

SUCCESSFUL COMPLETION OF ROBERTS HILL AIR-CORE DRILLING PROGRAM

- 197 holes completed totalling 15,999 metres
- Most drill holes successfully penetrated the overburden and terminated in sedimentary and intrusive bedrock
- 84 of the 197 drill holes terminated in sulphide accumulation allowing future geochemical evaluations to be conducted¹
- The first batches of analytical results from the drilling expected towards end of October

Caeneus Minerals Limited (the Company) (ASX: CAD) is pleased to confirm the successful completion of its maiden drilling program at its Roberts Hill project in the highly prospective Mallina Basin, Pilbara WA.

A total of 197 air-core drill holes were completed for 15,999 metres of drilling. In this first air-core program, six (6) prospective areas were drilled (refer Figure 1), essentially on 300 metre spacings to understand the nature and structure of the underlying lithologies.

Figure 1: Exploration Zones

¹The results are preliminary in nature as no drill samples have been sent for analysis, with results in this announcement coming from an observation of the samples by a suitably qualified and experienced geologist.

ASX: CAD Caeneus Minerals Limited ABN 42 082 593 235 The Company has been highly encouraged with 84 of the 197 drill holes ending in an accumulation of sulphides, remarks on each of these drill holes are included in table 1 of this announcement. A summary of observations from each designated zone is also included below.

Zone A

Zone A appears to be an anticlinal structure some 2 square kilometres in area, with a gentle plunge to the south-south-east. The eastern flank of the anticlinal structure exhibits an irregular shaped apophysis clearly identifiable from the Company's recent low level airborne geophysical survey.

Zones B, C and D

Drilling in this location focussed on two features; a compelling potential NNW trending structural corridor over 5 kilometres wide (Zones B and C) and a N-S trending potentially intrusive feature (Zone D) to the west. Detailed geological logging and petrology on some air-core samples in this location is still in progress and interpretation is expected to take additional time due to the nature and complexity of the lithologies intersected. A highlight from the drilling in this location was a 28m intersection of abundant coarse sized mixed sulphides from hole RHAC-0104 at Zone C. From 85m to the end of hole (113m) abundant pyrite, pyrrhotite and traces of a silvery sulphide, most likely arsenopyrite were observed initially within pelitic sediments and then terminating in a granitic rock.

Zone E

This locality contains a magnetically discrete, arcuate intrusive feature approximately 7 kilometres in length and variable thicknesses. Whilst the western portion of the Roberts Hill tenement is generally overlain by 20 metre-plus thicknesses of overburden, Zone E surprisingly contains sporadic outcrop. Lithologies identified were pelitic and amphibolitic schists and a strongly brecciated, calcified and silicarich intrusive rock with abundant pseudomorphs most probably after sulphides.

Drilling over this locality confirmed the presence at depth of all the above lithologies with extensive quartz veination noted and the presence of fresh sulphides in granodiorite-type rocks. Many drill holes bottomed in pyrite/sulphide accumulations

As with Zones B, C and D, logging and petrological investigations at Zone E are ongoing.

Zone F

Air-core drilling at Zone F focussed on a west-north-westerly trending structural feature identified from the Company's earlier aeromagnetic survey. Logging is still in progress.

Further Activities

The Company is delighted that the maiden air-core drilling program was successfully completed to insitu intrusive and sedimentary lithologies, with a significant number of end-of-hole intervals containing sulphide accumulations. The presence and abundance of the latter can now enable geochemical investigations to commence as a vectoring tool to potential mineralised sources.

The Company is currently completing a Program of Work in anticipation for deeper drilling where anomalies have been identified. The Company anticipates that after incorporating analytical results into their models for the above Zones, diamond drilling will be required to follow-up the excellent progress made to date.

