18 October 2021

Upgrade of Mineral Resource for Advanced Stage Anthony Molybdenum Deposit

HIGHLIGHTS:

- Mineral Resource Estimate (MRE) upgraded for the Anthony Molybdenum Deposit from JORC Code 2004 to JORC Code 2012 with an emphasis on recoverable resources from the oxide zone
- Indicated and Inferred Resources for the Oxide domain (using a 400ppm Mo cut-off) total 17.5Mt
 @ 520ppm Mo (contained Mo 9,100 tonnes / 20.1 million lbs)
- Indicated and Inferred Resources for the Transition (partially oxidized) domain (using a 600ppm Mo cut-off) total 2.1Mt @ 790ppm Mo (contained Mo 1,700 tonnes / 3.7 million lbs)
- Indicated and Inferred Resources for the Sulphide domain (using a 600ppm Mo cut-off) total 17.4Mt @ 780ppm Mo (contained Mo 13,600 tonnes / 29.9 million lbs)
- Potential mining and processing scenario consist of open pit mining of weathered material, crushing, gravity separation techniques to produce a concentrate averaging around 1,500ppm Mo, sulphuric acid and sulphur dioxide leaching to produce oxide Mo products for use in the chemical and agricultural sectors

QX Resources Limited (ASX:QXR, 'QXR') is pleased to announce the results of an upgrade of the Mineral Resource Estimate (**MRE**) for the Anthony Molybdenum deposit in Central Queensland (**Figure 1**).

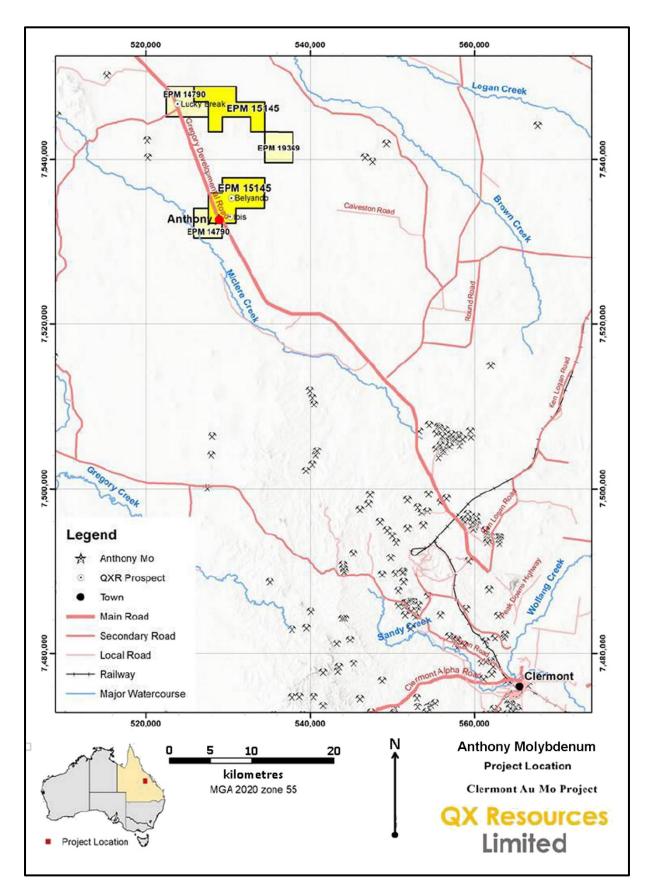
The Anthony Molybdenum deposit is located approximately 70km northwest of Clermont and 810km northwest of Brisbane (latitude 22.31°S / longitude 147.28°E). The area of the deposit is covered by EPMs (Exploration Permit for Minerals) 15145 and 14790, both held 100% by Zamia Resources Pty Ltd, which are part of the earn-in agreement between QXR and Zamia Metals Limited (**Zamia**) announced on 1 July 2020.

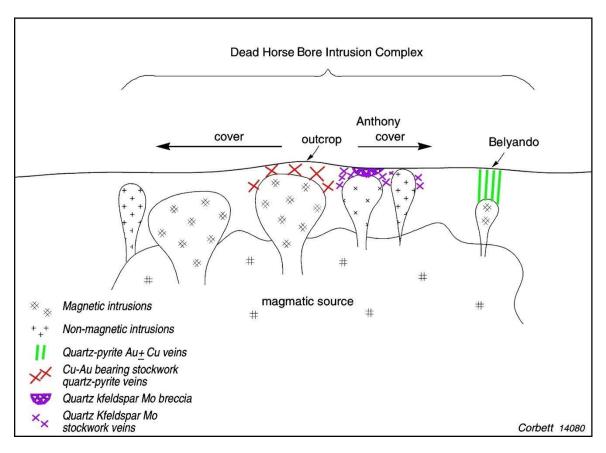
Zamia previously announced Mineral Resources for the Anthony deposit in March 2012¹. The 2012 MRE was prepared by Hellman & Schofield Pty Ltd (H&S) and was reported under the JORC Code 2004. QXR commissioned Geos Mining, Minerals Consultants, to update the MRE in accordance with the principles and guidelines of the JORC Code 2012, with emphasis on the near-surface oxidized part of the deposit.

