

RC Drilling Over Three Projects to Commence Imminently

Coodardy DD program completed with new exploration target identified

<u>Highlights:</u>

- 3,550m Reverse Circulation ("RC") drilling program across three projects to commence in October
- The RC drilling program will systematically test new targets, as well as extensions to known gold mineralisation:
 - Coodardy project 1,150m program in known historical gold mineralisation. Historical results include:
 - 12m at 4.5 g/t Au from 12m
 - 14m at 4.21 g/t Au from 14m
 - Emily Wells project 1,200m program testing the gold anomaly along the strike extensions from Oxonia mineralisation
 - Nemesis (Tuckanarra) project 1,200m program testing recently identified gold anomaly
- The Phase 1 Diamond Drilling ("DD") program has been completed, as planned for the Coodardy, Emily Wells and Eaglehawk projects.
- Coodardy DD program has identified a new exploration target to the west of the mineralised project area.
- Gold in soil geochemical program to be progressed on P20/2410 located immediately north of Emily Wells project

Victory Goldfields (ASX:1VG) ("Victory" or "the Company") is pleased to announce it is preparing to commence a 3,550m Reverse Circulation ("RC") drilling program across three projects – Coodardy, Emily Wells and Nemesis (Tuckanarra). The RC program is scheduled to commence in the second half of October 2021 and follows recent successful soil geocheomical programs and the results of the DD drilling program at Coodardy.

Victory's Executive Chairman, Trevor Matthews said: "The Company continues to progress exploration on its extensive portfolio of projects.

The RC drilling program is an exciting mix of targeting known gold mineralisation with historical gold intersections at Coodardy combined with new undrilled anomalous gold zones identified at Emily Wells and Nemesis."

RC Drilling Program

<u>Coodardy</u>

Historical aircore and RC drilling identified shallow gold mineralisation at the Coodardy Project in the 1980s. Historical drilling intersections included **12m at 4.5 g/t Au from 12m** and **14m at 4.21 g/t Au from 14m**¹. These intersections are situated in the oxidised weathered profile at Coodardy illustrated in Figure 3 below. A total of 16 drill holes for approximately 1,150m of RC drilling is planned to confirm these shallow historical intersections and forms part of a larger resource definition drilling program to successfully delineate a JORC compliant resource at Coodardy.

Emily Wells

Shallow historical economic drilling intersections exist at the Oxonia Pit, within the Emily Wells Project. Victory's current exploration campaign includes testing the strong and continuous soil anomaly along strike extensions of the Oxonia mineralisation. It is planned to drill 8 holes (EWRC holes in Figure 1 below) for approximately 1,200m of RC drilling.

Nemesis (Tuckanarra)

The recent soil geochemical program identified anomalous gold geochemistry associated with the Bottle Dump Shear Zone. The robust anomaly is to be tested by 10 holes for a total 1,200m of RC drilling (see Figure 2 below).

¹ Refer to ASX announcements titled "Investor Presentation – July 2021" dated 26 July 2021 and "Prospectus" dated 20 July 2021. The Company confirms that it is not aware of any new information or data that materially affects the information included in this document.

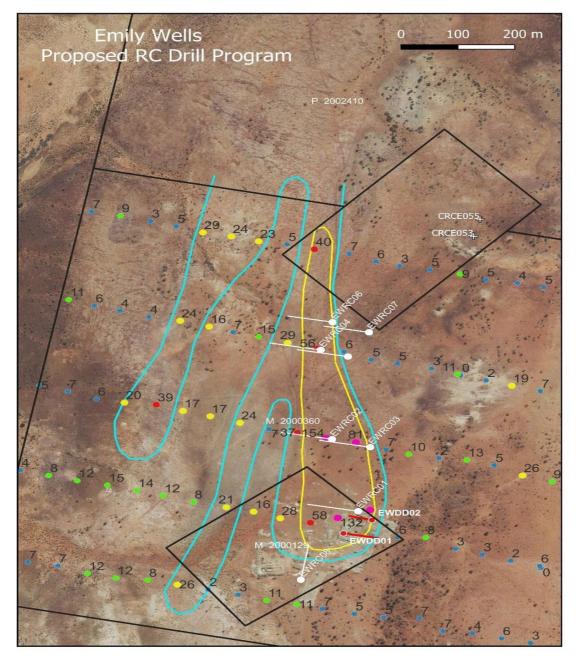


Figure 1: Location of planned RC drilling and the existing soil geochemistry contours at Emily Wells.

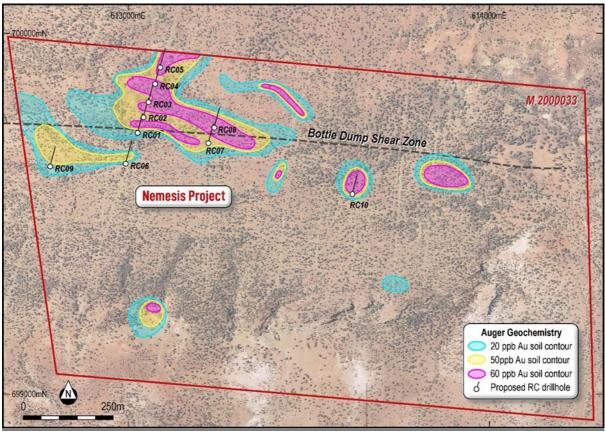


Figure 2: Nemesis (Tuckanarra) Project with anomalous contours and planned initial RC holes. Bottle Dump interpreted shear zone shown.

Coodardy DD program

The recently completed Phase 1 DD program of 6 DD holes for Coodardy was part of Victory's strategy to test the continuity and depth extensions of the historical drilling results discussed above. Although the deeper DD holes recently drilled at Coodardy did not confirm depth extensions to the mineralisation, a newly discovered lower sulphidic schist has the potential to be supergene enriched near surface.

