

ASX ANNOUNCEMENT

ENCOURAGING RARE EARTH EXTRACTION RESULTS

21 October 2021

HIGHLIGHTS

- 489 composite samples from 215 drill holes, representing 1,409 metres of drilling anomalous with rare earth elements ("REE"1), re-assayed using a weak aqua regia² acid solution to indicate the proportion of readily soluble REE.
- The test work indicated that at a grade of approximately 800ppm total rare earth oxides ("TREO"³), 80% of light REO⁴, 76% of heavy REO⁵ and 80% of critical REO⁶ was taken into solution under the conditions trialled.
- An updated geological model suggests REE mineralisation occurs in Eocene-aged sediments of the Salmon Gums Plains, part of the on-shore Eucla basin.
- Drill holes that have returned elevated REE extend over an area 25 kilometres long and 3 kilometres wide. Drilling is planned to further frame out the extent of mineralisation, which is currently open in all directions.

Mount Ridley's Chairman Mr. Peter Christie commented:

"This analytical program was designed to give an early indication of whether the REE mineralisation was in a readily-soluble state and, while these results are indicative only, they exceeded our expectations and therefore encourages the Company to fully commit to advancing the Mount Ridley REE Project through drilling and more advanced metallurgical studies."

PARTIAL DIGESTION RESULTS ARE EXTREMELY ENCOURAGING

Mount Ridley Mines Limited (ASX: MRD, "MRD" or "the Company") announced on 1 July 2021 that laterally extensive REE mineralisation had been identified at its namesake Mount Ridley Project⁷, near Esperance, Western Australia.

Work reported since then described the analysis of 1,108 composite samples, representing over 3,500m of drilling from 267 aircore holes, drilled between 2017 to 2019. Samples were specifically analysed for REE using a 'total digest' fusion technique ("Fusion"), designed to report the total amount of REE in each sample. Over 50% of the samples re-analysed contained significantly elevated REE.

The Company has now completed further analysis of 489 of the previously analysed samples using a 'partial digest' modified aqua regia digestion technique ("AR"), designed to analyse for soluble or loosely bound REE, typified by ionic adsorption clay REE deposits. (Sampled drill hole locations are listed in Table 5 and shown on Figures 9-12).

¹ REE refers to 15 rare earth elements: cerium (Ce), dysprosium (Dy), erbium (Er), europium (Eu), gadolinium (Gd), holmium (Ho), lanthanum (La), lutetium (Lu), neodymium (Nd), praseodymium (Pr), samarium (Sm), terbium (Tb), thulium (Tm), ytterbium (Yb), and yttrium (Y).

² AR means Weak aqua regia acid, a mix of 1 molar hydrochloric acid (HCl) and 1 molar nitric acid (HNO₃).

³ TREO means the sum of the 15 REE, each converted to its respective element oxide equivalent using the formulae in Appendix 2 Section 2.

⁴ Light REO or LREO means Light Rare Earth Oxides; the sum of La₂O₃, CeO₂, Pr₆O₁₁, Nd₂O₃, Sm₂O₃, Eu₂O₃.

 $^{5~}Heavy~REO~or~HREO~means~Heavy~Rare~Earth~Oxides;~the~sum~of~Gd_2O_3,\\ Tb_4O_7,~Dy_2O_3Ho_2O_3,~Er_2O_3,~Tm_2O_3,~Yb_2O_3,\\ Lu_2O_3,~Y_2O_3.$

 $^{6\} Critical\ or\ CREO\ means\ Critical\ Rare\ Earth\ Oxides;\ the\ sum\ of\ Dy_2O_3,\ Eu_2O_3,\ Nd_2O_3,\ Tb_4O_7,\ and\ Y_2O_3$

⁷ Mount Ridley Mines Limited announcements to ASX 1 July 2021,2 August 2021, 13 September 2021

Table 1 compares length-weighted drill hole intersection grades when analysed by Fusion, with the modified aqua regia digestion (AR) technique result. Individual REE results have been converted and aggregated to give the TREO for each method, and the "Recovery" - the proportion extracted by AR.

Table 1: Selected Drill Hole Intersections (TREO x Intersection > 10,000 ppm) Winston's Fusion Agua Regia Recovery												
Winston's	Fusion	Aqua Regia	Recovery									
MRAC0590: 24 to 36m	12m at 1,231 ppm TREO	12m at 1,107 ppm TREO	89.90%									
MRAC0593: 24 to 30m	6m at 2,006 ppm TREO	6m at 1,980 ppm TREO	98.70%									
MRAC0605: 36 to 47m	11m at 1,623 ppm TREO	11m at 1,488 ppm TREO	91.70%									
MRAC0617: 24 to 36m	12m at 1,540 ppm TREO	12m at 1,224 ppm TREO	79.50%									
MRAC0637: 16 to 23m	7m at 1,338 ppm TREO	7m at 1,141 ppm TREO	85.30%									
MRAC0638: 24 to 40m	16m at 1,581 ppm TREO	16m at 1,109 ppm TREO	70.10%									
MRAC0721: 52 to 68m	16m at 2,119 ppm TREO	16m at 1,718 ppm TREO	81.10%									
MRAC0439: 40 to 48m	8m at 2,349 ppm TREO	8m at 1,871 ppm TREO	79.65%									
MRAC0456: 28 to 38m	10m at 1,850 ppm TREO	10m at 1,385 ppm TREO	74.86%									
MRAC0632: 4 to 17m	13m at 1,289 ppm TREO	13m at 940 ppm TREO	72.92%									
MRAC0474: 32 to 50m	18m at 879 ppm TREO	18m at 788 ppm TREO	89.65%									
MRAC0471: 28 to 39m	11m at 1,259 ppm TREO	11m at 1,107 ppm TREO	87.93%									
MRAC0726: 40 to 47m	7m at 1,857 ppm TREO	7m at 1,470 ppm TREO	79.16%									
MRAC0667: 36 to 40m	4m at 3,044 ppm TREO	4m at 2,513 ppm TREO	82.56%									
MRAC0441: 20 to 25m	5m at 2,301 ppm TREO	5m at 2,009 ppm TREO	87.31%									
Keith's												
MRAC0484: 32 to 40m	8m at 3,357 ppm TREO	8m at 1,916 ppm TREO	57.10%									
MRAC0514: 16 to 21m	5m at 1,261 ppm TREO	5m at 1,150 ppm TREO	91.20%									
MRAC0518: 16 to 21m	5m at 3,950 ppm TREO	5m at 2,627 ppm TREO	66.50%									
MRAC0568: 32 to 38m	6m at 1,882 ppm TREO	6m at 1,720 ppm TREO	91.40%									
MRAC0695: 24 to 40m	16m at 1,136 ppm TREO	16m at 996 ppm TREO	87.70%									
MRAC0711: 16 to 24m	8m at 2,792 ppm TREO	8m at 2,215 ppm TREO	79.30%									
Marcellus												
MRAC0679: 16 to 28m	12m at 914 ppm TREO	12m at 833 ppm TREO	91.10%									
Tyrrell's												
MRAC0684: 24 to 31m	7m at 1,503 ppm TREO	7m at 903 ppm TREO	60.10%									

Note: Drilling intersections calculated used a minimum cut off of 300ppm TREO (Fusion), minimum thickness 1m, maximum internal dilution of 4m (single sample composite) and no external dilution.

Table 2 and Figure 1 compare the length-weighted average grade of the 489 samples analysed initially by Fusion, the follow-up analysis by AR (each element analysis converted to its respective rare earth oxide ("REO") equivalent) and the Recovery by AR.

	Table 2: Comparison of Length-Weighted Average REO Grades of 489 samples by Fusion and by AR.														
					Critical	Critical	Critical	Critical	Critical						
	Light	Light	Light	Light	Light	Light	Heavy	Heavy	Heavy	Heavy	Heavy	Heavy	Heavy	Heavy	Heavy
Method	La ₂ O ₃	CeO ₂	Pr ₆ O ₁₁	Sm ₂ O ₃	Nd ₂ O ₃	Eu ₂ O ₃	Tb ₄ O ₇	Dy ₂ O ₃	Y ₂ O ₃	Gd ₂ O ₃	Ho ₂ O ₃	Er ₂ O ₃	Tm ₂ O ₃	Yb ₂ O ₃	Lu ₂ O ₃
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Fusion	108.81	155.43	31.93	31.62	138.29	11.46	5.18	31.03	206.91	34.25	6.37	17.86	2.39	14.61	2.18
AR	75.68	116.12	26.99	28.27	123.06	10.80	4.28	26.78	149.86	30.77	5.05	14.45	1.75	10.98	1.53
Recovery	70%	75%	85%	89%	89%	94%	83%	86%	72%	90%	79%	81%	73%	75%	70%

Figure 1: Comparison of Fusion with Aqua Regia extraction for REO

Table 3 and Figure 2 compare the relative distribution of each REO, plus aggregated light, heavy and critical REO.

	Table 3: Comparison of the Distribution of REO ("Basket") of 489 samples by Fusion and by AR.														
					Critical	Critical	Critical	Critical	Critical						
	Light	Light	Light	Light	Light	Light	Heavy	Heavy	Heavy	Heavy	Heavy	Heavy	Heavy	Heavy	Heavy
Distribution	La ₂ O ₃	CeO ₂	Pr ₆ O ₁₁	Sm ₂ O ₃	Nd ₂ O ₃	Eu ₂ O ₃	Tb ₄ O ₇	Dy ₂ O ₃	Y ₂ O ₃	Gd ₂ O ₃	Ho ₂ O ₃	Er ₂ O ₃	Tm ₂ O ₃	Yb ₂ O ₃	Lu ₂ O ₃
Fusion	13.6%	19.5%	4.0%	4.0%	17.3%	1.4%	0.7%	3.9%	25.9%	4.3%	0.8%	2.2%	0.3%	1.8%	0.3%
					Light	59.8%		Critical	49.2%					Heavy	40.2%
Distribution	La ₂ O ₃	CeO ₂	Pr ₆ O ₁₁	Sm ₂ O ₃	Nd ₂ O ₃	Eu ₂ O ₃	Tb ₄ O ₇	Dy ₂ O ₃	Y ₂ O ₃	Gd ₂ O ₃	Ho ₂ O ₃	Er ₂ O ₃	Tm ₂ O ₃	Yb ₂ O ₃	Lu ₂ O ₃
AR	12.1%	18.5%	4.3%	4.5%	19.7%	1.7%	0.7%	4.3%	23.9%	4.9%	0.8%	2.3%	0.3%	1.8%	0.2%
					Light	60.8%		Critical	50.3%					Heavy	39.2%

Figure 2: Distribution of Rare Earth Oxides following partial digestion (by weak Aqua Regia) extraction and analysis.

PROJECT OUTLOOK

Litho-geochemistry and Mineralogy

A comprehensive geological and litho-geochemical study is progressing to differentiate recent sediments, Eocene sediments and Proterozoic basement, and their respective relationship with REE mineralisation.

This research and development study involves the use of infra-red (SWIR and ATR-FT-IR) technology to determine clay minerology and whole rock litho-geochemistry, and microXRF for mineral and rock identification. Over 800 samples from 1 kilometre-spaced drill traverses covering a 21 km strike length of mineralisation form the basis of the study.

It is important to identify the REE mineralogy and whether the REE are adsorbed to the clays or exist as more refractory primary or secondary minerals. The large sample set is expected to be sufficient detailed to indicate any regional variability that may exist.

Mineralogy and Metallurgy

Clay-hosted REE deposits may have multiple phases of mineralisation including the targeted ionic adsorption clay, colloidal clay, and refractory primary minerals (or mixtures of each). The results of the AR digestion show that a high proportion of the REE is extractable using a weak acid solution.

Classical ionic adsorption clay deposits are processed by leaching with a salt solution at a weakly acidic pH. The salt solution alternatives include sodium chloride, ammonium chloride, ammonium sulphate and magnesium sulphate, with magnesium sulphate preferred on environmental grounds.

The next phase of work, using new drill samples, will be designed to determine if the RE elements can be extracted by salt solutions under weakly acidic conditions i.e., pH 4-5.

In parallel, testwork will be conducted on a number of samples to understand the leachability of REE versus acid strength, e.g., pH 5, 4, 3, 2, 1. It should be possible to estimate acid consumption rates required for leaching based on these results.

Drilling

Planning is also continuing for an extensive aircore drill program, which will include:

- Re-drilling some of the holes that terminated in REE mineralisation.
- Extending drilling traverses where mineralisation remains open.
- Reconnaissance drilling to test other regional targets.
- Core drilling (the Company is considering the use of sonic drilling, a technique effective in poorly consolidated rocks) to provide in-tact core for regolith studies, geotechnical and metallurgical testing, and to test the quality of some of the significantly mineralised, aircore holes drilled in previous campaigns.

Environment and Heritage

Most areas slated for drilling have been drilled for other commodities before, and therefore there is a body of existing environmental protection and heritage protection work in existence on the tenements. The forthcoming drilling program is designed to generally use existing cleared tracks.

Updates to existing flora, and fauna surveys are in progress, and Heritage Protection Surveys are being reviewed prior to updates that may be required, focusing on the identified target areas and extensions to known REE mineralisation.

When completed satisfactorily, reports from these are to be submitted to the DMIRS to support the Company's program of works (POW) applications.

ABOUT THE MOUNT RIDLEY REE PROJECT

The Mount Ridley Project is located approximately 35 kilometres northeast of the deep-water port of Esperance, a town with approximately 12,000 people and a hub for tourism, agriculture, and fishing (Figure 3). The Port exports minerals including nickel concentrates, iron ore and spodumene.

The Project is approximately 20 kilometres east of the sealed Goldfields Esperance Highway and infrastructure corridor which includes the Kalgoorlie-Esperance railway line and gas pipeline. The Esperance airport is located at Gibson Soak, also approximately 20 kilometres from the Project. The Company holds eight granted exploration licences and 1 exploration licence application covering approximately 3,400 km² (inclusive of areas under application).

REE mineralisation occurs as large, horizontal, near surface, sheet-like lenses up to a depth of 89 metres. Drill holes have returned elevated REE over an area 25 kilometres long and 3 kilometres wide to date and mineralisation is open in all directions. Clusters of mineralised drill holes have been allocated prospect names (Figures 4 - 7).

It is postulated that REE mineralisation is hosted in Eocene-aged sediments, part of the onshore Eucla Basin, forming the Salmon Gums Plain. Patchy lower grade mineralisation occurs within more recent cover, which may vector towards stronger REE mineralisation deeper within sedimentary profile.

Figure 3: Mount Ridley Project location and tenements.

Geological Survey of Western Australia (DMIRS) mapping⁸ shows that basement rocks that underlay the Mount Ridley Project are of the Recherche Super-suite, which is described as "granitic and mafic gneiss: may include intrusions of Esperance super-suite".

^{8 (}DMIRS) Department of Mines, Industry Regulation and Safety 1:100,000 Interpreted Bedrock Geology

Figure 4: Named Prospect Areas based on clusters of mineralized drill holes.

From the analyses received to date, REE grades at the Mount Ridley Project compare favourably to the Ugandan Makuutu REE Project resource⁹ (Ionic Rare Earths Ltd, ASX: IXR earning 60%) which has a reported JORC Inferred and Indicated Resource of 78.6Mt at 840ppm TREO (cut-off grade 250ppm TREO). MRD has not yet defined a Resource defined in accordance with the JORC code.

	Table 4: Comparison of the Distribution of REE ("Basket") for the Makuutu Project ¹⁰														
					Critical	Critical	Critical	Critical	Critical						
	Light	Light	Light	Light	Light	Light	Heavy	Heavy	Heavy	Heavy	Heavy	Heavy	Heavy	Heavy	Heavy
Distribution	La ₂ O ₃	CeO ₂	Pr ₆ O ₁₁	Sm ₂ O ₃	Nd ₂ O ₃	Eu ₂ O ₃	Tb ₄ O ₇	Dy ₂ O ₃	Y ₂ O ₃	Gd ₂ O ₃	Ho ₂ O ₃	Er ₂ O ₃	Tm ₂ O ₃	Yb ₂ O ₃	Lu ₂ O ₃
Reported	13.5%	13.5%	5.5%	23.2%	0.9%	0.6%	3.7%	25.4%	4.7%	4.4%	0.7%	2.0%	0.3%	1.3%	0.2%
					Light	61.3%		Critical	53.8%					Heavy	38.6%

Figure 5: Cross Section through Winston's Prospect. Central northing is 6,321,750mN.

Figure 6: Cross Section through Winston's Prospect. Central northing is 6,324,500mN.

Figure 7: Cross section through Keith's Prospect. Central northing is 6,314,500mN.

The Company acknowledges the Esperance Nyungar People, custodians of the Project area.

This announcement has been authorised for release by the Company's board of directors.

For further information, please contact:

Peter Christie Chairman +61 8 6165 8858 David Crook Technical Manager +61 8 6165 8858

ABOUT MOUNT RIDLEY MINES LIMITED

Mount Ridley is a company targeting demand driven metals in Western Australia.