			Azimuth	Dip	EoH		Zone
Hole ID	Easting	Northing	(Deg.)	(Deg.)	(m)	Remarks	
RHAC-017	641701.5	7704395	305	60	113	disseminated mixed sulphides bottom 5 m	А
						pyrite/pyrrhotite disseminated bottom 2	А
RHAC-018	641833.9	7704395	305	60	119	m	
						hole terminated in mafic lithology with	A
RHAC-024	642079.6	7703602	085	60	83	disseminated sulphides	
						bottom 5m fine disseminated	A
RHAC-028	641836.1	7702300	085	60	130	pyrite/pyrrhotite	
						Disseminated mixed sulphides bottom	A
RHAC-046	644726	7701490	085	60	62	(52-58m)	
						Sulphides/ pyrite dissemination on granitic	A
RHAC-051	643218	7701595	090	60	92	rock at the end of the hole (58-92 m)	<u> </u>
						Hole terminated in ultramatic rock with	A
RHAC-052	642941	7701625	095	60	85	trace of pyrite and sulphide (84-85 m)	<u> </u>
	C 42(F 1	7701054	004	60	71	Dissemination of sulphides/pyrite at the	A
RHAC-053	642651	7701654	094	60	/1	Piecewinsting of culturation (numits at the	-
	641747	7701720	005	60	147	Dissemination of sulphides/pyrite at the	A
KHAC-050	041747	7701739	095	00	147	Discomination of sulphidos (nyrite at the	^
	6/1510	7701769	080	60	117	and of the hole $(85-117 \text{ m})$	A
KIIAC 057	041510	//01/05	005	00	117	Disseminated pyrite/sulphides bottom	Δ
RHAC-058	641445	7701775	089	60	137	(97-137 m)	~
	011110	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	005	00	107	Disseminated pyrite/sulphides bottom	А
RHAC-059	641136	7701806	092	60	149	(94-149 m)	
						Hole terminated in pyrite dissemination	А
RHAC-060	640901	7701873	092	60	144	(122-144 m)	
						Hole Terminated in disseminated	А
RHAC-061	640575	7701854	094	60	153	sulphides (124-153 m)	
						Disseminated sulphides bottom (132-153	А
RHAC-062	640282	7701873	085	60	151	m)	
RHAC-063	639957	7701899	080	60	148	Disseminated pyrite bottom (129-148 m)	А
						Disseminated pyrite/sulphides bottom	Α
RHAC-064	639671	7701919	101	60	150	(130-150 m)	
						Dissemination of sulphide at bottom	В
RHAC-067	643301	7697444	115	60	82	(78-82 m)	
						Hole terminated in sulphides	В
RHAC-070	643725	7698033	030	60	102	dissemination at bottom (82-102 m)	
						Disseminated sulphides bottom	В
RHAC-071	643606	7697876	032	60	105	(82-105 m)	
						Disseminated pyrite/sulphides bottom	В
RHAC-072	643492	7697708	041	60	90	(69-90 m)	

