
Phase 5 Drilling Grows Neta Gold Prospect at Edjudina, WA. Includes 23m at 1.61g/t from 84m

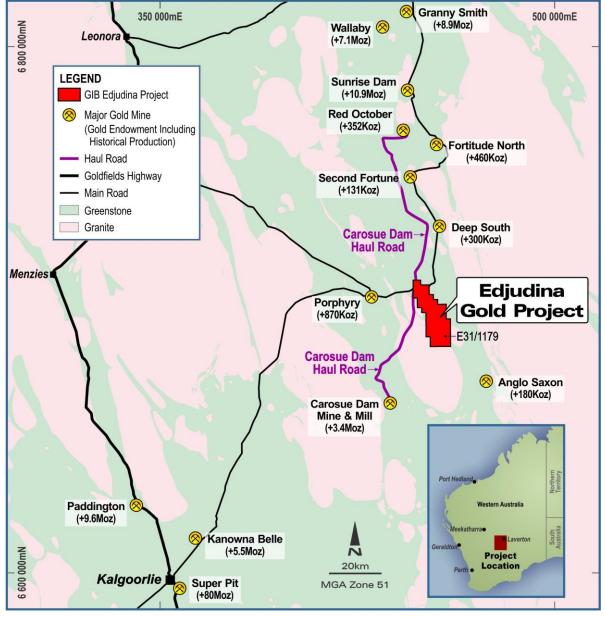
• Phase 5 aircore drilling at the Edjudina Gold Project extended known mineralisation at Neta, delineated new zones of significant mineralisation at Perseverance and generated new targets with some excellent gold intersections at both Prospects including:

Hole ID	From (m)	To (m)	Interval (m)	Au (g/t)	Prospect
GRC078	84	107	23	1.61	Neta
including	96	106	10	3.40	Neta
GRC080	88	114	26	0.95	Neta
GRC073	40	53	13	1.72	Neta
GRC025	13	17	4	5.05	Perseverance
GRC040	37	39	2	6.01	Perseverance
GRC051	30	31	1	15.85	Perseverance
GRC077	90	96	6	2.70	Neta
GRC079	90	102	12	0.74	Neta

Plus numerous other mineralised intersections (Appendix A)

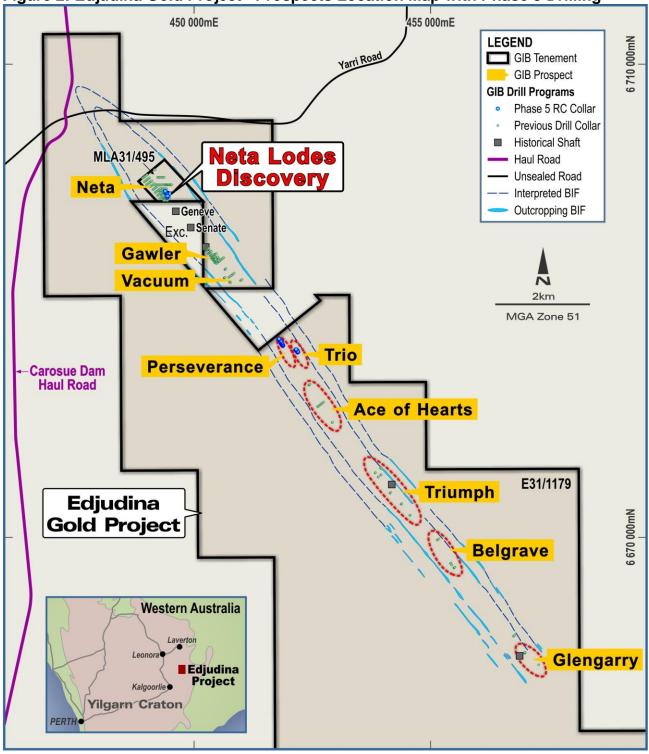
- At Neta, the Carlsen and Kasparov Lodes appear to join at depth. This interpretation generates a new very exciting high grade 'Hinge Target' in the axis of the syncline
- A new parallel area of mineralisation was discovered at Perseverance 30 metres to the east of the original lode with results including 2m @ 4.82g/t from 4m
- A highly prospective three kilometre long zone which lies under alluvial cover along the strike of the eastern side of the Edjudina line of gold workings has been identified by GIB geologists. This area has never been drilled and has been named the 'Ace of Hearts Cover Target'. An aircore drilling contractor has been hired and drill testing of this target is due to commence on 2 November 2021
- GIB welcomes the recent high grade zinc-lead drilling results from the Iroquois Project in WA announced by Strickland Metals Limited (ASX: 'STK') on 14 October 2021. GIB has a 20% free carry to BFS in this project and believes this free-carry asset holds considerable potential to add value to the GIB share price

Phase 5 drillhole GRC078 at Neta: includes 10m @ 3.40g/t from 96 metres


1.0 Edjudina Gold Project

GIB 100%

Gibb River Diamonds Limited ('GIB' or the 'Company') is pleased to announce results from the highly successful Phase 5 RC drilling program at the Edjudina Gold Project (GIB 100%). This program took place from 5 to 15 September 2021. A total of 60 holes were drilled for 2,923 metres. There were no accidents or lost time incidents.


A total of 1,154 samples were assayed as either one metre splits (765 samples) or as composite samples (389 samples), mainly 6 metre composites. Blank, duplicate, standard and repeat samples were added as necessary to ensure data integrity for future resource calculations.

Due to the shallow and high grade nature of the mineralisation at Edjudina, the exploration methods being used are extremely cost-effective. Importantly, Edjudina's location, excellent logistics and proximity to an active haul road (to Northern Star's Carosue Dam mill) all add to the potential for development of discoveries at the project.