The recent DD drilling has identified a lower sulphidic schist not previously intersected in the historical drilling. The schist is interpreted to dip 45°—55° east and its up-dip projection into the oxidation front provides a new near surface drill target in an undrilled area to the west of the known mineralisation, (Figure 3).

If the newly identified schist sequence extends to the surface, potential exists to significantly increase the known historical mineralisation at Coodardy.

DD drilling results and JORC Table 1 are attached as Appendices 1 to 4.

ASX RELEASE | 7 October 2021 | ASX:1VG

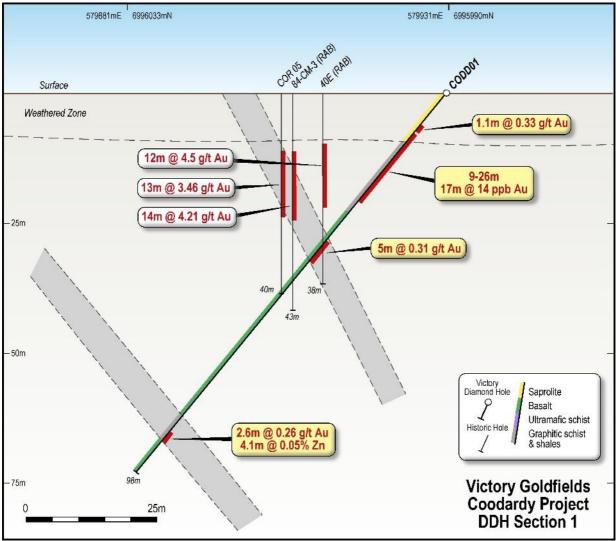


Figure 3: Historical intersections at Coodardy and the newly identified lower graphitic schist.

Emily Wells soil geochemical program

The Company recently announced the grant of two tenement applications located immediately to the north of the Emily Wells project². The tenements continue Victory's contiguous tenement holding in the area. P20/2410 has had no historical drilling and the Company is planning to conduct a gold in soil sampling program in October. This soil program will extend the auger lines previously completed in M20/360, as illustrated in Figure 4.

 VICTORY GOLDFIELDS

 ACN: 124 279 750
 E: info@victorygold.com.au D: +61 (08) 6557 8656
 A: Level 25, 108 St Georges Terrace, Perth, WA 6000

² Refer to ASX announcement dated 25 August 2021 titled "Victory Progresses Diamond Drilling on Advanced Projects".

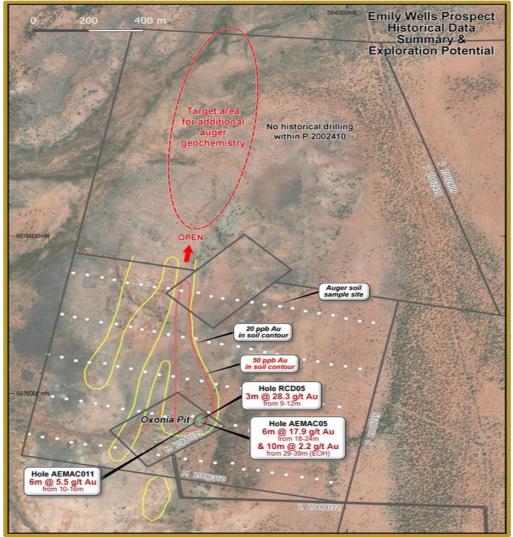


Figure 4: PL20/2410 tenement provides potential extension of Emily Wells gold mineralisation

This 500m long and robust geochemical anomaly, that strikes northward from the Oxonia Pit, was not closed off in the earlier auger program. The area has a shallow residual regolith and is ideally suited to shallow auger sampling.

This announcement has been authorised by the Board of Victory Goldfields Limited.

For further information please contact:

Trevor Matthews Executive Chairman trevor.matthews@victorygold.com.au Lexi O'Halloran Investor and Media Relations Iexi@janemorganmanagement.com.au

Victory Goldfields: Company Profile

Victory has systematically built a portfolio of assets in the Cue goldfields comprising of fifty (50) tenements and a further five (5) tenement applications. Cue is located in the mid-west region of Western Australia, 665 kilometres north-east from Perth. The Cue goldfields are regarded as one of the most prestigious mining districts of Western Australia with a long and successful history of gold exploration and production.

The Company's strategy is to undertake best practice exploration and development of the Victory tenements to identify Mineral Resources and Ore Reserves within its tenement land holding. Leveraging its land holding position, Victory also aims to acquire additional gold opportunities within the Cue goldfields district, either through joint venture or tenement acquisition.

Competent Person Statement

The historical exploration activities and results contained in this report is based on information compiled by Michael Busbridge, a Member of the Australian Institute of Geoscientists and a Member of the Society of Economic Geologists. He is a consultant to Victory Goldfields Pty Ltd. He has sufficient experience which is relevant to the style of mineralisation and types of deposits under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (the JORC Code). Michael Busbridge has consented to the inclusion in the report of the matters based on his information in the form and context in which it appears.

Project	Hole_Id	Drill_Type	Azi	Dip	RL	MGA_East	MGA_North	MGA_Grid	Total_Depth (m)
Coodardy	CODD04	DDH	310.0	-56.0	450	579965	6995882	MGA94_50	178.9
Coodardy	CODD01	DDH	310.0	-50.0	450	579932	6995990	MGA94_50	98.5
Coodardy	CODD02	DDH	307.0	-55.0	450	579993	6995969	MGA94_50	195.4
Coodardy	CODD03	DDH	309.0	-55.0	450	579953	6996054	MGA94_50	162.7
Coodardy	CODD04A	DDH	312.0	-70.0	450	579965	6995880	MGA94_50	183.6
Coodardy	CODD02A	DDH	311.0	-50.0	450	579992	6995971	MGA94_50	163.1
Emily Wells	EWDD01	DDH	100.0	-60.0	450	583455	6975095	MGA94_50	120.0

APPENDIX 2. Diamond Core Recoveries.