<u>Comment</u>

Non-Executive Director Roger Jackson commented: "The upgraded MRE for Anthony Molybdenum deposit is an important value drive for QX. This report provides the company with a robust footing to undertake the next steps to a scoping study. We are also planning beneficiation and metallurgical test work on the oxide material to further optimize the economics of the project. We are hopeful that with successful test work and the results of the scoping study, we have the foundations in place to take Anthony right through to development. This is a large and valuable molybdenum resource."

¹ ASX announcement by Zamia Metals Limited (then ASX: ZAM) on 15 March 2012 titled "Anthony Molybdenum Resource Update"




Figure 1: Location of Anthony Mo deposit and other QXR projects in Central Queensland

MINERAL RESOURCE ESTIMATION

The following summary information relating to the MRE is consistent with the requirements of ASX Listing Rule 5.8.1, in that it is a fair and balanced representation of the material that is required for the understanding of the MRE. Further details are provided in the JORC Code 2012 – Table 1, which is included as Appendix 1 of this announcement.

Geology & Mineralisation

Primary mineralisation consists of stockworks of quartz-K-feldspar veins, containing variable amounts of molybdenite and pyrite, developed within, and marginal to, a suite of non-magnetic, variably porphyritic monzonite, quartz-monzonite and minor granites (the Dead Horse Bore Intrusion Complex) intruding the Cambrian-age metamorphic rocks of the Anakie Group. The Anthony prospect displays many features typical of the upper portion of a porphyry Mo system (**Figure 2**).

Source: Corbett, 2008

Drilling Techniques

The drilling database includes data collected by the following companies:

- CRA Exploration (1993-94) 16 aircore drillholes (594m) & 8 RC drillholes (942m)
- Cyprus Gold (1996) 4 RC drillholes (315m)
- Zamia Metals (2008-2014) 48 RC drillholes (10,533m) & 55 diamond drillholes² (21,831m)

Not all drillholes were used in the MRE as they were some scout exploration drillholes located outside of the Anthony mineral resource zone (**Figure 3**). Within the resource zone, the average drillhole spacing was approximately 50m.

Not all drillholes had downhole surveys and some surveys were compromised by being recorded from within drill rods. For those drillholes, the collar survey data were used for the entire length of the drillhole. This assumption is not likely to have made a material effect on the MRE process.

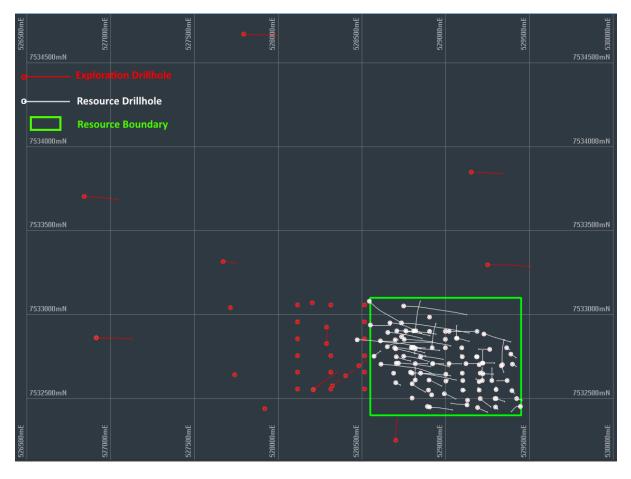


Figure 3: Anthony drillholes and resource boundary

² 38 of the diamond drillholes had RC pre-collars

Sampling & Assaying Techniques

The drilling database contains 13,281 sampling intervals up to 8m in width, but most were either 2m (for diamond drillholes) or 3m (for RC drillholes). Details of the sampling and assaying are presented in Appendix 1.

The sampling and assaying techniques are considered to be acceptable to support the MRE.

Bulk Densities

Due to the limited number of bulk density measurements conducted by Zamia on diamond drill core during 2008-2010, the bulk densities used by H&S in 2012 were used for this MRE:

- Oxide domain 2.3
- Transition domain 2.4
- Sulphide domain 2.6

Tonnages were estimated on a dry basis.

Geological Modelling

The Anthony deposit was sub-divided into three weathering domains (oxide, transition, sulphide) (**Figure 4**), based on the degree of oxidation determined from geological logging of the drilling.

Digital data were imported into Micromine 3D modelling software. Assay data were composited into 3m intervals, which matched the original sampling intervals for the bulk of the RC drilling. A top-cut of 1,200ppm Mo was applied on the basis of the distribution of grades within the composite intervals.

Because of the discontinuous and patchy nature of the stockwork mineralisation, geological domains were not used to define mineralisation zones, other than the weathering profile.