Figure 1: Edjudina Gold Project – Location Map

Figure 2: Edjudina Gold Project – Prospects Location Map with Phase 5 Drilling

2.0 Phase 5 RC Drilling Results

The Phase 5 RC drilling program targeted the Neta and Perseverance Prospects. This program further extended known mineralisation at Neta, successfully delineated new zones of significant mineralisation at Perseverance and generated new targets with some excellent gold intersections at both Prospects, these include:

Hole ID	From (m)	To (m)	Interval (m)	Au (g/t)	Prospect	Comment
GRC023	8	12	4	2.47		
GRC025	13	17	4	5.05		
GRC027	35	37	2	1.73		
GRC027	4	6	2	4.82		includes 1m @ 9.44 g/t from 4m
GRC027	47	49	2	1.69		
GRC029	17	19	2	2.70		
GRC031	8	11	3	2.47	D	
GRC035	10	15	5	1.91	Persever-	
GRC036	24	25	1	5.40	ance	
GRC037	7	18	11	0.61		includes 6m @ 0.81 g/t from 12m to EOH
GRC038	11	15	4	0.77		
GRC040	37	39	2	6.01		
GRC042	14	21	7	0.89		
GRC051	30	31	1	15.85		
GRC055	37	40	3	2.05		
GRC065	28	30	2	1.75	Trio	
GRC073	40	53	13	1.72		includes composite: 5m @ 3.96 g/t from 40m
GRC077	0	7	7	0.90		includes 2m @ 2.50 g/t from surface
GRC077	90	96	6	2.70		includes 1m @ 9.04 g/t from 94m
GRC077	111	117	6	1.10		
GRC078	84	107	23	1.61		
including	96	106	10	3.40	Neta	
GRC 079	23	34	11	0.69		includes composite: 6m @ 0.28 g/t from 28m
	51	61	10	0.52		
GRC079	90	102	12	0.74		
including	98	101	3	1.67		
GRC080	88	114	26	0.95		includes 1m @ 11.88g/t from 91m

Table	1.	Phase 4	5	Drilling	Results	Highlights
Ιανις		I Hase	•		NESUIIS	Indindino

Intervals are reported as drilled and are not reported as true widths. Results are uncut All holes were drilled at -60 degrees, depths are downhole depths

Appendix A contains drilling results for every hole, which includes further significant results. Qualifiers for this table are in Appendix A

Detailed geology of the Neta Lodes Prospect is in the GIB ASX release dated 8 October 2020³

The following plans and figures include updated mineralisation profiles using recently collected one metre split assays from anomalous composite samples assayed during the Phase 4 drilling program. These updates are useful for modelling, but are not considered material.

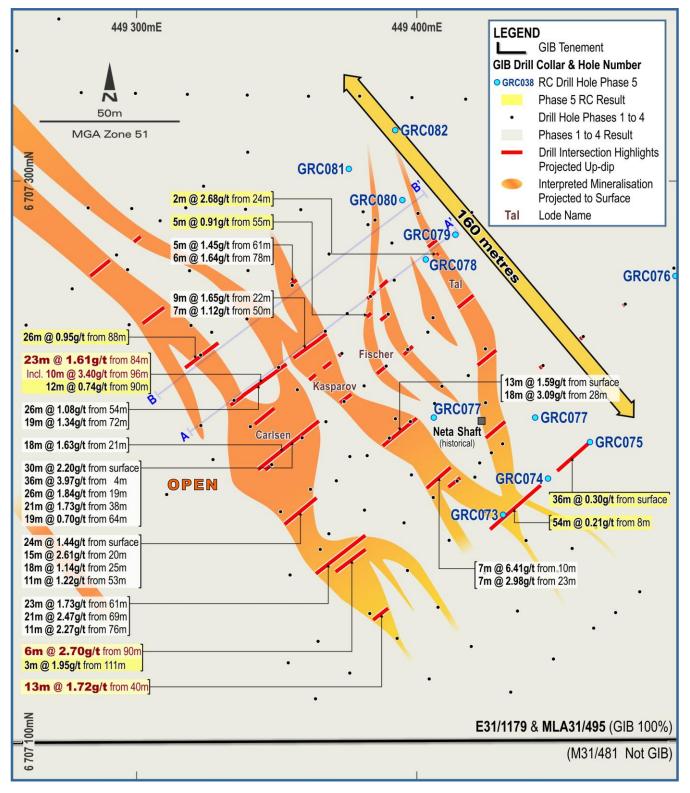
3.0 Neta Prospect

The Neta Gold Prospect is an exciting discovery which displays high grade mineralisation from surface, with grades, geometry and location which indicate potential for bulk open pit mining. The Phase 5 drilling campaign has proved lode extensions to the high-grade core at Neta and also generated new targets for further drilling:

The most exciting aspect of the Neta Prospect is how the size of the mineralised body continues to grow and to how each iteration of drilling generates new targets. The Phase 5 drilling continued this trend and confirmed the following:

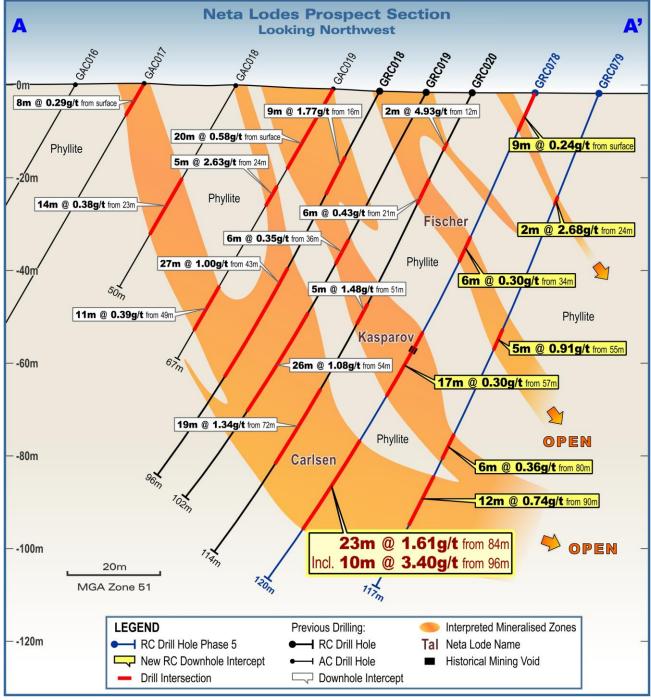
- Further wide intersections and extensions of the Carlsen Lode mineralisation, including 23m at 1.61g/t from 84m. This extends the higher grade core further to the north and at depth (Sections A and B).
- The Carlsen and Kasparov Lodes appear to join at depth with the dip shallowing, possibly indicating the hinge (axis) of a syncline. The Carlsen and Kasparov Lodes may be two limbs of this possible syncline, the hinge of which would lie (on section B) just to the north-east of drillhole GRC80 at a depth of approximately 90 metres. These type of hinge structures represent excellent high grade targets.

