

QUARTERLY REPORT FOR THE PERIOD ENDED 30 SEPTEMBER 2021

Highlights

- Hualilan Gold Project San Juan, Argentina
 - Exploration continued to return outstanding results with 82 diamond core holes for 27,856 metres completed during the quarter and results significantly expanding mineralisation.
 - Increase in the Company's ground position at the Hualilan Gold Project from 80 to 177.5 sqkms and completion of the acquisition of 100% of the Hualilan Gold project.
 - On track to complete the remaining 96,000 metres of drilling in the next 8 months with 9 rigs programmed to be on site during the remainder of this program.
 - CEL's follow up Sentazon drill program extended high-grade mineralisation by 300% downdip and confirmed a second zone of mineralisation with results including (Table 1):
 - 16.9m at 16.9 g/t AuEq² 14.1 g/t Au, 18.3 g/t Ag, 5.8% Zn from 193.0m including;
 7.1m at 32.2 g/t AuEq² 28.1 g/t Au, 36.1 g/t Ag, 8.3% Zn from 194.2m and;
 2.9m at 18.8 g/t AuEq² 3.1 g/t Au, 13.0g/t Ag, 12.6% Zn from 207.1m (GNDD-296)
 - 4.6m at 25.6 g/t AuEq² 24.3 g/t Au, 23.0 g/t Ag, 2.2% Zn from 213.0m and;
 10.2m at 14.2 g/t AuEq² 12.5 g/t Au, 10.6 g/t Ag, 3.5% Zn from 230.0m including;
 4.5m at 25.6 g/t AuEq² 23.6 g/t Au, 14.1g/t Ag, 4.3% Zn (GNDD-044e)
 - 2.8m at 62.5 g/t AuEq² 59.0 g/t Au, 25.8 g/t Ag, 7.2% Zn from 296.9m (GNDD-314);
 - Extension drilling on the Magnata Fault significantly extended the high-grade Magnata Fault mineralisation along strike and at depth with mineralisation remaining open in all directions.
 - GNDD-288, the deepest Magnata hole to date intercepted 14.2m at 13.6 g/t AuEq.
 - Drilling on the Verde Zone discovery extended it to a 1.5 kilometre zone of continuous mineralisation open below 300 metres vertically with results including (Table 3):
 - 49.0m at 2.4 g/t AuEq² 1.5 g/t Au, 10.4 g/t Ag, 1.7% Zn from 310.0m including,
 2.9m at 17.7 g/t AuEq² 13.8 g/t Au, 55.1 g/t Ag, 7.2% Zn from 312.0; and
 17.6m at 3.5 g/t AuEq² 1.8 g/t Au, 18.2 g/t Ag, 3.2% Zn from 341.5 (GNDD-336);
 - 62.0m at 2.1g/t AuEq² 1.7 g/t Au, 20.3 g/t Ag, 0.3% Zn from 173.0m (GNDD-254);
 - 35.0m at 2.3g/t AuEq² 2.2 g/t Au, 3.0 g/t Ag, 0.1% Zn from 63.0m (GNDD-277).
- El Guayabo/Colorado V Gold/Copper Projects El Oro, Ecuador
 - Twenty Thousand metre drill program started during the quarter with the first holes located on the Company's 100% owned El Guaybo concession.
 - At the end of the quarter the Company had completed drill hole GYDD-21-001 which was drilled to 800.5 metres with the second hole, GYDD-21-002, in progress.
 - The Company expects to complete approximately 12,600 metres for 18 drill holes in Colorado
 V with an additional 12 drill holes for a total of 7500 metres in Colorado V concession.

Challenger Exploration (ASX: CEL) ("CEL" or the "Company") is pleased to provide its Quarterly Activities Report for its Gold and Copper projects in Argentina and Ecuador for the period ended 30 September 2021.

CORPORATE

CEL received shareholder approval to acquire 100% ownership of its flagship Hualilan Gold Project (was previously earning up to 75%). The Company issued 50 million CEL shares for 50% (previously contingent on completion of a DFS) and 64 million CEL shares and payment of US\$3.69 million for the final 25% of the Project.

Mr Sergio Rotondo, the key vendor, following allotment, joined the Board of the Company as Executive Director. Sergio is the Company's Chief Operating Officer (COO South America) and was integral in bringing the Hualilan Gold Project to CEL, in addition to being a foundation member of the Company's management team since re-listing in July 2019.