Project	Hole_Id	Depth_From	Depth_To	Interval Length	Recovery_m	Recovery_%
Coodardy	CODD04	0.00	2.70	2.70	2.40	89%
Coodardy	CODD04	2.70	5.80	3.10	1.50	48%
Coodardy	CODD04	5.80	7.60	1.80	1.20	67%
Coodardy	CODD04	7.60	9.18	1.58	1.58	100%
Coodardy	CODD04	9.18	12.20	3.02	1.50	50%
Coodardy	CODD04	33.20	36.20	3.00	2.70	90%
Coodardy	CODD04	36.20	39.20	3.00	3.00	100%
Coodardy	CODD04	39.20	41.80	2.60	2.00	77%
Coodardy	CODD04	41.80	44.90	3.10	3.10	100%
Coodardy	CODD04	44.90	47.10	2.20	2.20	100%
Coodardy	CODD04	47.10	50.20	3.10	2.70	87%
Coodardy	CODD04	50.20	53.30	3.10	3.10	100%
Coodardy	CODD04	53.30	56.40	3.10	3.10	100%
Coodardy	CODD04	56.40	59.50	3.10	3.10	100%
Coodardy	CODD04	59.50	61.40	1.90	1.90	100%
Coodardy	CODD04	61.40	63.20	1.80	1.80	100%
Coodardy	CODD04	63.20	66.20	3.00	3.00	100%
Coodardy	CODD04	66.20	69.20	3.00	1.70	57%
Coodardy	CODD04	69.20	71.20	2.00	1.60	80%
Coodardy	CODD04	71.20	73.70	2.50	2.50	100%
Coodardy	CODD04	73.70	75.20	1.50	1.50	100%
Coodardy	CODD04	75.20	78.20	3.00	3.00	100%
Coodardy	CODD04	78.20	79.90	1.70	1.50	88%
Coodardy	CODD04	79.90	81.20	1.30	1.50	115%
Coodardy	CODD04	81.20	84.20	3.00	3.00	100%
Coodardy	CODD04	84.20	86.50	2.30	2.30	100%
Coodardy	CODD04	86.50	90.50	4.00	4.00	100%
Coodardy	CODD04	90.50	96.50	6.00	6.00	100%
Coodardy	CODD04	96.50	101.00	4.50	4.50	100%
Coodardy	CODD04	101.00	104.90	3.90	3.90	100%
Coodardy	CODD04	104.90	108.50	3.60	3.64	101%
Coodardy	CODD04	108.50	113.70	5.20	3.66	70%
Coodardy	CODD04	113.70	115.10	1.40	1.20	86%
Coodardy	CODD04	115.10	116.80	1.70	1.20	71%
Coodardy	CODD04	116.80	120.40	3.60	3.20	89%
Coodardy	CODD04	120.40	124.30	3.90	1.05	27%
Coodardy	CODD04	124.30	125.50	1.20	1.20	100%
Coodardy	CODD04	125.50	126.80	1.30	1.30	100%
Coodardy	CODD04	126.80	127.60	0.80	0.80	100%
Coodardy	CODD04	127.60	128.50	0.90	0.90	100%
Coodardy	CODD04	128.50	129.90	1.40	1.40	100%
Coodardy	CODD04	129.90	132.50	2.60	2.60	100%
Coodardy	CODD04	132.50	138.50	6.00	6.00	100%
Coodardy	CODD01	0.00	2.20	2.20	2.20	100%
Coodardy	CODD01	2.20	4.10	1.90	1.50	79%
Coodardy	CODD01	4.10	7.20	3.10	3.00	97%
Coodardy	CODD01	7.20	9.10	1.90	2.00	105%
Coodardy	CODD01	9.10	12.10	3.00	3.00	100%
Coodardy	CODD01	12.10	15.10	3.00	3.00	100%
Coodardy	CODD01	15.10	17.90	2.80	2.10	75%
Coodardy	CODD01	17.90	20.70	2.80	2.80	100%
Coodardy	CODD01 CODD01	20.70	22.80	2.10	1.70	81%
Coodardy	CODD01 CODD01	22.80	22.80	1.50	1.50	100%
Coodardy	CODD01 CODD01	24.30	27.10	2.80	2.80	100%
Coodardy	CODD01 CODD01	24.30	27.10	2.00	1.70	85%
	CODD01 CODD01	29.10	32.00	2.90	2.90	100%
Coodardy	CODD01 CODD01	32.00	32.00	1.10	1.10	100%
Coodardy		33.10				
Coodardy	CODD01	JJ. 10	36.10	3.00	3.00	100%