Previous high-grade drilling intersections at Neta (eg 36m at 3.97g/t from 4m) may be from drilling the up-dip hinge of this syncline, which current modelling indicates plunges approximately 30 degrees to the north.


This specific 'Hinge Zone' (Section B) is a very exciting target which is open to the north and east. This Hinge Target will be drilled during the next RC program.

• A promising new area of limonite-sericite alteration with low-tenor mineralisation was discovered in hole GRC075 (36m at 0.30g/t from surface) on the eastern edge of Neta (Figure 3) and is an additional follow-up target.

Given the geological profile of the rest of the Neta Prospect, the Company considers it likely that this mineralisation ends well before the third party tenement boundary to the south.


 During Phase 5, the Morphy area was further tested by RC drilling with hole GRC076 drilled underneath the previously reported Morphy gold anomalism⁷. Only minor gold was recovered from this follow-up drilling and the original Morphy mineralisation may have been caused by localised surficial enrichment. No further work is proposed for the Morphy area.

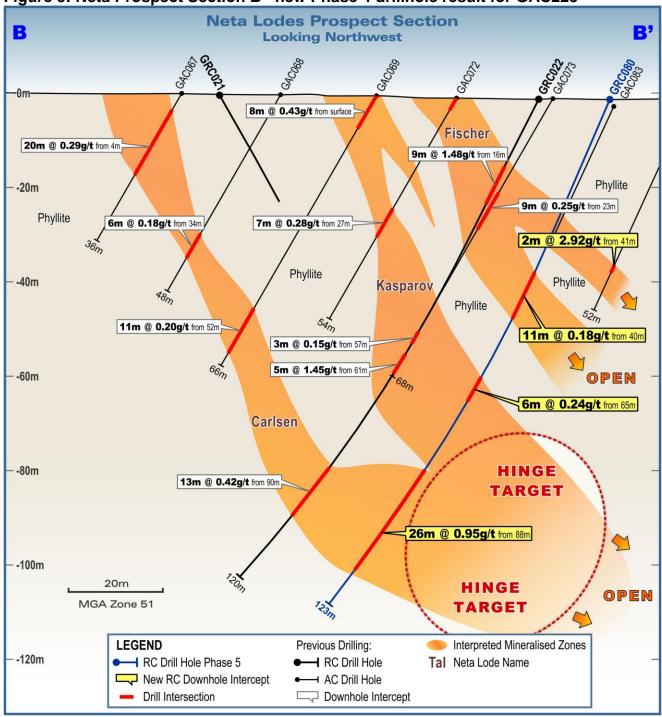

Figure 3: Neta Prospect Plan View – Phase 5 Drilling Results Highlights

Figure 4: Neta Prospect Section A – Phase 4 Drilling Results

Figure 5: Neta Prospect Section B –new Phase 4 drillhole result for GAC225

Figure 6: Neta Prospect Carlsen Longsection – Updated with Phase 5 Drill Results

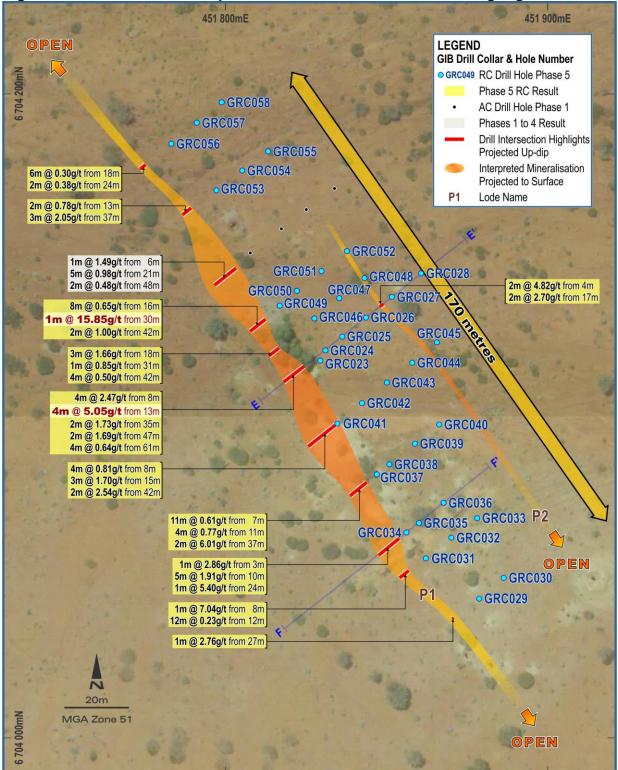
4.0 Perseverance Prospect

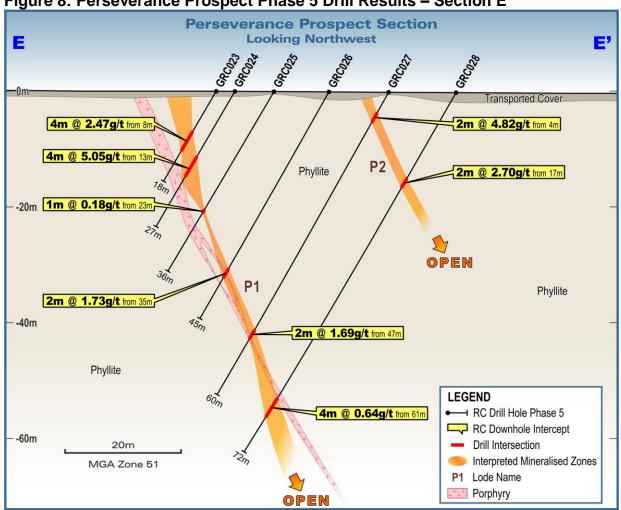
The Perseverance Prospect is a 170 metre long zone of quartz-sericite-limonite alteration which hosts extensive artisanal historic gold workings dating back to the 1890s, this area is named the P1 Lode.

The Phase 5 drilling campaign delineated the strike of this historic mineralisation and generated some highly encouraging gold intersections including 1m @ 15.85g/t from 30m and 4m @ 5.05g/t from 13m.

Porphyry intrusives (acid igneous rocks) are common at the Edjudina Project and appear closely related to gold mineralisation throughout the field. Some of the P1 Lode mineralisation appears to have been stoped out in parts by porphyry intrusive (Figure 8). These porphyries often contain low grade gold mineralisation and may have been one of the drivers of gold emplacement at Edjudina.

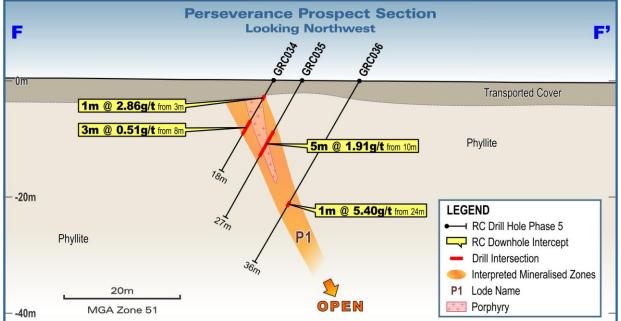
4.1 P2 Lode Discovery


Of particular interest during the Phase 5 campaign at Perseverance was the discovery of a new parallel area of mineralisation 30 metres to the east of the P1 Lode. This new lode has been named the P2 Lode and has not been previously mined (Figure 8). The P2 Lode has only been intersected in two holes so far, which returned 2m @ 4.82g/t from 4m and, down-dip of this intersection, 2m @ 2.70g/t from 17m.


4.2 Follow-up Drill Testing

Following on from this highly encouraging round of drilling at Perseverance, further infill drilling will be conducted at the P1 Lode during future campaigns. There is also considerable potential for along strike and down-dip extensions to the newly discovered P2 lode and future drilling will test these targets.