Hernan Celorrio, the past President of Barrick Argentina and responsible for the development and operation of Barrick Gold's Veladero Gold Mine in San Juan Province, will remain as the President of the Company's 100% owned Argentine operating subsidiary, Golden Mining SA.

In addition to the acquisition of 100% of the Hualilan Project following approval of shareholders at the Shareholder Meeting held to approve the acquisition of 100% of the Hualilan Gold Project, the Company has formally completed the acquisition of 100% of the El Guaybo Project in Ecuador. The Company has allotted 14 million of the 18 million shares under the acquisition agreement and will allot the final 4 million shares within 3 months of the Shareholder Meeting after clarifying registration details with the Vendor.

Subsequent to the end of the September quarter, the Company entered into agreements to acquire a package of Exploration Licences adjacent to the Company's existing Hualilan Gold Project. The concessions comprise five contiguous exploration licenses which are collectively called the Cordon del Peñon tenements. The Cordon del Peñon tenements cover 97.5 square kilometres and are located 3 kilometres north of Challenger's existing Hualilan Project concessions which cover approximately 80 square kilometres.

The tenements are bounded by Newmont on the eastern and southern boundaries (Figure 1). They contain the same package of sedimentary rocks and limestones that host the Hualilan Gold project and cover approximately 15 kilometres of prospective strike.

The most recent historical work was done on the tenements in 2017 prior to the Company's Hualilan Gold Project emerging as a discovery of significance. This work was completed by TSX listed Centenera Mining Corporation (Centenera) and involved the collection of 110 stream sediment samples and 26 rock chip samples across the concession. Two of the stream sediment samples assayed 2.3 g/t (2,300ppb) gold and 2.2 g/t (2,219ppb) gold, which is exceptionally high for stream sediment samples. This was interpreted by Centenera as suggesting the presence of a proximal gold source. The two

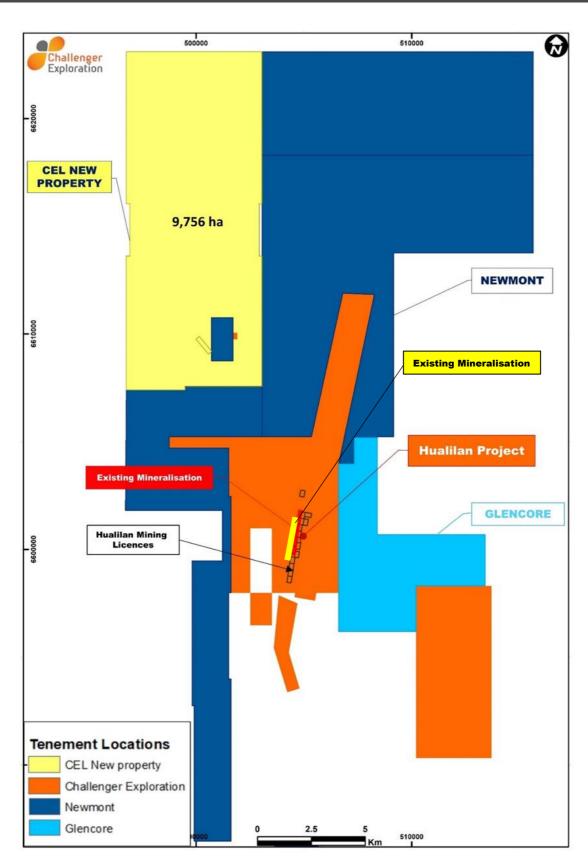


Figure 1 - Hualilan Project and surrounds Tenement Map

Issued Capital 974.4m shares 49.0m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

high-grade samples are supported by additional stream sediment samples which define 4 discrete gold geochemical targets within a zone of anomalous geochemistry over approximately 10km strike length.

As a first step in exploration, The Company intends to expand its ground magnetic data to cover the entire 97.5 square kilometres of the new concessions and follow up areas of anomalous surface geochemistry with ground geological mapping to identify the source of the mineralisation

Challenger is in a strong financial position, with cash at the end of the quarter \$36.9m. Spend during the quarter was \$13.5m of which approximately \$1.0m was Argentinian VAT which will be recouped and approximately \$5m was a one-off payment related to the 100% purchase of Hualilan. The balance was repayments and expenses related to the Riverfort facility. Payments to related parties for the quarter, as per section 6 of the Appendix 5B was \$150,000 for Director's consulting fees. The net exploration expenditure for the quarter with 9 rigs completing 27,856 metres in Hualilan, exploration in Ecuador (including advance payments to Ecuadorian drill contractor), and all overheads was approximately \$8m, primarily drilling and assay expenditure.

