 MNEWDD002 144 145 1.0 166 194 <lor< td=""> <lor< td=""> MN052 MNEWDD002 145.</lor<></lor<></lor<></lor<></lor<>	MN040	MNEWDD002	133	134	1.0	712	202	10	25
MN043 MNEWDD002 138.42 138.72 0.3 520 203 10 10 MN044 MNEWDD002 138.72 139.2 0.48 1650 923 <lor< td=""> <lor< td=""> MN045 MNEWDD002 139.2 140.19 0.99 800 345 10 15 MN046 MNEWDD002 140.19 141.2 1.01 938 547 10 25 MN048 MNEWDD002 141.2 142 0.8 1150 419 10 15 MN049 MNEWDD002 142 143 1.0 686 179 10 15 MN050 MNEWDD002 143 144 1.0 428 154 <lor< td=""> 10 MN051 MNEWDD002 144 145 1.0 166 194 <lor< td=""> <lor< td=""> MN052 MNEWDD002 145.145.29 0.29 644 563 10 10 MN053 MNEWDD002 146.18 <t< td=""><td>MN041</td><td>MNEWDD002</td><td>134</td><td>135.09</td><td>1.09</td><td>1060</td><td>450</td><td>20</td><td>35</td></t<></lor<></lor<></lor<></lor<></lor<>	MN041	MNEWDD002	134	135.09	1.09	1060	450	20	35
MN044 MNEWDD002 138.72 139.2 0.48 1650 923 <lor< th=""> MN045 MNEWDD002 139.2 140.19 0.99 800 345 10 15 MN046 MNEWDD002 140.19 141.2 1.01 938 547 10 25 MN048 MNEWDD002 141.2 142 0.8 1150 419 10 15 MN049 MNEWDD002 142 143 1.0 686 179 10 15 MN050 MNEWDD002 143 144 1.0 428 154 <lor< td=""> 10 MN051 MNEWDD002 144 145 1.0 166 194 <lor< td=""> <lor< td=""> MN052 MNEWDD002 145 145.29 0.29 644 563 10 10 MN053 MNEWDD002 146.18 147.35 1.17 198 214 <lor< td=""> <lor< td=""> MN054 MNEWDD003 305 3</lor<></lor<></lor<></lor<></lor<></lor<>	MN042	MNEWDD002	134	135.09	1.09	1000	424	10	35
MN045 MNEWDD002 139.2 140.19 0.99 800 345 10 15 MN046 MNEWDD002 140.19 141.2 1.01 938 547 10 25 MN048 MNEWDD002 141.2 142 0.8 1150 419 10 15 MN049 MNEWDD002 142 143 1.0 686 179 10 15 MN050 MNEWDD002 143 144 1.0 428 154 <lor< td=""> 10 MN051 MNEWDD002 143 144 1.0 428 154 <lor< td=""> 10 MN051 MNEWDD002 144 145 1.0 166 194 <lor< td=""> <lor< td=""> MN052 MNEWDD002 145.29 0.29 644 563 10 10 MN053 MNEWDD002 146.18 147.35 1.17 198 214 <lor< td=""> <lor< td=""> MN054 MNEWDD003 305 305.4<td>MN043</td><td>MNEWDD002</td><td>138.42</td><td>138.72</td><td>0.3</td><td>520</td><td>203</td><td>10</td><td>10</td></lor<></lor<></lor<></lor<></lor<></lor<>	MN043	MNEWDD002	138.42	138.72	0.3	520	203	10	10
MN046 MNEWDD002 140.19 141.2 1.01 938 547 10 25 MN048 MNEWDD002 141.2 142 0.8 1150 419 10 15 MN049 MNEWDD002 142 143 1.0 686 179 10 15 MN050 MNEWDD002 143 144 1.0 428 154 10 MN051 MNEWDD002 144 145 1.0 166 194	MN044	MNEWDD002	138.72	139.2	0.48	1650	923	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
MN048 MNEWDD002 141.2 142 0.8 1150 419 10 15 MN049 MNEWDD002 142 143 1.0 686 179 10 15 MN050 MNEWDD002 143 144 1.0 428 154 <lor< td=""> 10 MN051 MNEWDD002 144 145 1.0 166 194 <lor< td=""> <lor< td=""> MN052 MNEWDD002 145 145.29 0.29 644 563 10 10 MN053 MNEWDD002 145.29 146.18 0.89 920 477 10 15 MN054 MNEWDD002 146.18 147.35 1.17 198 214 <lor< td=""> <lor< td=""> MN055 MNEWDD003 305 305.4 0.4 68 39 <lor< td=""> <lor< td=""> MN056 MNEWDD003 305.4 306 0.6 354 294 <lor< td=""> <lor< td=""> MN057 MNEWDD003 307.09</lor<></lor<></lor<></lor<></lor<></lor<></lor<></lor<></lor<>	MN045	MNEWDD002	139.2	140.19	0.99	800	345	10	15