Figure 7: Perseverance Prospect Plan – Phase 5 Drill Results Highlights



5.0 Trio Prospect

Phase 5 drilling of the Trio Prospect was largely disappointing with the best result being 2 metres at 1.75 g/t from 28 metres. A full set of results for Trio are included in Appendix A. There are no current plans for follow-up work at Trio.

6.0 Ace of Hearts Cover Target - Phase 6 Aircore Drilling to Commence 2 November 2021

A three kilometre long zone which lies under alluvial cover along the strike of the eastern side of the Edjudina line of gold workings has been identified by GIB geologists. This new target follows a line that runs from the Trio Prospect, through the Ace of Hearts Prospect to the Triumph Prospect (Figure 2). (The Triumph Prospect is an area of extensive gold workings and was one of the major mines on the Edjudina Field mainly worked prior to the 1920's).

This zone of alluvial cover is shallow and would have been a serious impediment to the old-timers prospecting activities. This area is considered to be highly prospective for new gold discoveries. The Target Area has never been drilled and has been named the 'Ace of Hearts Cover Target'.

A contract has been signed with a Kalgoorlie based aircore drilling contractor and drilling is due to commence at the Ace of Hearts Cover Target on approximately 2 November 2020.

7.0 Ongoing Work and Future Objectives at the Edjudina Gold Project

The knowledge gained from the Company's first five drilling programs at Edjudina is being put to good use with a number of programs of work that are underway. Current and planned activities include:

- The transfer of title for the main Edjudina mineral tenement E31/1179 has now been completed and this tenement now shows up on the WA government mineral titles systems (Mineral Titles Online) as being held 100% by GIB
- Mining Lease M31/495 was pegged over the Neta Prospect in July and is progressing through the tenement grant system
- Deeper infill RC drilling at Neta has successfully defined the geometry of the mineralised body making targeting easier, as evidenced by the success of the Phase 5 drilling
- Further metallurgical testwork at Neta has recently been commissioned on fresh (unoxidised) material. This will be assessed and reported when complete.
- Follow up RC and aircore drilling is required at Perseverance, Gawler and Neta
- Ace of Hearts Cover Target: mapping and fieldwork has successfully generated a highly prospective 3km strike target zone under alluvial cover in the vicinity of the Ace of Hearts Prospect. This area is scheduled to be drilled on 2 November 2021.
- Future aircore drill testing of new targets along the 13km of strike, with the aim of finding Neta style lookalikes and new gold-bearing quartz vein systems
- Any ongoing work that assists the future development of mining activities at the Edjudina Gold Project

8.0 Zinc-Lead Drilling Results at Iroquois Prospect: GIB JV with Strickland Resources

As flagged in GIB's last Quarterly Report, GIB holds a 20% equity in tenement E69/2820. This legacy asset dates back to a deal done with Strickland Metals Limited (ASX: 'STK') in 2011. The 20% GIB equity is free-carried to completion of a Bankable Feasibility Study.