COVID-19

The Company continues to work with all levels of government and local communities in relation to COVID-19. In addition to its regular community support activities during COVID-19, which include the donation of fortnightly food packs to the 100 most needy families in its local community in around the El Guayabo Project, the Company agreed to donate a number of oxygen bottles to the Santa Rosa community at the request of the local mayor.

During the quarter there were no incidences of COVID-19 at any of the Company's projects and all of the companies employees from Ecuador are fully vaccinated for COVID-19. The Company's priority remains the health and wellbeing of all its staff and contractors and their families. A copy of the Company's COVID-19 protocols is available on our website

HUALILAN GOLD PROJECT - ARGENTINA

SENTAZON EXTENSION DRILLING PROGRAM

Sentazon is the southernmost mineralisation that was defined historically with its location shown in Figure 2. Mineralisation as Sentazon was described historically as;

"Manto-style" high grade lenses, oriented parallel to the limestone beds, caused by the replacement of the limestone beds with massive sulphides. The Sentazon Manto is one of three en-echelon manto zones at Cerro Sur, over a strike interval of 330 metres, the others being Muchilera and Magnata both to the north. This mineralisation is lensoid in shape, trending northerly, dipping 40 to 70 degrees west with thickness of 1 to 4 metres ranging to 8 metres and open at depth."

Previous drilling by CEL at Sentazon intersected mineralisation over 150 metres of strike and 100 metres down dip at Sentazon with the mineralisation open along strike, at depth, and up-dip into the Hualilan Hills. Additionally, GNDD-142 had intersected a broad zone of high-grade mineralisation 50 metres below the Sentazon Manto returning an intercept of 40.0 metres at 6.2 g/t AuEq in limestones and intrusives.

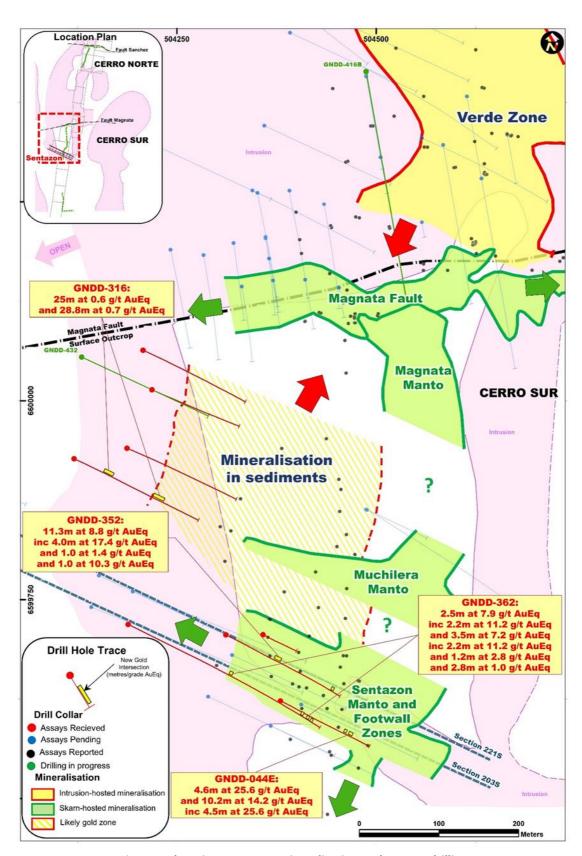


Figure 2 Plan View Sentazon mineralisation and current drilling

Issued Capital 974.4m shares 49.0m options 120m perf shares 16m perf rights **Australian Registered Office** Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

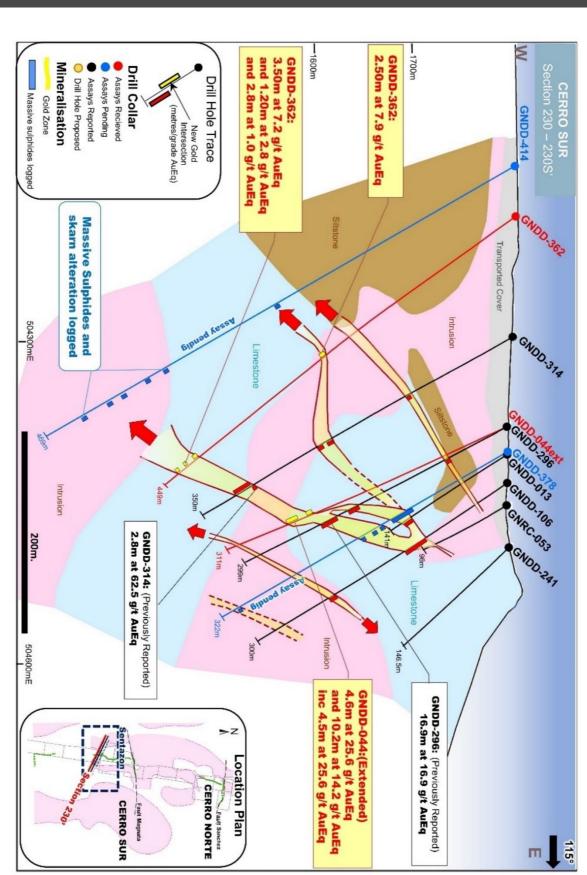
The program of extensional drilling at Sentazon during the quarter was designed to test for:

- extensions to the Sentazon Manto along strike, up-dip, and down-dip of the existing mineralisation; and
- follow the GNDD-142 discovery to the east to determine if this was a new zone of mineralisation below the Sentazon Manto or a third potential east-west fault analogous to the Magnata Fault.

During the quarter the Company received assays results for 22 Sentazon holes with the results substantially exceeding The Company's expectations. The program confirmed the intercept in GNDD-142 as a significant new zone of high-grade gold mineralisation in the footwall below the existing high-grade mineralisation at Sentazon. It increased the down-dip extent of the high-grade mineralisation at Sentazon 300% from 100 metres to 300 metres.

Additionally, several deeper drill holes in this program (assays pending) have intercepted zones of massive sulphides in limestone containing pyrite-sphalerite-pyrrhotite with garnet-silica-pyroxene (skarn) alteration another 100 metres down-dip of the current high-grade results. This alteration style and mineral assemblage is consistent with other mineralised intervals in the limestone where high-grade gold results were received.

The Sentazon drill program continues to be expanded and now includes a minimum of 17 additional drill holes with further holes in planning. This drilling is being done on fences spaced 40 metres apart with holes on each fence collared to test Sentazon approximately 40 metres below the previous hole.


Section 230 (GNDD-296, GNDD-314, GNDD-362)

Cross Section 230 (Figure 3) shows the southern line of drilling in the follow up program at Sentazon. It contains GNDD-296, GNDD-314, GNDD-362, and deeper hole GNDD-414 for which assays are pending.

GNDD-296 intersected almost 30 metres of mineralisation including **10.0 metres at 1.0 g.t AuEq (0.4 g/t gold, 1.6 g/t silver, 1.2% zinc)** from 173m which is interpreted as the main Sentazon Manto which was defined historically. The intercept in the main Sentazon Manto extended the mineralisation 60 metres down dip below GNDD-013 (7.0 metres at 2.7 g/t AuEq). It also confirmed that earlier CEL drill hole GNDD-044 was not drilled deep enough to reach the main Sentazon Manto or the underlying footwall mineralisation.

GNDD-296 then intersected **16.9 metres at 16.9 g/t AuEq (14.1 g/t gold, 18.3 g/t silver, 5.8% zinc)** from 193.0m including **7.1 metres at 32.2 g/t AuEq (28.1 g/t gold, 36.1 g/t silver, 8.3% zinc)** and **2.9 metres at 18.8 g/t AuEq (13.1 g/t gold, 13.0g/t silver, 12.6% zinc)**. This deeper intercept correlates to the new zone of footwall mineralisation at Sentazon. The intercept extends the new Footwall Zone 100 metres down-dip from GNDD-106 (25 metres at 0.7 g/t AuEq including 4.0 metres at 2.6 g/t AuEq) and 35 metres along strike from GNDD-142 (40.0 metres at 6.1 g/t AuEq). It demonstrates higher grades and confirms that several earlier holes were not drilled deep enough to intersect this new Footwall Zone at Sentazon.

Challenger Exploration Limited ACN 123 591 382

ASX: CEL

Figure 3 - Cross Section 230 showing GNDD-044E, GNDD-362 and GNDD-414 (assays pending)

GNDD-044e was an extension of early CEL drill hole GNDD-044 which was terminated prior to reaching the Footwall Zone of mineralisation. GNDD-044e successfully intersected the footwall zone returning 4.6m at 25.6 g/t AuEq (24.3 g/t gold, 23.0 g/t silver, 2.2% zinc) from 213.0m and 10.2m at 14.2 g/t AuEq (12.5 g/t gold, 10.6 g/t silver, 3.5% zinc) from 230.0m including 4.5m at 25.6 g/t AuEq (23.6 g/t gold, 14.1g/t silver, 4.3% zinc). The hole confirmed the continuity of the Footwall Zone mineralisation in the 100 metres between GNDD-296 (16.9 metres at 16.9 g/t AuEq) up-dip and GNDD-314 (2.8m at 62.5 g/t AuEq) downdip.