Its namesake Mount Ridley Project, located within a Frazer Range sub-basin, was initially acquired for its nickel and copper sulphides potential, and is now recognised as being prospective for ionic clay REE deposits.

The Mount Riley project comprises 8 granted and 1 applied-for exploration licences with an area of approximately 3,400km², located from 35 kilometres north of the deep water port of Esperance, Western Australia.

The Company also holds approximately 18% of the Weld Range West Iron Project in the mid-west of Western Australia. Areas of the tenements are also prospective for gold.

Competent Person

The information in this report that relates to exploration strategy and results is based on information supplied to and compiled by Mr David Crook. Mr Crook is a consulting geologist retained by Mount Ridley Limited. Mr Crook is a member of The Australasian Institute of Mining and Metallurgy and the Australian Institute of Geoscientists and has sufficient experience which is relevant to the exploration processes undertaken to qualify as a Competent Person as defined in the 2012 Editions of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'.

Caution Regarding Forward Looking Information

This announcement may contain forward-looking statements that may involve a number of risks and uncertainties. These forward-looking statements are expressed in good faith and believed to have a reasonable basis. These statements reflect current expectations, intentions or strategies regarding the future and assumptions based on currently available information. Should one or more of the risks or uncertainties materialise, or should underlying assumptions prove incorrect, actual results may vary from the expectations, intentions and strategies described in this announcement. No obligation is assumed to update forward looking statements if these beliefs, opinions, and estimates should change or to reflect other future developments.

APPENDIX 1A: Drill Hole Collar Locations. All Holes drilled vertically (Dip n= -90°, azimuth = 0°)

	Table	<u> </u>	
	Drill Hole Coll		
Hole ID	East	North	Depth
	(m)	(m)	(m)
MRAC0438	426337	6318098	45
MRAC0439	426826	6318157	48
MRAC0440	426762	6318233	53
MRAC0441	426698	6318310	25
MRAC0442	426634	6318387	44
MRAC0443	428308	6320293	53
MRAC0445	428180	6320447	53
MRAC0446	428153	6320561	46
MRAC0450	427868	6320813	52
MRAC0451	428651	6319873	51
MRAC0453	428756	6319757	45
MRAC0454	428820	6319680	43
MRAC0455	428434	6319360	38
MRAC0456	428370	6319437	38
MRAC0458	428242	6319590	55
MRAC0459	428178	6319667	46
MRAC0460	428114	6319743	23
MRAC0461	428050	6319820	45
MRAC0463	426250	6318847	35
MRAC0467	425994	6319153	72
MRAC0470	427214	6319257	18
MRAC0471	427472	6319730	39
MRAC0472	427986	6319897	42
MRAC0473	427922	6319973	48
MRAC0474	426892	6318937	51
MRAC0475	426956	6318783	42
MRAC0476	427278	6319103	27
MRAC0482	423327	6315613	35
MRAC0483	423246	6315650	38
MRAC0484	423143	6315720	45
MRAC0485	423072	6315782	42
MRAC0488	422591	6315571	40
MRAC0492	422867	6315285	21
MRAC0498	423276	6314859	34
MRAC0499	422455	6314997	21
MRAC0502	422653	6314795	31
MRAC0503	422741	6314762	23
MRAC0507	422573	6314159	24
MRAC0510	422177	6314379	18
MRAC0511	422297	6314445	14
MRAC0513	422122	6314549	25
MRAC0514	421992	6314657	22
MRAC0518	422403	6315086	21
MRAC0520	422230	6315217	38
MRAC0521	420824	6312384	34

	Tak	ole 5	
		llar Locations	
Hole ID	East	North	Depth
	(m)	(m)	(m)
MRAC0522	420754	6312455	22
MRAC0523	420692	6312524	30
MRAC0524	420624	6312597	36
MRAC0526	420458	6312734	27
MRAC0527	420314	6312806	31
MRAC0528	420293	6312885	28
MRAC0529	420268	6312967	21
MRAC0532	420476	6313444	26
MRAC0538	420737	6313007	12
MRAC0539	420877	6312973	22
MRAC0540	421038	6312879	41
MRAC0541	421108	6312805	26
MRAC0542	421200	6312727	22
MRAC0543	421527	6313103	25
MRAC0544	421458	6313170	34
MRAC0545	421381	6313228	12
MRAC0551	420954	6313666	27
MRAC0554	421172	6314161	25
MRAC0556	421327	6314016	21
MRAC0557	421396	6313941	12
MRAC0559	421535	6313797	12
MRAC0560	421596	6313728	17
MRAC0561	421660	6313665	9
MRAC0563	421815	6313508	35
MRAC0564	421883	6313443	37
MRAC0567	422089	6313945	41
MRAC0568	422026	6314018	38
MRAC0569	421953	6314088	13
MRAC0573	421678	6314325	30
MRAC0574	421595	6314356	27
MRAC0576	429709	6321339	45
MRAC0577	429610	6321285	50
MRAC0578	429626	6321185	52
MRAC0579	429646	6321118	52
MRAC0580	429720	6321061	57
MRAC0582	430471	6321627	56
MRAC0584	430591	6321477	46
MRAC0585	430655	6321455	41
MRAC0586	430409	6321694	55
MRAC0587	430940	6321847	39
MRAC0587	430880	6321927	27
MRAC0589	430808	6321965	24
MRAC0590	430748	6322046	47
MRAC0590	431021	6321770	28
MRAC0591	431021	6321630	31
MRAC0593	431153	6321442	21
MRAC0596	431374	6321442	
			20
MRAC0598	431371	6321896	27

		le 5	
Hole ID		llar Locations	Donth
Hole ID	East	North	Depth (re)
MARACOFOO	(m)	(m)	(m)
MRAC0599	431335	6321986	39
MRAC0600	431343	6322048	28
MRAC0601	431380	6322115	32
MRAC0603A	431218	6322280	37
MRAC0603B	431110	6322416 6322355	30
MRAC0604 MRAC0605	431156	6322773	40
MRAC0606	432369		
MRAC0607	432315 432244	6322843 6322863	46 36
	-		
MRAC0608	431955	6323003	42 46
MRAC0609	431932	6323091	40
MRAC0611	431980	6323224	45
MRAC0612	431910	6323296	
MRAC0613	431834	6323379	52
MRAC0615	431701	6323520	52 45
MRAC0617	432151	6323791	
MRAC0618	432216	6323700	33
MRAC0620	432357	6323564	13
MRAC0622	432474	6323418	20
MRAC0623	432540	6323337	15
MRAC0624	432612	6323296	17
MRAC0628	433048	6323532	28
MRAC0629	432997	6323602	29
MRAC0630	432914	6323692	31
MRAC0631	432850	6323754	21
MRAC0632	432777	6323836	17
MRAC0635	432582	6324057	23
MRAC0636	432523	6324129 6324196	23
MRAC0637 MRAC0638	432447		24 41
MRAC0638	433266	6324887	
	433327	6324805	36
MRAC0641	433384	6324657	33
MRAC0642 MRAC0643	433455 433509	6324593	34 45
MRAC0644	433585	6324517 6324437	43
MRAC0646	433706	6324285	29
MRAC0647	433700	6324217	33
MRAC0648	433798	6324217	48
MRAC0651	433354	6323934	31
MRAC0653	433334	6324088	39
MRAC0654	433155	6324178	33
MRAC0656 MRAC0657	433019 432950	6324350 6324388	38 47
			58
MRAC0658	432882 423649	6324465	55
MRAC0660		6312868	
MRAC0662	423117	6312278	43
MRAC0663	422701	6312051	43
MRAC0664	422612	6311632	44

		le 5 llar Locations	
Hole ID	East	North	Depth
TIOIC ID	(m)	(m)	(m)
MRAC0666	422091	6311062	52
MRAC0667	419048	6308697	50
MRAC0668	419458	6308688	26
MRAC0669	419458	6308691	38
MRAC0670	420250	6308696	48
MRAC0671	420656	6308684	30
MRAC0672	421052	6308693	36
MRAC0673	416213	6306665	22
MRAC0675	416799	6306065	26
MRAC0676	417131	6305884	29
MRAC0677	417437	6305607	56
MRAC0678	417740	6305374	34
MRAC0679	417740	6305269	29
MRAC0683	419271	6311159	20
MRAC0684	419193	6311213	32
MRAC0689	419193	6309084	35
MRAC0690	422079	6313965	52
	422079	6314030	37
MRAC0692		6314050	37
MRAC0693	422132	1	
MRACO694	422119	6314073	42
MRAC0695	422103	6314092	41
MRAC0696	422079	6314108	35
MRAC0697	422057	6314125	31
MRAC0698	422043	6314141	21
MRAC0699	422026	6314160	15
MRAC0705	421977 421990	6313929	14
MRAC0706	421990	6313908 6313894	24
MRAC0707			
MRAC0708	422029	6313877	39
MRAC0709	422061	6313978	48
MRAC0711	422009	6314033	24
MRAC0712	421990	6314053	
MRAC0720	428284	6319702 6319685	58
MRAC0721	428302		68
MRAC0722	428320	6319667 6319632	59
MRAC0724	428213		48
MRAC0726	428160	6319685	47
MRAC0727	428143	6319702	44
MRAC0728	428125	6319720	38
MRAC0729	428036	6319667	21
MRAC0730	428054	6319649	26
MRAC0731	428072	6319632	36
MRAC0732	428089	6319614	32
MRAC0733	428107	6319596	39
MRAC0758	416402	6329486	81
MRAC0759	416103	6329265	83
MRAC0763	415699	6329046	76
MRAC0774	415602	6328697	89

	Tab	le 5											
Drill Hole Collar Locations Hole ID East North Depth													
Hole ID	East	North	Depth										
	(m)	(m)	(m)										
MRAC0776	416009	6328693	75										
MRAC0781	415497	6328498	85										
MRAC0783	415607	6329047	86										
MRAC0784	415800	6329049	76										
MRAC0785	416000	6329045	85										
MRAC0788	416401	6328897	80										
MRAC0789	416201	6328890	93										
MRAC0791	416050	6328894	73										
MRAC0793	415797	6328897	68										
MRAC0794	415604	6328891	72										
MRAC0795	415497	6328698	71										
MRAC0797	415902	6328691	67										
MRAC0801	416000	6328496	72										
MRAC0802	415802	6328496	71										
MRAC0822	415997	6328300	39										
MRAC0828	415100	6327500	27										
MRAC0831	415400	6327512	51										
MRAC0850	442472	6320856	32										
MRAC0851	441172	6319192	45										
MRAC0852	440443	6318254	42										
MRAC0853	436876	6324566	48										
MRAC0854	436949	6324514	41										
MRAC0855	437039	6324455	25										
MRAC0856	437119	6324406	45										
MRAC0857	437193	6324350	22										
MRAC0858	437287	6324296	29										

Hole locations by hand-held GPS.

Grid is GDA94 zone 52

Figure 8: Mount Ridley North REE Prospect

Figure 9: Winston's REE Prospect (North)

Figure 10: Winston's REE Prospect (South)

Figure 11: Keith's REE Prospect

Figure 12: Tyrrell's and Marcellus' REE Prospects

APPENDIX 1B. Rare Earth Element Assays

								Table 6										
							are Earth											
Hole ID	From	То	Sample	La	Ce	Pr	Nd	Sm	Υ	Dy	Er	Eu	Gd	Но	Lu	Tb	Tm	Yb
	(m)	(m)	Aqua Regia	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
MRAC0438	40	44	MR10465	250.0	171.5	69.9	329.0	67.7	314.0	70.4	34.2	25.7	78.5	12.9	3.1	10.5	3.9	22.4
MRAC0438	44	45	MR10466	105.5	67.0	26.3	125.0	26.2	134.5	25.2	13.2	9.9	26.9	4.6	1.2	3.7	1.5	9.0
MRAC0439	40	44	MR10479	240.0	329.0	101.0	451.0	97.3	400.0	81.6	42.0	41.2	89.6	15.4	4.5	12.7	5.1	32.1
MRAC0439	44	47	MR10480	115.5	107.5	32.9	165.0	39.6	289.0	49.3	27.3	18.8	51.8	10.0	2.9	6.7	3.2	20.0
MRAC0439	47	48	MR10482	190.0	233.0	68.5	355.0	85.3	500.0	118.0	71.6	44.9	125.5	23.9	6.0	17.4	7.4	41.4
MRAC0440	0	4	MR10483	71.0	74.4	20.8	106.0	25.4	174.0	28.2	15.8	11.6	30.8	5.4	1.5	4.2	1.8	10.9
MRAC0440	32	36	MR10491	19.8	38.1	7.0	36.3	9.7	35.0	8.0	4.3	3.8	9.0	1.4	0.5	1.2	0.6	3.9
MRAC0440	36	40	MR10492	32.4	44.5	9.5	48.5	11.9	64.7	10.6	5.7	4.9	12.8	2.0	0.6	1.7	0.7	4.5
MRAC0441	20	24	MR10503	230.0	167.5	85.0	418.0	83.9	373.0	69.5	30.9	43.2	95.9	12.6	2.6	11.5	3.3	19.3
MRAC0441	24	25	MR10504	220.0	224.0	73.9	367.0	77.6	490.0	85.9	51.6	43.6	102.0	17.4	4.5	13.6	5.3	31.0
MRAC0442	0	4	MR10505	47.0	32.3	10.4	51.6	11.4	80.4	10.5	5.7	5.6	13.5	2.0	0.5	1.7	0.6	3.7
MRAC0442	36	40	MR10514	8.1	172.5	2.5	11.4	2.9	19.1	4.3	3.0	1.3	3.4	0.9	0.4	0.6	0.4	3.1
MRAC0442	40	43	MR10515	36.1	84.9	10.1	50.6	12.2	68.1	12.1	6.9	5.2	13.7	2.3	0.8	1.8	0.9	5.9
MRAC0442	43	44	MR10516	153.5	164.0	47.4	237.0	52.9	306.0	55.1	27.1	23.1	64.5	10.3	2.6	7.9	3.1	18.9
MRAC0443	0	4	MR10517	98.8	78.0	28.5	141.0	30.3	207.0	29.0	15.7	12.6	35.4	5.5	1.4	4.5	1.8	10.3
MRAC0445	48	52	MR10560	68.7	122.5	23.4	112.0	24.3	119.0	20.3	11.4	7.2	23.7	3.8	1.2	3.2	1.4	8.8
MRAC0446	0	4	MR10563	38.0	78.7	12.3	59.0	14.7	93.0	15.5	8.4	4.5	16.3	2.9	0.9	2.3	1.0	6.6
MRAC0446	45	46	MR10575	12.7	137.5	5.6	26.4	7.6	30.9	7.7	4.8	2.3	6.8	1.4	0.8	1.1	0.7	5.6
MRAC0450	36	40	MR10628	12.1	54.8	3.3	12.3	2.0	8.2	1.2	0.7	0.4	1.7	0.2	0.1	0.2	0.1	0.5
MRAC0450	44	48	MR10630	53.2	48.2	12.6	56.4	13.2	66.5	13.1	6.6	4.7	14.3	2.3	0.7	2.0	0.8	5.1
MRAC0450	48	51	MR10631	78.7	110.0	16.7	63.1	12.8	34.4	8.6	3.7	3.8	11.0	1.4	0.3	1.5	0.4	2.7
MRAC0450	51	52	MR10632	47.2	65.7	9.7	41.2	9.1	29.9	7.1	3.3	2.7	8.3	1.2	0.3	1.2	0.4	2.6
MRAC0451	48	50	MR10645	65.2	27.2	21.8	93.4	22.0	50.6	13.6	5.5	9.9	16.6	2.1	0.5	2.3	0.7	4.3
MRAC0451	50	51	MR10646	66.5	33.2	22.1	95.0	21.5	49.6	14.0	5.9	9.5	17.1	2.2	0.7	2.3	0.7	5.1
MRAC0453	44	45	MR10671	69.1	121.0	22.2	107.0	25.5	149.5	26.6	15.0	8.6	27.7	5.0	1.6	4.0	1.8	11.9
MRAC0454	36	40	MR10681	27.0	83.4	10.3	48.0	11.3	17.6	6.1	2.5	4.7	8.1	0.9	0.2	1.1	0.3	2.0
MRAC0454	40	42	MR10682	123.0	282.0	41.7	215.0	50.7	273.0	55.5	27.9	31.8	59.2	10.4	3.3	7.7	3.6	24.4
MRAC0455	32	36	MR10694	36.6	130.0	10.6	49.8	12.2	52.5	12.1	7.0	5.1	12.1	2.2	1.0	1.8	1.0	6.9
MRAC0455	36	37	MR10695	186.0	83.9	91.1	447.0	118.0	205.0	78.6	31.4	49.4	89.7	12.3	3.7	13.5	4.2	29.2
MRAC0455	37	38	MR10696	47.6	30.1	21.0	101.0	22.5	62.5	18.3	9.3	8.9	19.1	3.1	1.4	2.8	1.3	9.9
MRAC0456	12	16	MR10700	4.3	5.8	1.0	3.9	0.9	2.5	0.7	0.5	0.3	0.7	0.1	0.1	0.1	0.1	0.6
MRAC0456	16	20	MR10701	4.5	9.7	1.2	5.0	1.4	4.3	1.6	1.1	0.6	1.2	0.3	0.3	0.2	0.2	1.9
MRAC0456	28	32	MR10704	137.5	225.0	56.8	293.0	69.4	202.0	58.3	24.9	33.8	71.3	8.9	2.7	8.8	3.1	20.0
MRAC0456	32	36	MR10705	200.0	100.0	72.3	373.0	87.8	308.0	76.0	32.9	42.8	96.5	13.1	3.1	13.2	3.8	23.2
MRAC0456	36	37	MR10706	54.6	42.8	20.7	105.5	25.8	105.5	22.9	11.6	12.2	26.8	4.1	1.2	3.6	1.4	9.0
MRAC0456	37	38	MR10707	63.0	49.2	24.4	123.5	29.6	120.5	26.2	13.1	14.1	30.7	4.7	1.4	4.2	1.6	10.2
MRAC0458	40	44	MR10729	7.6	32.8	2.7	12.9	3.7	50.4	6.0	4.2	1.3	5.0	1.3	0.5	0.8	0.5	3.3

