

Cortadera's North Flank Delivers Again 610m at 0.5%CuEq including 138m at 0.8% CuEq

Highlights

- Hot Chili has recorded another strong extensional result at the Cortadera copper-gold porphyry discovery in Chile, further expanding the high grade resource (+0.7% CuEq) across the northern flank (North Flank) of the main porphyry (Cuerpo 3)
- CRP0134D returned an extensive intersection of 610m grading 0.5% CuEq (0.4% copper (Cu), 0.1g/t gold (Au)) from 216m depth down-hole, including 138m grading 0.8% CuEq (0.6% Cu, 0.1g/t Au) from 634m depth
- Results from CRP0134D and those recently reported from CRP0124D (362m grading 0.6% CuEq, including 82m grading 1.0% CuEq) have extended the North Flank by approximately 170m
- The Northern Flank of Cuerpo 3 remains open with another 80m step-out diamond drill hole underway (CRP0155D, currently at 490m depth and in mineralisation)
- Results pending for five drill holes from Cuerpo 2 which have visually recorded wide intersections of mineralisation from surface
- Three drill rigs in operation, 4,946m of assay results pending from 20 drill holes, assay turnaround currently 44 days

* Copper Equivalent (CuEq) reported for the drill holes were calculated using the following formula: $CuEq\% = ((Cu\% \times Cu \text{ price 1\% per tonne} \times Cu_recovery)+(Mo \text{ ppm} \times Mo \text{ price per } g/t \times Mo_recovery)+(Au \text{ ppm} \times Au \text{ price per } g/t \times Au_recovery)+(Ag \text{ ppm} \times Ag \text{ price per } g/t \times Ag_recovery)) / (Cu \text{ price 1\% per tonne}). The Metal Prices applied in the calculation were: Cu=3.00 USD/lb, Au=1,550 USD/oz, Mo=12 USD/lb, and Ag=18 USD/oz. Average Metallurgical Recoveries used were: Cu=83%, Au=56%, Mo=82%, and Ag=37%$

Hot Chili Limited ACN 130 955 725 First Floor, 768 Canning Highway, Applecross, Western Australia 6153 PO Box 1725, Applecross, Western Australia 6953 P: +61 8 9315 9009 F: +61 8 9315 5004 www.hotchili.net.au

Hot Chili Limited (ASX: HCH) (OTCQB: HHLKF) ("Hot Chili" or "Company") is pleased to announce that recent drill results from its Cortadera copper-gold discovery in Chile continue to demonstrate strong resource growth.

Hot Chili's Resource Development Manager Kirsty Sheerin said the expansion of the main porphyry was very pleasing ahead of the Company's plans to up-grade the maiden 451Mt Cortadera resource.

"The North Flank of the high grade core to the main porphyry has continued to be a significant resource addition.

"We have added approximately 170m of width to Cuerpo 3 and hope to extend several other open flanks to the high grade core by year-end.

"We are also continuing to see positive shallow intersections in the current RC drilling program at Cuerpo 2.

"The next resource upgrade at Cortadera will provide a strong basis for the first combined open pit and block cave mining reserve estimate at our growing Costa Fuego copper-gold development."

Cuerpo 3 North Flank Confirmed as Extensive High Grade Addition

Continued strong results have been reported from extensional resource drilling across the North Flank to the high grade core of the main porphyry (Cuerpo 3) at Cortadera.

CRP0134D returned an extensive intersection of **610m grading 0.5% CuEq (0.4% copper (Cu), 0.1g/t gold (Au))** from 216m depth down-hole, including **138m grading 0.8% CuEq (0.6% Cu, 0.1g/t Au)** from 634m depth.

Importantly, the high grade results in CRP0134D were recorded at approximately the same vertical depth and lateral to CRP0124D, which recorded 82m grading 1.0% CuEq (0.7% Cu and 0.3g/t Au) within a broader intersection of 362m grading 0.6% CuEq (0.5% Cu, 0.2g/t Au) from 634m depth.

This recent drilling has demonstrated strong continuity of high grade (+0.7% CuEq) mineralisation and extended the North Flank by approximately 170m.

A follow-up hole (CRP0155D) is currently underway to extend the North Flank by a further 80m. CRP0155D is currently at 490m depth and is in mineralisation.

CRP00134D (528m depth down-hole) – 1.8% copper, 0.8g/t gold, 2.8g/t silver and 228 ppm molybdenum. Earlystage porphyry, sericite-chlorite-biotite alteration with 5% A-B vein abundance

Hot Chili Limited ACN 130 955 725 First Floor, 768 Canning Highway, Applecross, Western Australia 6153 PO Box 1725, Applecross, Western Australia 6953 P: +61 8 9315 9009 F: +61 8 9315 5004 www.hotchili.net.au

Figures 2 to 6 display the location of these new significant drilling intersections at Cortadera.

Expansion of Shallow Resources at Cortadera

Initial results have been returned for 5 shallow Reverse Circulation (RC) drill holes at Cuerpo 2. The results have extended the boundary of the resource across the southern, eastern and north eastern flanks of Cuerpo 2.

In addition, CRP0139 was drilled in an up-dip position over the Cuerpo 2 resource and has recorded a **42m intersection grading 0.5% CuEq (0.4% Cu, 0.3g/t Au) from 180m depth to end-of-hole**, within a broader 222m zone grading 0.3% CuEq (0.2% Cu, 0.1g/t Au) from surface. The result of CRP0139 has shown an upgrade in both copper and gold from the maiden resource model in this area.

Assay results are pending for a further five drill holes which have recorded wide zones of oxide and sulphide mineralisation from surface. Additional RC drilling is continuing in this area to determine the potential for this shallow mineralisation to extend further.

Momentum Building Ahead of Canadian TSXV Dual-Listing

Hot Chili is currently the only major copper-gold developer in the America's that is not listed in Canada.

The Company's low-altitude Costa Fuego copper-gold development in Chile is expected to compare favourably to leading copper-gold developers in Canada, which currently trade at many multiples of Hot Chili's market capitalisation.

The Company plans to continue building momentum with its activities and newsflow ahead of its dual listing on the TSXV in Q4 this year, with several updates expected from ongoing drilling, exploration and development workstreams.

Hot Chili is operating five shifts of drilling per day with three drill rigs at Cortadera. In addition, a fourth drill rig is being sourced to commence drill testing several large-scale growth targets (Productora Central and Santiago Z – See ASX announcement dated 17th September).

Following its dual listing in Canada, Hot Chili aims to release a major resource upgrade from Cortadera followed by the completion of a combined Pre-feasibility study. These two major milestones will lay the foundation for the Company's transformation into a major copper-gold producer in the coming years.