GNDD-314 intersected three zones of mineralisation starting with intercepts of 2.7 metres at 1.7 g/t AuEq (1.5 g/t gold, 13.8 g/t silver, 0.1% zinc) from 115.4 m including 1.4 metres at 2.7 g/t AuEq (2.4 g/t gold, 21.3 g/t silver, 0.1% zinc) and 4.0 metres at 0.6 g/t AuEq (0.3 g/t gold, 11.8 g/t silver, 0.2% zinc) from 102.0m. These intercepts are at the shale-limestone contact and at the top of an underlying intrusive unit which is mineralised throughout Cerro Sur. Lower grade mineralisation also extends into the overlying shales which is observed throughout the project including at Verde over 2 kilometres to the north.

The hole then intersected 17.5 metres at 1.9 g.t AuEq (0.7 g/t gold, 11.5 g/t silver, 2.4% zinc) from 205.0m including two higher grade sones of 2.2 metres at 9.1 g/t AuEq (3.7 g/t gold, 33.6 g/t silver, 11.4% zinc) and 3.0 metres at 2.7 g/t AuEq (0.8 g/t gold, 14.3 g/t silver, 3.9% zinc). This is interpreted as the main Sentazon Manto mineralisation which was defined historically and is continuous with mineralisation immediately north. The intercept in the main Sentazon Manto extended this zone 75 metres down dip below GNDD-296 (10.0 metres at 0.9 g/t AuEq) to the same level as GNDD-299 (9.9 metres at 6.2 g/t AuEq) collared some 80 metres north along strike.

GNDD-314 confirmed a further significant extension to the new Footwall Zone with an intersection of **2.7 metres at 62.5 g/t AuEq (59.0 g/t gold, 25.8 g/t silver, 7.2% zinc)** from 296.9m. This bonanza grade zone occurred within a broader zone of lower grade mineralisation hosted in limestone and intrusives. This intercept extends the new Footwall Zone at Sentazon 75 metres down dip and confirms that the new Footwall zone has a vertical extent of at least 200 metres.

GNDD-362 was collared to test downdip of GNDD-314 and successfully extended main manto a further 100 metres down dip intersecting 2.5 metres at 7.9 g/t AuEq (2.1 g/t gold, 77.6 g/t silver, 8.3% zinc) including 1.3 metres at 14.7 g/t AuEq (3.8 g/t gold, 137.6 g/t silver, 21.2% zinc). The hole then extended the Footwall Zone 75 metres down dip of GNDD-314 intersecting 3.5 metres at 7.2 g/t AuEq (5.4 g/t gold, 9.4 g/t silver, 3.9% zinc) including 2.2 metres at 11.2 g/t AuEq (8.4 g/t gold, 12.1 g/t silver, 6.1% zinc) from 401.6m and 1.2 metres at 2.8 g/t AuEq (2.2 g/t gold, 6.7 g/t silver, 1.3% zinc) and 2.8 metres at 1.0 g/t AuEq (0.2 g/t gold, 4.2 g/t silver, 1.7% zinc) from 423.6m.

GNDD-414 (assays pending) was collared 100 metres west of GNDD-362 to test 100 metres down-dip of GNDD-362. The hole intersected a 4 metre zone logged as massive sulphides consisting of 25% pyite-10% shalerite-5% pyrrhotite in strong garnet-silica-pyroxene alteration from 273 metres which is interpreted as the extension of the main Sentazon Manto. The hole then intersected several more 1-2 metre zones of massive sulphides which are interpreted as the down-dip extension of the Footwall Zone mineralisation. This skarn alteration and massive sulphide mineralisation intersected in GNDD-

414 (assays pending) is consistent with mineralised intervals in other drill holes for which high-grade gold assays have been received.

A follow up hole is planned to be collared another 100 metres east of GNDD-414 to test another 100 metres down dip.

Section 223 (GNDD-253, GNDD-205)

Section 223 (Figure 4) is located approximately 40 metres north of Section 230. Drillhole GNDD-253 on the section was drilled as an up-dip test of GNDD-142 which intersected 11.5 metres at 6.5 g/t AuEq in the main Sentazon Manto and was the discovery hole for the Footwall Zone at Sentazon.