Table 6																		
						R	are Earth	Element	Assay Re	sults								
Hole ID	From	То	Sample	La	Ce	Pr	Nd	Sm	Υ	Dy	Er	Eu	Gd	Но	Lu	Tb	Tm	Yb
	(m)	(m)	Aqua Regia	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
MRAC0458	44	48	MR10730	77.2	44.5	33.6	157.5	40.3	282.0	52.9	28.9	13.0	46.2	10.4	3.2	6.9	3.5	23.4
MRAC0458	48	52	MR10731	61.2	15.4	25.4	114.0	26.4	110.5	21.9	11.4	8.0	24.7	4.0	1.2	3.4	1.4	9.0
MRAC0459	44	45	MR10745	220.0	95.2	161.0	838.0	221.0	500.0	200.0	104.5	76.9	241.0	37.2	8.6	33.2	11.5	69.6
MRAC0459	45	46	MR10746	210.0	86.0	124.0	644.0	175.5	500.0	176.0	95.0	61.6	212.0	33.5	7.4	28.1	10.5	57.9
MRAC0460	0	4	MR10747	40.2	15.1	12.0	61.9	15.5	101.5	14.9	7.6	5.4	18.9	2.8	0.6	2.4	0.8	4.7
MRAC0460	8	12	MR10749	35.8	28.6	9.6	46.7	11.5	70.0	11.0	5.6	3.9	13.6	2.0	0.5	1.8	0.6	3.7
MRAC0460	20	22	MR10752	47.8	119.0	23.2	125.0	32.5	152.0	32.6	16.9	13.0	37.6	5.9	1.8	5.1	2.1	13.9
MRAC0461	36	40	MR10763	125.5	223.0	31.2	133.0	22.3	86.0	16.0	8.1	7.2	19.9	2.8	0.8	2.6	0.9	6.0
MRAC0463	32	34	MR10788	127.0	148.5	53.3	245.0	58.2	178.5	49.5	23.8	16.6	53.0	7.9	3.2	7.2	3.2	23.9
MRAC0463	34	35	MR10789	73.8	80.5	29.4	137.0	32.2	118.5	27.5	14.8	9.3	28.5	4.9	2.1	4.2	2.0	15.1
MRAC0467	44	48	MR10834	59.3	135.5	21.6	107.5	29.8	312.0	58.3	35.6	11.1	46.2	12.6	4.0	7.2	4.4	29.1
MRAC0467	48	52	MR10835	21.5	48.6	6.9	34.5	10.9	142.0	20.9	14.2	4.3	16.1	4.4	1.6	2.7	1.7	11.3
MRAC0470	16	17	MR10858	23.0	96.1	6.2	28.3	7.2	26.5	6.7	3.9	2.9	6.7	1.2	0.5	1.0	0.5	3.9
MRAC0470	17	18	MR10859	146.0	500.0	48.3	229.0	51.7	153.5	37.1	16.6	20.4	51.5	6.2	1.6	6.3	2.0	12.8
MRAC0471	28	32	MR10867	13.1	89.7	5.4	27.5	7.7	31.0	6.8	3.6	2.6	7.4	1.2	0.4	1.1	0.5	3.2
MRAC0471	32	36	MR10868	80.4	80.4	34.7	177.0	44.5	269.0	48.7	27.4	16.8	56.6	9.3	2.9	7.3	3.3	21.6
MRAC0471	36	39	MR10869	209.0	190.5	74.8	385.0	96.2	500.0	126.5	73.8	40.9	134.0	25.6	6.9	19.4	7.8	53.8
MRAC0472	36	40	MR10880	92.5	121.0	25.7	117.0	25.0	139.5	22.1	11.8	8.9	25.8	4.1	1.2	3.4	1.4	9.1
MRAC0472	40	41	MR10881	71.9	94.3	20.7	96.4	20.8	134.5	20.3	11.2	7.5	23.0	3.9	1.2	3.1	1.3	8.7
MRAC0473	36	40	MR10892	91.9	159.0	34.6	159.0	39.3	120.0	29.4	14.2	16.7	32.8	5.1	1.5	4.7	1.8	12.1
MRAC0473	40	44	MR10893	69.8	105.5	19.2	94.3	23.9	201.0	33.3	20.4	11.0	32.4	6.6	2.4	4.7	2.5	17.0
MRAC0474	32	36	MR10904	24.5	88.3	7.3	30.6	6.1	20.5	4.0	2.2	1.8	4.9	0.7	0.3	0.6	0.3	1.9
MRAC0474	36	40	MR10905	75.7	128.5	29.0	162.5	40.0	247.0	46.3	24.2	18.1	54.5	8.4	2.6	6.8	2.9	18.5
MRAC0474	40	44	MR10906	126.0	113.0	34.0	153.5	31.0	434.0	48.2	31.0	12.2	48.0	11.2	3.1	6.2	3.4	20.1
MRAC0474	44	48	MR10907	52.6	35.8	13.7	61.4	15.9	240.0	23.3	16.2	5.6	21.5	5.2	1.6	3.2	1.8	11.0
MRAC0474	48	50	MR10908	45.9	54.6	16.9	71.5	18.8	261.0	25.7	18.0	7.0	23.6	5.7	1.8	3.5	2.0	12.1
MRAC0475	36	40	MR10919	195.0	109.0	57.0	272.0	54.5	254.0	41.9	21.0	20.3	60.9	7.7	1.7	6.8	2.2	12.9
MRAC0475	40	41	MR10920	54.1	45.2	10.3	49.1	10.7	84.2	9.8	5.3	3.9	13.5	1.9	0.4	1.6	0.6	3.2
MRAC0475	41	42	MR10921	71.6	93.9	14.6	62.2	11.9	65.0	8.5	4.5	3.8	12.1	1.6	0.4	1.4	0.5	2.8
MRAC0476	0	4	MR10923	216.0	53.7	54.1	266.0	53.4	241.0	37.9	16.7	20.4	62.4	6.6	1.1	6.6	1.7	9.0
MRAC0476	4	8	MR10924	4.5	3.9	1.1	5.1	1.1	4.8	0.8	0.4	0.4	1.2	0.1	0.0	0.1	0.0	0.3
MRAC0476	12	16	MR10926	5.2	75.5	2.2	10.5	3.3	18.7	4.3	3.1	1.2	3.3	0.9	0.5	0.6	0.4	3.8
MRAC0476	16	20	MR10927	10.2	279.0	3.4	16.6	4.4	32.5	5.9	3.9	1.8	5.1	1.2	0.6	0.8	0.5	3.9
MRAC0476	20	24	MR10928	36.7	105.5	15.7	96.7	30.6	345.0	67.0	40.5	15.9	52.6	14.2	4.6	8.1	4.8	34.3
MRAC0476	24	26	MR10929	22.4	50.1	7.8	42.5	12.9	132.5	21.8	13.8	6.3	17.5	4.4	1.6	2.9	1.7	12.0
MRAC0476	26	27	MR10930	38.1	84.0	12.8	68.1	20.0	173.5	31.7	19.3	9.9	27.1	6.3	2.2	4.4	2.3	16.7
MRAC0482	20	24	MR10993	11.5	32.4	3.7	15.8	3.2	8.0	2.0	0.9	0.8	2.4	0.3	0.1	0.3	0.1	0.7
MRAC0482	32	34	MR10996	52.6	117.5	21.7	112.0	26.2	145.5	26.2	15.2	11.8	25.6	5.0	1.7	3.8	1.8	13.1
MRAC0483	28	32	MR12032	70.1	99.0	21.6	99.7	25.9	320.0	45.6	29.6	12.0	35.8	9.8	2.7	5.9	3.2	19.2

	Table 6																	
						R	are Earth	Element	Assay Re	sults								
Hole ID	From	То	Sample	La	Ce	Pr	Nd	Sm	Υ	Dy	Er	Eu	Gd	Но	Lu	Tb	Tm	Yb
	(m)	(m)	Aqua Regia	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
MRAC0483	32	36	MR12033	31.5	42.9	7.7	37.8	9.8	90.4	12.0	7.3	3.4	11.7	2.4	0.8	1.7	0.8	5.7
MRAC0484	32	36	MR12044	200.0	241.0	225.0	1000.0	295.0	330.0	188.5	82.2	105.0	234.0	30.9	7.3	32.5	9.7	65.7
MRAC0484	36	40	MR12045	22.5	24.2	9.0	47.5	12.1	41.1	9.5	5.2	4.2	10.1	1.7	0.7	1.4	0.7	4.9
MRAC0484	44	45	MR12047	40.7	81.8	17.9	84.3	21.1	77.5	16.5	8.2	5.9	18.3	2.9	0.9	2.6	1.0	6.8
MRAC0485	0	4	MR12048	26.6	68.8	9.8	48.2	12.3	55.5	10.9	6.1	2.8	11.2	2.1	0.7	1.6	0.7	5.0
MRAC0485	36	40	MR12058	24.8	52.7	8.0	38.8	9.5	49.1	8.4	4.8	2.9	8.8	1.6	0.5	1.2	0.6	4.0
MRAC0485	40	41	MR12059	39.2	68.5	9.9	49.6	13.1	190.0	21.5	15.4	4.5	18.6	4.8	1.7	2.9	1.8	11.9
MRAC0488	36	39	MR12094	66.8	81.6	10.6	48.0	9.6	120.0	11.5	6.8	4.9	13.3	2.5	0.6	1.7	0.7	4.4
MRAC0492	12	16	MR12120	1.5	5.5	0.9	4.5	1.5	3.9	1.5	0.8	0.5	1.1	0.3	0.1	0.2	0.1	1.0
MRAC0492	16	20	MR12121	30.7	98.8	13.6	66.9	16.7	44.6	11.8	6.0	6.5	13.2	2.1	0.8	1.9	0.7	5.7
MRAC0492	20	21	MR12122	83.0	243.0	44.6	227.0	53.3	171.5	41.5	19.8	21.5	52.2	7.1	2.2	6.5	2.3	16.6
MRAC0498	32	33	MR12153	37.8	191.0	12.5	55.1	12.7	33.6	8.5	4.2	4.5	8.9	1.5	0.5	1.3	0.5	3.7
MRAC0499	16	20	MR12159	33.3	83.1	12.3	57.6	13.8	21.8	7.6	3.0	4.5	9.6	1.1	0.3	1.3	0.4	2.4
MRAC0502	24	28	MR12179	40.4	56.6	15.2	75.7	19.6	64.4	15.4	7.6	7.3	16.6	2.7	0.9	2.4	0.9	6.8
MRAC0502	28	30	MR12180	72.2	121.5	21.0	94.8	23.8	178.5	27.9	16.3	9.8	27.2	5.5	1.7	4.0	1.8	12.7
MRAC0503	20	22	MR12188	137.0	110.0	48.9	214.0	43.7	122.5	26.9	12.6	15.4	32.5	4.5	1.3	4.5	1.4	9.9
MRAC0507	20	23	MR12227	99.0	91.2	27.9	120.0	23.3	82.0	16.3	8.3	10.3	19.2	2.9	0.9	2.6	0.9	6.6
MRAC0510	12	16	MR12252	79.8	154.0	29.1	127.0	24.8	48.2	13.0	5.9	9.1	16.4	2.2	0.6	2.2	0.7	4.9
MRAC0510	16	17	MR12253	33.7	54.3	9.0	41.8	9.6	67.2	10.8	6.5	3.8	10.1	2.2	0.8	1.5	0.8	5.7
MRAC0511	12	13	MR12258	67.0	145.5	19.6	75.4	15.5	32.6	9.7	4.1	3.9	11.8	1.6	0.4	1.6	0.5	3.3
MRAC0513	24	25	MR12274	112.5	134.0	32.2	155.5	36.3	271.0	45.2	26.2	14.8	48.5	8.9	2.6	6.5	2.9	19.1
MRAC0514	16	20	MR12280	111.0	251.0	41.3	209.0	47.1	231.0	44.7	24.3	18.3	51.6	8.5	2.6	6.7	2.8	19.6
MRAC0514	20	21	MR12281	46.3	101.0	14.9	76.5	19.4	153.5	22.9	14.6	6.8	22.8	4.8	1.6	3.3	1.7	11.9
MRAC0518	16	20	MR12306	160.0	320.0	98.7	587.0	167.5	480.0	162.0	78.9	72.0	206.0	29.0	7.2	26.4	8.3	61.2
MRAC0518	20	21	MR12307	89.4	149.0	34.9	212.0	57.7	324.0	78.0	38.7	25.5	80.4	14.7	4.2	10.7	4.6	31.6
MRAC0520	36	37	MR12324	142.0	245.0	29.5	122.5	20.0	115.0	17.4	9.5	5.8	19.5	3.3	0.9	2.6	1.0	6.8
MRAC0521	32	33	MR12334	46.0	37.8	10.6	48.8	11.2	80.8	12.7	6.5	4.0	14.7	2.2	0.7	1.8	0.7	4.7
MRAC0522	20	21	MR12341	30.9	46.6	9.1	40.7	8.7	34.7	7.7	3.7	2.9	9.3	1.3	0.4	1.2	0.4	2.8
MRAC0523	24	28	MR12350	82.5	122.5	26.3	122.0	24.4	118.0	21.1	10.5	9.6	25.7	3.5	1.0	3.1	1.2	7.5
MRAC0524	16	20	MR12407	1.7	5.9	1.0	4.6	1.2	3.7	1.0	0.6	0.3	1.1	0.2	0.1	0.1	0.1	0.5
MRAC0524	28	32	MR12410	4.2	9.9	1.5	7.6	1.9	11.0	2.0	1.2	1.2	2.2	0.4	0.2	0.3	0.1	1.1
MRAC0526	24	26	MR12428	57.0	113.5	13.2	53.8	11.1	44.8	9.6	4.5	4.6	11.3	1.5	0.4	1.4	0.5	3.2
MRAC0526	26	27	MR12429	42.3	87.3	9.8	39.9	8.3	33.7	7.4	3.5	3.3	8.7	1.2	0.4	1.1	0.4	2.6
MRAC0527	12	16	MR12433	50.1	155.0	21.4	91.1	22.5	74.7	18.0	9.0	9.4	20.7	2.9	1.1	2.7	1.1	7.9
MRAC0527	16	20	MR12434	45.1	95.3	13.7	69.6	16.7	117.5	17.6	11.0	9.0	19.0	3.2	1.4	2.4	1.3	9.3
MRAC0527	20	24	MR12435	23.4	55.2	7.6	37.1	9.0	57.1	10.0	6.2	4.5	10.5	1.9	0.8	1.4	0.8	5.7
MRAC0528	16	20	MR12444	18.0	52.0	7.5	40.0	10.6	83.1	12.0	7.2	3.8	12.3	2.2	0.8	1.6	0.9	5.9
MRAC0528	20	24	MR12445	50.8	92.0	14.8	83.6	20.2	185.5	28.6	17.1	7.2	30.9	5.4	1.9	3.8	2.0	13.3
MRAC0529	16	20	MR12452	53.6	73.6	16.1	68.0	14.5	41.7	9.5	4.9	4.0	11.9	1.6	0.6	1.4	0.6	3.9