RHAC-073	643368	7697546	032	60	93	Disseminated sulphides at bottom	В
	6 10 100	7007507	0.45			Hole terminated in disseminated Sulphide	В
RHAC-074	643163	7697527	045	60	86	(34-86 m) Hole terminated in disseminated Sulphide	B
RHAC-075	643020	7697052	032	60	66	(4-66 m)	B
						Hole terminated in disseminated sulphide	В
RHAC-076	642861	7696862	040	60	80	(33-80 m)	
RHAC-077	632042	760001/	350	60	52	Hole terminated in disseminated Sulphide	E
KIAC-077	032042	7033014	550	00	55	Hole terminated in disseminated Sulphide	E
RHAC-078	632127	7698729	341	60	58	(6-57 m)	
RHAC-079	632215	7698469	262	60	99	Abundant sulphides for most intersections	E
RHAC-080	632305	7698183	342	60	79	Minor traces of pyrite/sulphide (47-79) m	E
RHAC-081	632392	7697890	346	60	90	pyrite disseminated bottom (86-90 m)	E
RHAC-082	632469	7697601	348	60	106	pyrite disseminated bottom (100-106 m)	E
RHAC-083	632554	7697299	340	60	114	pyrite disseminated bottom (109-114 m)	E
						Hole ended in disseminated Pyrite	F
RHAC-085	632741	7696741	350	60	143	(71-143 m)	-
RHAC-086	632840	7696453	344	60	89	Hole ended in disseminated Pyrite	F
	032040	7050455	544	00	05	Hole terminated in disseminated	В
RHAC-087	642720	7696660	035	60	81	pyrite/sulphide (70-81 m)	
						Hole ended in disseminated	В
RHAC-088	642577	7696461	035	60	63	Pyrite/sulphide (45-63 m)	P
RHAC-089	642411	7696275	068	60	71	(55-71m)	В
						Hole ended in disseminated	В
RHAC-090	643205	7697494	115	60	87	Pyrite/sulphide (3-87 m)	
RHAC-091	642961	7697661	128	60	54	Minor trace of sulphides (4-54 m)	В
BUAC 000	642700	7007044	112	60		Hole terminated in granitic rock with	C
RHAC-092	642700	7697814	112	60	90	disseminated sulphides (5-90 m)	6
RHAC-093	643521	7699373	015	60	72	bottom of hole (67-72 m)	
						Hole ended in pyrite/sulphide	С
RHAC-095	643254	7699015	025	60	78	dissemination	
	642000	7600020	015	60	100	Hole terminated in disseminated sulphide	C
KHAC-090	045099	7090030	015	00	100	hole terminated in mafic lithology with	C
RHAC-097	642961	7698617	038	60	96	disseminated sulphides (37-96 m)	
						Hole terminated in disseminated	С
RHAC-098	642807	7698414	047	60	76	sulphide/pyrite (5-76 m)	
						Hole ended in minor to abundant	Ĺ
RHAC-099	642660	7698223	045	60	61	respectively.	
RHAC-100	642504	7698020	047	60	64	Hole ended in minor trace of sulphide.	C
RHAC-101	642140	7698203	118	60	74	Hole terminated in disseminated sulphide	C
						Hole terminated in Granitic rock with	C
RHAC-102	641897	7698380	135	60	90	sulphide dissemination (61-90 m)	
DUAC 102	641646	7609542	125	60	02	Hole ended in disseminated sulphide	C
KIIAC-105	041040	7098342	125	00	33	Hole terminated in disseminated	С
RHAC-104	641393	7698700	126	60	113	sulphide/pyrite (85-113 m)	
						Hole terminated in disseminated	D
RHAC-107	640607	7699154		60	115	pyrite/sulphide (66-115 m)	
RHAC-108	641145	7700130		60	135	(84-135 m)	U
					100	Hole terminated in slate with	D
						disseminated pyrite (80-85 m) and	
RHAC-109	640957	7699902		60	111	(104-111 m)	
RHAC-110	640747	7699685		60	118	Hole terminated in an intrusive rock with disseminated pyrite (94-118 m)	U
	010747		l		0		I