GNDD-253 intersected **50.0** metres at **1.9g/t** AuEq (**1.8g/t** gold, **1.0g/t** silver, **0.1%** zinc) from 133.0m including a higher grade zone of **2.4** metres at **17.3** g/t AuEq (**17.2** g/t gold, **3.76** g/t silver, **0.3%** zinc). Additionally, the hole intersected more of the same style of mineralisation 17 metres deeper intersecting **25.1** metres at **0.9** g/t AuEq including **3.6** metres at **2.4** g/t AuEq and **2.0** metres at **3.4** g/t AuEq. This extends the Footwall Zone of mineralisation 30 metres up-dip from GNDD-142 (40.0 metres at 6.1 g/t AuEq) and confirms that this new Footwall Zone has significant thickness with a true width greater than 90 metres, including a 17 metre zone of internal waste, intersected in GNDD-253.

In GNDD-253 the limestone which hosts the Sentazon Manto has been replaced by intrusives. The intrusion is localised on an east-west strike, possibly following a cross fault zone and does not extend to the section 50 metres to the north where the Sentazon manto extends up-dip. GNDD-253 did intersect 2.0 metres at 1.0 g/t AuEq (1.0 g/t gold, 1.1 g/t silver, 0.1% zinc) below the level of the main Sentazon Manto. Two drill holes are planned to test for extensions to the Manto and the Footwall Zone up-dip of GNDD-253 as shown in Figure 4.

GNDD-205 was drilled on the same section as a downdip test of GNDD-142. The hole intersected a high grade zone of **0.7m at 17.3 g/t AuEq (17.2 g/t gold, 3.76 g/t silver, 0.3% zinc)** which is believed to be the down-dip extension of the Footwall Zone. The company notes that GNDD-314 and GNDD-352 collared off section north and south of GNDD-205, and designed to intersect the Footwall Zone approximately 75 metres downdip of GNDD-205, have both recorded significant intersections in the Footwall Zone indicating mineralisation remains open at depth.

Section 221 (GNDD-209, GNDD-214, GNDD-239, GNDD-299, GNDD-352)

Section 221 (Figure 5) is located 40 metres north of Section 223. Drillholes GNDD-209, GNDD-239 and GNDD-214 were drilled as a series of 40 metre step-outs to test up-dip from CEL drill hole GNDD-016 which had intersected 11.5 metres at 5.9 g/t AuEq in the main Sentazon Manto.

All holes intersected mineralisation with GNDD-214 intersecting 3.8 metres at 24.8/t AuEq (22.1 g/t gold, 125.3 g/t silver, 2.6% zinc) from 48.3m. GNDD-209 intersected 17.1 metres at 2.6g/t AuEq (1.9g/t gold, 16.2g/t silver, 1.1% zinc) from 65.0m and GNDD-239 intersected 2.4 metres at 2.6 g/t AuEq (1.9 g/t gold, 7.3 g/t silver, 1.5% zinc). GNDD-299 intersected an encouraging 9.9 metres at 6.4 g/t AuEq (3.4 g/t gold, 44.0 g/t silver, 5.3% zinc) from 147.5m. GNDD-299 extended the Sentazon