								Table 6	i									
						R	are Earth	Element	Assay Re	sults								
Hole ID	From	То	Sample	La	Ce	Pr	Nd	Sm	Υ	Dy	Er	Eu	Gd	Но	Lu	Tb	Tm	Yb
	(m)	(m)	Aqua Regia	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
MRAC0529	20	21	MR12453	162.5	96.5	53.9	229.0	41.4	120.0	25.1	10.9	11.5	34.3	3.8	1.0	4.1	1.2	7.7
MRAC0532	20	24	MR12475	38.2	78.3	11.0	53.2	13.4	108.0	16.4	9.5	4.6	16.6	3.0	1.0	2.2	1.1	7.4
MRAC0538	11	12	MR12502	72.6	119.5	19.1	83.6	18.2	47.5	12.0	4.9	6.1	15.5	1.8	0.4	1.9	0.5	3.3
MRAC0539	16	20	MR12508	63.0	44.2	9.5	46.7	10.6	105.0	13.6	8.5	4.5	15.4	2.6	1.1	1.9	1.0	7.0
MRAC0540	24	28	MR12518	78.3	98.1	25.6	96.0	21.2	100.0	19.6	9.5	7.2	22.7	3.2	0.9	2.9	1.1	6.8
MRAC0540	28	32	MR12519	46.6	63.4	8.4	36.3	6.7	40.7	6.1	3.4	2.2	8.1	1.1	0.4	0.9	0.4	2.4
MRAC0540	32	36	MR12520	31.2	41.8	5.2	23.6	4.9	46.5	5.8	3.7	1.5	6.6	1.1	0.5	0.8	0.4	2.9
MRAC0541	16	20	MR12527	71.5	72.8	15.8	74.0	17.0	154.0	20.3	11.4	6.9	22.4	3.7	1.0	2.8	1.2	7.3
MRAC0542	8	12	MR12534	165.5	216.0	70.2	349.0	74.3	254.0	78.0	30.7	28.5	87.9	10.5	3.2	10.1	3.6	24.6
MRAC0542	20	21	MR12537	33.8	42.6	5.9	27.6	6.3	51.1	7.0	4.2	2.3	8.3	1.3	0.5	1.0	0.5	3.2
MRAC0543	12	16	MR12542	17.9	69.6	8.3	37.5	9.1	36.6	8.1	4.5	3.1	8.6	1.4	0.6	1.1	0.5	3.9
MRAC0544	16	20	MR12550	44.6	62.8	11.7	53.8	12.1	72.7	13.3	7.1	4.9	14.4	2.3	0.7	1.9	0.8	5.4
MRAC0544	20	24	MR12551	46.9	82.8	12.8	59.3	14.6	85.6	16.7	9.2	5.9	16.6	2.9	1.0	2.3	1.1	7.6
MRAC0544	24	28	MR12552	96.3	44.4	30.9	138.5	27.7	132.0	24.3	11.1	10.8	30.5	3.9	1.0	3.7	1.2	7.5
MRAC0544	28	32	MR12553	65.0	39.4	11.0	51.2	10.6	138.5	13.1	7.7	4.7	16.3	2.5	0.6	1.8	0.8	4.3
MRAC0545	11	12	MR12559	34.4	72.7	10.0	46.8	11.0	40.2	10.5	5.1	3.5	11.6	1.7	0.5	1.5	0.6	4.3
MRAC0551	16	20	MR12576	61.9	76.4	22.8	87.5	20.3	125.0	17.2	9.3	6.4	19.5	3.0	0.8	2.5	1.0	5.7
MRAC0551	20	24	MR12577	55.3	63.3	14.1	65.4	15.2	117.0	17.8	9.9	5.2	19.3	3.2	1.0	2.5	1.1	7.0
MRAC0551	24	26	MR12578	133.5	198.0	51.1	244.0	48.4	196.5	39.7	18.6	15.5	58.6	6.3	1.8	6.2	2.1	13.6
MRAC0551	26	27	MR12579	58.0	64.3	12.5	62.9	15.7	217.0	29.2	19.4	5.8	27.0	5.7	2.4	3.7	2.3	15.9
MRAC0554	20	24	MR12593	86.9	185.5	36.7	162.0	33.6	128.5	29.1	14.2	10.3	32.6	4.7	1.4	4.2	1.6	10.9
MRAC0554	24	25	MR12594	35.0	88.8	10.4	42.0	8.8	32.9	7.7	3.7	2.4	9.2	1.4	0.4	1.3	0.5	2.9
MRAC0556	12	16	MR12610	20.3	53.1	8.2	38.4	10.3	92.1	15.7	10.4	3.7	12.7	3.4	1.3	2.2	1.4	9.1
MRAC0556	16	20	MR12611	76.8	177.5	24.8	113.5	28.7	151.5	30.7	16.1	9.8	35.1	5.8	1.7	5.0	2.0	12.3
MRAC0556	20	21	MR12612	58.0	149.5	19.4	83.7	19.1	71.6	16.6	8.1	5.2	19.4	3.0	0.9	2.8	1.0	6.4
MRAC0557	11	12	MR12617	24.1	87.2	7.6	31.7	6.3	19.5	4.1	2.0	1.9	5.5	0.8	0.2	0.7	0.2	1.3
MRAC0559	8	11	MR12624	29.3	54.0	9.3	42.6	10.4	46.5	10.4	5.5	3.7	11.8	1.9	0.6	1.7	0.7	4.4
MRAC0559	11	12	MR12625	22.8	41.1	7.1	33.0	8.0	39.7	8.4	4.7	2.7	9.6	1.6	0.6	1.4	0.6	3.9
MRAC0560	12	16	MR12629	31.1	61.2	11.1	50.9	13.8	193.0	25.4	19.3	6.5	19.9	5.9	2.6	3.4	2.6	16.4
MRAC0560	16	17	MR12630	98.1	81.8	26.8	124.0	29.4	189.5	31.1	17.3	11.8	38.4	6.2	1.9	5.1	2.1	12.3
MRAC0561	8	9	MR12634	430.0	114.5	106.0	449.0	96.6	411.0	81.3	42.3	44.5	107.0	15.8	3.8	14.5	4.9	27.0
MRAC0563	28	32	MR12652	76.6	108.5	26.7	119.5	30.2	200.0	34.2	20.7	13.0	35.4	7.1	2.4	5.3	2.7	16.0
MRAC0563	32	34	MR12653	43.2	57.7	11.9	55.4	13.7	118.0	18.9	11.5	5.7	19.5	3.9	1.3	2.9	1.5	8.8
MRAC0564	32	36	MR12663	112.0	188.0	28.7	123.5	27.1	118.0	23.9	11.8	10.9	31.0	4.5	1.1	4.1	1.4	8.3
MRAC0567	32	36	MR12690	99.5	56.6	32.9	138.5	31.3	104.5	23.8	11.7	13.2	31.1	4.3	1.3	4.1	1.5	9.2
MRAC0567	36	40	MR12691	40.5	56.7	10.9	48.6	11.4	73.9	11.8	6.9	6.2	13.4	2.4	0.8	1.9	0.9	5.2
MRAC0568	16	20	MR12698	5.4	29.9	2.7	14.3	4.7	18.3	5.5	3.3	1.9	4.9	1.1	0.5	0.8	0.5	3.7
MRAC0568	20	24	MR12699	12.6	61.8	7.2	37.3	11.2	68.0	14.2	9.0	5.0	13.7	2.9	1.2	2.1	1.2	8.1
MRAC0568	32	36	MR12702	360.0	75.1	85.8	379.0	77.2	420.0	64.3	33.3	32.7	92.1	12.7	2.9	11.5	3.7	20.7

								Table 6	5									
						R	are Earth	Element	Assay Re	sults								
Hole ID	From	То	Sample	La	Ce	Pr	Nd	Sm	Υ	Dy	Er	Eu	Gd	Но	Lu	Tb	Tm	Yb
	(m)	(m)	Aqua Regia	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
MRAC0568	36	37	MR12703	53.4	40.0	15.1	72.8	19.5	301.0	35.1	25.5	9.0	32.6	8.6	3.0	4.9	3.2	19.6
MRAC0568	37	38	MR12704	194.5	54.0	50.2	224.0	50.1	460.0	61.7	38.9	22.1	70.2	13.2	4.2	9.6	4.6	27.6
MRAC0569	12	13	MR12708	90.8	163.0	22.8	83.9	16.2	34.8	10.1	3.9	5.3	13.4	1.6	0.3	1.9	0.4	2.5
MRAC0573	16	20	MR12722	36.5	59.2	16.5	86.1	22.0	84.0	19.2	9.0	9.2	25.6	3.5	0.8	3.3	1.1	6.4
MRAC0573	20	24	MR12723	21.4	52.1	7.4	33.6	8.5	39.8	8.1	4.3	3.1	9.4	1.5	0.5	1.3	0.6	3.5
MRAC0573	24	28	MR12724	27.8	59.6	7.9	35.0	8.5	47.1	7.9	4.3	2.8	9.3	1.5	0.5	1.3	0.5	3.2
MRAC0573	28	29	MR12725	33.3	80.2	10.4	46.8	10.9	49.9	9.5	4.9	3.3	11.6	1.8	0.5	1.6	0.6	3.6
MRAC0573	29	30	MR12726	30.0	75.1	10.1	46.1	11.1	47.8	9.6	4.8	2.8	11.8	1.8	0.5	1.6	0.6	3.5
MRAC0574	20	24	MR12732	57.7	90.1	18.6	80.1	18.9	71.0	16.4	8.2	5.5	19.3	3.1	0.9	2.7	1.1	6.6
MRAC0574	24	26	MR12733	42.3	74.9	11.2	48.7	11.4	124.5	15.6	10.8	3.5	15.4	3.5	1.3	2.3	1.4	8.5
MRAC0576	44	45	MR12756	38.5	93.1	12.4	55.5	12.9	76.8	13.3	8.0	4.7	14.7	2.7	1.0	2.1	1.0	6.5
MRAC0577	40	44	MR12769	22.6	53.3	7.4	35.9	9.4	76.1	13.5	9.4	4.0	12.4	3.0	1.2	1.9	1.3	8.3
MRAC0577	44	48	MR12770	23.0	52.3	7.3	34.9	9.2	88.7	12.7	9.2	3.5	12.0	2.9	1.3	1.8	1.3	8.4
MRAC0578	48	51	MR12785	63.1	153.5	21.6	97.4	22.5	85.8	19.4	10.4	8.3	22.3	3.7	1.2	3.2	1.4	8.6
MRAC0579	44	48	MR12798	34.1	84.3	10.3	41.2	8.7	19.5	5.4	2.2	4.0	7.1	0.9	0.2	1.0	0.3	1.5
MRAC0579	48	51	MR12799	70.4	163.5	20.8	85.9	18.3	46.2	12.2	5.6	10.9	15.5	2.1	0.5	2.1	0.7	4.2
MRAC0580	44	48	MR12812	39.8	98.8	11.8	52.6	10.4	35.0	7.2	3.6	5.0	8.6	1.3	0.4	1.2	0.5	3.0
MRAC0580	48	52	MR12813	44.0	91.7	11.5	55.4	12.6	44.5	9.2	4.7	6.4	11.2	1.7	0.5	1.6	0.6	3.9
MRAC0580	52	56	MR12814	33.2	68.7	8.9	45.8	11.9	126.5	16.2	11.1	5.6	14.5	3.6	1.3	2.3	1.5	9.2
MRAC0582	44	48	MR12842	29.2	117.0	9.2	42.1	9.9	25.0	6.0	2.7	3.7	7.4	1.0	0.2	1.1	0.3	1.9
MRAC0582	48	52	MR12843	123.5	170.5	38.8	182.5	38.4	144.0	27.1	13.2	14.1	35.2	4.9	1.3	4.6	1.7	9.5
MRAC0582	52	55	MR12844	25.9	61.3	8.1	39.2	9.5	40.7	8.1	4.5	3.6	8.6	1.5	0.6	1.3	0.6	4.0
MRAC0584	44	45	MR12872	82.1	75.9	24.3	119.5	24.8	155.5	23.0	13.1	10.4	27.3	4.6	1.4	3.7	1.7	9.4
MRAC0585	32	36	MR12882	83.0	84.7	24.2	115.0	22.5	98.1	17.9	9.2	9.0	22.1	3.4	0.9	3.0	1.2	6.7
MRAC0585	36	40	MR12883	116.0	173.0	28.4	123.5	20.7	77.8	12.3	6.2	7.6	17.6	2.3	0.6	2.2	0.8	4.3
MRAC0585	40	41	MR12884	50.4	91.5	11.5	48.3	8.3	25.2	4.6	2.4	3.1	6.4	0.9	0.3	0.8	0.3	1.8
MRAC0586	52	54	MR12900	47.2	59.3	9.5	44.3	9.2	61.9	8.8	4.8	4.0	10.8	1.8	0.5	1.5	0.6	3.3
MRAC0587	32	36	MR12910	64.8	118.0	17.2	82.9	18.3	154.5	21.4	12.9	8.3	22.4	4.4	1.5	3.3	1.7	9.6
MRAC0587	36	38	MR12911	24.5	51.1	6.9	34.5	8.6	68.6	9.7	5.9	3.4	9.8	2.0	0.7	1.5	0.8	4.7
MRAC0588	24	26	MR12919	139.5	185.5	56.1	284.0	63.0	172.0	44.5	19.2	30.0	54.8	7.3	1.8	7.2	2.4	13.4
MRAC0589	20	23	MR12927	48.7	107.5	18.6	94.9	21.8	97.8	20.4	10.6	8.7	23.2	3.8	1.3	3.3	1.5	9.2
MRAC0590	24	28	MR12935	125.5	57.7	42.4	218.0	57.3	500.0	94.7	66.3	23.3	86.3	21.3	6.5	13.9	8.1	44.4
MRAC0590	28	32	MR12936	121.5	55.1	29.4	145.5	35.2	480.0	63.3	43.0	14.1	59.9	14.0	4.5	9.2	5.2	29.6
MRAC0590	32	36	MR12937	31.1	33.8	7.8	39.1	10.0	101.5	13.3	8.5	3.5	13.2	2.9	1.0	2.0	1.1	6.4
MRAC0590	44	46	MR12940	25.8	63.0	8.1	39.6	9.2	39.8	7.1	3.8	2.6	8.6	1.4	0.5	1.2	0.5	3.1
MRAC0590	46	47	MR12941	21.3	53.2	7.3	36.9	9.1	47.6	7.8	4.4	2.4	9.1	1.5	0.5	1.3	0.6	3.5
MRAC0591	20	24	MR12948	134.0	164.0	46.3	219.0	46.3	138.0	32.0	14.6	21.3	41.4	5.4	1.5	5.4	1.9	10.9
MRAC0591	24	27	MR12949	52.3	69.1	14.7	69.3	16.2	131.0	19.0	11.5	7.4	19.6	4.0	1.3	2.9	1.5	8.6
MRAC0593	12	16	MR12960	45.8	91.5	18.1	84.5	18.2	48.5	11.6	5.7	5.9	14.2	2.1	0.6	2.0	0.8	4.5

