

### **Presentation**

Dr Stephen Grocott Managing Director & CEO

October 2021 ASX:QPM www.apmetals.com.au Re-energising Australia with critical battery metals production

Corporate Presentation Investor Roadshow

### Disclaimer

The information in this presentation is an overview and does not contain all information necessary for investment decisions. In making investment decisions in connection with any acquisition of securities, investors should rely on their own examination and consult their own legal, business and/or financial advisers.

This document has been made available for information purposes only and does not constitute a prospectus, short form prospectus, profile statement or offer information statement. This document is not subject to the disclosure requirements affecting disclosure documents under Chapter 6D of the Corporations Act 2001 (Cth). The information in this document may not be complete and may be changed, modified or amended at any time by the Company, and is not intended to, and does not, constitute representations and warranties of the Company.

Queensland Pacific Metals Ltd does not have a significant operating history on which to base an evaluation of its business and prospects. Therefore, the information contained in this document is inherently speculative. Further, securities of companies such as the Company generally involve a higher degree of risk and are more volatility than securities of more established companies. Accordingly, an investment in the Company must be considered as speculative.

The information contained in this document has been prepared in good faith, neither the Company, Queensland Pacific Metals Ltd, or any of their respective directors, officers, agents, employees or advisors give any representation or warranty, express or implied, as to the fairness, accuracy, completeness or correctness of the information, opinions and conclusions contained in this document. Accordingly, to the maximum extent permitted by law, none of the Company, Queensland Pacific Metals Ltd, their respective directors, employees or agents, advisers, nor any other person accepts any liability whether direct or indirect, express or limited, contractual, tortuous, statutory or otherwise, in respect of, the accuracy or completeness of the information or for any of the opinions contained in this document or for any errors, omissions or misstatements or for any loss, howsoever arising, from the use of this document.

This document may contain statements that may be deemed "forward looking statements". Forward risks, uncertainties and other factors, many of which are outside the control of the Company can cause actual results to differ materially from such statements.

The Company makes no undertaking to update or revise such statements but has made every endeavour to ensure that they are fair and reasonable at the time of making this document. Investors are cautioned that any forward-looking statements are not guarantees of future performance and that actual results or developments may differ materially from those projected in any forward-looking statements made.