Coodardy	CODD01	36.10	39.10	3.00	3.00	100%
Coodardy	CODD01	39.10	42.10	3.00	3.00	100%
Coodardy	CODD01	42.10	45.10	3.00	3.00	100%
Coodardy	CODD01	45.10	48.10	3.00	3.00	100%
Coodardy	CODD01	48.10	51.10	3.00	3.00	100%
Coodardy	CODD01	51.10	54.10	3.00	3.00	100%
Coodardy	CODD01	54.10	57.10	3.00	3.00	100%
Coodardy	CODD01	57.10	60.10	3.00	3.00	100%
Coodardy	CODD01	60.10	62.80	2.70	2.70	100%
Coodardy	CODD01	62.80	65.00	2.20	2.20	100%
Coodardy	CODD01	65.00	68.10	3.10	3.10	100%
Coodardy	CODD01	68.10	71.20	3.10	3.10	100%
Coodardy	CODD01	71.20	74.30	3.10	3.10	100%
Coodardy	CODD01	74.30	77.40	3.10	3.10	100%
Coodardy	CODD01	77.40	80.00	2.60	2.60	100%
Coodardy	CODD01	80.00	83.10	3.10	3.10	100%
Coodardy	CODD01	83.10	85.50	2.40	2.40	100%
Coodardy	CODD01	85.50	86.60	1.10	1.10	100%
		86.60		0.90		100%
Coodardy	CODD01		87.50		0.90	
Coodardy	CODD01	87.50	87.70	0.20	0.10	50%
Coodardy	CODD01	87.70	90.10	2.40	2.20	92%
Coodardy	CODD01	90.10	92.30	2.20	2.20	100%
Coodardy	CODD01	92.30	95.40	3.10	3.10	100%
Coodardy	CODD01	95.40	98.50	3.10	3.10	100%
Coodardy	CODD02	0.00	2.50	2.50	2.50	100%
Coodardy	CODD02	2.50	4.40	1.90	1.80	95%
Coodardy	CODD02	4.40	6.20	1.80	1.90	106%
Coodardy	CODD02	6.20	9.20	3.00	3.00	100%
Coodardy	CODD02	9.20	11.60	2.40	2.40	100%
Coodardy	CODD02	11.60	14.70	3.10	3.10	100%
Coodardy	CODD02	14.70	16.70	2.00	2.00	100%
Coodardy	CODD02	16.70	17.30	0.60	0.60	100%
Coodardy	CODD02	17.30	18.20	0.90	0.90	100%
Coodardy	CODD02	18.20	18.60	0.4	0.40	100%
Coodardy	CODD02	18.60	19.10	0.50	0.20	40%
Coodardy	CODD02	19.10	19.30	0.20	0.20	100%
	CODD02 CODD02	19.30	21.80	2.50	2.50	100 %
Coodardy						
Coodardy	CODD02	21.80	24.20	2.40	2.40	100%
Coodardy	CODD02	24.20	27.30	3.10	3.10	100%
Coodardy	CODD02	27.30	30.20	2.90	2.90	100%
Coodardy	CODD02	30.20	33.20	3.00	3.00	100%
Coodardy	CODD02	33.20	36.20	3.00	3.00	100%
Coodardy	CODD02	36.20	39.20	3.00	3.00	100%
Coodardy	CODD02	39.20	42.20	3.00	3.00	100%
Coodardy	CODD02	42.20	44.80	2.60	2.60	100%
Coodardy	CODD02	44.80	48.40	3.6	3.60	100%
Coodardy	CODD02	48.40	54.40	6	6.00	100%
Coodardy	CODD02	54.40	57.40	3	3.00	100%
Coodardy	CODD02	57.40	63.90	6.5	6.50	100%
Coodardy	CODD02	63.90	70.40	6.5	6.50	100%
Coodardy	CODD02	70.40	75.40	5	1.70	34%
Coodardy	CODD02	75.40	78.40	3	3.00	100%
Coodardy	CODD02	78.40	84.40	6	6.00	100%
Coodardy	CODD02	84.40	90.40	6	6.00	100%
Coodardy	CODD02 CODD02	90.40	93.30	2.9	0.70	24%
		93.30				
Coodardy	CODD02		94.40	1.1	1.10	100%
Coodardy	CODD02	94.40	96.40	2	2.00	100%
Coodardy	CODD02	96.40	98.00	1.6	1.60	100%
Coodardy	CODD02	98.00	99.50	1.5	1.50	100%
Coodardy	CODD02	99.50	102.50	3	2.80	93%
Coodardy	CODD02	102.50	108.40	5.9	6.00	102%
Coodardy	CODD02	108.40	114.40	6	6.00	100%
	CODD02	114.40	120.40	6	6.00	100%

Coodardy	CODD02	120.40	126.40	6	6.00	100%
Coodardy	CODD02	126.40	132.40	6	6.00	100%
Coodardy	CODD02	132.40	138.40	6	6.00	100%
Coodardy	CODD02	138.40	141.10	2.7	2.70	100%
Coodardy	CODD02	141.10	144.40	3.3	3.00	91%
Coodardy	CODD02	144.40	149.80	5.4	5.40	100%
Coodardy	CODD02	149.80	152.10	2.3	2.30	100%
Coodardy	CODD02	152.10	158.00	5.9	5.90	100%
Coodardy	CODD02	158.00	164.50	6.5	6.50	100%
Coodardy	CODD02	164.50	171.00	6.5	6.50	100%
Coodardy	CODD02	171.00	176.50	5.5	5.50	100%
Coodardy	CODD02	176.50	183.00	6.5	6.50	100%
Coodardy	CODD02	183.00	189.40	6.4	6.40	100%
Coodardy	CODD02	189.40	195.04	5.64	5.60	99%
Coodardy	CODD03	0.00	2.70	2.7	1.30	48%
Coodardy	CODD03	2.70	4.30	1.6	1.60	100%
Coodardy	CODD03	4.30	5.60	1.3	1.30	100%
Coodardy	CODD03	5.60	6.60	1	1.00	100%
Coodardy	CODD03	6.60	6.90	0.3	0.30	100%
Coodardy	CODD03	6.90	7.60	0.7	0.50	71%
Coodardy	CODD03	7.60	7.90	0.3	0.30	100%
Coodardy	CODD03	7.90	8.60	0.7	0.70	100%
Coodardy	CODD03	8.60	8.70	0.1	0.10	100%
Coodardy	CODD03	8.70	9.20	0.5	0.50	100%
Coodardy	CODD03	9.20	9.40	0.2	0.20	100%
Coodardy	CODD03	9.40	9.70	0.3	0.30	100%
Coodardy	CODD03	9.70	9.90	0.2	0.10	50%
Coodardy	CODD03	9.90	10.50	0.6	0.60	100%
Coodardy	CODD03	10.50	11.80	1.3	1.30	100%
Coodardy Coodardy	CODD03	11.80	14.50	2.7	2.70	100%
Coodardy Coodardy	CODD03	14.50	15.20	0.7	0.70	100%
	CODD03	15.20	18.20	3	3.00	100%
Coodardy			21.20	3		
Coodardy	CODD03 CODD03	<u>18.20</u> 21.20	24.30	3.1	3.00 3.10	<u>100%</u> 100%
Coodardy		24.30	26.00	1.7		100%
Coodardy	CODD03			3.2	1.70	100%
Coodardy	CODD03	26.00	29.20	2.9	3.20	97%
Coodardy	CODD03	29.20	32.10		2.80	
Coodardy	CODD03	32.10	32.90	0.8	0.90	113%
Coodardy	CODD03	32.90	36.00	3.1	3.10	100%
Coodardy	CODD03	36.00	39.10	3.1	3.10	100%
Coodardy	CODD03	39.10	42.20	3.1	3.10	100%
Coodardy	CODD03	42.20	45.20	3	3.00	100%
Coodardy	CODD03	45.20	48.20	3	3.00	100%
Coodardy	CODD03	48.20	49.30	1.1	1.10	100%
Coodardy	CODD03	49.30	51.20	1.9	1.90	100%
Coodardy	CODD03	51.20	54.30	3.1	3.10	100%
Coodardy	CODD03	54.30	57.40	3.1	2.90	94%
Coodardy	CODD03	57.40	60.40	3	3.00	100%
Coodardy	CODD03	60.40	62.90	2.5	2.50	100%
Coodardy	CODD03	62.90	63.00	0.1	0.10	100%
Coodardy	CODD03	63.00	69.50	6.5	6.50	100%
Coodardy	CODD03	69.50	75.90	6.4	6.40	100%
Coodardy	CODD03	75.90	82.40	6.5	6.50	100%
Coodardy	CODD03	82.40	88.10	5.7	5.40	95%
Coodardy	CODD03	88.10	90.70	2.6	2.80	108%
Coodardy	CODD03	90.70	91.50	0.8	0.80	100%
Coodardy	CODD03	91.50	95.40	3.9	3.90	100%
Coodardy	CODD03	95.40	96.70	1.3	1.30	100%
Coodardy	CODD03	96.70	102.70	6	6.00	100%
Coodardy	CODD03	102.70	108.70	6	6.00	100%
Coodardy	CODD03	108.70	114.70	6	6.00	100%
Coodardy	CODD03	114.70	120.70	6	6.00	100%
Coodardy	CODD03	120.70	126.70	6	6.00	100%