								Table 6	5									
						R	are Earth	Element	Assay Re	sults								
Hole ID	From	То	Sample	La	Ce	Pr	Nd	Sm	Υ	Dy	Er	Eu	Gd	Но	Lu	Tb	Tm	Yb
	(m)	(m)	Aqua Regia	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
MRAC0593	24	28	MR12963	202.0	349.0	74.6	360.0	75.3	402.0	72.2	42.7	30.0	76.7	14.6	4.3	11.6	5.2	30.8
MRAC0593	28	30	MR12964	178.0	294.0	55.4	250.0	49.6	393.0	55.2	34.7	18.4	53.9	12.0	3.6	8.0	4.3	24.0
MRAC0596	12	16	MR12979	80.2	103.0	20.6	91.3	17.1	66.2	11.9	5.7	5.3	16.0	2.1	0.6	2.1	0.7	4.0
MRAC0596	16	20	MR12980	187.0	368.0	49.8	208.0	31.9	87.0	13.1	6.4	8.6	21.8	2.4	0.6	2.5	0.8	4.1
MRAC0596	20	21	MR12981	124.0	240.0	30.3	119.0	16.0	37.8	5.6	2.6	4.1	10.9	1.0	0.2	1.1	0.3	1.5
MRAC0597	16	19	MR12987	24.9	52.4	6.6	32.4	7.4	55.5	8.4	5.1	2.6	9.0	1.7	0.6	1.3	0.7	4.2
MRAC0598	20	24	MR12994	47.5	65.0	13.5	62.6	13.4	50.3	10.9	6.1	5.8	12.2	2.1	0.8	1.8	0.9	5.6
MRAC0598	24	26	MR12995	107.0	196.5	29.8	140.5	27.1	137.0	22.6	12.4	11.4	27.3	4.4	1.3	3.7	1.6	9.2
MRAC0599	36	38	MR13006	49.6	76.4	14.0	66.6	15.7	107.0	16.2	9.2	7.9	18.4	3.2	1.1	2.6	1.2	7.1
MRAC0600	24	27	MR13014	80.8	129.5	33.8	156.0	31.1	64.3	16.9	7.8	12.4	21.9	2.9	0.9	3.0	1.1	6.6
MRAC0601	28	31	MR13023	58.9	145.0	17.3	73.1	13.2	87.9	11.7	6.7	4.7	13.5	2.3	0.7	1.9	0.8	4.8
MRAC0603A	28	32	MR13042	33.7	77.6	6.8	27.3	5.2	24.4	4.9	2.4	1.9	6.0	0.9	0.2	0.8	0.3	1.7
MRAC0603A	32	36	MR13043	80.8	117.0	22.6	106.0	21.2	109.0	19.6	10.3	8.3	22.3	3.6	1.1	3.1	1.3	8.2
MRAC0603A	36	37	MR13044	28.9	59.8	8.0	37.2	7.4	38.3	6.8	3.8	2.5	7.2	1.3	0.4	1.0	0.5	3.1
MRAC0605	36	40	MR13055	400.0	153.5	124.0	606.0	126.0	500.0	103.5	56.4	46.3	128.0	19.5	4.9	16.9	6.3	37.0
MRAC0605	40	44	MR13056	140.0	72.4	36.2	179.5	36.0	236.0	37.7	20.2	14.3	44.0	7.0	2.0	5.6	2.4	14.0
MRAC0605	44	47	MR13057	51.9	38.1	13.9	63.3	13.7	94.1	13.7	7.8	5.2	15.4	2.6	0.8	2.1	0.9	5.7
MRAC0606	36	40	MR13068	44.2	71.2	16.7	83.2	17.4	57.3	13.9	6.8	9.7	15.7	2.4	0.8	2.2	0.9	5.7
MRAC0606	40	44	MR13069	181.0	70.8	60.0	298.0	62.7	304.0	62.1	30.8	39.4	71.5	11.5	3.1	10.0	3.7	22.9
MRAC0606	45	46	MR13071	59.7	46.8	17.2	82.4	17.0	95.0	16.3	8.5	9.6	18.9	3.0	0.9	2.6	1.0	6.4
MRAC0607	32	35	MR13080	34.5	48.9	11.1	55.3	12.9	79.8	12.0	6.7	7.6	13.4	2.3	0.8	1.9	0.8	5.3
MRAC0608	28	32	MR13089	42.8	156.5	17.0	67.4	12.0	46.9	8.1	4.2	3.1	10.1	1.5	0.5	1.3	0.5	3.2
MRAC0608	36	40	MR13091	33.5	124.5	12.5	55.9	13.1	41.7	10.6	5.4	5.6	11.5	1.8	0.7	1.7	0.7	5.0
MRAC0608	40	41	MR13092	163.0	104.0	47.9	231.0	49.3	325.0	54.9	31.0	22.2	59.3	10.8	3.3	8.7	3.7	22.8
MRAC0608	41	42	MR13093	133.5	75.2	36.2	181.0	37.6	273.0	43.0	24.3	17.1	46.8	8.6	2.7	6.3	3.0	18.7
MRAC0609	24	28	MR13100	16.9	42.5	4.9	21.6	3.9	14.6	2.7	1.2	1.0	3.8	0.5	0.1	0.5	0.1	0.8
MRAC0609	28	32	MR13101	1.2	12.2	0.5	3.2	0.9	8.4	1.4	1.0	0.3	1.2	0.3	0.2	0.2	0.1	1.1
MRAC0609	36	40	MR13103	1.0	23.9	0.5	3.3	1.9	82.7	11.9	9.8	1.0	5.5	2.8	1.4	1.3	1.4	10.2
MRAC0609	40	44	MR13104	73.1	113.5	28.3	162.5	40.9	421.0	74.1	48.4	13.1	65.8	15.6	5.2	10.6	5.8	38.7
MRAC0609	44	45	MR13105	17.7	43.6	6.8	35.2	9.0	77.3	11.8	7.4	1.9	11.3	2.4	0.9	1.7	1.0	6.3
MRAC0609	45	46	MR13106	21.0	52.0	7.7	40.5	10.2	79.5	12.4	7.5	2.4	12.3	2.5	0.9	1.8	0.9	6.0
MRAC0611	20	24	MR13114	1.6	11.2	0.9	6.0	2.8	16.1	4.1	2.6	1.0	3.5	0.8	0.4	0.6	0.4	2.7
MRAC0611	24	28	MR13115	0.9	18.6	0.6	4.8	2.6	24.9	4.8	3.2	0.9	3.9	1.0	0.5	0.7	0.5	3.2
MRAC0611	28	32	MR13116	1.8	55.8	0.7	4.7	1.9	29.3	5.1	3.7	0.8	3.7	1.1	0.6	0.7	0.5	4.1
MRAC0611	32	36	MR13117	2.4	45.2	0.9	4.9	1.9	31.3	6.0	4.4	0.8	3.9	1.3	0.7	0.8	0.7	4.9
MRAC0611	36	39	MR13118	12.9	56.9	5.4	29.8	8.8	139.0	20.0	14.5	2.8	15.6	4.4	2.1	2.6	2.0	13.6
MRAC0611	39	40	MR13119	24.7	75.2	9.9	53.8	15.3	212.0	34.5	22.9	4.6	27.2	7.3	3.1	4.4	3.1	20.4
MRAC0603B	24	28	MR13126	48.3	73.9	17.0	87.6	17.6	79.5	13.6	7.2	6.0	18.2	2.5	0.9	2.3	0.9	6.0
MRAC0603B	28	29	MR13127	35.1	106.5	12.4	64.5	16.2	121.0	20.0	11.1	6.1	19.9	3.8	1.1	3.0	1.4	8.3

								Table 6	5									
						R	are Earth	Element	Assay Re	sults								
Hole ID	From	То	Sample	La	Ce	Pr	Nd	Sm	Υ	Dy	Er	Eu	Gd	Но	Lu	Tb	Tm	Yb
	(m)	(m)	Aqua Regia	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
MRAC0603B	29	30	MR13128	22.2	59.7	7.4	38.1	9.4	88.3	13.2	7.7	3.3	12.8	2.6	0.8	1.9	0.9	5.9
MRAC0604	24	28	MR13135	34.5	55.7	11.2	61.7	14.6	79.5	14.3	7.5	5.0	17.0	2.6	0.7	2.3	0.9	5.4
MRAC0604	28	32	MR13136	40.8	77.8	17.5	95.7	21.8	99.1	21.9	10.3	7.8	25.7	3.8	1.0	3.5	1.3	7.8
MRAC0604	32	36	MR13137	29.7	58.2	11.0	60.2	14.9	96.0	16.9	8.9	5.3	18.8	3.1	0.9	2.7	1.1	6.9
MRAC0612	24	28	MR13146	14.9	38.7	3.7	15.5	3.1	11.4	2.2	1.1	0.8	2.8	0.4	0.1	0.4	0.1	0.8
MRAC0612	28	32	MR13147	18.8	86.9	8.6	37.7	6.8	37.1	5.4	3.3	1.7	6.3	1.1	0.4	0.8	0.4	2.9
MRAC0612	32	36	MR13148	45.3	50.2	18.1	90.6	27.4	142.0	33.7	17.7	9.5	33.0	6.3	2.1	5.2	2.3	14.6
MRAC0612	36	40	MR13149	28.9	59.4	10.9	55.3	16.3	121.5	23.4	13.9	5.7	21.6	4.8	1.7	3.5	1.8	11.0
MRAC0612	40	44	MR13150	101.5	67.8	29.3	148.0	36.9	310.0	46.6	25.5	13.1	55.3	9.7	2.3	7.4	2.8	15.4
MRAC0612	44	45	MR13151	38.5	46.5	10.6	53.5	14.4	178.0	22.4	14.1	5.2	23.1	4.9	1.4	3.4	1.6	9.4
MRAC0613	28	32	MR13160	17.4	61.8	5.6	22.5	4.4	24.0	3.8	2.1	1.1	4.4	0.7	0.3	0.6	0.3	1.6
MRAC0613	36	40	MR13162	6.0	66.1	2.7	13.7	3.7	23.6	4.8	3.2	1.4	4.1	1.0	0.5	0.7	0.4	3.0
MRAC0613	40	44	MR13163	18.4	61.4	7.6	38.1	10.3	51.7	11.2	6.6	4.0	11.4	2.2	0.9	1.7	0.9	5.9
MRAC0613	51	52	MR13166	23.7	53.9	7.5	36.2	9.3	61.9	9.9	5.9	2.9	10.4	2.0	0.7	1.5	0.8	4.9
MRAC0615	24	28	MR13179	13.7	46.2	5.0	21.2	4.4	21.7	3.2	1.9	1.0	4.1	0.6	0.3	0.5	0.3	1.6
MRAC0615	40	44	MR13183	65.7	63.3	22.6	98.4	24.9	66.6	19.8	10.2	7.4	21.7	3.6	1.3	3.3	1.4	9.3
MRAC0617	24	28	MR13197	115.0	163.0	49.4	217.0	50.8	113.5	30.9	14.0	12.6	40.1	5.2	1.6	5.4	1.8	11.4
MRAC0617	28	32	MR13198	230.0	202.0	75.6	349.0	85.6	439.0	82.5	47.5	23.9	92.8	16.6	4.7	13.6	5.7	32.9
MRAC0617	32	36	MR13199	98.2	111.5	26.6	116.0	24.4	85.8	18.2	8.7	6.2	23.8	3.3	0.9	3.1	1.1	6.4
MRAC0617	44	45	MR13202	105.0	113.0	29.9	129.0	28.1	95.6	20.6	9.9	7.2	27.2	3.8	1.0	3.6	1.2	7.3
MRAC0618	16	20	MR13208	27.5	82.8	13.2	64.3	16.2	34.7	11.1	5.0	5.2	14.1	1.9	0.6	1.9	0.7	4.5
MRAC0618	20	24	MR13209	55.6	118.5	20.6	103.5	25.1	89.4	21.6	10.5	8.5	26.5	3.9	1.2	3.6	1.3	8.7
MRAC0618	24	28	MR13210	29.8	64.6	9.6	47.1	12.2	72.6	13.8	8.1	4.0	13.9	2.8	1.1	2.1	1.1	7.0
MRAC0620	12	13	MR13222	65.4	167.5	25.2	116.5	28.1	88.0	21.3	10.3	7.0	26.3	3.9	1.2	3.6	1.3	8.1
MRAC0622	12	16	MR13231	48.3	77.5	23.0	114.0	25.6	73.7	18.5	8.2	10.7	26.7	3.2	0.8	3.3	1.0	5.9
MRAC0622	16	18	MR13232	108.5	262.0	52.7	262.0	62.1	152.0	43.9	17.5	23.6	64.0	7.1	1.7	8.1	2.1	12.0
MRAC0622	18	19	MR13233	112.0	257.0	53.8	267.0	64.1	151.5	43.5	17.1	24.7	62.7	6.9	1.6	8.2	2.1	11.8
MRAC0623	12	14	MR13237	24.0	51.5	10.7	48.6	11.9	63.1	14.1	8.2	4.2	13.2	2.7	1.0	2.1	1.1	7.1
MRAC0623	14	15	MR13238	42.3	90.8	19.5	87.4	21.1	100.5	22.4	12.5	7.2	22.0	4.3	1.5	3.4	1.6	10.4
MRAC0624	12	16	MR13242	66.4	81.7	16.7	70.3	13.6	51.8	10.8	4.9	4.9	14.5	1.9	0.5	1.8	0.6	3.5
MRAC0624	16	17	MR13243	98.5	126.0	25.1	109.5	21.9	83.1	18.5	8.4	8.0	24.5	3.2	0.8	3.2	1.0	5.6
MRAC0628	20	24	MR13267	73.7	89.3	23.6	101.0	20.1	69.9	16.7	8.3	8.3	19.9	3.0	0.9	2.7	1.0	6.4
MRAC0628	24	27	MR13268	72.5	41.2	18.5	81.4	17.0	99.1	18.5	10.1	7.3	21.3	3.6	1.0	2.9	1.2	6.8
MRAC0628	27	28	MR13269	39.0	30.0	9.6	43.4	9.3	57.1	10.3	5.7	3.8	11.8	2.0	0.6	1.6	0.7	3.9
MRAC0629	20	23	MR13275	67.5	128.5	26.0	118.0	25.9	77.3	20.8	10.7	11.4	25.6	3.8	1.3	3.4	1.4	8.7
MRAC0629	23	27	MR13276	55.7	70.3	17.6	84.9	18.8	128.5	20.1	10.9	8.7	25.0	3.9	1.1	3.2	1.2	7.0
MRAC0629	27	28	MR13277	45.0	61.9	14.0	66.7	15.0	106.0	16.3	9.1	7.1	19.5	3.3	1.0	2.6	1.1	6.0
MRAC0629	28	29	MR13278	33.3	39.7	10.1	48.3	11.5	115.0	15.6	9.6	5.4	16.0	3.3	1.1	2.3	1.2	6.8
MRAC0630	28	30	MR13287	27.0	43.4	8.8	39.5	9.4	43.1	9.4	4.9	2.9	10.6	1.7	0.6	1.5	0.6	3.9

								Table 6	5									
						R	are Earth	Element	Assay Re	sults								
Hole ID	From	То	Sample	La	Ce	Pr	Nd	Sm	Υ	Dy	Er	Eu	Gd	Но	Lu	Tb	Tm	Yb
	(m)	(m)	Aqua Regia	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
MRAC0631	16	20	MR13293	148.5	125.0	47.2	207.0	45.7	178.5	39.8	19.3	15.5	48.4	7.1	2.0	6.5	2.4	13.9
MRAC0631	20	21	MR13294	101.5	61.4	27.4	125.0	27.2	209.0	32.6	19.1	9.5	35.2	6.7	2.0	4.9	2.3	12.9
MRAC0632	4	8	MR13297	1.9	3.7	0.6	2.6	0.7	2.3	0.7	0.3	0.2	0.7	0.1	0.0	0.1	0.0	0.3
MRAC0632	8	12	MR13298	2.8	11.3	1.3	6.6	1.7	7.8	2.0	1.2	0.6	1.8	0.4	0.2	0.3	0.2	1.2
MRAC0632	12	16	MR13299	173.5	318.0	102.5	557.0	145.0	480.0	118.5	55.2	46.5	150.5	20.7	5.4	20.6	6.7	40.1
MRAC0632	16	17	MR13300	75.0	204.0	41.5	221.0	57.5	233.0	53.0	26.4	18.6	63.8	9.7	3.0	8.8	3.3	20.2
MRAC0635	12	16	MR13316	6.5	30.5	4.6	23.9	6.1	22.9	5.5	3.0	1.6	5.9	1.0	0.4	0.9	0.4	2.5
MRAC0635	16	20	MR13317	11.9	87.2	6.9	29.5	6.2	22.7	5.7	3.0	1.7	5.8	1.0	0.4	0.9	0.4	2.6
MRAC0636	20	22	MR13325	27.9	106.0	7.8	32.5	6.3	18.5	4.0	2.0	1.7	5.3	0.7	0.2	0.7	0.3	1.5
MRAC0637	16	20	MR13331	168.5	88.8	62.9	309.0	65.5	376.0	58.7	30.1	21.3	78.0	11.5	2.6	10.0	3.4	18.0
MRAC0637	20	23	MR13332	48.5	79.5	20.8	102.5	22.8	119.5	21.7	11.9	7.1	25.0	4.2	1.3	3.5	1.5	8.9
MRAC0638	24	28	MR13340	52.9	100.0	26.7	139.5	33.5	136.5	31.0	16.4	10.8	37.3	5.8	1.9	5.0	2.2	13.9
MRAC0638	28	32	MR13341	209.0	500.0	97.0	465.0	108.0	500.0	124.0	86.8	35.1	129.0	27.7	10.0	19.0	11.1	64.4
MRAC0638	32	36	MR13342	54.9	138.5	19.8	92.6	18.6	124.0	18.0	11.5	5.9	20.8	3.8	1.4	2.7	1.5	8.8
MRAC0638	36	40	MR13343	24.4	54.2	6.5	27.6	5.2	33.1	4.8	3.2	1.9	5.5	1.0	0.4	0.7	0.4	2.6
MRAC0639	28	32	MR13353	105.5	125.0	35.9	154.0	29.0	58.5	14.4	7.0	8.2	21.7	2.5	0.8	2.6	0.9	5.5
MRAC0641	32	33	MR13376	8.5	207.0	3.3	15.3	4.3	16.8	5.0	2.9	1.5	4.3	0.9	0.4	0.7	0.4	2.8
MRAC0642	32	33	MR13386	16.5	79.4	6.2	31.1	8.5	45.9	8.9	5.2	2.7	8.7	1.8	0.6	1.4	0.7	4.4
MRAC0643	28	32	MR13396	2.1	19.5	0.9	4.5	1.4	11.3	2.2	1.5	0.5	1.7	0.5	0.3	0.3	0.2	1.6
MRAC0643	32	36	MR13397	13.0	69.9	5.5	35.6	11.1	91.2	14.9	9.3	4.5	14.9	3.2	1.1	2.2	1.2	7.4
MRAC0643	36	40	MR13398	21.2	75.6	9.7	59.1	17.6	96.8	18.4	10.3	7.0	20.5	3.6	1.2	2.9	1.3	8.2
MRAC0643	40	44	MR13399	35.9	65.9	11.3	58.2	15.0	101.0	16.0	9.4	6.0	17.9	3.3	1.1	2.5	1.2	7.4
MRAC0643	44	45	MR13400	30.1	51.2	9.0	43.3	10.7	74.8	11.2	6.5	4.0	12.7	2.3	0.8	1.8	0.8	4.9
MRAC0644	24	28	MR13407	26.4	45.3	9.3	42.8	8.4	36.5	5.5	3.2	2.9	7.1	1.1	0.3	0.9	0.4	2.3
MRAC0644	28	32	MR13408	38.3	71.4	13.7	65.5	13.2	69.0	10.4	6.2	4.9	12.3	2.1	0.7	1.7	0.8	4.7
MRAC0644	32	36	MR13409	50.1	104.0	17.8	90.2	20.2	140.0	20.1	14.2	8.0	21.7	4.5	2.0	3.0	1.9	12.5
MRAC0644	36	40	MR13410	31.8	69.7	10.2	49.7	11.7	67.1	11.1	7.1	5.0	12.0	2.3	1.0	1.7	0.9	6.2
MRAC0646	16	20	MR13425	14.6	176.0	4.9	20.1	4.9	13.2	4.4	2.4	2.1	3.8	0.8	0.3	0.7	0.3	2.4
MRAC0646	20	24	MR13426	25.2	129.5	7.4	34.9	8.1	41.3	8.1	5.2	4.1	8.1	1.7	0.7	1.2	0.7	4.9
MRAC0646	24	28	MR13427	107.0	83.8	34.0	160.0	38.0	236.0	40.5	24.7	21.3	41.7	8.5	2.8	5.9	3.1	19.2
MRAC0646	28	29	MR13428	32.8	45.0	9.1	43.6	10.3	87.4	11.8	7.8	5.2	12.3	2.6	0.9	1.8	1.0	6.1
MRAC0647	28	32	MR13437	38.9	106.0	10.6	50.9	12.0	77.9	13.4	8.7	4.8	13.3	2.8	1.2	2.0	1.2	7.9
MRAC0647	32	33	MR13438	52.4	91.7	12.0	49.3	8.9	49.3	7.5	4.8	3.0	8.3	1.6	0.6	1.1	0.6	4.2
MRAC0648	20	24	MR13445	4.6	130.0	2.6	12.2	2.5	11.2	2.6	1.6	0.9	2.4	0.5	0.2	0.4	0.2	1.7
MRAC0648	28	32	MR13447	2.1	266.0	1.3	5.9	1.2	5.8	1.1	0.7	0.4	1.0	0.2	0.1	0.2	0.1	0.8
MRAC0651	30	31	MR13480	72.6	90.1	25.5	126.0	26.6	157.5	24.8	13.1	14.4	29.2	4.7	1.3	3.9	1.6	9.4
MRAC0653	32	36	MR13497	66.7	99.5	27.1	138.0	29.9	105.0	22.4	11.2	10.5	28.4	4.0	1.2	3.7	1.4	9.1
MRAC0653	36	38	MR13498	59.7	80.1	20.7	104.0	22.2	141.0	21.8	12.6	8.3	24.0	4.2	1.4	3.3	1.5	9.7
MRAC0654	32	33	MR13508	32.6	72.1	11.5	55.8	12.7	51.2	10.8	5.6	4.9	12.1	2.0	0.6	1.7	0.7	4.7