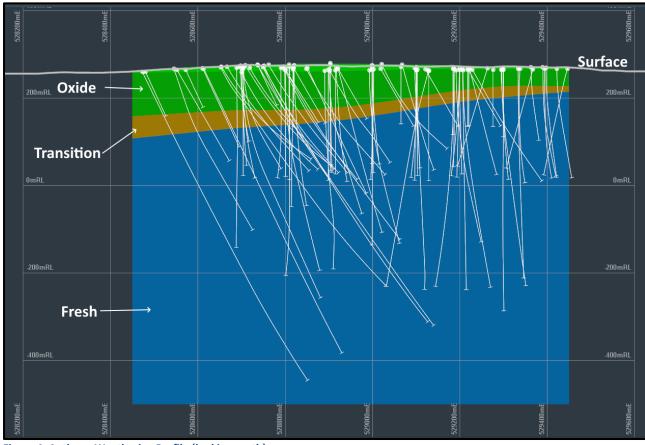


Figure 4: Anthony Weathering Profile (looking north)

Block model dimensions were 25m (E-W) x 25m (N-S) x 5m (RL) within a resource zone measuring 1,000m (E-W) x 850m (N-S) x 775m (RL). These dimensions were based on the orientation of the mineralisation, drillhole spacing and sampling intervals and the proposed bulk mining operation.

Interpolation of Mo grades into the blocks utilised Ordinary Kriging with search ellipsoid dimensions determined from semi-variogram analysis of the drilling data. The orientations of the search ellipses were based on geological interpretations and semi-variogram analysis.

The interpolated block model grades were checked against drillhole intervals on E-W and N-S crosssections.

Resource Classification

The MRE has been classified in accordance with criteria contained in the JORC Code 2012.

Blocks that were populated with the Pass 1 (50m) or Pass 2 (75m) interpolations were classified as Indicated Resources. Blocks that were populated with the Pass 3 (100m) interpolation were classified as Inferred Resources. All blocks below the 0mRL were classified as Inferred Resources.

Tonnage-grade curves for the Oxide domain resources (Indicated + Inferred) are shown in Figure 5.

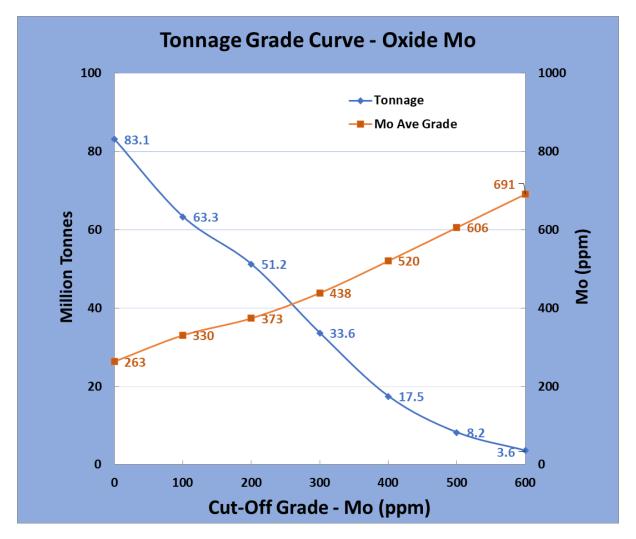


Figure 5: Tonnage-grade curves for the Oxide domain (Total Resources)

Error! Reference source not found. presents the estimated Mineral Resources for the Oxide domain. A cut-off grade of 400ppm Mo was selected, based on preliminary assessments of mining and processing costs.

DOMAIN >>	OXIDE					
Classification	Cut-Off Grade (Mo ppm)	Tonnes (Mt)	Mo (ppm)			
Indicated	400	17.3	521			
Inferred	400	0.1	452			
TOTAL	400	17.5	520			

Table 1: Mineral Resources for the Anthony Oxide domain at 400ppm Mo cut-off

Mineral Resources for the Transition and Sulphide domains were also estimated (**Table 2**). A higher cutoff grade of 600ppm Mo was used for these resources as the mining & processing costs are anticipated to be significantly higher than for the Oxide domain.

DOMAIN >>		TRANS	SITION	SULPHIDE (above 0mRL)		
Classification	Cut-Off Grade (Mo ppm)	Tonnes (Mt)	Mo (ppm)	Tonnes (Mt)	Mo (ppm)	
Indicated	600	2.1	789	13.7	720	
Inferred	600	-	-	0.3	694	
TOTAL	600	2.1	789	14.0	718	

Table 2: Mineral Resources for the Anthony Transition and Sulphide domains at 600ppm Mo cut-off

Reasonable Prospects for Eventual Economic Extraction

The Mineral Resources for the Oxide domain are considered to have reasonable prospects for eventual economic extraction given the access to critical infrastructure, the tonnage and grade of the mineralization and results of preliminary mining assessments and metallurgical testwork.

The Mineral Resources for the Transition and Sulphide domains are also considered to have reasonable prospects for eventual economic extraction, although further work is required to determine mining and metallurgical processes and costs.