Coodardy	CODD03	126.70	132.70	6	6.00	100%
Coodardy	CODD03	132.70	138.70	6	6.00	100%
Coodardy	CODD03	138.70	144.70	6	6.00	100%
Coodardy	CODD03	144.70	150.70	6	6.00	100%
Coodardy	CODD03	150.70	155.00	4.3	4.30	100%
Coodardy	CODD03	155.00	156.50	1.5	1.50	100%
Coodardy	CODD03	156.50	162.70	6.2	6.20	100%
Coodardy	CODD04A	98.20	102.20	4	4.00	100%
Coodardy	CODD04A	102.20	102.60	0.4	0.40	100%
Coodardy	CODD04A	102.60	104.00	1.4	1.40	100%
Coodardy	CODD04A	104.00	105.90	1.9	1.90	100%
Coodardy	CODD04A	105.90	108.60	2.7	2.70	100%
Coodardy	CODD04A	108.60	110.10	1.5	1.50	100%
Coodardy	CODD04A	110.10	111.20	1.1	1.10	100%
Coodardy	CODD04A	111.20	112.00	0.8	0.80	100%
Coodardy	CODD04A	112.00	114.60	2.6	2.60	100%
Coodardy	CODD04A	114.60	120.60	6	6.00	100%
Coodardy	CODD04A	120.60	126.60	6	6.00	100%
Coodardy	CODD04A	126.60	132.60	6	6.00	100%
Coodardy	CODD04A	132.60	138.60	6	6.00	100%
Coodardy	CODD04A	138.60	144.60	<u>6</u>	6.00	100%
Coodardy	CODD04A	144.60	150.60		6.00	100%
Coodardy	CODD04A	150.60	156.60	6	6.00	100%
Coodardy	CODD04A	156.60	162.60	6	6.00	100%
Coodardy	CODD04A	162.60	168.60	6	6.00	100%
Coodardy	CODD04A	168.60	174.60	6	6.00	100%
Coodardy	CODD04A	174.60	180.60	6	6.00	100%
Coodardy	CODD04A	180.60	183.60	3	3.00	100% 100%
Coodardy	CODD02A	30.20	33.20	3	3.00	100%
Coodardy	CODD02A	33.20	36.20	3	3.00	100%
Coodardy	CODD02A	36.20	39.20 42.20	3	3.00 3.00	100%
Coodardy	CODD02A	39.20	45.20	3		100%
Coodardy Coodardy	CODD02A CODD02A	<u>42.20</u> 45.20	45.30	0.1	3.00 0.10	100%
Coodardy	CODD02A CODD02A	45.30	47.90	2.6	2.60	100 %
Coodardy	CODD02A CODD02A	47.90	49.20	1.3	1.30	100 %
Coodardy	CODD02A CODD02A	49.20	54.40	5.2	5.20	100 %
Coodardy	CODD02A CODD02A	54.40	60.40	6	6.00	100%
Coodardy	CODD02A CODD02A	60.40	66.40	6	6.00	100 %
	CODD02A CODD02A	66.40	68.90	2.5	2.50	100%
Coodardy Coodardy	CODD02A CODD02A	68.90	70.20	1.3	1.30	100%
Coodardy	CODD02A CODD02A	70.20	75.30	5.1	5.10	100 %
Coodardy	CODD02A CODD02A	75.30	81.00	5.7	5.70	100 %
Coodardy	CODD02A CODD02A	81.00	84.40	3.4	3.40	100 %
Coodardy	CODD02A CODD02A	84.40	88.40	4	4.00	100 %
Coodardy	CODD02A CODD02A	88.40	94.60	6.2	6.50	105%
Coodardy	CODD02A	94.60	100.90	6.3	5.90	94%
Coodardy	CODD02A	100.90	105.60	4.7	4.70	100%
Coodardy	CODD02A CODD02A	105.60	111.40	5.8	5.80	100 %
Coodardy	CODD02A CODD02A	111.40	117.80	6.4	6.40	100 %
Coodardy	CODD02A CODD02A	117.80	124.30	6.5	6.50	100 %
Coodardy	CODD02A CODD02A	124.30	130.80	6.5	6.50	100 %
Coodardy	CODD02A CODD02A	130.80	137.30	6.5	6.50	100%
Coodardy	CODD02A CODD02A	137.30	143.80	6.5	6.50	100 %
Coodardy	CODD02A CODD02A	143.80	143.80	1.1	2.10	191%
Coodardy	CODD02A CODD02A	143.80	150.40	5.5	2.10	45%
Coodardy	CODD02A CODD02A	150.40	155.60	5.2	5.20	100%
Coodardy	CODD02A CODD02A	155.60	162.00	6.4	6.40	100 %
Coodardy	CODD02A CODD02A	162.00	163.10	1.1	1.10	100%
Emily Wells	EWDD01	0.00	1.80	1.8	1.80	100%
Emily Wells	EWDD01 EWDD01	1.80	3.00	1.2	1.20	100%
Emily Wells	EWDD01	3.00	4.30	1.3	1.30	100 %
Emily Wells	EWDD01	4.30	6.80	2.5	2.50	100 %