								Table 6	5									
						R	are Earth	Element	Assay Re	sults								
Hole ID	From	То	Sample	La	Ce	Pr	Nd	Sm	Υ	Dy	Er	Eu	Gd	Но	Lu	Tb	Tm	Yb
	(m)	(m)	Aqua Regia	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
MRAC0656	32	36	MR13531	15.7	55.0	7.1	37.4	9.5	39.7	9.1	4.6	3.7	9.9	1.6	0.5	1.4	0.6	3.9
MRAC0656	36	37	MR13532	36.1	106.5	12.0	56.5	12.8	65.5	11.6	6.3	4.0	13.0	2.2	0.7	1.8	0.8	5.0
MRAC0657	40	44	MR13544	55.7	64.9	17.9	87.3	18.5	141.5	20.5	11.9	6.9	21.7	4.0	1.3	3.1	1.4	8.9
MRAC0657	44	46	MR13545	17.1	30.2	5.6	29.8	8.5	227.0	20.7	16.6	3.4	15.7	5.0	1.9	2.6	2.0	11.7
MRAC0658	24	28	MR13553	22.8	93.9	7.4	27.7	5.5	15.7	4.0	2.0	1.3	4.1	0.7	0.2	0.6	0.3	1.7
MRAC0658	48	52	MR13559	76.6	148.5	24.9	127.0	27.4	151.5	26.7	13.5	10.1	33.6	4.9	1.3	4.3	1.6	9.8
MRAC0660	48	52	MR13585	16.6	28.5	6.7	47.9	13.4	136.0	19.5	12.2	5.6	20.7	4.0	1.5	2.9	1.6	10.2
MRAC0660	52	54	MR13586	28.7	59.6	13.1	107.5	36.7	500.0	86.2	56.4	17.3	75.3	18.2	6.2	12.1	6.8	44.4
MRAC0660	54	55	MR13587	22.7	52.9	10.8	87.2	33.8	500.0	84.4	57.0	15.9	71.6	18.3	6.1	12.1	6.7	43.9
MRAC0662	28	32	MR13602	10.7	30.3	6.1	36.3	10.4	45.4	10.2	5.2	3.9	10.7	1.8	0.6	1.6	0.7	4.5
MRAC0662	32	36	MR13603	31.5	61.3	13.0	68.6	18.4	100.0	20.0	11.1	6.5	21.2	3.8	1.3	3.1	1.4	8.6
MRAC0662	36	40	MR13604	42.5	69.5	14.3	68.9	17.5	110.5	20.7	11.7	6.1	21.7	4.1	1.3	3.2	1.5	8.8
MRAC0663	32	36	MR13617	25.5	116.5	9.8	46.2	11.2	36.7	8.1	4.5	3.6	9.4	1.5	0.6	1.3	0.6	4.2
MRAC0663	36	40	MR13618	48.8	53.5	14.9	68.7	15.3	108.5	14.4	8.7	5.1	17.3	3.0	1.0	2.3	1.1	6.5
MRAC0664	28	32	MR13629	33.9	132.5	13.4	50.3	8.9	31.5	5.7	3.3	2.1	6.8	1.1	0.4	0.9	0.4	2.8
MRAC0664	36	40	MR13631	68.9	72.6	25.2	120.0	27.0	106.5	20.6	10.2	8.5	27.5	3.8	1.0	3.5	1.3	7.7
MRAC0666	32	36	MR13659	151.5	60.3	60.8	282.0	64.4	217.0	45.5	19.8	20.7	57.8	8.0	1.7	8.0	2.4	13.3
MRAC0667	36	40	MR13676	250.0	162.5	96.7	490.0	118.5	500.0	120.5	72.6	41.2	138.5	24.8	7.5	19.4	9.4	53.4
MRAC0668	20	24	MR13688	16.1	60.7	9.3	51.5	14.0	42.7	9.7	4.7	4.2	12.9	1.7	0.6	1.7	0.6	4.1
MRAC0668	24	25	MR13689	35.1	125.5	16.4	84.1	20.5	134.5	20.6	11.7	6.4	24.5	4.1	1.3	3.3	1.5	9.1
MRAC0668	25	26	MR13690	36.6	129.5	16.7	87.5	20.8	159.0	23.3	14.0	6.3	26.9	4.7	1.6	3.6	1.8	10.9
MRAC0669	32	36	MR13700	42.6	116.5	14.3	60.7	13.4	40.7	8.9	4.5	3.7	11.0	1.6	0.5	1.5	0.6	3.7
MRAC0669	36	37	MR13701	30.6	76.7	9.5	45.7	12.0	70.4	11.6	7.0	3.7	12.6	2.3	0.8	1.8	0.9	6.1
MRAC0669	37	38	MR13702	31.2	76.4	9.4	45.2	12.1	67.7	11.9	7.1	3.7	12.6	2.4	0.9	1.8	1.0	6.4
MRAC0670	24	28	MR13710	2.4	3.6	0.3	0.9	0.2	1.1	0.3	0.2	0.1	0.3	0.1	0.0	0.0	0.0	0.2
MRAC0670	28	32	MR13711	20.8	53.7	7.1	34.5	8.7	95.1	11.9	8.9	3.3	10.5	2.7	1.3	1.6	1.3	8.6
MRAC0671	24	28	MR13725	11.2	34.5	5.9	37.2	11.6	149.5	18.9	12.9	4.6	18.8	4.2	1.6	2.7	1.7	10.6
MRAC0671	28	29	MR13726	23.6	67.0	11.1	64.8	19.2	266.0	32.0	22.2	7.3	31.0	7.3	2.8	4.4	3.0	18.8
MRAC0671	29	30	MR13727	21.9	65.7	10.9	63.5	18.7	246.0	29.8	20.5	6.8	29.7	6.6	2.6	4.1	2.8	17.5
MRAC0672	32	35	MR13736	58.8	103.5	14.9	62.6	11.4	51.9	8.5	4.5	4.0	11.2	1.6	0.5	1.4	0.6	3.4
MRAC0672	35	36	MR13737	79.6	205.0	29.0	122.0	18.5	53.0	11.0	5.5	5.3	13.9	2.0	0.5	1.8	0.7	4.2
MRAC0673	16	20	MR13742	50.7	397.0	12.9	50.0	9.7	32.2	5.7	3.4	3.7	7.6	1.1	0.5	1.0	0.5	3.1
MRAC0673	20	21	MR13743	47.6	92.6	8.2	29.5	5.3	16.4	2.6	1.2	1.8	4.2	0.5	0.1	0.5	0.1	0.6
MRAC0673	21	22	MR13744	39.9	195.0	8.7	33.5	6.2	20.3	3.5	1.9	2.2	5.0	0.7	0.2	0.6	0.2	1.6
MRAC0675	8	12	MR13752	5.2	9.9	1.2	4.8	1.0	3.5	0.7	0.4	0.2	0.9	0.1	0.0	0.1	0.1	0.3
MRAC0675	12	16	MR13753	3.3	7.4	1.1	4.3	0.9	1.9	0.6	0.3	0.3	0.7	0.1	0.0	0.1	0.0	0.3
MRAC0675	16	20	MR13754	6.8	24.9	5.4	30.8	7.1	10.8	4.1	1.5	2.0	5.4	0.6	0.1	0.7	0.2	1.2
MRAC0675	24	25	MR13756	14.9	40.0	5.8	29.7	7.5	49.1	7.3	4.8	2.6	7.3	1.5	0.7	1.1	0.7	4.6
MRAC0675	25	26	MR13757	49.6	132.0	21.0	104.0	24.3	134.0	22.0	13.4	8.3	24.6	4.5	1.8	3.4	1.9	12.3

								Table 6	5									
						R	are Earth	Element	Assay Re	sults								
Hole ID	From	То	Sample	La	Ce	Pr	Nd	Sm	Υ	Dy	Er	Eu	Gd	Но	Lu	Tb	Tm	Yb
	(m)	(m)	Aqua Regia	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
MRAC0676	16	20	MR13762	35.1	69.2	13.6	74.7	17.4	130.5	18.5	10.8	6.6	24.8	3.8	1.2	3.0	1.4	8.2
MRAC0676	20	24	MR13763	27.2	68.6	9.8	48.9	12.0	79.4	12.1	7.1	3.5	13.4	2.4	0.8	1.9	0.9	5.9
MRAC0676	24	28	MR13764	17.8	42.9	6.1	29.4	7.4	52.3	8.0	4.9	2.0	8.6	1.7	0.6	1.2	0.7	4.2
MRAC0677	12	16	MR13770	4.3	7.8	0.9	3.3	0.6	1.7	0.4	0.2	0.1	0.4	0.1	0.0	0.1	0.0	0.1
MRAC0677	16	20	MR13771	2.4	7.2	0.6	2.3	0.4	1.2	0.3	0.1	0.1	0.3	0.1	0.0	0.0	0.0	0.1
MRAC0677	36	40	MR13776	2.1	53.0	0.7	3.5	1.0	11.8	2.1	1.6	0.3	1.4	0.4	0.3	0.3	0.2	1.7
MRAC0677	44	48	MR13778	3.4	122.0	1.9	9.6	2.9	18.1	4.3	2.7	0.7	3.4	0.8	0.4	0.6	0.4	2.9
MRAC0677	52	55	MR13780	34.9	49.3	10.9	52.0	11.9	57.4	10.6	5.7	2.8	11.5	1.9	0.7	1.7	0.8	5.2
MRAC0678	20	24	MR13788	75.5	187.0	25.7	120.5	25.5	78.3	19.9	8.9	9.0	22.1	3.3	0.8	3.2	1.1	6.9
MRAC0678	24	28	MR13789	31.3	69.4	9.7	49.6	11.6	66.7	11.9	6.8	3.5	12.9	2.3	0.7	1.8	0.8	5.4
MRAC0679	16	20	MR13797	81.4	232.0	30.9	144.5	27.4	85.1	17.9	8.8	9.2	22.6	3.1	0.9	3.0	1.1	6.9
MRAC0679	20	24	MR13798	84.4	223.0	30.8	152.5	31.7	194.0	33.0	19.3	11.3	36.5	6.5	2.3	4.9	2.5	16.4
MRAC0679	24	28	MR13799	49.2	112.0	15.7	75.7	17.1	181.5	24.8	16.6	6.0	24.0	5.4	2.1	3.5	2.1	13.7
MRAC0683	12	16	MR13833	4.8	14.1	2.3	11.2	3.1	17.7	4.0	2.7	1.2	3.3	0.7	0.4	0.5	0.4	2.8
MRAC0683	16	19	MR13834	94.4	231.0	39.7	203.0	42.1	233.0	37.8	20.7	19.3	52.3	6.6	2.1	5.5	2.3	15.1
MRAC0683	19	20	MR13835	24.3	50.0	7.2	37.6	9.4	109.5	12.7	8.2	4.1	13.2	2.5	0.9	1.7	0.9	5.9
MRAC0684	24	28	MR13842	180.0	62.5	59.7	270.0	47.1	186.0	34.6	18.5	20.2	51.3	5.9	1.9	5.2	2.0	13.4
MRAC0684	28	31	MR13843	78.7	28.0	28.3	140.5	29.1	98.7	19.6	9.1	13.7	29.4	3.5	0.8	3.4	1.1	6.4
MRAC0689	16	20	MR13878	56.2	75.9	20.9	92.5	20.5	51.5	16.4	7.6	8.3	17.9	2.6	0.7	2.4	0.9	6.2
MRAC0689	20	24	MR13879	81.5	84.5	34.5	179.5	38.3	171.5	37.1	19.1	16.4	46.5	6.2	1.9	5.4	2.2	14.6
MRAC0689	24	28	MR13880	120.0	54.0	42.4	206.0	44.2	287.0	57.2	26.3	19.7	65.0	8.7	2.7	7.1	2.9	18.9
MRAC0689	28	32	MR13881	30.4	15.9	7.5	37.0	9.0	99.0	12.4	7.7	4.0	13.3	2.4	0.8	1.7	0.9	5.5
MRAC0689	32	34	MR13882	27.2	39.4	8.1	39.9	10.1	79.2	11.6	7.0	3.4	12.3	2.1	0.8	1.6	0.8	5.4
MRAC0689	34	35	MR13883	26.4	58.6	9.2	44.6	11.0	71.1	11.4	6.7	2.2	12.4	2.1	0.7	1.6	0.8	5.1
MRAC0690	32	36	MR13893	36.3	61.7	9.1	42.4	9.6	42.8	9.2	5.4	4.1	9.7	1.8	0.7	1.4	0.7	5.0
MRAC0690	36	40	MR13894	87.8	36.8	23.7	112.5	23.2	131.5	22.4	11.1	9.9	26.7	4.1	1.1	3.6	1.3	7.8
MRAC0692	32	36	MR13918	43.7	18.6	9.9	44.8	9.1	53.3	8.9	5.4	3.8	9.6	1.8	0.7	1.4	0.7	4.7
MRAC0692	36	37	MR13919	118.5	103.5	26.5	128.5	24.9	301.0	31.7	21.6	11.0	35.3	7.0	2.3	4.6	2.5	14.6
MRAC0693	36	37	MR13930	73.0	33.5	14.7	71.6	15.0	150.0	18.8	11.3	6.4	20.5	3.8	1.2	2.8	1.4	8.1
MRAC0694	16	20	MR13936	7.9	33.4	5.5	34.2	10.6	71.6	14.9	10.8	4.6	12.4	3.2	1.7	2.0	1.5	10.6
MRAC0694	28	32	MR13939	55.9	68.5	23.7	105.0	22.7	53.6	13.5	6.3	9.8	16.7	2.2	0.7	2.3	0.8	5.4
MRAC0694	32	36	MR13940	80.8	91.2	25.8	124.5	26.1	128.0	22.5	11.5	13.0	26.6	4.1	1.2	3.7	1.4	8.5
MRAC0694	36	40	MR13941	97.4	41.7	26.5	128.5	26.6	150.0	23.2	11.8	12.3	28.2	4.3	1.2	3.8	1.4	8.4
MRAC0695	24	28	MR13951	14.2	142.0	6.0	30.4	8.0	52.8	9.5	6.2	4.2	8.5	1.9	0.9	1.4	0.8	5.8
MRAC0695	28	32	MR13952	112.0	94.9	42.3	211.0	43.5	161.5	32.4	15.4	23.1	42.6	5.6	1.6	5.5	1.9	11.6
MRAC0695	32	36	MR13953	230.0	108.5	82.6	410.0	85.8	500.0	108.5	58.2	54.1	125.0	19.6	4.6	15.7	5.3	32.1
MRAC0695	36	40	MR13954	50.6	47.1	13.1	64.9	15.1	130.0	16.5	9.4	7.4	19.3	3.0	0.9	2.4	1.0	6.4
MRAC0696	28	32	MR13964	122.5	91.1	40.5	192.0	40.4	144.5	28.7	13.5	17.1	41.0	4.9	1.4	5.0	1.6	9.9
MRAC0696	32	34	MR13965	155.5	29.7	45.6	220.0	40.9	80.4	18.2	7.7	15.9	33.8	2.9	0.8	3.6	0.9	5.4