Competent Person Statement

The information in this report that relates to Mineral Resources is based on, and fairly reflects, information compiled by Murray Hutton, Principal Consultant of Geos Mining and a Member of the Australia Institute of Geoscientists. Mr Hutton has sufficient experience, relevant to the style of mineralization and type of deposit under consideration and to the activity that he is undertaking, to qualify as a Competent Person as defined in the 2012 Edition of the Australasian Code of for the Reporting of Exploration Results, Mineral Resources and Ore Reserves (the JORC Code 2012).

Murray Hutton consents to the disclosure of information in this report in the form and context in which it appears.

This announcement has been approved for release by the Board of Directors of QX Resources Limited.

For further information, contact:

Maurice Feilich, Executive Chairman: Ph: 0411 545 262

Ben Davies, Six Degrees Investor Relations: 0431 658 276 ben.davies@sdir.com.au

Appendix 1 - JORC Code, 2012 Edition – Table 1

Section 1 - Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	Commentary
Sampling techniques	 Historical exploration 1977-1991 Sampling mainly limited to rock chip sampling focussing on base metals. 1 percussion hole (QHP1) was drilled in the mid-1980s at Anthony looking for gold
	 mineralisation but results were not encouraging. CRA Exploration (1991-1994) Conducted 1:5000 scale mapping & rock sampling assaying for Au, As, Cu, Pb, Mn, Zn, Fe & Mo. Results were not encouraging for all but Cu (up to 540ppm) & Mo (up to 800ppm). Drilling involved both Aircore (16 holes) & RC (7 holes) to test bedrock below Mo soil/surface anomalies QAQC was limited to minor duplicate samples & unidentified Standards (no corresponding grade recorded).
	 Cyprus Gold (1995-1996) Cyprus completed a 66 sample soil sampling program focussing on gold mineralisation Cyprus identified a 1,100m by 300m Au soil anomaly. This was followed by a 4 hole RC drill program that identified trace disseminated pyrrhotite and chalcopyrite. No records of the sampling techniques or QAQC work are available
	 Zamia (2008 – present) Zamia has completed soil and rock chip sampling programs across the Anthony prospect, focussing on Mo mineralisation Zamia has completed 103 (RC, RC/diamond & diamond) drillholes for 32,364 metres Samples were assayed using either ICP, XRF or both. QAQC sampling protocols were carried out to the standard of the time.
Drilling techniques	 Historical Drilling 16 aircore drillholes to test bedrock geochemistry (9-72m depth). 11 RC drillholes to test for deeper mineralisation (75–141m depth) Drilling diameters not recorded. Zamia Drilling 48 RC holes (10,533 metres) RC bit diameter either 5" or 5^{1/2"} hammer RC rigs either Schramm 450 or Hanjin. Sampling was by splitter 37 RCD holes (7,339 metres RC & 8,853 metres diamond). RC bit diameter either 5" or 5^{1/2"} hammer. Diamond bit diameter HQ2/NQ, NQ2 or NQ. 10 Diamond holes (5,639.3 metres) Drilling diameters: HQ3, HQ, HQ2/NQ or HQ/NQ2 Drilling used: UDR650, Atlas Copco U8 or Coretech KL880 Core orientation data was not supplied.

Criteria	Commentary
Drill sample recovery	 Historical Exploration No records are available. Zamia Drilling Percentage of recovery was defined by sample weight for RC drilling & by measuring produced core's length vs drill run's length for diamond drilling. All measurements were done on site. No records are available for any special measures being taken to maximise sample recovery.
Logging	 Historical Exploration No records are available. Zamia Drilling All holes were logged by qualified geologists at drilling site. No geotechnical studies have been supplied. No qualitative logging has been supplied. Only quantitative (spreadsheet) logging has been sighted No core photography has been sighted.
Sub-sampling techniques and sample preparation	 Historical Exploration No records are available Zamia Drilling Core cut using a diamond core saw though no size (^{1/2} or ¼ core) not recorded. No sample preparation records supplied. A QA/QC procedure of sample preparation were implemented but no procedure has been sighted. The Blanks and Duplicates, and Standard samples were inserted for QA/QC, approximately at 1 in 33 samples .
Quality of assay data and laboratory tests	 CRAE Drilling During 1993 CRAE submitted their samples to ALS laboratory for assaying Au was analysed using the PM209 technique Ag, As, Bi, Cu, Mo, Pb, Sb & Zn were analysed using the IC581 technique. The rest of CRAE's drilling was submitted to ANALABS in Townsville. Au was analysed using the GG334 method. Ag, Cd, Co, Cu, Fe, Mn, Mo, P, Pb & Zn were analysed using the GI115 method. As, Bi & Sb were analysed using the HA115 method CRAE submitted 7 duplicate samples. CRAE submitted 24 standards, but no information is available to what grade they should be. Cyprus Gold Drilling Cyprus samples were submitted to ALS Townsville. Au was analysed using the PM209 technique