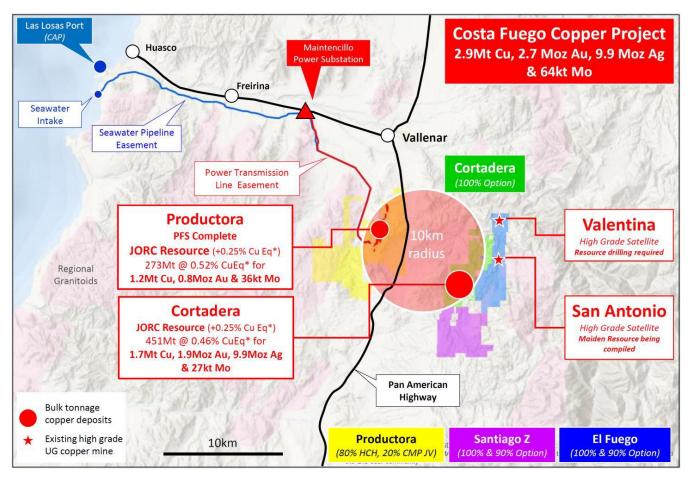
This announcement is authorised by the Board of Directors for release to ASX.

For more information please contact:

Christian Easterday	Tel: +61 8 9315 9009
Managing Director	Email: christian@hotchili.net.au

or visit Hot Chili's website at www.hotchili.net.au

	Co	ordinates				Hole	Interse	ection	Interval	Copper	Gold	Silver	Molybdenum	Cu Eq
Hole_ID	North	East	RL	Azim	Dip	Depth	From	То	(m)	(% Cu)	(g/t Au)	(g/t Ag)	(ppm Mo)	(% Cu Eq)
CRP0134D	6813615	336269	1027	96	-76	1025	216	826	610	0.4	0.1	0.7	206	0.5
					inclu	ding	502	568	66	0.6	0.2	0.9	159	0.7
					& inc	luding	634	772	138	0.6	0.1	1.4	486	0.8
CRP0132D	6813861	336310	958	170	-76	766	300	766	466	0.2	0.1	0.4	89	0.3
					inclu	ding	540	576	36	0.4	0.1	0.6	169	0.5
CRP0133	335692	6813977	985	150	-60	108	12	108	96	0.2	0.1	0.4	33.9	0.2
					inclu	ding	12	54	42	0.3	0.1	0.5	15	0.3
CRP0139	335446	6813981	969	115	-61	222	0	222	222	0.2	0.1	0.5	7.0	0.3
				Includ	•				_	_			_	_
				(to en	d of ho	le)	180	222	42	0.4	0.3	0.8	4.2	0.5
CRP0140	335695	6813975	985	25	70	92	10	62	52	0.2	0.1	0.4	23.2	0.3
CRP0150	335427	6813982	968	-54	109	132	34	96	62	0.2	0.1	0.3	22.7	0.2
CRP0151	335540	6813865	992	-75	169	162	0	30	30	0.3	0.1	0.6	12.6	0.3
						162	48	118	70	0.3	0.1	0.5	18.8	0.3


Table 1 New Significant DD & RC Drill Results at Cortadera

Significant intercepts are calculated above a nominal cut-off grade of 0.2% Cu. Where appropriate, significant intersections may contain up to 30m down-hole distance of internal dilution (less than 0.2% Cu). Significant intersections are separated where internal dilution is greater than 30m down-hole distance. The selection of 0.2% Cu for significant intersection cut-off grade is aligned with marginal economic cut-off grade for bulk tonnage polymetallic copper deposits of similar grade in Chile and elsewhere in the world.

CuEq~% = Cu~grade~(%) + (0.5083x~Au~grade(g/t)) + 0.0039x~Ag~grade(g/t)) + 0.0004x~Mo~grade(ppm))

Figure 1 Location of Productora and the Cortadera discovery in relation to the coastal range infrastructure of Hot Chili's combined Costa Fuego copper project, located 600km north of Santiago in Chile

Refer to ASX Announcement "Costa Fuego Becomes a Leading Global Copper Project" (12th October 2020) for JORC Table 1 information related to the Cortadera JORC compliant Mineral Resource estimate by Wood and the Productora re-stated JORC compliant Mineral Resource estimate by AMC Consultants

* Copper Equivalent (CuEq) reported for the resource were calculated using the following formula: $CuEq\% = ((Cu\% \times Cu \text{ price 1\%} \text{ per tonne} \times Cu_recovery)+(Mo \text{ ppm} \times Mo \text{ price per }g/t \times Mo_recovery)+(Au \text{ ppm} \times Au \text{ price per }g/t \times Au_recovery)+(Ag \text{ ppm} \times Ag \text{ price per }g/t \times Ag_recovery)) / (Cu \text{ price 1\%} \text{ per tonne}). The Metal Prices applied in the calculation were: Cu=3.00 USD/lb, Au=1,550 USD/oz, Mo=12 USD/lb, and Ag=18 USD/oz. For Cortadera (Inferred + Indicated), the average Metallurgical Recoveries were: Cu=83%, Au=56\%, Mo=82\%, and Ag=37\%. For Productora (Inferred + Indicated), the average Metallurgical Recoveries were: Cu=83\%, Au=43\% and Mo=42\%. For Costa Fuego (Inferred + Indicated), the average Metallurgical Recoveries were: Cu=83\%, Mo=67\% and Ag=23\%.$

** Reported on a 100% Basis - combining Cortadera and Productora Mineral Resources using a +0.25% CuEq reporting cut-off grade

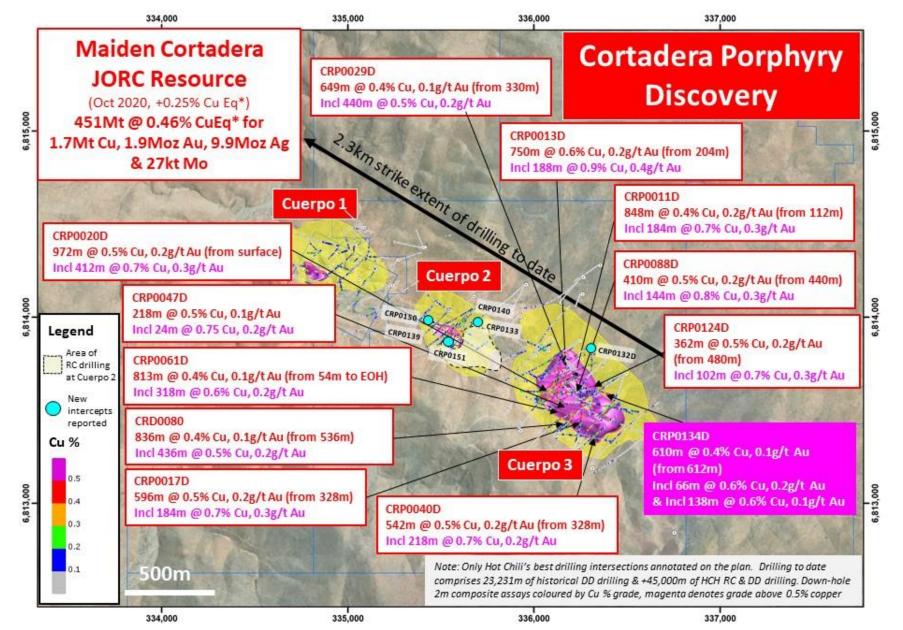


Figure 2 Plan view across the Cortadera discovery area displaying significant historical copperaold DD intersections across Cuerpo 1, 2, 3 and 4 tonalitic porphyry intrusive centres (represented by modelled copper envelopes, vellow-+0.1% Cu and magenta +0.4% Cu). Note the selected HCH drilling intersections (White) and the new result reported from CRP0134D (Magenta).