On 15 October 2021, STK announced high grade zinc-lead drilling results at the Iroquois Project situated on the STK-GIB Joint Venture tenement. These excellent results include:

- IQRC001: 23m @ 5.5% Zn + Pb from 108m (combined), including;
 14m @ 4.5% Zn from 108m (true depth 90m) and 9m @ 7% Zn + Pb from 135m (true depth 110m)
- IQRC003: 12m @ 5.4% Zn + Pb from 58m (combined), including;
 6m @ 6.2% Zn from 58m (true depth 50m) and 6m @ 4.6% Zn + Pb from 96m (true depth 80m)

In addition, both holes returned broad, lower grade Zn + Pb mineralisation within the oxide zone, including:

- IQRC001: 5m @ 2.9% Zn + Pb from 23m; and 22m @ 2.2% Zn + Pb from 37m
- IQRC003: 13m @ 2.1% Zn + Pb from 24m

Full details on these drill results and previous GIB drill results from Iroquois are available from the GIB website^{8&9}

GIB welcomes this drilling work done by STK and also the announcement that the current RC drilling program is being expanded as a priority, with a drill rig returning to Iroquois. GIB believes a strong pipeline of drill results will flow from this ongoing exploration work to be done at Iroquois and that the project holds considerable potential to add value to the GIB share price.

9.0 Summary and Lookahead

The ongoing drilling programs at Edjudina continue to deliver high quality, complementary and wide mineralised gold intersections, with prospects continuing to grow in size. The Phase 5 drilling campaign further extended known mineralisation at Neta, successfully delineated new zones of significant mineralisation at Perseverance and generated new targets at both Prospects.

The generation of the 'Hinge Zone' target at Neta represents an especially exciting target for the next round of RC drilling.

The Perseverance Prospect results (including 4m @ 5.05g/t from 13m) also provides another excellent target area for follow-up drilling, with the discovery of the P2 Lode (2m @ 4.82g/t from 4m) providing outstanding potential.

Recent field mapping by GIB geologists has generated the Ace of Hearts Cover Target and this highly prospective area will be tested imminently, with aircore drilling scheduled to commence on 2 November 2021.

Jim Richards Executive Chairman

Enquiries To: Mr Jim Richards +61 (0)408 902 314

References:

¹GIB Acquires Option to Purchase the Historic and High Grade Edjudina Gold Project in the Eastern Goldfields of WA; GIB ASX Release dated 16 July 2020

²Triumph Project Exploration Report; Nexus Minerals Limited dated 15 August 2019

³Major Gold Discovery at Edjudina, WA- 36m at 4.0 g/t from 4m; GIB ASX Announcement dated 8 October 2020

⁴Excellent Metallurgical Recoveries from Bottle Roll Testing of the Neta Lodes Gold Discovery; GIB ASX Announcement dated 26 November 2020

⁵Neta Lodes Prospect Strike doubles; GIB ASX Announcement dated 21 December 2021

⁶Phase 3 Drilling Expands Gold Discovery at Edjudina, WA; GIB ASX Announcement dated 6 April 2021

⁷Phase 4 Drilling Discovers New Shallow Gold Lodes at Edjudina, WA GIB ASX Announcement dated 28 June 2021

⁸Iroquois Lead-Zinc Prospect (WA). First Drilling Results; Phosphate Australia Limited (now GIB) ASX Announcement dated 7 November 2011

⁹High Grade Mississippi Valley-Type Zinc-Lead Discovery in Earaheedy Basin; Strickland Metals Limited; ASX Announcement dated 14 October 2021

For a further list of references used in previous releases refer to GIB ASX Announcement dated 25 August 2020

Competent Persons Statement

The information in this report that relates to previously reported exploration results and new exploration results is based on information compiled by Mr. Jim Richards who is a Member of The Australasian Institute of Mining and Metallurgy and a Member of the Australian Institute of Geoscientists. Mr. Richards is a Director of Gibb River Diamonds Limited. Mr. Richards has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as Competent Person as defined in the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr. Richards consents to the inclusion in the report of the matters based on the information in the form and context in which it appears.

Appendix A: Phase 4 Drill Results Table

Hole ID	From (m)	To (m)	Interval (m)	Au (g/t)	Prospect	Comment
GRC023	6	18	12	0.96		Hole ends in 4m @ 0.21 g/t from 14m
including	8	12	4	2.47		
GRC024	12	19	7	3.17		
including	13	17	4	5.05		
GRC025	23	24	1	0.18		
GRC026	35	38	3	1.26		
including	35	37	2	1.73		
	4	6	2	4.82		includes 1m @ 9.44 g/t from 4m
GRC027	47	50	3	1.23		
including	47	49	2	1.69		
GRC028	12	19	7	0.98		includes composite: 5m @ 0.35 g/t
including	17	19	2	2.70		
GRC028	59	65	6	0.52		
including	61	65	4	0.64		
GRC029	29	30	1	0.11		
GRC030	27	28	1	2.76		
GRC031	8	11	3	2.47		
including	8	9	1	7.04		
GRC032	12	24	12	0.23		includes composite: 6m @ 0.22 g/t
	32	38	6	0.23		
GRC033	45	51	6	0.24		6m composite, mineralised to EOH
GRC034	3	11	8	0.57		
including	3	4	1	2.86		
including	8	11	3	0.51	Perseverance	
GRC035	10	16	6	1.68	Feiseverance	
including	10	15	5	1.91		
GRC036	23	30	7	0.99		
including	24	25	1	5.40		
GRC037	7	18	11	0.61		includes 6m @ 0.81 g/t from 12m to EOH
GRC038	11	16	5	0.65		
including	11	15	4	0.77		
GRC039	27	28	1	0.16		
GRC040	37	39	2	6.01		
GRC041	0	12	12	0.40		
including	8	12	4	0.81		
GRC042	14	21	7	0.89		
including	15	18	3	1.70		
GRC043		31	7	0.24		includes composite: 4m @ 0.33 g/t from 24m
	24 30	31	6	0.24		
GRC044			4			6m composite
including	41	45		1.35		
GRC044	42 46	44 51	2 5	2.54 0.47		6m composite, mineralised to EOH
	0	6	6	0.14		6m composite
GRC045	51	54	3	0.14		
GRC046	51 18	54 22	4	1.30		
including	18	22	4	1.30		
moluuling	10	21	3	1.00		