MN049 MNEWDD002 142 143 1.0 686 179 10 15 MN050 MNEWDD002 143 144 1.0 428 154 <lor< td=""> 10 MN051 MNEWDD002 144 145 1.0 166 194 <lor< td=""> <lor< td=""> MN052 MNEWDD002 145 145.29 0.29 644 563 10 10 MN053 MNEWDD002 145.29 146.18 0.89 920 477 10 15 MN054 MNEWDD002 146.18 147.35 1.17 198 214 <lor< td=""> <lor< td=""> MN055 MNEWDD003 305 305.4 0.4 68 39 <lor< td=""> <lor< td=""> MN056 MNEWDD003 305.4 306 0.6 354 294 <lor< td=""> <lor< td=""> MN057 MNEWDD003 307.09 1.09 638 575 <lor< td=""> 25 MN059 MNEWDD003 307.65</lor<></lor<></lor<></lor<></lor<></lor<></lor<></lor<></lor<></lor<>	MN046	MNEWDD002	140.19	141.2	1.01	938	547	10	25
MN050 MNEWDD002 143 144 1.0 428 154 <lor< th=""> 10 MN051 MNEWDD002 144 145 1.0 166 194 <lor< td=""> <lor< td=""> MN052 MNEWDD002 145 145.29 0.29 644 563 10 10 MN053 MNEWDD002 145.29 146.18 0.89 920 477 10 15 MN054 MNEWDD002 146.18 147.35 1.17 198 214 <lor< td=""> <lor< td=""> MN055 MNEWDD002 158.43 158.8 0.37 42 477 <lor< td=""> <lor< td=""> MN056 MNEWDD003 305 305.4 0.4 68 39 <lor< td=""> <lor< td=""> MN057 MNEWDD003 305.4 306 0.6 354 294 <lor< td=""> <lor< td=""> MN058 MNEWDD003 307.09 1.09 638 575 <lor< td=""> 25 MN059 MNEWDD003 307.65</lor<></lor<></lor<></lor<></lor<></lor<></lor<></lor<></lor<></lor<></lor<></lor<>	MN048	MNEWDD002	141.2	142	0.8	1150	419	10	15
MN051 MNEWDD002 144 145 1.0 166 194 <lor< th=""> <lor< th=""> MN052 MNEWDD002 145 145.29 0.29 644 563 10 10 MN053 MNEWDD002 145.29 146.18 0.89 920 477 10 15 MN054 MNEWDD002 146.18 147.35 1.17 198 214 <lor< td=""> <lor< td=""> MN055 MNEWDD002 158.43 158.8 0.37 42 477 <lor< td=""> <lor< td=""> MN056 MNEWDD003 305 305.4 0.4 68 39 <lor< td=""> <lor< td=""> MN057 MNEWDD003 305.4 306 0.6 354 294 <lor< td=""> <lor< td=""> MN058 MNEWDD003 306 307.09 1.09 638 575 <lor< td=""> 25 MN059 MNEWDD003 307.65 0.56 2410 1060 <lor< td=""> 40 MN060 MNEWDD003 313</lor<></lor<></lor<></lor<></lor<></lor<></lor<></lor<></lor<></lor<></lor<></lor<>	MN049	MNEWDD002	142	143	1.0	686	179	10	15
MN052 MNEWDD002 145 145.29 0.29 644 563 10 10 MN053 MNEWDD002 145.29 146.18 0.89 920 477 10 15 MN054 MNEWDD002 146.18 147.35 1.17 198 214 <lor< td=""> <lor< td=""> MN055 MNEWDD002 158.43 158.8 0.37 42 477 <lor< td=""> <lor< td=""> MN056 MNEWDD003 305 305.4 0.4 68 39 <lor< td=""> <lor< td=""> MN057 MNEWDD003 305.4 306 0.6 354 294 <lor< td=""> <lor< td=""> MN058 MNEWDD003 306 307.09 1.09 638 575 <lor< td=""> 25 MN059 MNEWDD003 307.65 0.56 2410 1060 <lor< td=""> 40 MN060 MNEWDD003 313 314 1.0 666 277 5 15 MN062 MNEWDD003 314</lor<></lor<></lor<></lor<></lor<></lor<></lor<></lor<></lor<></lor<>	MN050	MNEWDD002	143	144	1.0	428	154	<lor< td=""><td>10</td></lor<>	10