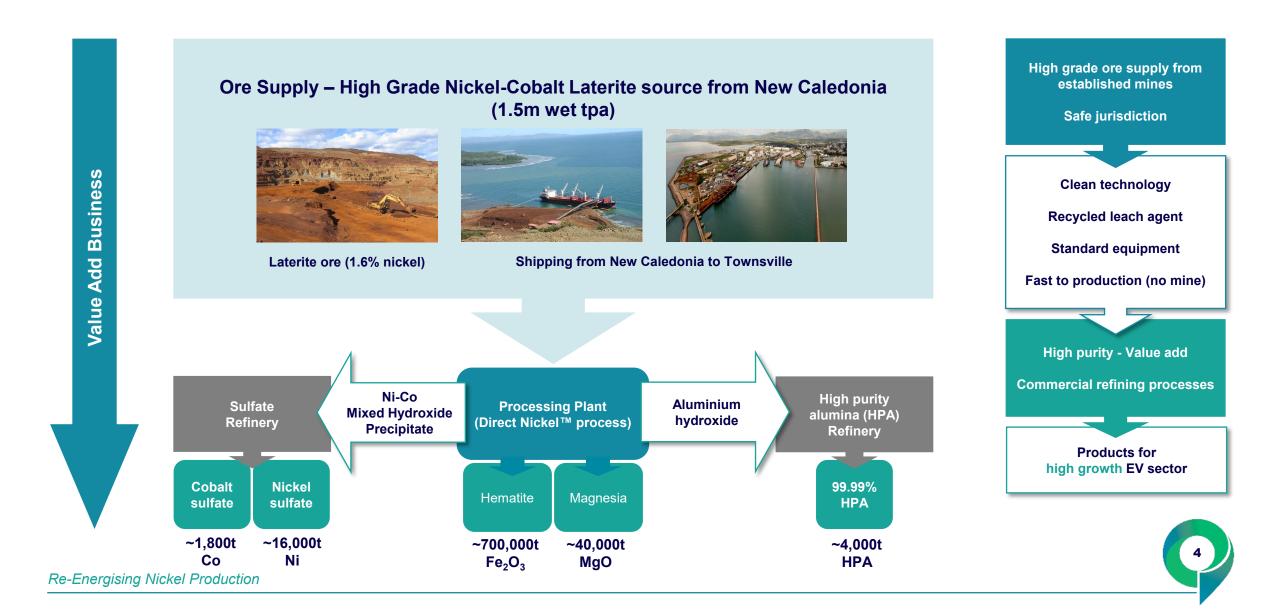
### **Company**



Dr Stephen Grocott

Managing Director & CEO
sgrocott@gpmetals.com.au

# **Conceptual TECH Project**




Ore Stockpiles

Ore Prep Area

3

## Townsville Energy Chemicals Hub – "TECH Project"



### **Selection of Products from Pilot Plant**



Nickel Laterite Ore (crushed and dried)

Ni-Co MHP

Hematite

Inert Residue



### **World Class Partners**



#### **Combined US\$15m equity investment**

- \$0.1364 per share (16.8% premium to 1-month VWAP)
- LGES 7.5% shareholder
- POSCO 3.2% shareholder

#### Binding offtake agreement signed

- 7 year term + 3 year first right of refusal after term expires
- 7,000tpa nickel / 700tpa cobalt LGES
- 3,000tpa nickel / 300tpa cobalt POSCO
- Pricing linked to commodity prices at time of sale

#### Extensive due diligence undertaken

 Technical due diligence undertaken by RPM Global focusing on process, scalability, New Caledonia ore supply and approvals pathway

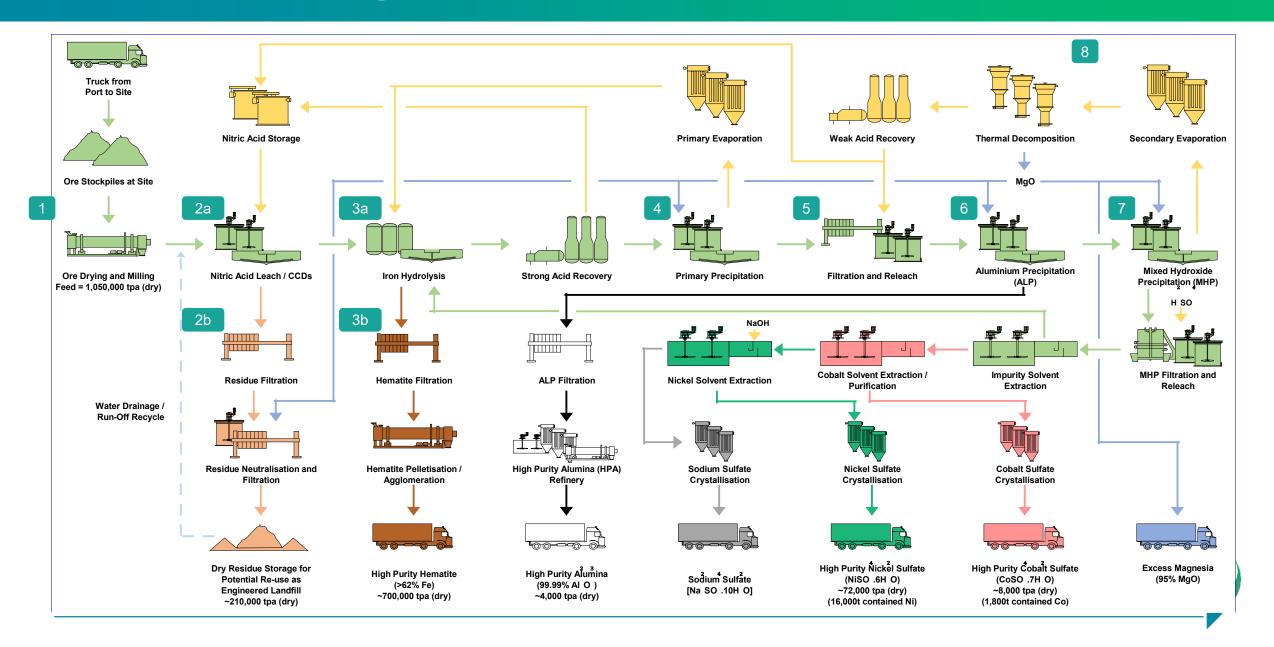
# What does this mean for the TECH Project?