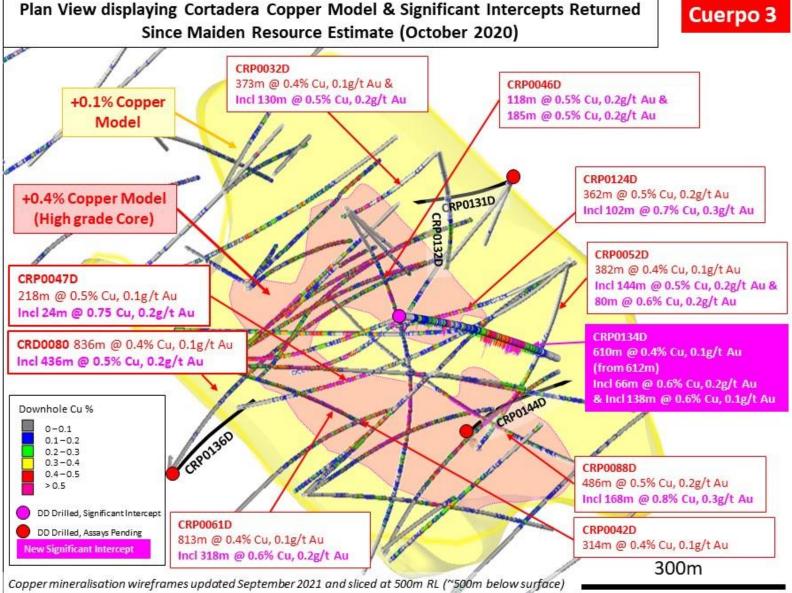


Figure 3 Plan view across the Cortadera discovery area displaying significant coppergold DD intersections across Cuerpo 3 since the October 2020 resource estimate. The plan view displays the Mineral Resource extents (represented by modelled copper envelope, yellow-+0.1% Cu). Note the new result reported from CRP0134D (Magenta collar)

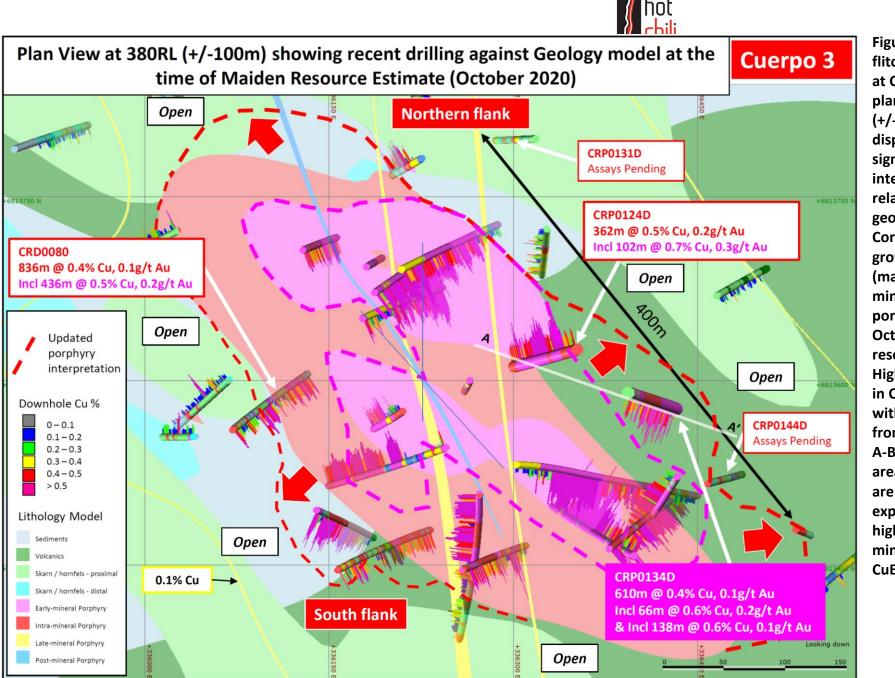


Figure 4 Plan view flitch across Cuerpo 3 at Cortadera. Flitch plan set at 380m RL (+/-100m window) displaying recent significant intersections in relation to the 4D geology model for Cortadera. Note the growth in early (magenta) and intramineral (red) porphyries since the October 2020 maiden resource estimate. High grade at this level in Cuerpo 3 correlates with the transition from stockwork to flat A-B veining. Several areas of lateral growth are being tested to expand the extent of high grade mineralisation (+0.7% CuEq)

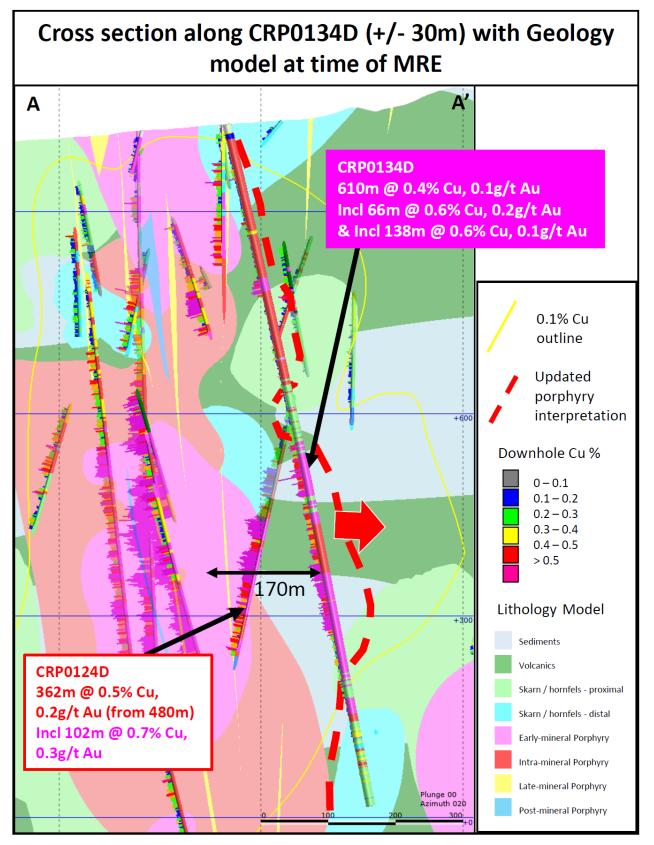


Figure 5 Cross section A-A' displaying the location of CRP00134D in relation to the geology model at the time of the maiden Cortadera Resource Estimate (October 2020). Note the lateral extension of early mineralised porphyry by approximately 170m.