MN053 MNEWDD002 145.29 146.18 0.89 920 477 10 15 MN054 MNEWDD002 146.18 147.35 1.17 198 214 <lor< td=""> <lor< td=""> MN055 MNEWDD002 158.43 158.8 0.37 42 477 <lor< td=""> <lor< td=""> MN056 MNEWDD003 305 305.4 0.4 68 39 <lor< td=""> <lor< td=""> MN057 MNEWDD003 305.4 306 0.6 354 294 <lor< td=""> <lor< td=""> MN058 MNEWDD003 306 307.09 1.09 638 575 <lor< td=""> 25 MN059 MNEWDD003 307.09 307.65 0.56 2410 1060 <lor< td=""> 40 MN060 MNEWDD003 313 314 1.0 666 277 5 15 MN062 MNEWDD003 314 315 1.0 588 292 5 15</lor<></lor<></lor<></lor<></lor<></lor<></lor<></lor<></lor<></lor<>	MN051	MNEWDD002	144	145	1.0	166	194	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
MN054 MNEWDD002 146.18 147.35 1.17 198 214 <lor< th=""> <lor< th=""> MN055 MNEWDD002 158.43 158.8 0.37 42 477 <lor< td=""> <lor< td=""> MN056 MNEWDD003 305 305.4 0.4 68 39 <lor< td=""> <lor< td=""> MN057 MNEWDD003 305.4 306 0.6 354 294 <lor< td=""> <lor< td=""> MN058 MNEWDD003 306 307.09 1.09 638 575 <lor< td=""> 25 MN059 MNEWDD003 307.09 307.65 0.56 2410 1060 <lor< td=""> 40 MN060 MNEWDD003 313 314 1.0 666 277 5 15 MN062 MNEWDD003 314 315 1.0 588 292 5 15</lor<></lor<></lor<></lor<></lor<></lor<></lor<></lor<></lor<></lor<>	MN052	MNEWDD002	145	145.29	0.29	644	563	10	10
MN055 MNEWDD002 158.43 158.8 0.37 42 477 <lor< th=""> <lor< th=""> MN056 MNEWDD003 305 305.4 0.4 68 39 <lor< td=""> <lor< td=""> MN057 MNEWDD003 305.4 306 0.6 354 294 <lor< td=""> <lor< td=""> MN058 MNEWDD003 306 307.09 1.09 638 575 <lor< td=""> 25 MN059 MNEWDD003 307.09 307.65 0.56 2410 1060 <lor< td=""> 40 MN060 MNEWDD003 307.65 308.19 0.54 1050 800 5 45 MN061 MNEWDD003 313 314 1.0 666 277 5 15 MN062 MNEWDD003 314 315 1.0 588 292 5 15</lor<></lor<></lor<></lor<></lor<></lor<></lor<></lor<>	MN053	MNEWDD002	145.29	146.18	0.89	920	477	10	15
MN056 MNEWDD003 305 305.4 0.4 68 39 <lor< th=""> <lor< th=""> MN057 MNEWDD003 305.4 306 0.6 354 294 <lor< td=""> <lor< td=""> MN058 MNEWDD003 306 307.09 1.09 638 575 <lor< td=""> 25 MN059 MNEWDD003 307.09 307.65 0.56 2410 1060 <lor< td=""> 40 MN060 MNEWDD003 307.65 308.19 0.54 1050 800 5 45 MN061 MNEWDD003 313 314 1.0 666 277 5 15 MN062 MNEWDD003 314 315 1.0 588 292 5 15</lor<></lor<></lor<></lor<></lor<></lor<>	MN054	MNEWDD002	146.18	147.35	1.17	198	214	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
MN057 MNEWDD003 305.4 306 0.6 354 294 <lor< th=""> <lor< th=""> MN058 MNEWDD003 306 307.09 1.09 638 575 <lor< td=""> 25 MN059 MNEWDD003 307.09 307.65 0.56 2410 1060 <lor< td=""> 40 MN060 MNEWDD003 307.65 308.19 0.54 1050 800 5 45 MN061 MNEWDD003 313 314 1.0 666 277 5 15 MN062 MNEWDD003 314 315 1.0 588 292 5 15</lor<></lor<></lor<></lor<>	MN055	MNEWDD002	158.43	158.8	0.37	42	477	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
MN057 MNEWDD003 305.4 306 0.6 354 294 <lor< th=""> <lor< th=""> MN058 MNEWDD003 306 307.09 1.09 638 575 <lor< td=""> 25 MN059 MNEWDD003 307.09 307.65 0.56 2410 1060 <lor< td=""> 40 MN060 MNEWDD003 307.65 308.19 0.54 1050 800 5 45 MN061 MNEWDD003 313 314 1.0 666 277 5 15 MN062 MNEWDD003 314 315 1.0 588 292 5 15</lor<></lor<></lor<></lor<>	MN056	MNEWDD003	305	305.4	0.4	68	39	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