- World class, bankable offtake partners secured will assist in financing
- Baseload customers majority of nickel and cobalt production is now contracted
- Additional equity investment allows QPM to bring forward detailed engineering work in parallel with DFS
- Vote of confidence from two world class battery manufacturers



### **World Class Partners**




"This is the most meaningful investment in our supply chain for LG Energy Solution since the company spun out from LG Chem. We believe the TECH Project will deliver sustainable nickel and cobalt production that is in line with LGES' operating philosophy. And our proactive investments in the supply chain such as this will ultimately play a role in further satisfying our customers."



"We are delighted to co-invest with LG Energy Solution in Queensland Pacific Metals. We look forward to building our relationship with QPM and assess other business opportunities that may arise between QPM and POSCO."



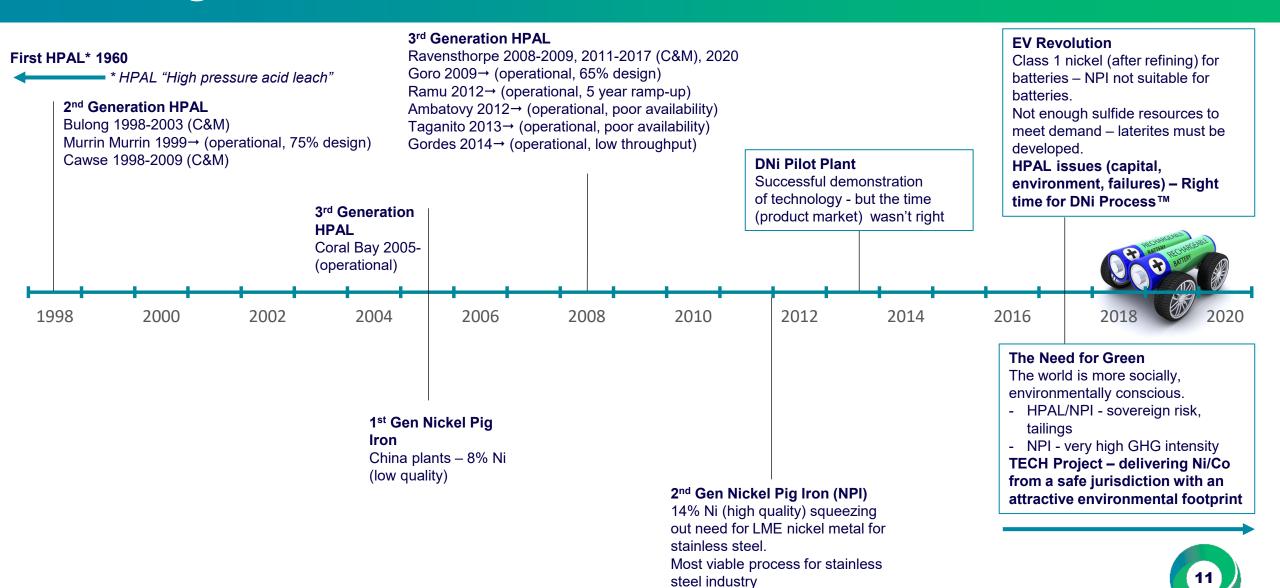
# DFS - De-risking scaleup



## DFS – De-risking scaleup

• The DFS is deploying commercialised solutions to the individual unit operations of our flowsheet to minimise technical and scale-up risk