								Table 6	i									
						R	are Earth	Element	Assay Re	sults								
Hole ID	From	То	Sample	La	Ce	Pr	Nd	Sm	Υ	Dy	Er	Eu	Gd	Но	Lu	Tb	Tm	Yb
	(m)	(m)	Aqua Regia	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
MRAC0696	34	35	MR13966	64.5	23.4	18.8	92.0	18.4	56.5	11.7	5.6	7.3	17.3	2.1	0.6	2.1	0.7	4.1
MRAC0697	20	24	MR13972	43.3	121.0	17.6	82.0	21.9	108.5	26.4	16.6	8.5	21.1	5.1	2.5	3.7	2.5	18.3
MRAC0697	24	28	MR13973	24.9	55.9	8.5	45.4	13.4	130.5	23.5	17.4	5.8	18.0	5.2	2.6	3.1	2.4	17.4
MRAC0697	28	30	MR13974	90.5	91.2	28.2	130.5	26.7	134.5	22.7	13.8	9.4	26.0	4.5	1.7	3.5	1.8	11.6
MRAC0697	30	31	MR13975	121.5	94.9	43.8	213.0	43.7	149.0	29.2	15.6	15.2	41.5	5.4	1.7	5.0	1.9	12.1
MRAC0698	16	20	MR13980	52.4	177.0	20.3	107.5	26.0	93.8	25.0	12.7	10.0	25.7	4.4	1.5	3.9	1.7	11.7
MRAC0698	20	21	MR13981	30.0	106.5	10.1	55.5	15.7	188.0	28.1	21.4	6.5	21.0	6.2	3.2	3.6	3.0	21.0
MRAC0699	12	14	MR13986	54.3	151.0	20.2	86.7	17.8	34.8	11.1	4.5	5.6	13.5	1.7	0.4	1.9	0.6	3.6
MRAC0699	14	15	MR13987	67.5	175.5	24.0	109.0	22.9	63.7	16.5	7.5	7.5	19.0	2.8	0.7	2.8	0.9	6.0
MRAC0831	50	51	MR14884	37.9	90.8	10.1	39.4	7.7	24.7	5.8	2.8	1.3	6.5	1.1	0.3	1.0	0.4	2.2
MRAC0828	26	27	MR14903	35.6	93.7	8.9	33.8	6.1	9.7	3.1	1.1	1.0	4.2	0.5	0.1	0.6	0.1	0.8
MRAC0822	38	39	MR14946	27.1	134.5	11.1	41.1	8.0	12.0	3.8	1.7	1.2	4.8	0.5	0.2	0.6	0.2	1.5
MRAC0705	12	13	MR15013	42.4	94.3	13.7	59.1	12.7	18.7	7.0	2.3	4.3	9.0	1.0	0.2	1.3	0.3	1.5
MRAC0705	13	14	MR15014	86.9	192.0	29.8	125.5	25.1	40.2	14.3	4.8	8.6	18.2	2.0	0.4	2.6	0.6	3.3
MRAC0706	8	12	MR15017	3.1	7.6	0.9	4.4	1.2	5.5	1.5	1.0	0.5	1.2	0.3	0.2	0.2	0.1	1.1
MRAC0706	12	16	MR15018	22.2	67.2	9.9	56.9	19.4	257.0	52.9	41.8	9.8	30.6	11.9	6.3	6.0	5.8	45.3
MRAC0706	16	20	MR15019	26.6	64.9	8.3	47.9	14.7	157.0	31.3	22.9	7.1	23.0	6.8	3.5	4.1	3.3	23.6
MRAC0706	20	23	MR15020	31.9	57.5	9.5	50.4	13.8	149.5	24.8	17.9	6.4	19.1	5.4	2.6	3.2	2.5	16.8
MRAC0706	23	24	MR15021	55.7	85.8	16.5	81.8	18.7	121.0	23.4	14.1	8.0	22.2	4.6	1.8	3.4	1.9	12.6
MRAC0707	12	16	MR15025	9.2	32.3	3.9	18.7	5.8	27.5	7.9	4.8	2.5	5.7	1.5	0.7	1.1	0.7	5.1
MRAC0707	16	20	MR15026	24.6	92.1	10.3	53.4	12.7	51.9	11.9	6.4	5.2	12.2	2.2	0.8	1.8	0.9	5.9
MRAC0708	20	24	MR15034	12.6	50.3	7.0	41.6	10.5	104.5	12.4	9.3	4.6	12.9	2.8	1.3	1.8	1.2	7.8
MRAC0708	24	28	MR15035	38.0	108.0	11.9	59.7	13.3	97.4	13.0	8.2	5.7	14.5	2.6	1.0	2.0	1.0	6.7
MRAC0708	28	32	MR15036	40.5	65.3	12.1	62.7	13.1	86.6	11.6	6.6	5.8	14.1	2.3	0.7	1.8	0.8	5.0
MRAC0709	32	36	MR15048	21.2	54.6	8.8	44.1	10.3	53.9	10.4	6.3	4.9	10.1	2.0	0.9	1.5	0.9	5.9
MRAC0709	40	44	MR15051	115.5	92.7	35.3	170.5	33.9	122.5	23.5	10.2	14.4	34.3	3.9	1.0	4.2	1.2	7.2
MRAC0711	16	20	MR15062	53.9	41.0	24.2	108.5	20.9	50.4	11.9	5.7	7.0	15.7	2.0	0.6	2.1	0.7	4.6
MRAC0711	20	23	MR15063	360.0	183.5	159.0	782.0	169.5	500.0	130.5	69.6	68.9	156.5	24.6	6.8	21.9	7.8	50.2
MRAC0711	23	24	MR15064	1070.0	210.0	485.0	1000.0	508.0	500.0	420.0	223.0	211.0	492.0	79.5	24.5	69.3	26.9	166.0
MRAC0712	16	20	MR15069	50.8	100.0	19.8	100.0	24.2	247.0	30.7	21.3	9.7	29.2	6.7	2.7	4.4	2.7	17.6
MRAC0712	20	24	MR15070	71.4	76.7	23.9	120.0	26.9	198.5	28.7	17.4	10.4	32.4	5.8	2.0	4.3	2.1	13.5
MRAC0712	24	28	MR15071	25.9	35.0	6.6	35.3	8.4	67.8	9.5	5.8	3.2	10.7	1.9	0.7	1.4	0.7	4.3
MRAC0720	52	56	MR15165	12.3	67.8	5.6	28.5	7.8	34.7	6.8	4.4	2.7	7.4	1.4	0.7	1.1	0.6	4.2
MRAC0720	56	57	MR15166	50.8	45.4	22.8	116.0	27.2	124.5	22.9	12.2	9.7	30.2	4.4	1.4	3.8	1.6	9.4
MRAC0720	57	58	MR15167	31.1	46.3	14.3	72.5	17.6	87.6	15.5	8.4	6.3	19.2	3.0	0.9	2.5	1.1	6.4
MRAC0721	52	56	MR15181	187.5	78.7	106.0	496.0	132.5	224.0	83.3	29.5	41.7	113.0	12.5	2.7	15.2	3.6	22.9
MRAC0721	56	60	MR15182	440.0	173.5	139.0	690.0	166.5	500.0	163.5	72.5	60.5	220.0	28.4	5.7	27.9	8.4	45.0
MRAC0721	60	64	MR15183	192.0	75.9	45.9	235.0	55.5	377.0	58.7	25.6	20.9	87.9	10.9	1.7	10.1	2.6	13.0
MRAC0721	64	67	MR15184	32.7	22.7	9.1	44.7	11.2	69.3	12.7	6.1	4.2	16.0	2.3	0.5	2.1	0.7	3.8

								Table 6	5									
						R	are Earth	Element	Assay Re	sults								
Hole ID	From	То	Sample	La	Ce	Pr	Nd	Sm	Υ	Dy	Er	Eu	Gd	Но	Lu	Tb	Tm	Yb
	(m)	(m)	Aqua Regia	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
MRAC0721	67	68	MR15185	49.4	42.2	11.3	55.2	12.8	131.0	14.1	7.0	4.9	20.6	2.8	0.5	2.3	0.7	3.7
MRAC0722	56	58	MR15201	149.5	52.3	69.8	328.0	84.4	229.0	60.6	23.3	27.7	82.7	10.0	1.8	10.7	2.6	14.7
MRAC0722	58	59	MR15202	59.6	41.0	24.7	120.0	30.2	115.5	26.3	11.9	10.0	32.0	4.5	1.1	4.2	1.4	8.4
MRAC0724	16	20	MR15217	9.5	18.3	2.2	7.8	1.5	3.8	0.9	0.4	0.4	1.1	0.1	0.0	0.2	0.1	0.4
MRAC0726	40	44	MR15245	101.5	52.3	40.3	179.0	41.3	103.0	29.7	13.6	14.1	37.2	5.0	1.6	4.9	1.8	12.0
MRAC0726	44	46	MR15246	330.0	105.0	102.5	511.0	124.5	500.0	116.0	50.6	48.5	165.5	20.6	3.1	20.4	5.1	24.0
MRAC0726	46	47	MR15247	230.0	108.5	89.4	447.0	114.5	460.0	97.7	40.0	44.2	137.5	16.5	2.4	17.4	4.0	18.9
MRAC0727	40	43	MR15259	11.7	27.6	5.5	30.8	9.9	118.5	17.6	10.9	4.0	15.4	3.7	1.2	2.4	1.4	8.5
MRAC0727	43	44	MR15260	15.9	36.8	6.3	34.8	10.2	115.5	17.1	10.5	4.1	16.0	3.6	1.2	2.4	1.3	8.1
MRAC0728	32	36	MR15269	65.3	47.1	25.8	118.5	28.8	77.5	23.1	9.6	11.7	29.8	3.7	0.9	3.9	1.2	7.3
MRAC0728	36	37	MR15270	70.1	44.1	26.4	123.0	30.8	99.1	27.2	11.8	12.8	33.4	4.5	1.1	4.5	1.4	8.8
MRAC0728	37	38	MR15271	48.2	29.5	17.2	82.3	20.4	72.0	18.7	8.2	8.3	22.4	3.2	0.8	3.0	1.0	6.3
MRAC0729	16	20	MR15276	37.4	133.0	13.9	61.6	14.4	52.8	13.4	6.7	5.1	14.4	2.4	0.8	2.0	0.9	6.1
MRAC0729	20	21	MR15277	29.2	122.5	11.5	52.3	12.6	52.0	12.8	6.6	4.0	13.2	2.3	0.8	1.9	0.9	6.0
MRAC0730	20	24	MR15284	48.0	113.0	19.1	88.7	21.5	103.5	21.3	11.3	8.1	22.9	4.0	1.3	3.2	1.5	9.7
MRAC0730	24	25	MR15285	97.5	182.5	30.3	139.5	32.1	199.5	34.7	18.6	12.8	39.6	6.7	1.9	5.2	2.3	14.0
MRAC0730	25	26	MR15286	19.4	49.1	6.6	30.8	7.6	57.9	9.7	6.0	2.5	9.5	2.0	0.8	1.4	0.8	5.4
MRAC0731	28	32	MR15294	42.9	113.0	17.0	80.2	19.6	90.6	18.8	9.7	7.1	19.9	3.4	1.1	2.8	1.3	8.3
MRAC0732	28	31	MR15305	134.5	122.0	38.7	191.5	44.0	349.0	54.5	31.1	16.4	59.2	11.3	3.3	8.0	3.8	22.6
MRAC0732	31	32	MR15306	66.7	70.9	17.9	86.3	20.2	192.0	26.7	16.1	7.4	29.3	5.6	1.7	3.9	1.9	11.4
MRAC0733	36	38	MR15316	54.3	80.4	22.5	106.0	26.3	83.6	22.7	10.4	9.7	26.2	3.8	1.1	3.7	1.3	8.4
MRAC0733	38	39	MR15317	31.2	35.1	10.3	49.9	13.0	92.1	16.3	9.2	5.1	16.8	3.2	1.0	2.4	1.1	7.0
MRAC0758	80	81	MR15412	181.5	124.5	52.1	196.5	35.8	69.3	19.7	8.3	5.6	25.6	3.2	0.8	3.3	1.0	6.4
MRAC0759	82	83	MR15435	202.0	148.5	56.5	217.0	36.5	74.5	17.2	8.1	5.6	25.5	3.0	0.8	3.0	1.0	6.2
MRAC0763	75	76	MR15520	59.3	88.8	16.8	65.3	12.4	48.8	8.8	4.5	2.3	11.1	1.6	0.5	1.4	0.6	3.6
MRAC0774	88	89	MR15761	55.0	88.2	12.7	50.0	9.9	62.0	11.0	6.3	2.4	10.9	2.2	0.7	1.6	0.8	5.3
MRAC0776	74	75	MR15802	76.8	151.0	22.3	82.3	15.2	41.2	9.3	4.4	2.2	11.3	1.6	0.4	1.5	0.5	3.3
MRAC0781	84	85	MR15907	92.1	87.5	21.9	85.5	17.0	78.9	15.4	8.0	3.0	16.8	2.9	0.7	2.4	1.0	5.9
MRAC0783	85	86	MR15953	219.0	440.0	76.4	282.0	54.6	112.5	33.4	14.3	8.5	39.1	5.4	1.3	5.3	1.8	11.1
MRAC0784	75	76	MR15974	47.2	329.0	13.4	51.5	9.5	19.0	4.9	2.1	1.8	6.9	0.8	0.2	0.9	0.2	1.5
MRAC0785	72	76	MR15993	6.3	115.0	1.6	6.0	1.0	3.5	0.6	0.3	0.2	0.8	0.1	0.0	0.1	0.0	0.2
MRAC0785	80	84	MR15995	142.0	111.0	47.1	191.5	38.2	96.4	24.4	11.3	6.9	30.2	4.4	1.2	4.4	1.5	8.8
MRAC0785	84	85	MR15996	128.5	116.0	39.5	159.5	31.0	89.8	20.3	9.7	5.5	25.4	3.7	1.0	3.6	1.3	7.4
MRAC0788	76	79	MR16062	45.8	264.0	12.8	51.6	8.7	24.6	5.2	2.7	1.3	6.7	1.0	0.2	0.9	0.3	1.8
MRAC0788	79	80	MR16063	70.9	275.0	20.0	78.2	13.7	33.9	7.9	3.8	2.0	10.1	1.4	0.4	1.4	0.5	2.8
MRAC0789	84	88	MR16086	50.2	97.1	12.0	44.5	8.1	26.2	6.0	2.9	1.2	6.8	1.1	0.3	1.0	0.4	2.2
MRAC0789	88	92	MR16087	55.1	113.0	13.3	49.8	9.5	36.8	7.8	4.0	1.4	8.2	1.5	0.4	1.3	0.5	2.9
MRAC0789	92	93	MR16088	53.7	93.7	12.4	46.7	8.7	30.2	6.3	3.2	1.2	7.2	1.2	0.3	1.1	0.4	2.3
MRAC0791	64	68	MR16130	18.9	271.0	4.5	16.9	2.9	5.3	1.4	0.7	0.4	1.9	0.3	0.1	0.3	0.1	0.4