MN059 MNEWDD003 307.09 307.65 0.56 2410 1060 <lor< th=""> 40 MN060 MNEWDD003 307.65 308.19 0.54 1050 800 5 45 MN061 MNEWDD003 313 314 1.0 666 277 5 15 MN062 MNEWDD003 314 315 1.0 588 292 5 15</lor<>	MN057	MNEWDD003	305.4	306	0.6	354	294	<lor< td=""><td></td></lor<>	
MN060 MNEWDD003 307.65 308.19 0.54 1050 800 5 45 MN061 MNEWDD003 313 314 1.0 666 277 5 15 MN062 MNEWDD003 314 315 1.0 588 292 5 15	MN058	MNEWDD003	306	307.09	1.09	638	575	<lor< td=""><td>25</td></lor<>	25
MN060 MNEWDD003 307.65 308.19 0.54 1050 800 5 45 MN061 MNEWDD003 313 314 1.0 666 277 5 15 MN062 MNEWDD003 314 315 1.0 588 292 5 15	MN059	MNEWDD003	307.09	307.65	0.56	2410	1060	<lor< td=""><td>40</td></lor<>	40
MN062 MNEWDD003 314 315 1.0 588 292 5 15	MN060	MNEWDD003	307.65		0.54	1050	800	5	45
MN062 MNEWDD003 314 315 1.0 588 292 5 15	MN061	MNEWDD003	313	314	1.0	666	277	5	15
	MN062	MNEWDD003			1.0		292	5	15
	MN063	MNEWDD003							

Sample ID	Drill hole	From	То	Interval	Ni (ppm)	Cu (ppm)	Pt (ppb)	Pd (ppb)
MN064	MNEWDD003	315.4	316.42	1.02	604	297	10	25
MN065	MNEWDD003	315.4	316.42	1.02	2140	745	20	65
MN066	MNEWDD003	316.42	317	0.58	1420	430	20	35
MN067	MNEWDD003	317	318	1.0	1450	717	25	40
MN068	MNEWDD003	318	319	1.0	1730	1260	10	55
MN069	MNEWDD003	319	320	1.0	1090	563	5	15
MN070	MNEWDD003	320	320.8	0.8	1710	702	<lor< td=""><td>35</td></lor<>	35
MN071	MNEWDD003	320.8	321.32	0.52	582	286	<lor< td=""><td>10</td></lor<>	10
MN072	MNEWDD003	321.32	322.02	0.7	2760	946	<lor< td=""><td>35</td></lor<>	35
MN073	MNEWDD003	322.02	322.9	0.88	696	273	10	15
MN074	MNEWDD003	322.9	323.45	0.55	1990	967	10	35
MN076	MNEWDD003	323.45	325.5	2.05	660	137	10	15
MN077	MNEWDD003	325.5	326.55	1.05	526	16	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
MN078	MNEWDD003	326.55	327.05	0.5	1650	638	10	40
MN079	MNEWDD003	327.05	328	0.95	512	203	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
MN080	MNEWDD003	328	329	1.0	414	221	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
MN081	MNEWDD003	329	330	1.0	612	504	10	15
MN082	MNEWDD003	330	331	1.0	286	217	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
MN083	MNEWDD003	331	332	1.0	60	35	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>

<LOR – Below laboratory limit of reporting</p>

MN0010, MN047, MN075 are QA/QC standards and are not reported

JORC Code, 2012 Edition – Table 1 report template

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	J(ORC Code explanation	Co	ommentary
Sampling techniques	•	Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.	•	Diamond drill core samples were taken over selective intervals (dictated by lithology and potential mineralisation) ranging from 0.2m to 1.2m (typically 1.0m). Qualitative care taken when sampling diamond drill core to sample the same half of the drill core.
	•	Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.		
	•	Aspects of the determination of mineralisation that are Material to the Public Report.		
	•	In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.		
Drilling	•	2 ···· type (eg ee.e, rereree en editation, epen men manner, retaily an	•	Diamond core drilling from surface.