Emily Wells	EWDD01	6.80	8.80	2	2.00	100%
Emily Wells	EWDD01	8.80	9.40	0.6	0.60	100%
Emily Wells	EWDD01	9.40	11.20	1.8	1.70	94%
Emily Wells	EWDD01	11.20	13.00	1.8	1.90	106%
Emily Wells	EWDD01	13.00	15.20	2.2	2.20	100%
Emily Wells	EWDD01	15.20	17.00	1.8	1.80	100%
Emily Wells	EWDD01	17.00	19.10	2.1	2.10	100%
Emily Wells	EWDD01	19.10	21.20	2.1	2.10	100%
Emily Wells	EWDD01	21.20	21.60	0.4	0.40	100%
Emily Wells	EWDD01	21.60	24.40	2.8	2.80	100%
Emily Wells	EWDD01	24.40	27.10	2.7	2.90	107%
Emily Wells	EWDD01	27.10	27.60	0.5	0.40	80%
Emily Wells	EWDD01	27.60	29.60	2	1.90	95%
Emily Wells	EWDD01	29.60	32.40	2.8	2.80	100%
Emily Wells	EWDD01	32.40	35.10	2.7	2.80	104%
Emily Wells	EWDD01	35.10	38.10	3	3.00	100%
Emily Wells	EWDD01	38.10	39.90	1.8	1.80	100%
Emily Wells	EWDD01	39.90	42.50	2.6	2.60	100%
Emily Wells	EWDD01	42.50	44.30	1.8	1.80	100%
Emily Wells	EWDD01	44.30	44.80	0.5	0.50	100%
Emily Wells	EWDD01	44.80	46.40	1.6	1.60	100%
Emily Wells	EWDD01	46.40	48.10	1.7	1.70	100%
Emily Wells	EWDD01	48.10	49.30	1.2	1.20	100%
Emily Wells	EWDD01	49.30	51.20	1.9	1.90	100%
Emily Wells	EWDD01	51.20	53.60	2.4	2.40	100%
Emily Wells	EWDD01	53.60	56.30	2.7	2.90	107%
Emily Wells	EWDD01	56.30	60.30	4	4.00	100%
Emily Wells	EWDD01	60.30	66.40	6.1	6.10	100%
Emily Wells	EWDD01	66.40	72.40	6	6.00	100%
Emily Wells	EWDD01	72.40	78.40	6	6.00	100%
Emily Wells	EWDD01	78.40	83.00	4.6	4.60	100%
Emily Wells	EWDD01	83.00	89.50	6.5	6.50	100%
Emily Wells	EWDD01	89.50	96.00	6.5	6.50	100%
Emily Wells	EWDD01	96.00	102.40	6.4	6.40	100%
Emily Wells	EWDD01	102.40	108.40	6	6.00	100%
Emily Wells	EWDD01	108.40	112.60	4.2	4.20	100%
Emily Wells	EWDD01	112.60	114.40	1.8	1.80	100%
Emily Wells	EWDD01	114.40	120.00	5.6	5.60	100%

Hole_Id	Depth_From m	Depth_To m	Interval m	AU1 (FA) ppb	AU2 (FA) ppb	AU(AR) ppb	As ppm	Cu ppm	Pb ppm	Zn ppm
CODD04	2.00	3.00	1.00	296	322	230	385	218	83	12
CODD04	3.00	5.80	2.80	159		157	826	309	21	93
CODD04	12.20	13.00	0.80	279		262	240	81	3	405
CODD04	113.00	114.10	1.10	4		1.5	82.4	135	45	4200
CODD04	169.60	170.50	0.90	430	8720	716	5740	7	3	47
CODD01	2.00	3.00	1.00	188		192	162	119	3	92
CODD01	5.00	6.00	1.00	109		113	91.8	116	4	102
CODD01	8.00	9.10	1.10	325		330	127	182	23	95
CODD01	38.00	39.00	1.00	549		594	216	137	6	96
CODD01	39.00	40.00	1.00	326		361	603	73	6	99
CODD01	40.00	41.00	1.00	259		275	699	78	6	124
CODD01	41.00	41.95	0.95	247		276	1350	75	4	105
CODD01	41.95	43.00	1.05	263		328	3870	96	5	78
CODD01	86.40	88.10	1.70	223	112	-0.5	499	267	56	363
CODD01	88.10	89.00	0.90	370	555	19	305	295	8	440
CODD01	89.00	90.10	1.10	131	127	-0.5	697	334	16	611
CODD02	71.55	71.85	0.30	732		1330	213	213	7	57
CODD02	138.00	139.00	1.00	5		0.5	76.2	354	165	2120
CODD02	139.00	140.00	1.00	17		-0.5	64.4	338	124	6890
CODD03	49.00	50.00	1.00	33100	207.6	31800	57.6	185	40	138
CODD03	87.00	88.10	1.10	323		126	113	197	2	147
CODD03	88.10	89.00	0.90	173		9	351	339	14	268
CODD03	89.00	89.40	0.40	161		4.5	582	324	25	678
CODD03	89.40	90.70	1.30	158		127	229	187	3	289
CODD03	91.60	92.05	0.45	223		2	536	239	13	396
CODD04A	99.60	100.50	0.90	3		5	62.2	104	-1	2530
CODD04A	100.50	101.80	1.30	4		6	178	70	3	2900
CODD02A	44.40	44.80	0.40	111		102	1730	182	15	105
CODD02A	44.80	45.80	1.00	119		111	2020	88	22	27
CODD02A	137.00	138.00	1.00	16		-0.5	48.6	573	139	2130
CODD02A	138.00	139.50	1.50	12		-0.5	142	459	95	1950
EWDD01	15.80	16.80	1.00	435		435	50.4	37	-1	77