| Ref | Process                               | Simplified Description                                                                            | Industrial History                                                                                                                        | Examples / Suppliers                                                                                                                 |
|-----|---------------------------------------|---------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| 1   | Ore drying / crushing                 | Ore drying in rotary dryers and low energy milling                                                | Conventional practice and standard equipment with >100 year history                                                                       | Used in all ore feeds in ferronickel furnaces at dozens of sites including China, Japan, Korea, Indonesia and New Caledonia          |
| 2a  | Nitric acid leach                     | Agitated leaching of ore in nitric acid under atmospheric conditions                              | Conventional practice and standard equipment dating back to 1950s for phosphate rock, uranium ores, aluminum clay and refractory gold ore | Nitric acid has long been known as the most powerful leaching agent but its cost meant that it was not commercialised for nickel ore |
| 2b  | Residue neutralisation / filtration   | Removal of residue using conventional thickening, filtration and clarification                    | Almost every hydrometallurgical plant in the world employs thickeners, filters and clarifiers                                             | 1000s of operating sites Conventional equipment to be sourced from major suppliers such as FLSmidth and Metso Outotec                |
| 3a  | Iron Hydrolysis / acid recovery       | Heating the metal nitrate solution to distil the nitric acid and precipitate the iron as hematite | Standard process of iron recovery as precipitated hematite used in steel pickling plants around the world.                                | Iron hydrolysis is highly standardised and Metso<br>Outotec sells dedicated equipment to carry out<br>this process                   |
| 3b  | Hematite filtration and pelletisation | Conventional thickening and filtration followed by pelletisation                                  | Iron fines around the world are agglomerated / pelletised prior to feed into blast furnace                                                | 100s of commercial plants<br>Convention equipment to be sourced from<br>suppliers such as Feeco, Drytech or Eirich                   |
| 4   | Primary precipitation                 | Addition of magnesia to increase pH and precipitate nickel, cobalt and aluminium                  | Standard practice in the majority of nickel laterite leaching operations                                                                  | Ravensthorp, Goro, Minara, Ramu, Gordes and<br>the new nickel HPAL plants in development in<br>Indonesia                             |


## DFS – De-risking scaleup

• The DFS is deploying commercialised solutions to the individual unit operations of our flowsheet to minimise technical and scale-up risk

| Ref | Process                          | Simplified Description                                                                                                                                                             | Industrial History                                                                                                                                                 | Examples / Suppliers                                                                                     |
|-----|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| 5   | Filtration and re-leach          | Re-leach the primary precipitation to re-<br>dissolve the nickel, cobalt and aluminium.<br>This step assists to minimise nickel and cobalt<br>losses in the aluminium precipitate. | •                                                                                                                                                                  | Ravensthorp, Goro, Minara, Ramu, Gordes and<br>the new nickel HPAL plants in development in<br>Indonesia |
| 6   | Aluminum hydroxide precipitation | Addition of magnesia to increase pH to precipitate aluminium hydroxide                                                                                                             | pH adjustment by magnesia is standard practice in nickel laterite leaching operations                                                                              | Ravensthorp, Goro, Minara, Ramu, Gordes and<br>the new nickel HPAL plants in development in<br>Indonesia |
| 7   | MHP precipitation                | Addition of magnesia to increase pH nickel and cobalt in the form of hydroxides                                                                                                    |                                                                                                                                                                    | Ravensthorp, Goro, Minara, Ramu, Gordes and<br>the new nickel HPAL plants in development in<br>Indonesia |
| 8   | Nitric acid recovery             | With Ni, Co and Al removed, all that remains is magnesium nitrate. Heat this solution up to recover magnesia and recycle the nitric acid.                                          | Fluid bed roasters are used in magnesia industry to produce magnesia from Magnesium chloride. Applying this process to magnesium nitrate should be easiest because | Major vendors included Andritz and Tenova                                                                |