Qualifying Statements

Costa Fuego	o Combined R	esource			Grade	e		Contained Metal				
Deposit	Classfication	Tonnage	CuEq	Cu	Au	Ag	Мо	Copper Eq	Copper	Gold	Silver	Molybdenum
	(+0.25% CuEq*)	(Mt)	(%)	(%)	(g/t)	(g/t)	(ppm)	(tonnes)	(tonnes)	(ounces)	(ounces)	(tonnes)
Cortadera	Indicated	183	0.49	0.40	0.15	0.7	43	905,000	728,000	889,000	4,227,000	7,900
	Inferred	267	0.44	0.35	0.12	0.7	73	1,181,000	935,000	1,022,000	5,633,000	19,400
	Sub Total	451	0.46	0.37	0.13	0.7	61	2,086,000	1,663,000	1,911,000	9,860,000	27,300
Productora	Indicated	208	0.54	0.46	0.10		140	1,122,000	960,000	643,000	-	29,200
	Inferred	67	0.44	0.38	0.08		109	295,000	255,000	167,000	-	7,200
	Sub Total	273	0.52	0.44	0.09		133	1,417,000	1,215,000	810,000	-	36,400
Costa Fuego	Indicated	391	0.52	0.43	0.12		95	2,027,000	1,688,000	1,533,000	-	37,000
(Combined)	Inferred	334	0.44	0.36	0.11		80	1,476,000	1,191,000	1,189,000	-	26,700
	Total	724	0.48	0.40	0.12	0.7**	88	3,503,000	2,879,000	2,722,000	9,860,000	63,700

Independent JORC Code Costa Fuego Combined Mineral Resource (Reported 12th October 2020)

Reported at or above 0.25% CuEq*. Figures in the above table are rounded, reported to appropriate significant figures, and reported in accordance with the JORC Code - Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Metal rounded to nearest thousand, or if less, to the nearest hundred. * * Copper Equivalent (CuEq) reported for the resource were calculated using the following formula:: CuEq% = ((Cu% × Cu price 1% per tonne × Cu_recovery)+(Mo ppm × Mo price per g/t × Mo_recovery)+(Au ppm × Au price per g/t × Au_recovery)+ (Ag ppm × Ag price per g/t × Ag_recovery)) / (Cu price 1 % per tonne). The Metal Prices applied in the calculation were: Cu=3.00 USD/lb, Au=1,550 USD/oz, Mo=12 USD/lb, and Ag=18 USD/oz. For Cortadera (Inferred + Indicated), the average Metallurgical Recoveries were: Cu=83%, Au=56%, Mo=82%, and Ag=37%. For Productora (Inferred + Indicated), the average Metallurgical Recoveries were: Cu=83%, Au=43% and Mo=42%. For Costa Fuego (Inferred + Indicated), the average Metallurgical Recoveries were: Cu=83%, Au=51%, Mo=67% and Ag=23%.

** Note: Silver (Ag) is only present within the Cortadera Mineral Resource estimate

Competent Person's Statement- Exploration Results

Exploration information in this Announcement is based upon work compiled by Mr Christian Easterday, the Managing Director and a full-time employee of Hot Chili Limited whom is a Member of the Australasian Institute of Geoscientists (AIG). Mr Easterday has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a 'Competent Person' as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves' (JORC Code). Mr Easterday consents to the inclusion in the report of the matters based on their information in the form and context in which it appears.

Competent Person's Statement- Productora Mineral Resources

The information in this Announcement that relates to the Productora Project Mineral Resources, is based on information compiled by Mr N Ingvar Kirchner. Mr Kirchner is employed by AMC Consultants (AMC). AMC has been engaged on a fee for service basis to provide independent technical advice and final audit for the Productora Project Mineral Resource estimates. Mr Kirchner is a Fellow of the Australasian Institute of Mining and Metallurgy (AusIMM) and is a Member of the Australian Institute of Geoscientists (AIG). Mr Kirchner has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves' (the JORC Code 2012). Mr Kirchner consents to the inclusion in this report of the matters based on the source information in the form and context in which it appears.

Competent Person's Statement- Cortadera and Costa Fuego Mineral Resources

The information in this report that relates to Mineral Resources for the Cortadera and combined Costa Fuego Project is based on information compiled by Elizabeth Haren, a Competent Person who is a Member and Chartered Professional of the Australasian Institute of Mining and Metallurgy and a Member of the Australian Institute of Geoscientists. Elizabeth Haren is employed as an associate Principal Geologist of Wood, who was engaged by Hot Chili Limited. Elizabeth Haren has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Elizabeth Haren consents to the inclusion in the report of the matters based on her information in the form and context in which it appears.

Reporting of Copper Equivalent

Copper Equivalent (CuEq) reported for the resource were calculated using the following formula: $CuEq\% = ((Cu\% \times Cu \text{ price } 1\% \text{ per tonne} \times Cu_recovery)+(Mo \text{ ppm} \times Mo \text{ price per } g/t \times Mo_recovery)+(Au \text{ ppm} \times Au \text{ price per } g/t \times Au_recovery)+(Ag \text{ ppm} \times Ag \text{ price per } g/t \times Ag_recovery)) / (Cu \text{ price } 1\% \text{ per tonne}). The Metal Prices applied in the calculation were: Cu=3.00 USD/lb, Au=1,550 USD/oz, Mo=12 USD/lb, and Ag=18 USD/oz. For Cortadera (Inferred + Indicated), the average Metallurgical Recoveries were: Cu=83%, Au=56%, Mo=82%, and Ag=37%. For Productora (Inferred + Indicated), the average Metallurgical Recoveries were: Cu=83%, Au=43\% and Mo=42\%. For Costa Fuego (Inferred + Indicated), the average Metallurgical Recoveries were: Cu=83%, Au=51\%, Mo=67\% and Ag=23\%.$

Forward Looking Statements

This Announcement is provided on the basis that neither the Company nor its representatives make any warranty (express or implied) as to the accuracy, reliability, relevance or completeness of the material contained in the Announcement and nothing contained in the Announcement is, or may be relied upon as a promise, representation or warranty, whether as to the past or the future. The Company hereby excludes all warranties that can be excluded by law. The Announcement contains material which is predictive in nature and may be affected by inaccurate assumptions or by known and unknown risks and uncertainties and may differ materially from results ultimately achieved.