0.5 ppb

0.5 ppb

0.5 ppb 1 ppm 1 ppm 1 ppm 1 ppm

Detection Limits:

Abbreviations:

FA: Fire Assay with AA readings.

AR: Aqua Regia acid digestion with AA readings.

As, Cu, Pb, Zn assayed via Aqua Regia acid digestion.

Appendix 4.

JORC Code, 2012 Edition – Table 1

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 Barren intervals of core not prospective or unlikely to contain anomalous assays or alteration minerals were not sampled. Sampled intervals and widths would vary, depending on what was being sampled Hence sample weights would vary from 200 grams to 3 kgms. Sampled intervals averaged 0.8m long. One half of core was put into numbered calico bags for despatch to the assay lab, whilst the other half is stored onsite as a reference.
Drilling techniques	• Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is oriented and if so, by what method, etc).	 Diamond drilling rig (Rig 19) supplied by Topdrill Pty Ltd. Core was obtained from surface. Both HQ (triple tube) & NQ2 core was obtained. Core surveys employed a downhole Gyro making continuous readings every 10m. Core was orientated using a standard orientation tool.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. 	 Diamond core sample collected in trays, photographed and logged on site. Core

Criteria	JORC Code explanation	Commentary
	 Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse grained material. 	 trays, containing half core, remain onsite at VG's facilities. Core recovery was variable and is documented in Appendix 2 of this announcement.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 Diamond core is geological, structural and geotechnical logged with full orientation and detailed photography. Core recovery is calculated based on average 3m runs. Entire diamond core logged including mineralisation and country rock. There has been no previous diamond drilling at Coodardy and Emily Wells. Historical geological logging of RC and aircore drilling completed at Coodardy and Emily Wells is available in hard copy format suitable for first pass exploration. Geological logging, sample intervals recording, RQD calculations, structural measurements, was completed on all core, using standard industry logging software on a notebook computer. All geological information noted above has been conducted by a competent person as recognized by JORC.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 Diamond core was orientated and marked based on 1 metre or geological boundaries. The core was cut in half along a cut line, marked 1 cm above the core orientation line. At all times, half core was retained for future reference
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters 	 All assaying was completed by Bureau Veritas Labs (BV) of Cannington, Perth. All assaying was by 30-gram charge Fire Assay (FA) with AA finish (total digest). BV method FA003.Sample detection was 0t.5 ppb Au In addition to the Au FA analysis, all samples were analysed for Au via Aqua

Criteria	JORC Code explanation	Commentary
	used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. • Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.	 Regia digestion. BV method AR001, 0.5 ppb Au detection limit. Pathfinder elements As, Cu, Pb, Zn were analysed by Aqua Regia, BV method AR102, 1 ppm det limit. Samples were dissolved via Aqua Regia and read by the AAS instrument. Standards were industry CRMs from OREAS which included low-grade and high- grade along with certified blanks. CRM's include – G250-B, G47. The methods are considered appropriate for this style of mineralisation at Coodardy and Emily Wells. No density data available. The companies conducting the historical drilling programs at Coodardy and Eaglehawk did not report any QAQC procedures including duplicate sampling, geological standards (CRMs), blank samples, or pulp duplicates. Historical sample and analytical QAQC data is not recorded in historical records. BV labs routinely re-assayed anomalous assays (greater than 0.3 g/t Au) as part of their normal QAQC procedures.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 No verification of significant intersections undertaken by independent personnel. Verification of significant intersections by VG personnel. All data and documentation are both hard copy and electronic. No twin holes were drilled to confirm historical drill records. All data from the diamond program, is primarily stored in digital format in VG computers. Validation of assay data has been undertaken to compare fire assay data with aqua regia assay data.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 All hole coordinates are in GDA94 Zone 50 (Appendix 1). All drill holes were located by handheld GPS with an accuracy of +/- 5 m. There is no detailed documentation regarding the accuracy of the topographic control. No elevation values (Z) were recorded for collars. An elevation of 450 mRL was assigned by VG. Down-hole surveys were completed by the Gyro instrument .
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) 	• Given the first pass nature of the exploration programs, the spacing of the exploration drilling is appropriate for understanding the exploration potential and the identification of structural controls on the mineralisation.