Hole ID	From (m)	To (m)	Interval (m)	Au (g/t)	Prospect	Comment
GRC048	42	46	4	0.50		
	6	12	6	0.22		includes composite: 4m @ 0.23 g/t
GRC049						includes composite: 6m @ 0.78 g/t from
	16	24	8	0.65		18m
GRC050	15	24	9	0.30		
including	18	20	2	0.49		
GRC051	30	36	6	2.77		
including	30	31	1	15.85		
GRC052	12	18	6	0.13		
	42	44	2	1.00		
GRC053	13	16	3	0.57		
including	13	15	2	0.78		
GRC054		no sigr	nificant assay	'		
GRC055	37	40	3	2.05		
	13	14	1	0.21		
GRC056	18	24	6	0.30		composite sample, mineralised to EOH
GRC057	24	26	2	0.38		· · · ·
GRC058	35	39	4	0.22		
GRC059	34	35	1	0.43		
GRC059 GRC060	- 34		nificant assay			
GRC060 GRC061	15	20				
GRC061 GRC062	15 33	20 34	5	0.31 2.56		
GRC062 GRC063	- 33	_	-			
	10		nificant assay			
GRC064	12	15	3	0.38		
GRC065	28	30	2	1.75	- ·	
00000	31	36	5	0.16	Trio	composite sample, mineralised to EOH
GRC066	41	43	2	0.26		
GRC067			nificant assay			
GRC068		-	nificant assay			
GRC069	34	35	1	0.93		
GRC070	20	24	4	0.13		composite sample, mineralised to EOH
GRC071	19	21	2	0.33		
GRC072		no sigr	nificant assay	/		
	0	4	4	1.01	Neta	
GRC073	10		10	4 = 0		includes composite: 5m @ 3.96 g/t from
	40	53	13	1.72	Carlsen	40m
	71	75	4	0.15	Neta	composite sample, mineralised to EOH
000074	0	2	2	0.99	Neta	
GRC074	8	62	54	0.21	Kasparov	includes five 6m composite samples
	78	79	1	0.30	Carlsen	
	0	36	36	0.30	Fischer	includes six 5m/6m composites - fe-ser altn
GRC075	43	44	1	0.32	Neta	
	55	56	1	0.52	Kasparov	
0000-0	94	100	6	0.31	Carlsen	composite sample
GRC076	24	30	6	0.10	Neta	composite sample
	0	7	7	0.90	Neta	includes 2m @ 2.50 g/t from surface
	24	30	6	0.22	Neta	composite sample
GRC077	36	49	13	0.23	Kasparov	includes 5m @ 0.17 g/t from 44m
	53	54	1	0.37	Kasparov	
	79	85	6	0.33	Neta	composite sample

Hole ID	From (m)	To (m)	Interval (m)	Au (g/t)	Prospect	Comment
	90	97	7	2.35	Carlsen	includes 1m @ 9.04 g/t from 94m
including	90	96	6	2.70	Carlsen	includes 1m @ 9.04 g/t from 94m
GRC077	111	117	6	1.10	Neta	
	0	9	9	0.24	Neta	includes composite: 6m @ 0.26 g/t from 3m
	22	26	4	0.15	Neta	
GRC078	34	40	6	0.30	Fischer	
	57	74	17	0.30	Kasparov	interval contains 1.95m mining void from 60m
	84	107	23	1.61	Carlsen	
including	96	106	10	3.40	Carlsen	
including	99	105	6	4.92	Carlsen	
GRC079	0	1	1	0.22	Neta	
GRC079	23	34	11	0.69	Neta	includes composite: 6m @ 0.28 g/t from 28m
including	24	26	2	2.68	Neta	
GRC079	51	61	10	0.52	Neta	
including	55	60	5	0.91	Fischer	
GRC079	80	86	6	0.36	Kasparov	includes composite: 4m @ 0.12 g/t
	89	102	13	0.69	Carlsen	
including	98	101	3	1.67	Carlsen	
	12	34	13	0.16	Neta	includes two composite samples
GRC080	40	51	11	0.18	Fischer	includes two composite samples
Checooo	65	71	6	0.24	Kasparov	composite sample
	80	115	35	0.73	Carlsen	
including	88	114	26	0.95	Carlsen	includes 1m @ 11.88g/t from 91m
	0	1	1	0.22	Neta	
	15	27	12	0.22	Neta	two 6m composites
GRC081	50	56	6	0.32	Neta	composite sample
	75	94	19	0.16	Carlsen	includes three 6m composites
	102	112	10	0.22	Carlsen	
GRC082	123	129	6	0.12	Carlsen	composite sample

Notes:

Intervals are reported as drilled and are not reported as true widths

comp (composite) samples were taken by representative spearing of the one metre samples

Results are uncut

Mineralised intervals are reported in this table using the criteria of commercial potential and/or exploration significance

Results are lengthweighted average one metre assays except where annotated as including or comprising comp samples

All results reported are consecutive for that interval

Repeat and duplicate assays for individual samples were averaged for that sample

Follow-up assay of mineralised comps will lead to minor changes to this table

ser is sericite; fe is iron; si is silica; qtz is quartz; vn is vein; altn is alteration; m/l is mineralisation; v is very argillic alteration may be weathering as this is not always ascertainable through visual logging