The Announcement contains "forward-looking statements". All statements other than those of historical facts included in the Announcement are forward-looking statements including estimates of Mineral Resources. However, forward-looking statements are subject to risks, uncertainties and other factors, which could cause actual results to differ materially from future results expressed, projected or implied by such forward-looking statements. Such risks include, but are not limited to, copper, gold and other metals price volatility, currency fluctuations, increased production costs and variances in ore grade recovery rates from those assumed in mining plans, as well as political and operational risks and governmental regulation and judicial outcomes. The Company does not undertake any obligation to release publicly any revisions to any "forward-looking statement" to reflect events or circumstances after the date of the Announcement, or to reflect the occurrence of unanticipated events, except as may be required under applicable securities laws. All persons should consider seeking appropriate professional advice in reviewing the Announcement and all other information with respect to the Company and evaluating the business, financial performance and operations of the Company. Neither the provision of the Announcement nor any information contained in the Announcement or subsequently communicated to any person in connection with the Announcement is, or should be taken as, constituting the giving of investment advice to any person

Appendix 1. JORC Code Table 1 for Cortadera

Section 1 Sampling Techniques and Data

Criteria	JORC Code explanation	Commentary
Sampling techniques	Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.	 Drilling undertaken by Hot Chili Limited ("HCH" or "the Company") includes both Diamond and Reverse Circulation (RC). Drilling has been caried out under Hot Chili (HCH) supervision by an experienced drilling contractor (BlueSpec Drilling). The majority of DD drilling completed by HCH comprises RC pre-collars to an average depth of 660m, followed by NQ2 DD core at depths greater than approximately 660 metres. Samples were obtained using both reverse circulation (RC) and diamond drilling (DD). RC drilling produced a 1m bulk sample and representative 2m cone split samples (nominally a 12.5% split) were collected using a cone splits, with sample weights averaging 5 kg. Geological logging was completed, and mineralised sample intervals were determined by the geologists to be submitted as 2m samples for RC. In RC intervals assessed as unmineralised (4m composite (scoop) samples were collected for analysis. If these 4m composite samples return results with anomalous grade the corresponding original 2m split samples are then submitted to the laboratory for analysis. HQ3 and NQ2 diamond core were drilled on a 3m run. The core was cut using a manual core-saw and half core samples are samples are then submitted to the laboratory for analysis. Both RC and DD samples were crushed and split at the laboratory, with up to 1kg pulverised, and a 150g pulp sample analysed by industry standard methods - ICP-OES (33 element, 4 acid digest) and Au 30 gram fire assay. Sampling techniques used are deemed appropriate for exploration and resource estimation purposes for this style of deposit and mineralisation. Data compiled from historical drilling has been collated from documents supplied by SCM Carola. All historical drilling was diamond core (DD) from surface. Historical drilling was diamond core (DD) from surface. Historical drilling was predominantly HQ3 half core. Sampling were the sample fata comprises 2m composited samples (raken at 2m int
Drilling techniques	Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	 HCH drilling consisted of RC with face sampling bit (140 to130mm diameter) ensuring minimal contamination during sample extraction. HCH DD drilling uses NQ2 bits (50.5mm internal diameter) and HQ3 bits (61.24mm internal diameter). DD core was oriented using a Reflex ACT III RD tool. At the end of each run, the low side of the core was marked by the drillers and this was used at the site for marking the whole drill core with a reference line. Historical DD drilling used HQ bits (61.24mm internal). Historical drill core was not oriented.
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed.	Core recovery was measured and recorded continuously from the start of core drilling to the end of the hole for each drill hole. The end of each 3m length run was marked by a

Measures taken to maximise sample recovery and ensure representative nature of the samples.	core block which provided the depth, the core drilled and the core recovered. Generally, the core recovery was >99%
Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	 All DD drilling utilised HQ3 and NQ2 core with sampling undertaken via half core cutting and 2m sample intervals. Drilling techniques to ensure adequate RC sample recovery and quality included the use of "booster" air pressure. Air pressure used for RC drilling was 700-800psi. Logging of all samples followed established company procedures which included recording of qualitative fields to allow discernment of sample quality. This included (but was not limited to) recording: sample condition (wet, dry, moist), sample recovery (poor, moderate, good), sample method (RC: scoop, split; DD core: half, quarter, whole). The majority of HCH drilling had acceptable documented recorditions. Historical DD core recovery has not been quantitatively assessed. However, inspection of core photography has been undertaken, with good core recovery observed, and no material issues noted. Methods taken to maximise historical sample recovery, quality and condition are unknown, however it is noted that the drill method (HQ3 DD) is consistent with best practice for sample recovery. No analysis of historical samples weights, sample condition or recovery has been undertaken. Twin analysis of RC and DD drilling has identified a slight sample bias. RC samples appear to display a negative bias for acsay results, meaning that RC samples appear to under call the assay grades. This is not yet fully understood or confirmed, and requires further analysis and investigation
Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged.	 with future twin holes. HCH Drilling: Detailed descriptions of RC chips and diamond core were logged qualitatively for lithological composition and texture, structures, veining, alteration and copper speciation. Visual percentage estimates were made for some minerals, including sulphides. Geological logging was recorded in a systematic and consistent manner such that the data was able to be interrogated accurately using modern mapping and 3D geological modelling software programs. Field logging templates were used to record details related to each drill hole. Historical Drilling: Geological logs were provided as part of historical data from SCM Carola. These logs have been reviewed and are deemed to be of an appropriate standard. HCH has also completed a verification and re-logging programme of historical diamond drill core and has aligned the codification of both generations of geological observations being recorded. The depth and reliability of each orientation mark is also recorded. All logging information is uploaded into an acQuire™ database which ensures validation criteria are met upon upload.
If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled.	 HQ3 (85mm) and NQ2 (63.5mm) diamond core was sawn in half, with half core collected in a bag and submitted to the laboratory for analysis, the other half was retained in the tray and stored. All DD core was sampled at 2m intervals. RC drilling was sampled at two metre intervals by a fixed cone splitter with two nominal 12.5% samples taken: with the primary sample submitted to the laboratory, and the second sample retained as a field duplicate sample. Cone splitting of RC drill samples occurred regardless of the sample condition. RC drill samples weights range from 0.6kg to 17kg, but typically average 5kg. All HCH samples were submitted to ALS Coquimbo (Chile) for multi-element analysis. The sample preparation included: DD half core and RC samples were weighed, dried and crushed to 70% passing 2 mm and then split using a rotary splitter to produce a 1kg sub-sample. The crushed sub-
	 ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. Whether core and chip samples have been geologically and geotochnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether coresten of chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riflied, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measure sample the resentitie of the asamples is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the sample sizes are appropriate to the grain size of the sample sizes are appropriate to the grain size of the sample sizes are appropriate to the grain size of the sample sizes are appropriate to the grain size of the sample sizes are appropriate to the grain size of the sample sizes are appropriate to the grain size of the sample sizes are appropriate to the grain size of the sample sizes are appropriate to the grain size of the sample sizes are approprinte to the grain size of the sample sizes are appropriate to