Criteria	Commentary
	technique
	No records are available for QAQC sampling by Cyprus.
	Zamia Drilling
	All of Zamia's samples were submitted to ALS laboratory.
	 Au samples were analysed using the Au-AA21 method.
	• Mo & base metals were a mixture of ICP & XRF analysis methods & techniques.
Verification of sampling and	 Historical Drilling Primary data was sourced from open QLD Govt annual reports
assaying	
	Zamia Drilling
	 Preliminary logging was done by site geologists in "hand" and later entered to Excel spreadsheets by geologists.
	• All data were prepared in accordance with prepared procedure of Zamia.
	No twinned holes have been drilled at Anthony.
	 Zamia submitted random check assays to a 2nd lab, but no effort was made to check significant intersections.
Location of	Historical Drilling
data points	Coordinates for the drillholes were sourced from open QLD Govt annual reports.
	 Coordinate projection was assumed to be AMG84 zone 55. Zamia has converted the coordinates into GDA94 zone 55.
	Zamia Drilling
	• Coordinates for the drillholes was supplied by Zamia in Excel spreadsheet in GDA94
	zone 55 projection.
	Zamia defined the coordinates with both handheld and differential GPS's.
	 Geos Mining confirmed several Zamia holes with a Garmin 'GPSmap 62c' handheld unit.
Data spacing	Historical Drilling
and distribution	 A nominal drill spacing of 200 metre spaced drill lines with a 100 metre drillhole spacing.
ustribution	 The spacing was suitable for 1st pass exploration but not for MRE requirements.
	Samples were composited.
	Zamia Drilling
	 Drillhole spacing ranges between 50 and 100 metres.
	• 2 & 3 metre sample compositing of RC drilling applied.
	Data spacing is considered adequate to generate Indicated Resources.
Orientation of	Historical Exploration
data in relation to geological	Unknown.
structure	Zamia Drilling
	Majority of the drilling was either orientated east-west or vertical to limit sampling
	 bias. Minor number of holes orientated to the north to check secondary mineralisation.
Sample	
Sample security	Historical Exploration Unknown.
,	

Criteria	Commentary
	 Zamia Drilling Unknown.
Audits or reviews	 Historical Exploration Unknown.
	Zamia DrillingUnknown.

Section 2 - Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	Commentary
Mineral tenement and land tenure status	 The Anthony Mo project is located on 2 EPMs held by Zamia Resources Pty Ltd. EPM14790 EPM15145 No mineral tenement information provided to Geos Mining
Exploration done by other parties	 Historical Exploration 1977-1991 The Anthony Mo project was held by several companies whose work was limited to mapping, soil and rockchip sampling, geophysics & 1 or 2 drillholes. Sampling highlighted anomalous Mo (800ppm Mo) Geophysics included: Ground Magnetics Time-domain electromagnetics (TEM) Dipole-dipole IP
	 CRA Exploration CRAE continued mapping & sampling programs Drilled 23 Aircore or RC holes (1,407 metres) targeting Cu, Mo & base metal anomalies. Sampling of the drilling highlighted anomalous Mo (up to 854ppm Mo) Cyprus Gold Cyprus conducted ground magnetic geophysics, soil sampling and 4 RC drillholes targeting Au mineralisation. The results were not encouraging for Cyprus to continue exploration
Geology	 The Anthony deposit is a buried magmatic intrusive complex which is interpreted to be part of a suite of intrusions responsible for the mineralisation at the Anthony porphyry molybdenum deposit. Zamia's drilling indicates that the Mo mineralisation is developed within, and marginal to, a suite of non-magnetic, variably porphyritic monzonite, quartz-monzonite and minor granites intruding the Cambrian-age metamorphic rocks of the Anakie Group.
Drill hole Information	Included in Appendix 2.

Criteria	Commentary
Data aggregation methods	 No exploration results being reported.
Relationship between mineralisation widths and intercept lengths	 Exploration drill intercepts are not being reported. Where possible drilling was oriented either to the east or vertical to minimise biasing the mineralisation intercepts.
Diagrams	No exploration results being reported.
Balanced reporting	No exploration results being reported.
Other substantive exploration data	 No exploration results being reported.
Further work	 No further work is planned at this stage, pending decision to proceed with mine development.

Section 3 - Estimation and Reporting of Mineral Resources

(Criteria listed in section 1, and where relevant in section 2, also apply to this section.)