Criteria	JORC Code explanation	Commentary
	and classifications applied.Whether sample compositing has been applied.	 Not applicable as drilling was a first pass study of the projects and not enough holes to establish grade continuity. No sample compositing has been applied.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 At Coodardy, recorded historical RC drill hole azimuths vary between 255° and 265° (magnetic), with dips recorded as either - 60° or vertical. RAB holes are recorded as vertical. Azimuths of diamond drilling was between 307-312 at Coodardy and the two holes at Emily Wells were drilled underneath the historical Oxonia Pit. The relationship between drill orientation and mineralised structures at Coodardy is known from modelling by VG and concluded that mineralisation trends 010-030 and dips moderately to the east. Azimuths and dips of diamond drilling was subsequently modified to intersect the modelled mineralisation at right angles. The dip and direction of dip of modelled mineralisation has not resulted in biased sampling.
Sample security	• The measures taken to ensure sample security.	 All samples managed by VG personnel up to and including the delivery of all samples to BV labs.
Audits or reviews	 The results of any audits or reviews of sampling techniques and data. 	 No sampling techniques or data have been independently audited.
		 All drilling done at Emily Wells has been by private companies where audits were not required (although audits are required for public companies). At Coodardy drilling activities in the 1980s were completed by Metana Mins and Getty Oil. Audits have not been reported.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
<i>Mineral tenement and land tenure status</i>	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 Coodardy and Emily Wells Exploration Targets are located within M20/455, and M20/129, respectively. They form part of a broader tenement package of exploration tenements located in the Cue Goldfields in the Murchison region of Western Australia. Native Title claim no. WC2004/010 (Wajarri Yamatji #1) was registered by the Yaatji Marlpa Aboriginal Corp in 2004 and covers the entire project area, including Coodardy and Emily Wells.

Criteria	JORC Code explanation	Commentary
		• There are no registered cultural heritage sites within the two tenements.
		 All tenements are held 100% by Victory Goldfields or Klondyke Gold. All tenements are secured by the DMIRS (WA Government).
		 All tenements are granted, in a state of good standing and have no impediments.
Exploration done by other parties	 Acknowledgment and appraisal of exploration by other parties. 	• At Coodardy 36 RC holes and 32 RAB holes, were drilled by Metana Minerals and Getty Oil between 1984 -1988, with RAB Holes drilled to a maximum depth of 36 m.
		 Reverse circulation drilling was used to obtain 2162 x 1m samples. RAB drilling was used to obtain 5m composite samples from 1m drilled intervals.
		 Historical sample collection methods and types for Coodardy have not been recorded.
		• Exploration by these companies has been piecemeal and not regionally systematic.
Geology	 Deposit type, geological setting and style of mineralisation. 	 Both, the Emily Wells and Coodardy project areas, lie within the Meekatharra – Mount Magnet greenstone belt. The belt comprises metamorphosed volcanic, sedimentary and intrusive rocks. Mafic and ultramafic sills are abundant in all areas of the Cue greenstones. Gabbro sills are often differentiated and have pyroxenitic and/or peridotitic bases and leucogabbro tops.
		• The greenstones are deformed by large scale fold structures which are dissected by major faults and shear zones which can be mineralised. Two large suites of granitoids intrude the greenstone belts.
		• Over 60 gold and copper mineral occurrences have been recorded within the Cue district and near and within Victory Goldfield's tenure. A significant number of these are located on or close to the north to northeasterly trending structures.
		The productive gold deposits in the region can be classified into six categories:
		 Shear zones and/or quartz veins within units of alternating banded iron formation and mafic volcanics e.g. Tuckanarra. Break of Day.
		 Shear zones and/or quartz veins within mafic or ultramafic rocks, locally intruded by felsic porphyry e.g. Cuddingwarra. Great Fingall.
		 Banded jaspilite and associated clastic sedimentary rocks and mafics, generally

Criteria	JORC Code explanation	Commentary
		 sheared and veined by quartz, e.g. Tuckabianna. Quartz veins in granitic rocks, close to greenstone contacts, e.g. Buttercup. Hydrothermally altered clastic sedimentary rocks, e.g. Big Bell. Eluvial and colluvial deposits e.g. Lake Austin, Mainland.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	 Appendix 1(collar coordinates) and Appendix 2 (drill core recoveries) and Appendix 3 (Table of Significant Assays) lists information material to the understanding of the diamond drill holes at Coodardy and Emily Wells Projects. The documentation for drill hole location and all assay data, including collars, drill hole specifications, datums, assay information etc is considered acceptable by VG. Consequently, the use of any data obtained is suitable for presentation and analysis. Given the first pass nature of the exploration drilling programs at Coodardy and Emily Wells, the data quality is acceptable for reporting purposes. The exploration results are considered indicative and material to the reader. Future drilling programs should confirm some of the historical drilling intercepts.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low- grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 The following relates to core data records: Raw composited sample intervals have been reported and aggregated where appropriate. Weighted averaging of results completed for diamond core drilling. There has been no cutting of high grades. Significant assays in reporting have included grades above 0.1 g/t Au or 100 ppb Au. Aggregation will not include assays less than 0.5 g/t Au for greater than 1 m. There has only been reporting of gold and base metal assays and intersections, with no reporting of metal equivalent grades.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true 	 All results referenced are based on downhole metres. The geometry and extent of mineralisation and geology has been modelled at Coodardy. Dips are modelled at 40-55° east and azimuths modelled at 010-030°. Diamond drilling intersections are almost orthogonal to interpreted dips/azimuths (discussed in Table 1) of the mineralisation and rock types

Criteria	JORC Code explanation	Commentary
	width not known').	and therefore true widths are approximately 95% of the drill-hole width reported.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	 Diagrams showing historical drill holes are used in the compilation of the diamond drilling plans and sections for Coodardy and Emily Wells.
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	 Exploration results that may create biased reporting has been omitted from these documents. Appendix 3 – Significant drilling intersections.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	 No additional exploration data has been reported.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 RC drilling is planned at Coodardy and Emily Wells. At Coodardy, shallow historical gold resources will be tested by RC drilling in October 2021. At Emily Wells, anomalous soil geochemistry will be tested by RC drilling, also in October 2021. At Nemesis, soil geochemistry anomalies will be tested by RC drilling in November. Regional geochemistry surveys to commence over the priority target areas, as identified by Victory.