		sample was pulverised with 85% passing 75 µm using a LM2 mill and a 110 g pulp was then subsampled, 20 g for ICP and 90g for Au fire assay analysis.
		ALS method ME-ICP61 involves a 4-acid digestion (Hydrochloric-Nitric-Perchloric-Hydrofluoric) followed by ICP- AES determination.
		Samples that returned Cu grades >10,000ppm were analysed by ALS "ore grade" method Cu-AA62, which is a 4- acid digestion, followed by AES measurement to 0.001%Cu.
		Samples determined by geologists to be either oxide or transitional were also analysed by Cu-AA05 method to determine copper solubility (by sulphuric acid).
		Pulp samples were analysed for gold by ALS method Au- ICP21; a 30g lead-collection Fire Assay, followed by ICP- OES to a detection limit of 0.001ppm Au.
		Historical half DD core was routinely sampled on 2m intervals. All samples were submitted to accredited laboratories- ACTLAB, ACME Labs (now Bureau Veritas), ALS Global and Andes Analytical Assay.
		Typical analysis methods used for historical samples included;
		For copper and multi-element; either 4-acid or 3-acid digest followed by either an ICP-MS, ICP-AAS, or a HF digest with ICP-AES. E.g. ACTLAB method 3ACID-AAS, ALS method Cu-AA61, Andes Analytical Assay method (4A-AAS1E01 or ICP_AES_HH22).
		Gold grades were analysed for Fire Analysis (30g charge). E.g. ACTLABS method FA-AAS, ALS method Au-AA23, Andes Analytical Assay method AEF_AAS1EE9.
		HCH has verified historical sampling methods, analytical techniques, and assay values with no material issues identified.
		Field duplicates were collected for RC drill samples at a rate of 1 in 50 drill meters ie. 1 in every 25 samples (when 2m sampling intervals observed). The procedure involves placing a second sample bag on the cone splitter to collect a duplicate sample.
		Field duplicates for DD samples were submitted at a rate of 1 in 50 drill metres (ie. 1 in 25 samples). The procedure involves cutting the half core and the lab (instructed by Hot Chili) collected a second coarse duplicate sample after the initial crushing process of the original sample. Crushed samples were split into two halves, with one half flagged as the original sample and the other half flagged as the duplicate sample.
		Review of duplicate results indicates that there is good correlation between the primary and duplicate assay values, implying that the selected sample size is reasonable for this style of mineralisation.
		The selected sample sizes and sample preparation techniques are considered appropriate for this style of mineralisation, both for exploration purposes and MRE.
Quality of assay data and laboratory	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	All HCH drill samples were assayed by industry standard methods through accredited laboratories in Chile. Typical analytical methods are detailed in the previous section and are considered 'near total' techniques.
tests	For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	HCH undertakes several steps to ensure the quality control of assay results. These include, but are not limited to, the use of duplicates, certified reference material (CRM) and blank media:
	Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bio) and program have been activities	Routine 'standard' (mineralised pulp) Certified Reference Material (CRM) was inserted at a nominal rate of 1 in 25 samples.
	bias) and precision have been established.	Blank certified material is inserted every 100 samples (Coarse unmineralised quartz) at the logging geologist's discretion- with particular weighting towards submitting blanks immediately following mineralised field samples. Routine field duplicates for RC and DD samples were submitted at a rate of 1 in 25 samples.
		Analytical laboratories provided their own routine quality controls within their own practices. No significant issues have been noted.

		 All results are checked in the acQuire[™] database before being used, and analysed batches are continuously reviewed to ensure they are performing within acceptable tolerance for the style of mineralisation. Any QC failures require the batch to be re-analysed prior to acceptance into the database. No umpire laboratory checks have been undertaken by HCH. It is a recommendation of the MRE that umpire checks be completed. Assessment of historical QA/QC data was undertaken as part of the MRE. CRM and duplicate assay data were reviewed with no significant issues identified. Umpire laboratory checks were undertaken on historical drilling, however the results of this have not yet been assessed. Historical assay data comprised approximately 10% QA/QC data.
Verificatio n of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data.	 All DD sample intervals were visually verified using high quality core photography, with selected samples taken within mineralised intervals for petrographic and mineragraphic microscopy. All assay results have been compiled and verified by an independent database consultant to ensure veracity of assay results and the corresponding sample data. This includes a review of QA/QC results to identify any issues prior to incorporation into the Company's geological database. No adjustment has been made to assay data following electronic upload from original laboratory certificates to the database. Where samples returned values below the detection limit, these assay values were set to half the lowest detection limit for that element for the purposes of MRE. The capture of drill logging data was managed by a computerised system and strict data validation steps were followed. The data is stored in a secure acQuireTM database with access restricted to an external database manager. Documentation of primary data, data entry procedures, data verification and data storage protocols have all been validated through internal database checks and by a thirdparty audit as part of the Cortadera MRE. Visualisation and validation of drill data was also undertaken in 3D through the use of multiple software packages- Surpac, Datamine and Leapfrog with no errors detected. Twinned drilling was completed by HCH, to compare the results of RC samples was observed for RC samples in select intervals, however overall, the twin hole assay results correlated well for both techniques. This supports the use of both RC or DD samples as being representative and appropriate for mineral exploration and resource estimation for this style of mineralisation. Hot Chili has undertaken quarter core duplicate sampling across selected intervals of historical Half DD core and its own DD core to test assay repeatability and to provide metallurgical samples. An analysis of field du
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control.	The WGS84 UTM zone 19S coordinate system was used for all undertakings. Drill hole collar locations were surveyed on completion of each drill hole using a handheld Garmin GPS with an accuracy of +/-5 m. On completion of each HCH drill campaign an independent survey company was contracted to survey drill collar locations using a CHCNAV model i80 Geodetic GPS, dual frequency, Real Time with 0.1cm accuracy. Drill collar survey methods used by SCM Carola are unknown, however all collars were located by HCH and have been surveyed using the same method as HCH drilling.