Appendix B: Phase 5 Drill Collar Locations

Appendi	X D. FIIC					
	MGA z	one 51	mDI	Dip		Total
HoleID	mE	mN	mRL	(degrees)	Azi	Depth (m)
GRC023	451829	6704117	362.2	-60	231	18
GRC024	451831	6704120	362.2	-60	231	27
GRC025	451836	6704125	362.2	-60	231	36
GRC026	451844	6704131	362.1	-60	231	45
GRC027	451852	6704137	362.1	-60	231	60
GRC028	451861	6704144	362.0	-60	231	72
GRC029	451879	6704043	362.5	-60	231	33
GRC030	451886	6704050	362.4	-60	231	45
GRC031	451862	6704056	362.4	-60	231	24
GRC032	451870	6704062	362.3	-60	231	39
GRC033	451878	6704068	362.3	-60	231	51
GRC034	451856	6704064	362.4	-60	231	18
GRC035	451860	6704067	362.4	-60	231	27
GRC036	451868	6704073	362.3	-60	231	36
GRC037	451847	6704082	362.3	-60	231	18
GRC038	451851	6704085	362.2	-60	231	24
GRC039	451859	6704091	362.2	-60	231	39
GRC040	451866	6704097	362.1	-60	231	48
GRC041	451835	6704098	362.3	-60	231	21
GRC042	451842	6704104	362.2	-60	231	30
GRC043	451850	6704110	362.2	-60	231	39
GRC044	451858	6704117	362.1	-60	231	51
GRC045	451866	6704123	362.0	-60	231	61
GRC046	451828	6704130	362.2	-60	231	30
GRC047	451835	6704137	362.2	-60	231	45
GRC048	451843	6704143	362.1	-60	231	57
GRC049	451817	6704134	362.3	-60	231	33
GRC050	451822	6704139	362.2	-60	231	33
GRC051	451830	6704145	362.1	-60	231	51
GRC052	451838	6704151	362.1	-60	231	51
GRC053	451797	6704170	362.3	-60	231	21
GRC054	451805	6704176	362.2	-60	231	36
GRC055	451813	6704182	362.1	-60	231	45
GRC056	451783	6704185	362.3	-60	231	24
GRC057	451791	6704191	362.2	-60	231	33
GRC058	451799	6704197	362.2	-60	231	42
GRC059	452179	6703947	361.2	-60	231	48
GRC060	452187	6703953	361.1	-60	231	57
GRC061	452190	6703905	361.2	-60	231	24
GRC062	452198	6703911	361.1	-60	231	39
GRC063	452205	6703918	361.1	-60	231	51
GRC064	452178	6703920	361.3	-60	231	18
GRC065	452186	6703927	361.2	-60	231	36
GRC066	452193	6703933	361.1	-60	231	51
GRC067	452152	6703951	361.5	-60	231	18

HoleID	MGA z	one 51	mRL	Dip	Azi	Total
HOIEID	mE	mN	IIII	(degrees)	721	Depth (m)
GRC068	452160	6703958	361.4	-60	231	30
GRC069	452168	6703964	361.3	-60	231	39
GRC070	452144	6703962	361.5	-60	231	24
GRC071	452152	6703968	361.4	-60	231	27
GRC072	452159	6703975	361.3	-60	231	42
GRC073	449431	6707181	375.8	-60	231	75
GRC074	449447	6707194	375.8	-60	231	84
GRC075	449462	6707207	375.3	-60	231	108
GRC076	449493	6707266	375.3	-60	231	48
GRC077	449442	6707216	377.3	-60	231	123
GRC078	449403	6707272	375.4	-60	231	120
GRC079	449414	6707281	375.3	-60	231	117
GRC080	449395	6707293	375.2	-60	231	123
GRC081	449376	6707304	374.8	-60	231	120
GRC082	449392	6707318	374.946	-60	231	138

Appendix C JORC Code, 2012 Edition – Table 1

Section 1 Sampling Techniques and Data

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 All samples were cyclone split. Cyclone splitter set to 4% for all drillholes (GRC022 – 082). Cyclone cleaned at the end of every hole. Cyclone split component was placed in numbered calico bags (approx. 3kg sample per bag), remainder component went into a bucket and placed on the ground. Remainder component from selected drillholes was collected in green cyclone bags and set aside for metallurgical testwork. Cyclone splitter has two openings for the split component. For samples without duplicates the split from the second port went on the ground. Sample duplicates were collected from the second port. Blanks and standards were inserted during drilling by the supervising geologist. Composite samples were collected in selected intervals using a PVC spear. These composite samples do not have standards, duplicates, or blanks. Samples were submitted to Jinning (Kalgoorlie) for pulverization to generate a 30g charge for fire assay analysis.
Drilling techniques	• Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	 Profile Drilling RC Rig 1, 150mm hammer bit. A stabilizer rod and a 3m heavy wall rod were used behind the hammer to minimise drillhole deviation. All drillholes were surveyed using a north-seeking Axis Champ Gyro SRO. Surveys started at 0m depth and were recorded every 30m and at EOH.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Sample recovery visually assessed on a metre-by-metre basis. Driller directed to use the minimum necessary air pressure to minimise loss of fine component. All samples cyclone split to ensure a representative sample distribution. No sample bias is known or expected due to preferential loss/gain of fine/coarse material.
Logging	Whether core and chip samples have been geologically and	All drill spoil from all holes was quantitatively geologically logged on a

Criteria	JORC Code explanation	Commentary
	 geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 metre-by-metre basis to a sufficient level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. All drillholes were bagged on a metre-by-metre basis for use in metallurgical studies.
Sub- sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 GIB deems sample sizes to be appropriate to the grain size of the material being sampled.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 duplicates, standards, and blanks into the lab samples. GIB's standards are from Geostats (Fremantle) and blanks are white brickies sand. Duplicates are described above. GIB analysed both its own QAQC samples and the internal lab QAQC
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Analysis was undertaken by Jinning Kalgoorlie. At the time of writing, no samples have been sent to other labs for cross-checking. Significant intersections have been verified by multiple GIB personnel. No twinned holes were used. Drilling, sampling, primary data, and data verification procedures were drawn up prior to fieldwork and are stored on the GIB server. Physical copies of all data are stored in the GIB office. Duplicate/repeat samples were averaged to create the gold value for