techniques		blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	•	Un-oriented standard HQ core from surface to 50-100m followed by oriented NQ2 core to end of hole.
			•	Core is orientated by Reflex electronic orientation tool.
			•	Holes were cased with 40mm PVC for DHEM surveying.
Drill sample recovery	•	Method of recording and assessing core and chip sample recoveries and results assessed.	•	Recoveries are physically measured by tape measure for each core run. Core is pieced together for measurement and

Criteria	JORC C	ode explanation	Co	ommentary
		ures taken to maximise sample recovery and ensure		orientation.
	•	sentative nature of the samples. her a relationship exists between sample recovery and grade	•	Recoveries averaged over 93%. Most core loss is in the first 60m, with almost 100% recovery in competent un-weathered rock.
		hether sample bias may have occurred due to preferential ain of fine/coarse material.	•	During drilling various additives are used to condition the hole to maximize core recoveries.
			•	There is no significant core loss observed.
Logging	geote	her core and chip samples have been geologically and chinically logged to a level of detail to support appropriate al Resource estimation, mining studies and metallurgical	•	Each hole was geologically and geotechnically logged over its entire drilled length. Holes were logged for lithology, mineralogy, structure and weathering.
	• Wheti	her logging is qualitative or quantitative in nature. Core (or an, channel, etc) photography.	•	Logging is both qualitative and quantitative, and captured downhole depth, colour, lithology, mineralogy, mineralization, texture and structure.
	• The to	otal length and percentage of the relevant intersections logged.	•	All core was photographed in core trays after mark-up and orientation.
Sub- sampling	If core taken	e, whether cut or sawn and whether quarter, half or all core	•	Diamond core was cut in half and sampled over 0.2-1.2m intervals (mostly 1m).
techniques and sample preparation		-core, whether riffled, tube sampled, rotary split, etc and ner sampled wet or dry.	•	Diamond drill core sample duplicates from selected sulphide zones as ¼ core.
, ,,		Il sample types, the nature, quality and appropriateness of the le preparation technique.	•	Sample preparation is industry standard; the samples were sorted and dried. Primary preparation by crushing the whole
		 Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. 		sample. The samples were split with a riffle splitter to obtain a sub-fraction which was then pulverised in a vibrating pulveriser.
	situ m	ures taken to ensure that the sampling is representative of the in naterial collected, including for instance results for field cate/second-half sampling.	•	Drill sample sizes are considered appropriate for the style of mineralisation sought and the nature of the drilling program.
		her sample sizes are appropriate to the grain size of the material sampled.		