Data spacing and distribution	Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied.	 Downhole surveys for HCH drilling were completed by the drilling contractor every 30m using an Axis Champ Navigator north seeking gyroscope tool. Downhole surveys for historical drilling were completed every 10m by gyroscope. Exact specifications for the gyroscope tool are unknown. Some drill holes could not be surveyed due to downhole blockages, these holes used planned survey or compass bearing/ dip measurements for survey control, and the majority of these holes lie outside of the resource area. The topographic model used at Cortadera is deemed adequate for topographic control. It comprises a high resolution topographical elevation model as supplied by SCM Carola. Validation of the final topographical model used for resource estimation was completed via visual validation against: high resolution drone orthophotography, drill collars, and known infrastructure (roads, tenement pegs etc.) Topography at the project ranges from -900m to 1050m ASL. PSAD56 zone 19S coordinate system was used for all historical undertakings, with all data since converted to WGS84 zone 19S. Drill spacing is nominally 80 metres across strike by 80 metres along strike. In total there were 82 drillholes used to constrain the MRE. The current drilling density provides sufficient information to support a robust geological and mineralisation interpretation as the basis for Indicated and Inferred Mineral Resources for the majority of the drill defined deposit. The mineralisation is still open laterally and at depth and further drilling is planned to explore these zones in 2021 and beyond. Compositing of drillhole samples was undertaken on 2 metre intervals, and in some cases 4 metre intervals in unmineralised areas.
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	The spacing and location of drilling at Cortadera is variable, ranging from 80m to 300m. The selected drill spacing and orientation over the resource area ensures that drilling is optimised to intersect perpendicular to mineralisation. The majority of drilling was oriented from -60 to -80° toward northeast, with some scissor holes drilled to the southwest. In addition, some other drill orientations were used to ensure geological representivity and to maximise the use of available drill platforms. The orientation of drilling is considered appropriate for this style of mineralisation, and no sampling bias is inferred from drilling completed as part of the MRE. In addition, copper-gold porphyry mineralisation is typically fairly homogenous meaning a limited chance of bias likely to be caused from drilling orientation. The coordinates and orientations for all of the historical Cortadera drill holes have been reported to ASX in Table 1, Section 2 of the Company's previous drilling announcements, most recently 10th July 2020.
Sample security	The measures taken to ensure sample security.	HCH has strict chain of custody procedures that are adhered to. All samples have the sample submission number/ticket inserted into each bulk polyweave sample bag with the id number clearly visible. The sample bag is stapled together such that no sample material can spill out and no one can tamper with the sample once it leaves Hot Chili's custody. Measures taken to ensure sample security during historical drilling are unknown. All retained core and pulp samples are currently stored in a secured warehouse facility and are available for verification if required.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	As part of the Cortadera MRE WoodPLC have conducted an independent review of the drill database. This review has

found	the	data	to	be	accurate	and	acceptable	for	MRE
purpos	es.								

Section 2 Reporting of Exploration Results

Criteria	JORC Code explanation	Cor	nmentary			
Mineral tenement and	Type, reference name/number, location and ownership including agreements or material issues	Co	rtadera pro	oject comp	rises the following ten	ements (patentes):
land tenure status			Magdal 1/20	lenita	Corroteo 5 1/26	Las Cañas 1/15
	The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.		Atacam	nita 1/82	Paulina 27 A 1/30	Cortadera 1/40
			Paulina 1/30	11B	Paulina 15 B 1/30	Paulina 24 A 1/24
			Paulina 1/20	10B	Paulina 22 A 1/30	Paulina 25 A 1/20
			Amalia 1/10	942 A	Cortadera 1 1/200	Las Cañas Este 2003 1/30
			Paulina 1/30	12B	Cortadera 2 1/200	Paulina 26 A 1/30
			Paulina 1/30	13B	Cortadera 41	Cortadera 42
			Paulina 1/30	14B	Corroteo 1 1/280	Lo Cañas 16
		CC kee 100 Pu to 1 Op atta 400 141 up Th	DRTADERA op the minin y% by Hot rísima 1/8 keep the m tion Agree ached. The o,000 has a th Decemb to this date	A 1/40 (374 ng right) U Chili. No n (1/2-5/6). ining right ment for total opti- already be er 2021 fo e.	contained within two M 4 hectares). Mining ta SD 2,673. Such mining ative title is alleged up (20 hectares). Mining) USD 142. Such mini 00% of such propert on price is USD 1.5 n en paid. Remaining p r USD 1.1 million. No ndholding compris	(or cost per year to g right 1/40 is owned o to this date. tax (or cost per year ng right is part of an y with a 1.5% NSR hillion of which USD ayments are due on native title is alleged
		Lic	ense ID	Option	Agreement Terms	Comments
		SA	NTIAGO Z	del Camp USD 600	H Earn In (Arnaldo bo). 5 years term. ,000 to be paid on 22 nd January 2024. R	
			RFIADA I RFIADA II			

		PORFIADA		
		III PORFIADA		
		IV		
		PORFIADA V		
		PORFIADA VI		
		CHILIS 1	100% Frontera SpA	
		CHILIS 2	100% Frontera SpA	
		CHILIS 3	100% Frontera SpA	
		CHILIS 3	• •	
			100% Frontera SpA	
		CHILIS 5	100% Frontera SpA	
		CHILIS 6	100% Frontera SpA	
		CHILIS 7	100% Frontera SpA	
		CHILIS 8	100% Frontera SpA	
		CHILIS 9	100% Frontera SpA	
Exploration done	Acknowledgment and appraisal of exploration by	Previous exp	loration at the Cortadera project in	cluded:
by other parties	other parties.	Historical sur	face workings.	
		1993 to 1995 1:5,000 sca sampling thro terrestrial ma Resistivity li anomalous (c confirming the on a NW-SE long by 1km Before 1994, small percus defining near 2001. SCM (C 2011-2013, campaigns in Quebrada CC sampling we the mineralis were comple was develop terrestrial and resistivity pro through the 3 Previous exp 2011 to 2013 programmes u	Mount Isa Mining Company Chile le geological mapping, six exi ough the alteration zone, IP-Resist agnetometry on 5 m spacing of nes. Also drilling of 10 diamon geological, geochemical and geo e presence of porphyry style Cu-Au trending mineralised corridor of a	cavation trenches ivity surveying and ollected along IP- d holes targeting physical features, i-Mo mineralisation pproximately 2 km 013), completed a drillholes aimed at open pit mining. uding sampling. surface mapping areas surrounding Rock chip and soil ag and adjacent to d holes (23,231m) odel mineralisation collection included Chargeability and s were completed included: and soil sampling
Geology	Deposit type, geological setting and style of mineralisation.	multiple porp the early to r (variously – bioclastics, v an apparent i These porphy and associat Cu and Au a associated w Local oxide m surface sugg The Geology follows: Lithologies • Fos nor	Mo mineralisation at Cortadera i hyry intrusions. These porphyries nid Cretaceuos Totorralillo and Ni stratified chemical sediments olcanic breccias, and andesitic vo NW structure. yries exhibit typical Cu-Au porphyr ed alteration styles. As typical in re strongly related, and higher-gra ith high vein density. nineralisation encountered in drillir ests supergene mineralisation is p or of the Santiago Z landholding mainly observed: ssiliferous limestone observed , thern of Porfiada I tenement. A ak as jarosite-clays but also pre	have intruded into antoco Formations, volcaniclastics, locanic units) along y veining networks porphyry deposits, de Cu and Mo are ag and observed at resent. is summarised as principally in the Iteration is mainly