Criteria	JORC Code explanation	Commentary
		those samples. No other adjustments were made to assay data.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Drillholes were laid out by DGPS and all possible care was taken to ensure drillholes were collared at their intended location. Datum is MGA94 zone 51. In addition to DGPS, LiDAR and high-definition drone imagery was used to site drillholes. All RC drillholes were surveyed using a north-seeking Axis Champ Gyro SRO. Surveys started at 0m depth and were recorded every 30m and at EOH.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Drillholes were spaced on nominal 20m x 20m, 20m x 10m, or 20m x 5m grids, with local collar adjustments due to ground conditions. No Mineral Resource or Ore Reserve procedures or classifications have been applied. Sample compositing has been applied only to duplicate/repeat samples.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 Drillholes were (nominally) oriented at 60° towards 231. Local foliation strikes ~75° towards 051. As such these drillholes are oriented approximately perpendicular to foliation. To the best of GIB's current knowledge there is no sampling bias in this RC drilling program.
Sample security	The measures taken to ensure sample security.	 Samples were collected by GIB personnel in real time during drilling. Calico bags containing composite samples, 1m splits, standards, blanks, and duplicates, were placed in green cyclone bags and cable tied closed, and collected in a safe location until lab delivery. Samples were delivered and offloaded at the lab by GIB staff, where they were placed in Bulka containers prior to processing. After delivery, samples were kept at the fenced Lab compound. Lab personnel are on site during work hours and all access points are closed and locked overnight.
Audits or reviews	• The results of any audits or reviews of sampling techniques and data.	 An internal review of sampling techniques and data deemed GIB's processes to be compatible with JORC 2012 requirements.

Section 2 Reporting of Exploration Results

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 Granted licence E31/1179 is beneficially held by GIB (100%). On 2nd December 2020 GIB <u>announced</u> it had exercised the Option to acquire 100% of the Project. Registration of the change of ownership is awaiting WA State Revenue Office Stamp Duty assessment. There are no private royalties or other third party commercial interests in the tenement. There are no registered aboriginal heritage sites over the lease area. Undetermined Native Title claims over the wider eastern goldfields area also include E31/1179
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 GIB is compiling a database of historic mining and exploration activity. A brief chronology is included below: The main period of mining activity on the Edjudina line of workings (the 'Edjudina Line') occurred between 1897 and 1921. Government Geologist Andrew Gibb Maitland made the first documented description of the Edjudina Line in 1903, which was followed up by reports in 1903 and 1905 by State Government Mining Engineer Alexander Montgomery. These reports described a number of private batteries being run on the Edjudina Line at this time, with some ore also carted to the nearby State Battery at Yarri. A minor revival in mining took place from 1936-1939, which was curtailed by the start of World War 2. In 1974-75 Australian Anglo American Ltd explored the Edjudina line, followed by United Nickel Exploration, Cambrian Exploration and Penzoil of Australia Ltd (1979-81). In 1993 Pancontinental picked up the ground and conducted drilling operations, relinquishing the ground in 1995. Little exploration work was conducted over the next 14 years with the exception of Gutnick Resources who are reported as having completed some wide spaced drilling during this time, however a complete dataset for this work is still being sourced. From 2010 to 2014 CoxsRocks Pty Ltd, a WA based private company, conducted a ground magnetic survey, auger soil geochemistry and limited aircore drilling. The Edjudina Gold Project has been held by Nexus Mt Celia Pty Ltd from 2014 to present with one limited RC drilling program conducted in that time.

Criteria	JORC Code explanation	Commentary
		 GIB has completed: a 66 hole, 2,756m AC drilling program on <u>15th September 2020</u>, a 157 hole, 6,162m AC program on <u>29th November 2020</u>, a 22 hole, 1,971m RC drilling campaign on <u>12th March 2021</u>, and: a 137 hole, 4,474m AC drilling campaign on <u>31st May 2021</u>.
Geology	Deposit type, geological setting and style of mineralisation.	 Historic reports describe mineralisation as occurring within silicified stromatolites which were mineralized and then boudinaged during diagenesis and regional deformation. In this situation gold is stratabound and almost entirely hosted within the quartz boudins. At this very early stage of exploration GIB believes there may also have been a broader hydrothermal alteration event at Neta in which Au mineralisation is associated with Si-Fe alteration and possibly with porphyry intrusion. Pyrite and arsenopyrite are associated with gold mineralisation in fresh rock.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	See Appendix B (Drill Collar Locations).
Data aggregatio n methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Duplicate samples and repeat samples were averaged for samples with multiple assays. No other changes were made to geochemical data.

Criteria	JORC Code explanation	Commentary
Relationshi p between mineralisati on widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 Drillholes were (nominally) oriented at 60° towards 231. Local foliation strikes ~75° towards 051. As such these drillholes are oriented approximately perpendicular to foliation. Historic reports describe mineralisation as occurring within silicified stromatolites which were mineralised and then boudinaged during diagenesis and regional deformation. In this situation gold is stratabound and almost entirely hosted within the quartz boudins.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	 See Maps, Tables and Figures within the body of this announcement.
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	 n/a – see body of this Announcement for comprehensive reporting of all exploration results.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	 While historical drillhole information exists in some areas it is, in aggregate, not possible to report this drilling to JORC 2012 standards. In most cases the only data available to GIB is drillhole collar locations (local grid) and gold analyses.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 The Company will undertake an additional AC drilling campaign in 2021. This is being planned and is not yet at a stage to permit announcement.

End