Criteria	Commentary
Database integrity	 Drillhole data has been manually checked by comparison of digital data in Excel spreadsheets with scanned drillhole logs.
Site visits	 Murray Hutton visited the Anthony project site on 17-19 October 2016 and inspected diamond core at Zamia's Clermont site.
Geological interpretation	 Geological interpretation is well-understood. However, the distribution of molybdenum bearing stockwork is discontinuous. Interpretation based on limited geological logging of drill core and interpretations drawn on drilling cross-sections. Geological domains not used to define mineralisation zones. Continuity of both grade and geology affected by discontinuous and patchy nature of stockwork development within the porphyry lithologies.
Dimensions	 Block model dimensions defined by extent of mineralisation within the resource drillholes. 1,000m E-W x 850m N-S (down-dip) x 775m RL Top of block model was intercepted with topography & a ratio of the blocks below the surface was recorded.
Estimation and modelling techniques	 Drillhole assays were composited over 3m intervals, which smoothed out extreme grade values that tended to be within narrow intervals. A top cut of 1,200ppm Mo was applied. Block model dimensions (25m E-W x 25m N-S x 5m RL) based on orientation of the mineralisation, drillhole sampling intervals and proposed selective open pit mining

Criteria	Commentary
	 techniques Estimation utilised Ordinary Kriging with search ellipsoid dimensions determined from semi-variogram analysis of the drilling data. Kriging software was Micromine 2018. Block grades checked against drillhole intercepts on E-W and N-S cross-sections. Geological interpretation and semi-variogram analysis used to define the orientation and parameters of the search ellipsoid.
Moisture	Tonnages estimated on a dry basis.No Moisture content information is available
Cut-off parameters	 Tonnage / grade values estimated at cut-off grades from 100ppm to 600ppm Mo. A 400ppm Mo cut-off grade was used for the reported Mineral Resources based on metallurgical testwork and assumptions of likely mining / processing costs.
Mining factors or assumptions	 Proposed mining methods are open pit, utilising large scale modern diesel equipment that will allow for minimal dilution.
Metallurgical factors or assumptions	 Metallurgical assumptions have been based on reports and studies carried out by Zamia & supplied to Geos Mining.
Environmental factors or assumptions	 No assumptions have been made at this stage.
Bulk density	 Bulk density based on RD measurements used in the H&S MRE estimations in 2010. Average RD were applied to the 3 weathering categories: Oxide- 2.3 Transition- 2.4 Sulphide- 2.6
Classification	 Mineral Resources have been classified as Indicated & Inferred Resources. Reliability of historical data has been tested by Zamia drilling programs and is deemed to be acceptable for use in the MRE. Geological continuity is reasonable. However, grade continuity requires further testing in order to improve confidence in the resources.
Audits or reviews	 Distribution of grade in the block model compares well with drillhole mineralisation. No audits have been undertaken at this stage.
Discussion of relative accuracy/ confidence	 Confidence in the MRE is appropriate for Indicated & Inferred Resources only, due to gaps in the data, insufficient RD data and QA/QC issues. The confidence in the MRE relates to global estimates.

Appendix 2 – Drillhole details

Hole_ID	East_MGA94	North_MGA94	RL	Dip	Azimuth	Tot Depth	Company
AC93DBT03	528115.0	7532556.0	254.0	-90	0	55.0	CRAE
AC93DBT04	528115.0	7532656.0	254.0	-90	0	44.0	CRAE
AC93DBT05	528315.0	7532756.0	260.0	-90	0	62.0	CRAE
AC93DBT06	528315.0	7532656.0	258.0	-90	0	72.0	CRAE
AC93DBT07	528315.0	7532556.0	257.0	-90	0	68.0	CRAE
AC93DBT08	528515.0	7532556.0	261.0	-90	0	18.0	CRAE
AC93DBT09	528515.0	7532656.0	263.0	-90	0	51.0	CRAE
AC93DBT10	528515.0	7532756.0	265.0	-90	0	15.0	CRAE
AC93DBT11	528515.0	7532856.0	267.0	-90	0	24.0	CRAE
AC93DBT12	528515.0	7532956.0	267.0	-90	0	9.0	CRAE
AC93DBT13	528515.0	7533056.0	266.0	-90	0	9.0	CRAE
AC93DBT14	528315.0	7533056.0	260.0	-90	0	12.0	CRAE
AC93DBT15	528115.0	7533056.0	255.0	-90	0	47.0	CRAE
AC93DBT16	528115.0	7532956.0	255.0	-90	0	36.0	CRAE
AC93DBT17	528115.0	7532856.0	256.0	-90	0	18.0	CRAE
AC93DBT18	528115.0	7532756.0	255.0	-90	0	54.0	CRAE
RC93DBT1	528290.0	7532926.0	258.0	-90	0	111.0	CRAE
RC93DBT2	528290.0	7532826.0	257.0	-59	2	141.0	CRAE
RC94DBT19	528402.6	7532633.7	257.9	-60	55	123.0	CRAE
RC94DBT20	528479.9	7532693.6	260.2	-60	53	117.0	CRAE
RC94DBT21	528572.2	7532753.4	264.8	-60	53	99.0	CRAE
RC94DBT22	528654.0	7532810.0	276.0	-60	52.0	129.0	CRAE
RC94DBT23	528737.6	7532869.4	274.6	-60	55	105.0	CRAE
RC94DBT24	528322.5	7532575.8	256.2	-60	55	117.0	CRAE
DHRC1	527715.0	7533041.0	255.0	-90	0	80.0	Cyprus
DHRC2	527740.0	7532641.0	253.0	-90	0	80.0	Cyprus
DHRC3	528205.0	7533071.0	257.0	-90	0	75.0	Cyprus
DHRC4	527919.0	7532441.0	254.0	-90	0	80.0	Cyprus
DD08A014	529228.7	7532883.5	264.6	-60	90	303.6	Zamia
DD08A015	529337.8	7532702.4	266.4	-60	352	300.0	Zamia
DD08A016	528917.7	7532801.4	270.5	-60	358	300.6	Zamia
DD08A017	528820.0	7532901.8	275.7	-60	0	369.4	Zamia
DD10A064	528748.9	7533050.9	272.8	-60	90	698.4	Zamia
DD10A067	528921.0	7532707.3	267.2	-75	90	388.2	Zamia
DD11A097	529222.0	7532648.0	267.0	-75	95	249.5	Zamia
DD11A098	529068.0	7532860.0	276.0	-75	90	251.5	Zamia
DDS11A066	526915.8	7532861.0	247.0	-60	90	131.7	Zamia
DDS11A066A	526915.8	7532861.0	247.0	-60	90	494.3	Zamia
DDS11A072	526841.3	7533704.1	251.6	-60	90	417.6	Zamia
DDS11A078	527795.4	7534669.5	252.5	-60	90	386.3	Zamia
DDS11A082	529249.9	7533298.3	258.8	-60	90	500.4	Zamia
DDS11A085	529151.0	7533848.0	257.0	-60	90	395.3	Zamia
DDT11A065	529299.5	7532498.3	264.8	-90	0	152.5	Zamia
DDT11A075	529184.3	7532749.1	266.8	-90	0	150.0	Zamia