		 Andesites and Volcanic breccias are observed in Porfiada II, III, IV and Santiago Z. In Porfiada II and III this sequence is interbedded with limestone and the alteration is mainly weak as epidote-clorite clays. Porphyry intrusive stocks mapped in several locations by Minera Fuego geologist in Porfiada I were noted to be part of Complejo plutonico Cameraones (91 - 96Ma) In Porfiada IV and Santiago Z Volcanic sequence conformed by a lithic-crystal tuff and andesite lavas the alteration is mainly associated with the propilythic suite, mostly epidote and chlorite, with carbonate veining and hematite-specularite. • Granodioritic- Dioritic intrusive. Alteration is mainly weak as epidote clorite • Tourmaline breccia bodies of local occurence were observed in the Santiago Z. Those are clast supported with monomictic angular clast altered to K-feldspar. Structures - Regional and local folds and Faults (NE, NNE, NS) - Veining and hydrothermal breccias: √ The most of carbonate veins were observed on limestone lithology. ✓ N30E trend of hydrothermal breccias follow the stratification, between 1 to 4 m thick and 50 to 500 m long, were principally observed at Porfiada I with jarosite, hematite +- chrysocolla. In Porfiada IV N70E trend is observed. Mineralisation Two type of mineralisation are observed: Hydrothermal breccias (northern of Porfiada I tenement): - Hydrothermal breccia with jarosite+- hematite matrix – Hydrothermal breccia with chrysocolla-clays+-jarosite matrix 2) Epidote-Skarn (Santiago Z tenement): – Old works for CuOx prospection were observed in the area. These works follow orientations trending approximately N10° to N25°E and subvertical.
Drillhole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	The coordinates and orientations for all holes reported in this announcement is outlined below: The coordinates and orientations for all of the historical Cortadera drill holes have been reported to ASX in Table 1, Section 2 of the Company's previous drilling announcements, most recently 10th July 2020. All drill holes completed by HCH have been reported in previous announcements to the ASX made on 9 th May 2019, 5 th June 2019, 19 th June 2019, 4 th July 2019, 12 th September 2019, 28 th September 2019, 3 rd December 2019, 29 th October 2019, 25 th November 2019, 3 rd December 2019, 18 th December 2019, 20 th January 2020, 7 th February 2020, 20 th March 2020, 10th July 2020, 11 th August 2020, 11 th November 2020, 17 th December 2020, 27 th January 2021, 18 th March 2021 and 16 th April 2021, 16 th June 2021 and in Quarterly Reports announced to ASX preceding this announcement All historic or previous company drilling results not included may be due to; a) uncertainty of result, location or other unreliability, b) yet to be assessed by Hot Chili, c) unmineralised, d) unsampled or unrecorded, or e) not considered material.
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated	In reported exploration results, length weighted averages are used for any non-uniform intersection sample lengths. Length weighted average is (sum product of interval x corresponding interval assay grade), divided by sum of interval lengths and rounded to one decimal place. Significant intercepts are calculated above a nominal cut-off grade of 0.2% Cu. Where appropriate, significant intersections may contain up to 30m down-hole distance of internal dilution (less than 0.2% Cu). Significant intersections are separated where internal dilution is greater than 30m down-hole distance. The selection of 0.2% Cu for significant intersection cut-off grade is aligned with marginal economic cut-off grade for bulk tonnage polymetallic copper deposits of similar grade in Chile and elsewhere in the world. No top cuts have been considered in reporting of grade results, nor was it deemed necessary for the reporting of significant intersections. No metal equivalent values have been reported for exploration results.

Relationship between	These relationships are particularly important in the reporting of Exploration Results.	Drilling was nominally perpendicular to mineralisation, wher known and practical.
mineralisation widths and intercept lengths	If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.	Mineralisation is hosted within a relatively homogenous and larg porphry intrusion with disseminated mineralisation, hence dri orientation and associated sample lengths are deemed to b representative and unbiased (regardless of drill orientation).
	If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known')	Drill intersections are reported as downhole length.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	 Refer to figures in the announcement. Indicative grade shell models (+0.1% Cu and +0.4% Cu) are included in figures within this announcement. These grade she models have been generated in Leapfrog software from Hot Chili' four dimensional geological model. These grade shells are provided for reference only. The four dimensional model incorporates all lithological unit determined from surface mapping and downhole logging. Thes lithological units are modelled spatially, honouring the depos paragenesis (timing relationships). This allows for effective exploration targeting and understanding of grade distribution an ore controls to be modelled following the Anaconda methodolog of porphyry assessment. The images of grade shell models are not an Exploration Target and do not contain nor indicate any estimate of potential size an grade ranges for the Cortadera discovery.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	It is not practical to report all exploration results as suc unmineralised intervals. Low or non-material grades have no been reported. The coordinates and orientations for all of the historical Cortadera drill holes have been reported to ASX in Table 1, Section 2 of the Company's previous drilling announcements, most recently 27th January 2021.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	 Available historical data from previous exploration includes surface mapping, surface geochemical surveys and geophysical survey (Ground magnetics, airborne magnetics and Induced Polarisatio surveys). Where possible, historical exploration data has bee supported and verified by selected surface sampling an geological mapping undertaken by HCH. Soil sampling at Cortadera and Santiago Z was completed on 200 x 100m grid, and samples were sieved to a -2mm fraction the was sent for analysis for ME-MS61 (48 element) and Au. The XRF readings (for Hot Chili samples) were taken by th Olympus "Vanta" portable XRF . The Minera Fuego data was Niton XRF. U-Pb SHRIMP zircon age-dating at Cortadera included analysis of early, intra and late mineral porphyry intrusive samples from ha diamond core samples. Sample weights ranged between 800 g 1200 g per sample. U-Pb SHRIMP zircon age-dating was undertaken in parallel wit thin-section petrography and SEM mineragraphy. Original data acquisition and processing of approximately 2432 line kilometres of high resolution aeromagnetic and airborn gamma-ray spectrometric (AGS) data over the Vallenar surve block (Non-exclusive area number 4006) in Chile. evaluation an re-processing of this data was carried out by Fugro airborn Surveys (Fugro) in 2005. The original data was acquired by the World Geoscienc Corporation (WGC) between January 10th and May 3rd, 1993 Details of this airborne survey are as follows: Aircraft - Cessna Titan 404 Registration -N4489L Survey Speed -80 m/sec Data Acquisition System - PDAS-1000 digital acquisitio system Magnetometer - Split-beam caesium vapour Resolution - 0.001 nanoTesla Cycle Rate - 5 Hz Nominal Sample interval - 16 m

		Cycle rate: - 1 Hz Nominal sample interval:- 80 meters Positioning - NovAtel GPS GPS cycle rate - 1.0 Hz Navigation - Picodas PNAV Radar Altimeter - King Accuracy - 2%, Sensitivity - 1 ft, range 0 to 2500 ft, Cycle Rate - 10 Hz Barometric Altimeter – Rosemount Cycle Rate - 10 Hz
Further work	The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	Potential work at Cortadera may include further verification drilling, sampling, assaying and QA/QC. Other further work may also include mapping, surface sampling, ground or airborne geophysics as well as infill drilling for resource classification upgrade purposes and/ or exploratory and extensional drilling for resource additions. Metallurgical testwork and Pre-feasibility studies are ongoing and will be published as and when they are finalised. Potential work being planned at Cortadera, Cortadera North and Santiago Z includes but is not limited to detailed litho-structural mapping, additional extensional and in-fill soil geochemistry, geophysical survey (IP/MT) and first-pass scout reverse circulation drilling