-					1		1
РЦАС 111	640520	7600474		60	1/2	Hole ended in Diorite with disseminated	D
	640550	7699474		60	145	pyrite traces	D
RHAC-113	639402	7698129		60	117	Hole ended in Diorite with pyrite traces	
						contact and disseminated pyrite/sulphides	D
RHAC-117	640104	7699074	227	60	141	(112-141m)	
						Hole terminated disseminated	D
RHAC-118	640181	7699119	122	60	153	pyrite/sulphides (74-153 m)	
						Hole terminated in disseminated	D
RHAC-119	640316	7699279	229	60	132	pyrite/sulphides (96-132 M)	
						Hole ended in disseminated pyrite	F
RHAC-126	632947	7696161	340	60	103	(69-103 m)	-
	622022	7605000	242	60	122	Hole ended in disseminated pyrite	F
KHAC-127	055052	7095680	545	00	125	Hole ends in disseminated pyrite	F
RHAC-129	633222	7695319	346	60	113	(76-113 m)	
						Hole terminated in guartz vein with trace	E
RHAC-146	634021	7698424	074	60	70	of pyrite/sulphide	
						Hole terminated in quartz with	E
RHAC-150	633103	7698443	075	60	84	disseminated pyrite/sulphide (61-84 m)	
						The hole terminated in phyllitic	E
500000	622205	7000405	000	60	65	rock with pyrite and sulphides	
RHAC-151	632805	7698465	086	60	65	dissemination	
RHAC-153	631903	7698463	083	60	81	(79-81 m)	E
KIAC 155	031505	7050405	005	00	01	Hole ended in Diorite and pyrite	F
RHAC-156	631093	7698477	099	60	109	dissemination (102-108 m)	-
						hole terminated in granitic rock with	E
RHAC-157	630791	7698480	087	60	83	disseminated pyrite (79-83 m)	
						The hole terminated in schist with pyrite	E
RHAC-159	630166	7698490	083	60	99	dissemination (91-99 m)	
DUAC 4C4	625.625	700070	070	60	122	The hole terminated in schist with pyrite	E
RHAC-161	635635	/6989/2	079	60	132	dissemination (56-132 m)	
RHAC-162	635334	7698978	098	60	144	dissemination (91-144 m)	E
MIAC 102	033334	/0505/0	050	00	144	The hole terminated in schist and phyllitic	F
						rock with pyrite dissemination (74m, 75 m	-
RHAC-165	634427	7698998	101	60	93	and 87 m)	
						Hole ended in phyllitic rock with pyrite	E
RHAC-171	633220	7699010	095	60	75	dissemination (70-75 m)	
						Hole Terminated in Granitic rock with	E
DUAC 172	(22022	700007	000	60	105	pyrite /sulphides dissemination	
RHAC-172	632923	/69899/	093	60	105	(94-105 m) Hole Terminated in Granitic rock with	F
RHAC-173	632633	7699009	090	60	95	pyrite /sulphides dissemination (64-95 m)	L
	001000					Hole terminated in guartz embedded with	E
RHAC-174	632333	7699018	100	60	97	, pyrite/sulphide	
						Hole ended in phyllitic rock with trace of	E
RHAC-179	630540	7699112	076	60	92	Pyrite (61-92 m)	
						Hole terminated in granitic rock with trace	F
RHAC-187	635993	7694458	092	60	63	of sulphides (5 m)	
DUAC 100	625696	7604450	100	60	40	Hole ended in Granitic rock and schist with	F
NHAC-100	03000	1034433	100	00	43	Pyrite and sulphide dissemination at the	F
RHAC-189	635373	7694062	101	60	106	EoH (20 m)	
						Sulphides / Pyrite disseminated at the	F
RHAC-190	635071	7694459	095	60	72	granitic roc k (9 m)	
						Dissemination of sulphides/pyrite at the	F
RHAC-192	634471	7699446	090	60	97	end of the hole (30 m)	
						Pyrite disseminated at the end of the hole.	F
RHAC-194	633842	7694451	093	60	92	At 92 m	

Table 1: Drill Collar Locations and Remarks

The Company will provide further updates as drilling progresses.

This announcement has been authorised for release by the Caeneus Board of Directors.

For Further Information, please contact:

Davide Bosio	Rob Mosig
Chairman	Chief Executive Officer
+61 8 6012 2656	+61 8 6012 2656

Competent Persons Statement

The information contained in this report to exploration results relates to information compiled or reviewed by Mr Robert Mosig MSc, FAICD. Mr Mosig is a Fellow of the Australasian Institute of Mining and Metallurgy (FAusIMM) and is the Company's Chief Executive Officer. Mr Mosig has sufficient experience of relevance to the styles of mineralization and the types of deposits under investigation, and to the activities undertaken to qualify as a Competent Person as defined in the 2012 edition of the Joint Ore Reserve Committee (JORC) "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr Mosig consents to the inclusion in this report of the matters based on information in the form and context in which it appears.

Forward Looking Statements Disclaimer

This announcement contains forward-looking statements that involve a number of risks and uncertainties. These forward-looking statements are expressed in good faith and believed to have a reasonable basis. These statements reflect current expectations, intentions or strategies regarding the future and assumptions based on currently available information. Should one or more of the risks or uncertainties materialise, or should underlying assumptions prove incorrect, actual results may vary from the expectations, intentions and strategies described in this announcement. No obligation is assumed to update forward looking statements if these beliefs, opinions and estimates should change or to reflect other future developments.