Hole_ID	East_MGA94	North_MGA94	RL	Dip	Azimuth	Tot Depth	Company
DDT11A077	528795.8	7532805.0	271.1	-57	95	150.0	Zamia
RC08A001	529275.8	7532607.1	265.0	-60	0	150.0	Zamia
RC08A002	529218.1	7532711.7	266.5	-60	90	150.0	Zamia
RC08A003	529220.4	7532710.3	266.6	-60	0	150.0	Zamia
RC08A004	529121.0	7532708.6	265.7	-60	90	150.0	Zamia
RC08A005	529065.1	7532859.9	271.1	-60	0	150.0	Zamia
RC08A006	529018.9	7532707.5	266.5	-60	90	150.0	Zamia
RC08A007	528920.9	7532707.3	267.3	-60	90	132.0	Zamia
RC08A008	528819.9	7532708.3	267.7	-60	90	144.0	Zamia
RC08A010	529217.7	7532608.2	265.0	-60	0	150.0	Zamia
RC08A011	528817.8	7532611.4	265.8	-60	0	150.0	Zamia
RC09A024	528610.8	7532841.8	268.2	-65	90	198.0	Zamia
RC10A033	529000.1	7532604.9	264.5	-90	0	216.0	Zamia
RC10A034	529102.5	7532606.6	264.3	-90	0	224.0	Zamia
RC10A035	529198.9	7532599.6	265.0	-90	0	244.0	Zamia
RC10A036	529096.8	7532801.2	268.6	-90	0	246.0	Zamia
RC10A037	528999.4	7532899.1	274.8	-90	0	246.0	Zamia
RC10A039	528903.2	7532984.1	279.8	-90	0	246.0	Zamia
RC10A041	529263.2	7532793.8	268.6	-73	270	234.0	Zamia
RC10A042	528800.9	7532502.5	263.4	-90	0	242.5	Zamia
RC10A043	528915.4	7532523.1	263.7	-90	0	237.0	Zamia
RC10A045	528703.7	7532709.7	268.6	-90	0	246.0	Zamia
RC10A048	529366.9	7532605.6	265.5	-75	270	234.0	Zamia
RC10A049	528810.1	7532805.7	271.8	-90	0	258.0	Zamia
RC10A050	528552.0	7532936.3	264.8	-60	90	240.0	Zamia
RC10A053	529128.9	7532489.1	262.9	-90	0	252.0	Zamia
RC10A057	529199.6	7532700.3	266.6	-90	0	240.0	Zamia
RC10A058	529186.9	7532749.3	267.1	-90	0	224.0	Zamia
RC10A059	528999.5	7532852.0	272.4	-90	0	222.0	Zamia
RC10A061	529002.2	7532646.2	265.4	-90	0	252.0	Zamia
RC10A062	529100.1	7532651.2	264.4	-90	0	252.0	Zamia
RC11A068	529295.8	7532450.5	265.1	-90	0	252.0	Zamia
RC11A071	528705.1	7532750.2	270.1	-90	0	252.0	Zamia
RC11A073 RC11A076	528901.9	7532448.2	262.5 264.4	-60 -90	90 0	252.0 245.5	Zamia
	529200.0	7532551.6 7532551.3		-90	0		Zamia Zamia
RC11A080 RC11A081	528898.6 529446.0	7532453.0	264.3 267.0	-90	270	252.0 252.0	Zamia
RC11A081	529422.0	7532500.0	267.0	-90	0	252.0	Zamia
RC11A085	529394.0	7532548.0	267.0	-90	0	252.0	Zamia
RC11A084	529394.0	7532703.0	269.0	-90	0	252.0	Zamia
RC11A087	529390.0	7532764.0	209.0	-90	0	252.0	Zamia
RC11A087	529363.0	7532802.0	270.0	-90	0	168.0	Zamia
RC11A090	528903.0	7532900.0	276.0	-90	0	246.0	Zamia
RC11A091	529021.0	7532899.0	277.0	-65	90	246.0	Zamia
RC11A093	528790.0	7532656.0	269.0	-90	0	252.0	Zamia
RC11A094	528698.0	7532850.0	274.0	-90	0	174.0	Zamia
NCIIAUJ4	520050.0	/ 332030.0	2/4.0	-90	0	1/4.0	Zanna