								Table 6	j									
						R	are Earth	Element	Assay Re	sults								
Hole ID	From	То	Sample	La	Ce	Pr	Nd	Sm	Υ	Dy	Er	Eu	Gd	Но	Lu	Tb	Tm	Yb
	(m)	(m)	Aqua Regia	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
MRAC0791	68	72	MR16131	59.9	82.0	17.7	64.2	11.5	21.9	5.8	2.6	1.5	7.3	1.0	0.3	1.1	0.4	2.1
MRAC0793	67	68	MR16167	65.5	333.0	24.1	100.0	18.5	21.7	7.4	3.1	2.8	10.6	1.2	0.4	1.4	0.4	2.7
MRAC0794	71	72	MR16187	215.0	198.5	65.6	262.0	51.0	204.0	47.1	25.7	9.6	48.2	9.2	3.0	7.4	3.6	21.9
MRAC0795	70	71	MR16207	18.0	181.5	5.4	20.8	4.0	10.9	2.7	1.3	0.6	3.0	0.5	0.1	0.5	0.2	1.0
MRAC0797	66	67	MR16246	36.7	343.0	8.6	31.4	5.2	11.1	2.3	1.2	0.8	3.3	0.4	0.2	0.4	0.2	1.0
MRAC0801	71	72	MR16325	67.3	165.5	19.3	74.3	13.8	36.3	8.2	4.0	2.0	10.1	1.5	0.4	1.4	0.5	3.0
MRAC0802	70	71	MR16344	88.6	263.0	21.1	80.8	13.6	34.0	7.0	3.0	1.9	10.3	1.3	0.2	1.3	0.3	1.7
MRAC0850	29	31	MR16701	58.2	158.5	16.2	61.0	11.2	45.6	8.3	4.8	2.1	9.2	1.7	0.7	1.4	0.7	4.4
MRAC0851	40	44	MR16703	41.0	134.5	15.9	60.8	11.2	19.0	5.5	2.5	1.4	6.8	0.9	0.3	1.0	0.3	2.1
MRAC0851	44	45	MR16704	123.5	274.0	37.2	151.0	25.9	41.0	12.3	5.1	3.2	17.6	2.1	0.5	2.3	0.6	3.6
MRAC0852	36	40	MR16705	25.4	51.6	6.0	22.9	4.1	11.4	2.4	1.1	0.7	3.2	0.4	0.1	0.4	0.1	0.8
MRAC0852	40	41	MR16706	32.4	64.7	7.4	27.4	4.5	9.3	2.2	0.9	0.7	3.3	0.4	0.1	0.4	0.1	0.6
MRAC0852	41	42	MR16707	17.4	35.8	4.1	16.3	3.1	8.3	2.1	0.8	0.5	2.7	0.3	0.1	0.4	0.1	0.6
MRAC0853	43	46	MR16708	54.1	113.5	13.7	52.9	8.6	24.3	4.6	2.4	1.9	6.3	0.9	0.3	0.8	0.3	1.8
MRAC0853	46	47	MR16709	39.8	82.0	9.8	37.9	6.0	16.9	3.2	1.7	1.2	4.3	0.6	0.2	0.6	0.2	1.3
MRAC0853	47	48	MR16710	36.3	76.9	9.4	38.3	6.8	24.7	4.6	2.5	1.4	5.7	0.9	0.3	0.8	0.3	2.1
MRAC0854	37	40	MR16711	66.2	150.0	17.9	68.9	13.0	31.2	7.8	3.4	2.2	9.8	1.3	0.4	1.4	0.4	2.7
MRAC0855	21	24	MR16713	29.4	72.0	8.7	35.7	7.2	23.7	5.3	2.5	1.6	6.2	1.0	0.3	0.9	0.3	1.9
MRAC0856	36	40	MR16715	28.6	64.9	7.5	31.4	6.7	44.6	7.3	4.6	1.4	6.9	1.6	0.6	1.1	0.6	3.9
MRAC0856	40	44	MR16716	36.2	79.6	8.9	35.9	7.3	33.9	6.1	3.5	1.4	6.6	1.3	0.4	1.0	0.5	2.9
MRAC0857	17	21	MR16719	45.2	101.5	11.2	43.5	7.8	22.2	4.5	2.3	1.2	6.1	0.9	0.3	0.8	0.3	2.0
MRAC0858	26	28	MR16722	60.9	113.0	17.0	68.9	13.6	64.5	11.1	6.0	2.8	13.1	2.2	0.6	1.8	0.8	4.4
MRAC0858	28	29	MR16723	55.2	110.5	14.5	57.4	11.0	44.9	8.2	4.2	2.0	9.9	1.6	0.5	1.4	0.5	3.2

Appendix 2

JORC Code, 2012 Edition – Table 1 Report for the Mount Ridley Project Section 1 Sampling Techniques and Data: Aircore Drilling

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.	Mount Ridley Mines Limited (ASX: MRD) has re-assayed parts of 215 aircore holes (MRAC0482 – MRAC0658 (not consecutive)) drilled by the Company between 2016 and 2018. Samples from these holes were available for re-assay as the pulps were stored at ALS Laboratories, Perth, since the first assays were completed. In the respective years' Annual Technical Report, the Company notes that samples were generally 4m composites and a 1m end of hole sample.
	Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.	Drill hole collar locations reported herein were picked-up using a Garmin hand-held GPS with approximately +-3m accuracy. No downhole surveying was undertaken
	Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.	Aircore drilling to deliver Im interval sample piles. Samples of between 1 metre and 4 composited metres taken for analysis. The size of the sample submitted to the laboratory was 2-4kg in weight, which was dried, pulverized and packaged in a computer-coded packet. A sub-sample was analysed and the coded packed then stored. (AR) New analyses reported herein by ALS Laboratory's ME-MS41W with MS41W-REE weak aqua regia digest, and determined by ICP-MS and ICP-AES as appropriate. (Fusion) Previous analyses by ALS' ME-MS81, a lithium borate fusion with ICP-MS finish. Selected samples were also analysed by the ALS ME-ICP06 whole rock package.
Drilling techniques	Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	Aircore. A type of reverse circulation drilling using slim rods and a blade bit.
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed.	Recovery was visually assessed, recorded on drill logs, and considered to be acceptable within industry standards.
·	Measures taken to maximise sample recovery and ensure representative nature of the samples.	Samples were visually checked for recovery, moisture, and contamination. A cyclone was used to deliver the sample into buckets.
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	Not evaluated
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	Geological logging appropriate for this style of drilling and the stage of the project.
	Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.	Geological logging is inherently qualitative. More specific logging may be undertaken if chemical analyses warrant it.
	The total length and percentage of the relevant intersections logged.	Logging of the drill holes was cursory.

Criteria	JORC Code explanation	Commentary
Sub-sampling	If core, whether cut or sawn and whether quarter, half or all core taken.	Not applicable.
techniques and	If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet	Original aircore samples were collected by a cyclone into a bucket and laid out in rows.
sample	or dry.	Im or up to 4m composite samples were 'speared' from the sample piles.
preparation	For all sample types, the nature, quality, and appropriateness of the sample	Sampling technique is appropriate for the stage of the project.
	preparation technique.	
	Quality control procedures adopted for all sub-sampling stages to maximize	Not undertaken, as reported analyses are of previously prepared sample pulps.
	representivity of samples.	
	Measures taken to ensure that the sampling is representative of the in situ material	While field QAQC procedures included the insertion of field duplicates and commercial
	collected, including for instance results for field duplicate/second-half sampling.	standards at pre-specified intervals at the time of drilling, these were not available for the program of re-analysis.
	Whether sample sizes are appropriate to the grain size of the material being	Sample size meets the industry standard.
	sampled.	ample size medically standard.
Quality of assay	The nature, quality and appropriateness of the assaying and laboratory procedures	(AR) New analyses reported herein by ALS Laboratory's ME-MS41W with MS41W-REE weak aqua
data and	used and whether the technique is considered partial or total.	regia digest and determined by ICP-MS and ICP-AES as appropriate. This is intended to be a
laboratory tests		partial digest method.
		The analytical techniques were recommended by the Company's metallurgical consultant, and
		nominated as appropriate by ALS.
	For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters	None used
	used in determining the analysis including instrument make and model, reading	
	times, calibrations factors applied and their derivation, etc.	ALC and and Colifferent throughout this control of the state of the st
	Nature of quality control procedures adopted (eg standards, blanks, duplicates,	ALS analysed 6 different standards, which were predominantly 3 rd party independently manufactured.
	external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.	manufactured.
Verification of	The verification of significant intersections by either independent or alternative	Significant intersections verified by an independent consultant.
sampling and	company personnel.	Significant intersections verified by an independent consultant.
assaying	The use of twinned holes.	Not applicable.
	Documentation of primary data, data entry procedures, data verification, data	All collected data stored in a commercially managed database.
	storage (physical and electronic) protocols.	
	Discuss any adjustment to assay data.	Raw assays are stored in the commercially managed database
Location of data	Accuracy and quality of surveys used to locate drill holes (collar and down-hole	Preliminary drill hole collar locations noted in Table 6 were surveyed using a hand-held GPS with
points	surveys), trenches, mine workings and other locations used in Mineral Resource	+- 3m accuracy.
	estimation.	
	Specification of the grid system used.	GDA94-51
	Quality and adequacy of topographic control.	RL's estimated from a digital elevation model with points gained as a component of an
		aeromagnetic survey. The datum may have some error, but RL of holes should be fit for purpose
		on a hole to hole basis.
Data spacing and	Data spacing for reporting of Exploration Results.	Varies. Generally, 500 x 100m. Occasional infills on 100 x 20m, and additional semi regional
distribution		traverses.
	Whether the data spacing and distribution is sufficient to establish the degree of	Insufficient data collected for a Mineral Resource Estimate.
	geological and grade continuity appropriate for the Mineral Resource and Ore	
	Reserve estimation procedure(s) and classifications applied.	And Statement and 2 And a community and and
	Whether sample compositing has been applied.	1m intervals and 2-4m composites analysed.

Criteria	JORC Code explanation	Commentary		
Orientation of	Whether the orientation of sampling achieves unbiased sampling of possible	Not determined yet. Likely unbiased as vertical holes are sampling a horizontal mineralized		
data in relation to	structures and the extent to which this is known, considering the deposit type.	feature.		
geological	If the relationship between the drilling orientation and the orientation of key	Unlikely to be biased.		
structure	mineralised structures is considered to have introduced a sampling bias, this should			
	be assessed and reported if material.			
Sample security	The measures taken to ensure sample security.	Samples were stored at the laboratory.		
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	Sampling techniques are consistent with industry standards. A third party geochemical specialist		
		is reviewing the data.		

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)				
Criteria	JORC Code explanation	Commentary		
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	Tenements E63/1547, E63/1564, E63/1617 and E63/2112, located from 35km northwest of Esperance, Western Australia. Registered Holder is Mount Ridley Mines Limited (Company) (100%). The Project is subject to a Full Determination of Native Title: which is held by the Esperance Nyungars NNTT Number: WC2004/010, Federal Court Number: WAD28/2019		
	The security of the tenure held at the time of reporting along with any known impediments to obtaining a license to operate in the area.	The tenements are in good standing, and there are no impediments to operating in the targeted areas other than requirements of the DMIRS and Heritage Protection Agreements, all of which are industry-standard.		
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	Many parties, including Government organisations, private and public companies, have explored the area. A substantial compilation of work prior to Mount Ridley was by Bishop who was the first to research and champion the potential of Grass Patch, interpreted as a large, crudely layered, amphibolite-gabbro complex beneath shallow cover sediments. The mafic complex is considered to have the potential to host nickel-copper sulphide deposits and PGE deposits. completed detailed litho-geochemistry interpretation from 'best available' end of hole assays, development of a geological map based on this information. Additional drilling tested the models but didn't return assays of commercial consequence. Mount Ridley has completed a large complement of geophysical surveys and drilling, aimed at nickel sulphides and gold. The samples reported herein were generated during the search for nickel sulphides. Nearby, Salazar Gold Pty Ltd were the first company to search for REE in the Great Southern, identifying the Splinter REE deposit. Work started in 2010 and continues now.		
Geology	Deposit type, geological setting, and style of mineralisation.	Ionic Adsorption Clay or Saprolite-hosted Rare Earth Deposit.		
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	All relevant data for the drilling conducted is tabulated in Appendix 1 of this announcement. It should be noted that RL is estimated from a digital elevation model gained during an aeromagnetic survey.		

Data aggregation	In reporting Exploration Results, weighting averaging techniques, maximum	Assay results not reported.				
methods	and/or minimum grade truncations (eg cutting of high grades) and cut-off	Conversions from elements to oxides:				
	grades are usually Material and should be stated.	Ce_ppm	1.2284	CeO₂ ppm		
	Where aggregate intercepts incorporate short lengths of high-grade results	Dy_ppm	1.1477	Dy ₂ O ₃ _ppm		
	and longer lengths of low-grade results, the procedure used for such	Er ppm	1.1435	Er ₂ O ₃ ppm		
	aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated.	Eu_ppm	1.1579	Eu ₂ O ₃ _ppm		
		Gd_ppm	1.1526	Gd₂O₃_ppm		
		Ho_ppm	1.1455	Ho ₂ O ₃ _ppm		
		La ppm	1.1728	La ₂ O ₃ ppm		
		Lu_ppm	1.1372	Lu ₂ O ₃ _ppm		
		Nd ppm	1.1664	Nd ₂ O ₃ ppm		
		Pr_ppm	1.2082	Pr ₆ O ₁₁ _ppm		
		Sm ppm	1.1596	Sm ₂ O ₃ ppm		
		Tb_ppm	1.1762	Tb ₄ O ₇ _ppm		
		Tm ppm	1.1421	Tm ₂ O ₃ _ppm		
		Y ppm	1.2695	Y ₂ O ₃ ppm		
		Yb ppm	1.1387	Yb ₂ O ₃ _ppm		
		· ·			olweight.html	1
		Source: www.geol.umd.edu/~piccoli/probe/molweight.html TREO: the sum of La ₂ O ₃ , CeO ₂ , Pr ₆ O ₁₁ , Nd ₂ O ₃ , Sm ₂ O ₃ , Eu ₂ O ₃ , Gd ₂ O ₃ , Tb ₄ O ₇ , Dy ₂ O ₃ Ho ₂ O ₃ ,				
		Er ₂ O ₃ , Tm ₂ O ₃ , Yk			5, 24205, 04205, 12.	(07) 5 (203.10203)
		HREO: the sum of Gd ₂ O ₃ , Tb ₄ O ₇ , Dy ₂ O ₃ Ho ₂ O ₃ , Er ₂ O ₃ , Tm ₂ O ₃ , Yb ₂ O ₃ , Lu ₂ O ₃ , Y ₂ O ₃ . LREO: the sum of La ₂ O ₃ , CeO ₂ , Pr ₆ O ₁₁ , Nd ₂ O ₃ , Sm ₂ O ₃ , Eu ₂ O ₃ .				
		CREO: the sum of	of Dy ₂ O ₃ , Eu ₂ O ₃ ,	Nd ₂ O ₃ , Tb ₄ O ₇ , and	Y_2O_3 .	
Relationship	These relationships are particularly important in the reporting of Exploration					
between	Results.	the targeted mine	eralisation seem	ns to be a flat-lying	sheet. The sheet	margins have not
mineralisation	If the geometry of the mineralisation with respect to the drill hole angle is	, ,				
widths and intercept	known, its nature should be reported.					
lengths	If it is not known and only the down hole lengths are reported, there should be					
	a clear statement to this effect (eg 'down hole length, true width not known').					
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts	Refer to Tables 1-4 in the body of text, Table 5 and maps appended in Appendix 1A and Table 6 in Appendix 1B.				
	should be included for any significant discovery being reported These should					
	include, but not be limited to a plan view of drill hole collar locations and					
	appropriate sectional views.					
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable,	All assay results fr	om this work pr	rogram are presente	ed in Table 6 in App	pendix 1B.
	representative reporting of both low and high grades and/or widths should be					
011 1 : ::	practiced to avoid misleading reporting of Exploration Results.	A11			1	
Other substantive	Other exploration data, if meaningful and material, should be reported	All new, meaningf	uI, and material	l exploration data ha	as been reported	
exploration data	including (but not limited to): geological observations; geophysical survey					
	results; geochemical survey results; bulk samples – size and method of					
	treatment; metallurgical test results; bulk density, groundwater, geotechnical					
	and rock characteristics; potential deleterious or contaminating substances.					

Further wo	ork	The nature and scale of planned further work (eg tests for lateral extensions	Analysis of additional samples is progressing and will be reported when received.	
		or depth extensions or large-scale step-out drilling).	Mineralogy and further metallurgical test work is progressing.	
	-	Diagrams clearly highlighting the areas of possible extensions, including the	Drilling is planned.	
		main geological interpretations and future drilling areas, provided this		
		information is not commercially sensitive.		