Figure 4: the Company's Mallina Province Projects

About the Mallina Province Projects: The company's exploration licences at Roberts Hill & Mt Berghaus cover an area of 170 sq km and 179 sq km respectively and are situated approximately 50 kilometres to the south of Port Hedland. The ground is comprised of structurally and chemically altered granitic, intermediate and ultramafic intrusive rocks which are considered highly prospective for additional gold occurrences to the recent discoveries in the region (De Grey's Hemi).

With the Mallina, Berghaus and possibly new (previously unidentified) shear trends crossing the Roberts Hill and Mt Berghaus tenements, Caeneus is highly encouraged that similar intrusive related gold anomalism will be discovered within its tenements.

JORC Code, 2012 Edition – Table 1 report template

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 Sampling is collected percussion chips via Aircore drilling techniques. Aircore drilling produces an approximate 1.5kg sample every 1m which is deposited in rows for later collection by field staff in pre-numbered bags. QAQC samples were inserted into the sample stream every 40th sample. Sample intervals have not yet been assayed
Drilling techniques	• Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	The drill type was a truck-mounted aircore rig
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Drill sample recovery was reduced by a reported 25% when intersecting groundwater. End of hole drill chips were successfully recovered from all holes drilled at the date of this announcement
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical 	 All holes were logged quantitively each metre in a customised excel spreadsheet. However, this drilling is exploratory only and no resource estimation studies will be conducted from this

Criteria	JORC Code explanation	Commentary
	 studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 <i>Program</i> All chip trays and EOH core was photographed and archived for reference.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 Sampling protocol was based on observations in the logging and assigned by the rig geologist. The standard sample interval was a 4m composite Composite lengths did cross lithological boundaries in some cases, weathering or alteration boundaries. Where zones of interest, such as veining were intersected, sample intervals reduced to 1m. No field duplicates were taken The sample size was estimate between 1.5kg to 3kg
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	Samples are being prepared for assay at a later date
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 The data has been verified by Caeneus Minerals Competent Person. Data entry is via standardised Company excel templates, using pre-set logging codes, with built in validation checks. Data is loaded into a customised SQL database.

Criteria	JORC Code explanation	Commentary
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 All collars are referenced using a hand-held GPS system. Collars are exported, then transferred electronically (cut and paste) to the logging import template. Topography was limited to RL estimations from GPS reading at drill hole site
		• The collars were surveyed to grid system MGA94 zone 50
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral 	 Data is not considered applicable for inclusion for Resource / Reserve estimation.
	 Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Sample compositing has been applied, as outlined in section Sub-Sampling techniques and sample preparation
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. 	 Drilling was designed as a first pass regional exploration to define the stratigraphic boundaries and extents of a potential gold system.
	 If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 Data and records available have been unable to define an orientation of primary mineralised structures.
		 Follow up drilling will consider angled drilling to target primary mineralisation.
Sample security	The measures taken to ensure sample security.	• Samples were loaded in labelled hessian bags and secured on
		 pallets prior to transportation. Samples were reconciled on receipt at the
		 laboratory.
Audits or reviews	• The results of any audits or reviews of sampling techniques and data.	• The drilling, sampling and logging practices were audited in the field by the CP.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The data reported on are located on tenement E47/3846 The tenement is 100% owned by Caeneus Minerals subsidiary Mt Roe Mining Limited. There are no known impediments to development of a mining operation on this lease other than the usual consulting with community and landholders, and the granting of a mining licence and the various permits required to operate.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	• n/a
Geology	 Deposit type, geological setting and style of mineralisation. 	• E45/3846 has potential for a range of styles of mineralisation.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	 The 2021 drilling data presented has undergone vigorous validation by the Company under the supervision of the CP. All drill hole data material to the report are included in Appendix 1 and 2 of the accompanying report.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of 	Not applicable to this program and report

Criteria	JORC Code explanation	Commentary
	such aggregations should be shown in detail.The assumptions used for any reporting of metal equivalent values should be clearly stated.	
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 Not applicable to this program and report No analyses received at this stage
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	• n/a
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	 All drill holes have been surveyed by hand- held GPS, which is considered an appropriate degree of accuracy for regional exploration drilling For the exploration results only significant exploration results are reported as outlined in the diagrams.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	• n/a
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Further work is dependent on analytical results and further assessments on completion of all drilling.