Hole_ID	East_MGA94	North_MGA94	RL	Dip	Azimuth	Tot Depth	Company
RC11A095	529100.0	7532750.0	270.0	-90	0	252.0	Zamia
RC11A096	528703.0	7532595.0	267.0	-90	0	252.0	Zamia
RC14A100	527670.0	7533315.0	253.0	-65	90	200.0	Zamia
RCD08A009	528700.5	7532252.0	258.5	-60	0	246.6	Zamia
RCD08A012	528819.1	7532799.7	271.1	-90	0	321.7	Zamia
RCD09A013	528718.8	7532710.8	269.2	-60	90	303.0	Zamia
RCD09A019	528666.8	7532951.1	272.2	-60	90	312.0	Zamia
RCD09A021	528708.9	7532903.8	274.7	-60	90	307.3	Zamia
RCD09A022	528762.0	7532902.3	276.2	-60	90	307.0	Zamia
RCD09A023	528654.1	7532892.9	271.7	-60	90	300.0	Zamia
RCD09A025	528751.2	7532851.6	273.7	-65	90	300.0	Zamia
RCD09A026	528693.9	7532803.2	271.2	-65	90	300.0	Zamia
RCD09A027	528796.2	7532802.2	271.4	-65	90	309.0	Zamia
RCD09A028	528749.2	7532750.7	270.4	-65	90	300.0	Zamia
RCD09A029	528851.2	7532749.7	268.7	-65	90	316.5	Zamia
RCD10A018	528652.7	7532809.4	270.1	-60	52	629.5	Zamia
RCD10A020	528736.4	7532948.9	276.4	-60	90	722.7	Zamia
RCD10A030	528848.6	7532650.0	266.6	-63	90	303.0	Zamia
RCD10A031	528800.3	7532652.2	267.0	-63	90	473.3	Zamia
RCD10A032	528900.4	7532608.6	265.4	-90	0	341.6	Zamia
RCD10A038	528998.7	7532802.8	270.3	-90	0	406.0	Zamia
RCD10A044	528702.6	7532797.4	271.1	-90	0	563.6	Zamia
RCD10A051	529294.5	7532498.7	265.0	-90	0	497.6	Zamia
RCD10A054	528992.8	7532529.1	263.7	-90	0	404.5	Zamia
RCD10A055	528472.7	7532850.4	260.1	-64	90	803.4	Zamia
RCD10A056	528613.6	7532703.5	266.8	-64	90	726.1	Zamia
RCD11A040	529186.6	7532899.9	267.2	-90	0	500.0	Zamia
RCD11A046	528798.8	7532587.7	265.5	-90	0	470.6	Zamia
RCD11A047	529333.5	7532693.7	266.5	-90	0	479.6	Zamia
RCD11A052	529207.0	7532498.6	263.8	-90	0	503.6	Zamia
RCD11A060	529206.6	7532650.4	265.8	-90	0	504.0	Zamia
RCD11A063	529300.1	7532553.4	265.3	-90	0	552.0	Zamia
RCD11A069	529191.5	7532445.1	263.9	-90	0	398.7	Zamia
RCD11A070	529128.4	7532463.2	263.1	-75	270	503.5	Zamia
RCD11A074	529100.8	7532549.4	263.8	-90	0	501.7	Zamia
RCD11A079	528890.6	7532452.7	262.2	-90	0	454.0	Zamia
RCD11A089	528689.0	7532651.0	269.0	-90	0	410.6	Zamia
RCD11A092	528809.0	7532903.0	276.0	-90	0	482.0	Zamia
RCD14A099	528545.0	7533078.0	267.0	-65	130	429.0	Zamia
RCD14A101	528210.0	7532554.0	256.0	-65	55	108.0	Zamia
RCD14A101A	528210.0	7532554.0	256.0	-65	55	400.4	Zamia