Quality of	• The n	ature, quality and appropriateness of the assaying and	•	Diamond drill core samples underwent sample preparation and

Criteria	J	ORC Code explanation	С	ommentary
assay data and laboratory tests	•	laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.	•	geochemical analysis by Bureau Veritas Perth. Au-Pt-Pd was analysed by 40g fire assay fusion with an ICP-AES finish (BV Method code FA002). A 45 element suite was analysed by ICP-MS following a four-acid digest (BV method codes MA100/MA102) for 45 elements including Ag, As, Ba, Be, Bi, Cd, Ce, Co, Cs, Cu, Dy, Er, Eu, Ga, Gd, Hf, Ho, In, La, Lu, Mo, Nb, Nd, Ni, Pb, Pr, Rb, Re, Sb, Se, Sm, Sn, Sr, Ta, Tb, Te, Th, Tl, Tm, U, W, Y, Yb, Zn, Zr. Certified analytical standards and blanks were inserted at appropriate intervals for diamond samples. All QA/QC samples display results within acceptable levels of accuracy.
Verification of sampling and assaying	•	The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data.	•	Core was logged by an independent geological contractor. Mandrake management visually verified the main mineralized zones reported. Geological data was captured in the field in spreadsheets on a notebook computer.
Location of data points	•	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control.	•	Drill collars were located using hand held GPS with accuracy of +-3m. Elevations are estimated with a +-10m accuracy from a DTM generated from airborne survey data. This is considered appropriate for exploration drill-holes. The grid system used is MGA GDA94 Zone 50. Diamond holes were downhole surveyed at 5m intervals using a north-seeking Reflex Sprint IQ Gyroscope, with a stated accuracy of +-1 ° in azimuth and +-3° in dip.
Data spacing and distribution	•	Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and	•	Drillhole spacing is variable, reflecting the targeting of separate conductive bodies. Drilling is exploratory in nature.

Criteria	JORC Code explanation	Commentary
	classifications applied.	No sample compositing has been applied
	Whether sample compositing has been applied.	
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	as EM conductor plates).
Sample security	The measures taken to ensure sample security.	 Core is stored on private land with restricted access near the drill site. Core was taken directly to the laboratory in Canning Vale, Perth for cutting, sampling and submission in labelled calico bags.
Audits or reviews	The results of any audits or reviews of sampling techniques and date	a. • No review has been carried out as yet.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The drill-holes are located on E70/5345 which is 100% beneficially held by Mandrake Resources. The tenement is in good standing with no known impediments. Land access and purchase option agreement in place for Newleyine farm.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 Nickel-copper mineralization at Newleyine was investigated by Australia Anglo American/North Flinders Mines during 1978. Three diamond core holes were drilled, but no individual assay values

Criteria	JORC Code explanation	Commentary
		were reported. It is unknown if PGE elements were assayed for.
Geology	Deposit type, geological setting and style of mineralisation.	 Newleyine is located in the Jimperding Metamorphic belt. Newleyine is considered prospective for magmatic sulphide Ni-Cu-
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:	 PGE associated with a pipe like dunitic intrusive body. The drill hole collar information is provided in Table 1 of this announcement
	 easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar 	
	 dip and azimuth of the hole down hole length and interception depth hole length. 	
	If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. 	 Standard length weighting averages apply where applicable; no cut-off grades have been applied. No metal equivalent values have been reported.
	 The assumptions used for any reporting of metal equivalent values should be clearly stated. 	

Criteria	JORC Code explanation	Commentary
Relationship between	 These relationships are particularly important in the reporting of Exploration Results. 	 Only downhole lengths are reported, true widths are not yet known.
mineralisation widths and intercept	 If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. 	
lengths	 If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	Refer to figures in announcement.
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	All data reported, see Table 2.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	All meaningful information provided.
Further work	The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling).	Further diamond drilling and downhole EM planned for Newleyine as well as continued exploration at Tolarno North and Tolarno
	Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	South.