### The Right Time for the Direct Nickel Process

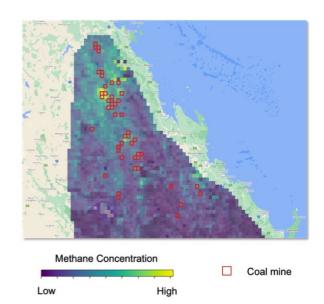
Re-Energising Nickel Production



## Pathway to Zero Carbon Nickel

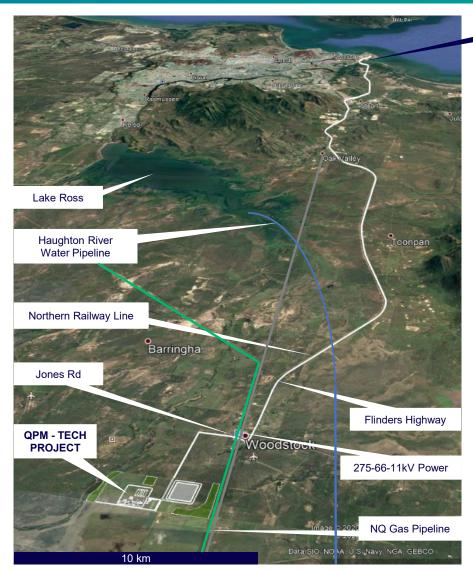
Using waste gas to fuel the TECH Project – MOU signed with Transition Energy Corp for supply and North **Queensland Gas Pipelines for transport** 

Underground Coal




Pit Coal Open




over Basin Satellite imagery Bowen





- **Underground:** Majority of gas is pre-drained and flared ahead of mining for safety reasons resulting in a direct CO<sub>2</sub> emission. Some gas (methane) is vented
- Open pit: Fugitive emissions of gas (methane) as mining proceeds. Methane has a global warming potential factor 28 times worse than CO<sub>2</sub> under ISO standards
- High tech satellite imagery is now highlighting the issue over the Bowen Basin
- By harvesting waste gas (particularly fugitive emissions), QPM will receive an offset against it's CO<sub>2</sub> emissions, but more importantly help solve a growing problem

## The Right location for the TECH Project - Lansdown





#### Ideal site (290 Ha) allocated to QPM in the Lansdown Eco-Industrial Precinct

- Water pipeline 12 km away
- Gas pipeline (35 PJ/y capacity we need 10-12 PJ/y)
- Electric transmission lines (275kV, 66kV and 11kV)
- Fibre optic communications
- Existing Ross River (140 MW) and Edify (400MW) solar arrays
- Road train access to Townsville Port (Flinders Highway)
- Rail line
- Environment gently undulating grazing land, sparsely wooded
- Zoned heavy industrial
- Cultural Heritage Management Agreement signed

## **Project of State Significance**



### Queensland Government Gazette

### EXTRAORDINARY PUBLISHED BY AUTHORITY

ISSN 0155-9370

Vol. 388]

#### MONDAY 27 SEPTEMBER 2021

[No. 25

State Development and Public Works Organisation Act 1971

#### **DECLARATION OF A PRESCRIBED PROJECT**

I, Steven Miles, appointed as the Deputy Premier, Minister for State Development, Infrastructure, Local Government and Planning, do hereby declare the Townsville Energy Chemicals Hub Project to be a prescribed project pursuant to section 76E of the State Development and Public Works Organisation Act 1971.

This declaration takes effect from the date of its publication in the gazette, pursuant to section 76E(3) of the *State Development and Public Works Organisation Act 1971*.

- TECH Project awarded Prescribed Project status by Queensland Government
- A Prescribed Project is one which is of significance, particularly economically or socially, to Queensland or a region
- Prescribed Project status enlivens the Coordinator-General's powers under the State Development and Public Works Act to ensure timely decision making with respect to approvals for the Project
- Project approvals continue to advance well

# **Project Schedule**

Targeting construction to begin mid 2022 with plant commissioning late 2023

|                              | Jan-21 | Feb-21 | Mar-21 | Apr-21 | May-21 | Jun-21 | Jul-21 | Aug-21 | Sep-21 | Oct-21 | Nov-21 | Dec-21 | Jan-22 | Feb-22 | Mar-22 | Apr-22 | May-22 | Jun-22 | Iul-22 | Aug-22 | Sep-22 | Oct-22 | Nov-22 | Dec-25 | lan-23 | Feb-23 | Mar-23 | Apr-23 | May-23 | Jun-23 | Jul-23 | Aug-23 | Sep-23 | Oct-23 | Nov-23 | Dec-23 |
|------------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| Base Case                    |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |
| Pilot plant activities       |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |
| Project approvals            |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |
| Definitive Feasibility Study |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |
| FEED (detailed design)       |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |
| Funding                      |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |
| Construction                 |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |
| Commissioning/Production     |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |

## Delivering value for our shareholders



### What's Next?

#### De-risking the project

- Advance and complete DFS
- Detailed engineering with key vendors
- Obtain project approvals
- Finalise key agreements including ore / gas supply

#### ESG Credentials

- Update GHG calculations
- Residue work on commercial application

#### Advancing HPA

- Testwork
- Marketing and offtake

#### Commercial

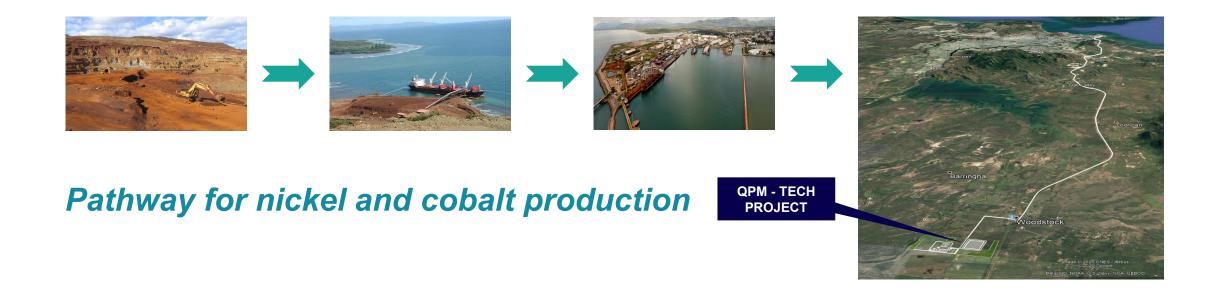
- Consideration of offtake for remaining ~35% production
- Co-product offtake hematite

#### Funding

- Seek expressions of interest
- Debt syndicate appointed



## **Corporate Overview**


| Capital Structure         |          |
|---------------------------|----------|
| Pro Forma Shares on issue | 1,355.6M |
| Share Price               | 24c      |
| Pro Forma Market cap      | A\$325M  |
| Top 20                    | 39%      |

| Major Shareholders             |       |      |
|--------------------------------|-------|------|
| LG Energy Solutions            | 99.2m | 7.4% |
| POSCO GEM 1 <sup>ST</sup> FUND | 42.5m | 3.2% |
| UBS Nominees                   | 40.0m | 3.0% |
| Citicorp Nominees              | 39.4m | 2.9% |
| Robert Pearce                  | 38.9m | 2.9% |

| Board and Key Management |                   |  |  |  |  |  |  |
|--------------------------|-------------------|--|--|--|--|--|--|
| John Abbott              | Non Exec Chair    |  |  |  |  |  |  |
| Stephen Grocott          | Managing Director |  |  |  |  |  |  |
| John Downie              | Exec Director     |  |  |  |  |  |  |
| Jim Simpson              | Non Exec Director |  |  |  |  |  |  |
| Sharna Glover            | Non Exec Director |  |  |  |  |  |  |
| Eddie King               | Non Exec Director |  |  |  |  |  |  |



# The QPM TECH Project