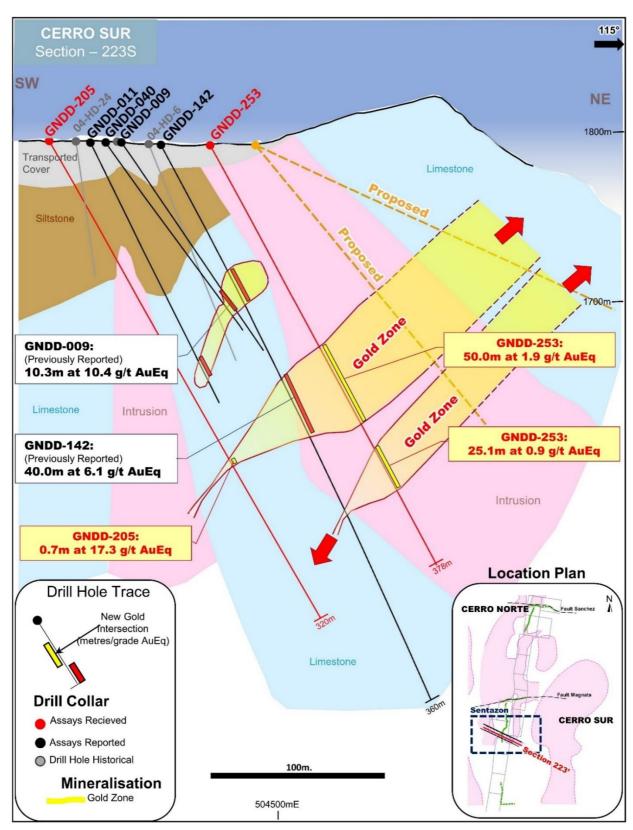
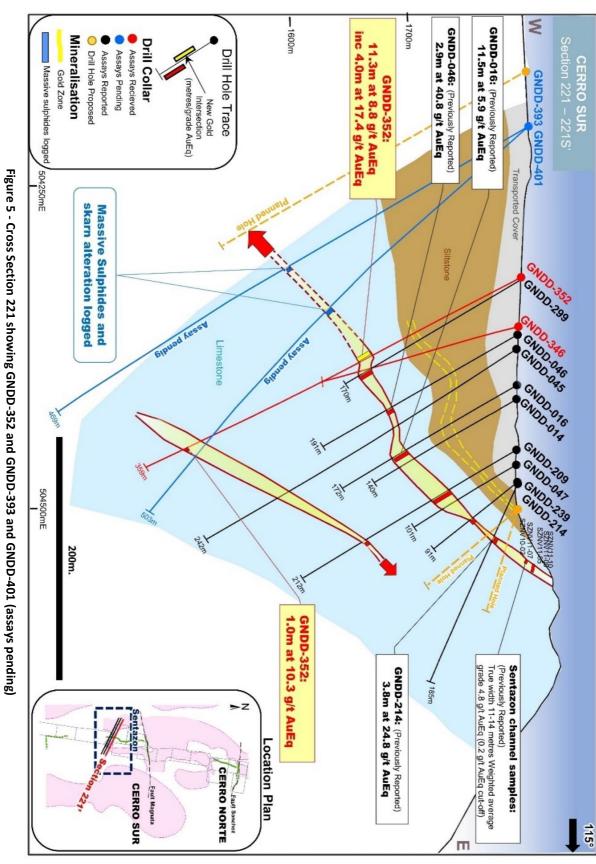



Figure 4 - Cross Section 230 showing GNDD-205, GNDD-253

Issued Capital 974.4m shares 49.0m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Manto 30 metres down dip from GNDD-046 (2.9 metres at 40.8 g/t AuEq).

Drill hole GNDD-352 was drilled off the same pad as GNDD-299 effectively as a re-drill of GNDD-299 deep enough to test the new Footwall Zone of mineralisation. GNDD-352 intersected 11.3m at 8.8g/t AuEq (5.4g/t gold, 76.9 g/t silver, 5.5% zinc) from 143.5m including 4.0m at 17.4 g/t AuEq (10.6 g/t gold, 140.8 g/t silver, 11.7% zinc). This mineralisation extended the main Sentazon Manto mineralisation 20 metres downdip of GNDD-299. The hole then confirmed the deeper Footwall Zone extends downdip on this section intersecting 1.3m at 1.4g/t AuEq (1.0g/t gold, 9.9 g/t silver, 0.6% zinc) from 302.0m and 1.0m at 10.3 g/t AuEq (8.9 g/t gold, 5.4 g/t silver, 3.0% zinc) from 325.0m.

New Zone of Sediment and intrusion-hosted mineralisation

Drill holes GNDD-306, GNDD-311, GNDD-316, and GNDD-338 were a series of four holes drilled to test the projected southern extension of the Verde Zone and limestone on the south side of the Magnata Fault 200 to 400 metres south of the Verde Zone. The holes we spaced approximately 40 metres along strike and drilled as stratigraphic holes given insufficient drilling has been completed to determine the specific amount of lateral movement on the Magnata Fault, and hence, the position of any extension of the Verde Zone south across the Magnata Fault .

All four holes intercepted 20-40 metre wide zones of disseminated mineralisation hosted in sediments with results including:

- 28.8 metres at 0.7 g/t AuEq (0.5 g/t gold, 8.2 g/t silver, 0.3% zinc) from 213.3m including
 1.7m at 4.6 g/t AuEq (2.5 g/t gold, 63.1 g/t silver, 3.0% zinc) and 2.0m at 2.4 g/t AuEq (1.7 g/t gold, 21.5 g/t silver, 1.0% zinc) in GNDD-306;
- 20 metres at 0.5 g/t AuEq (0.4 g/t gold, 6.1 g/t silver, 0.1% zinc) from 190.0m in GNDD-338;
- 28.8 metres at 0.4 g/t AuEq (0.3 g/t gold, 4.7 g/t silver, 0.1% zinc) from 286.0m including
 2.0m at 1.7 g/t AuEq (1.3 g/t gold, 28.0 g/t silver, 0.1% zinc), 2.0m at 1.2 g/t AuEq (0.6 g/t gold, 9.6 g/t silver, 0.9% zinc) and 2.0m at 1.5 g/t AuEq (1.4 g/t gold, 4.4 g/t silver in GNDD-316: and
- 21 metres at 0.3 g/t AuEq (0.2 g/t gold, 3.2 g/t silver, 0.1% zinc) from 176.0m including 4.5 metres at 0.6 g/t AuEq (0.3 g/t gold, 6.5 g/t silver, 0.4% zinc) in GNDD-311.

This mineralisation hosted in sediments has been found to indicate the presence of deeper underlying intrusion-hosted mineralisation at the Verde Zone. The lower grade halo of mineralisation extending into the overlying sedimentary rocks has a connection with underlying mineralised intrusions.

These sediment hosted intercepts correlate with a series of intercepts in drillholes GNDD-201, GNDD-232, GNDD-235, GNDD-246 and GNDD-250 completed during the quarter which were collared over the approximate strike position some 200 metres up-dip. These up-dip holes intercepted narrow zones of mineralisation, some with surrounding zones of disseminated mineralisation, hosted in sediments and limestone. Results included 2.5 metres at 1.1 g/t AuEq and 4.0 metres at 2.5 g/t AuEq (GNDD-232); 2.5 metres at 5.9 g/t AuEq including 0.9 metres at 16.4 g/t AuEq (GNDD-246); and 5.0

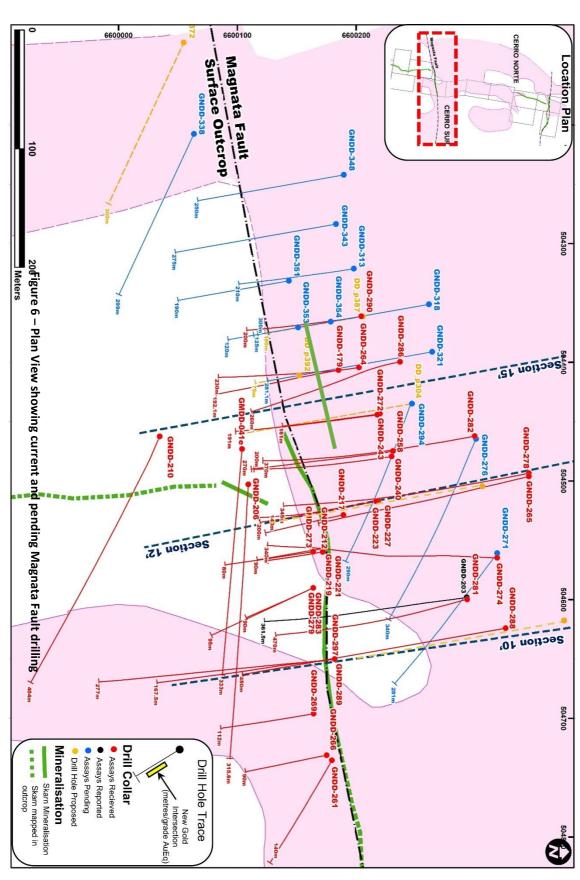
metres at 1.3 g/t AuEq within halo of lower-grade mineralisation of 30 metres at 0.4 g/t AuEq (GNDD-250). The correlation with these mineralised intercepts 200 metres up-dip indicates that this new zone of mineralisation hosted in sediments is extensive, with at least 200 metres of dip extent.

Additionally, each of GNDD-306 to GNDD-338 intersected a shallower zone of mineralisation hosted in intrusives that extend to surface, above the deeper sediment hosted mineralisation. Intercepts in the shallower intrusives included 25.0 metres at 0.6 g/t AuEq (0.5 g/t gold, 5.8 g/t silver, 0.1% zinc) from 78.0.3m including 8.0m at 1.2 g/t AuEq (1.0 g/t gold, 13.9 g/t silver, 0.2% zinc) in GNDD-306 and 22.0 metres at 0.5 g/t AuEq (0.4 g/t gold, 0.8 g/t silver) from 5.0m including 2.0m at 2.3 g/t AuEq (2.3 g/t gold, 1.2 g/t silver) in GNDD-311. At the Verde Zone, a lesser mineralised zone of intrusives is often seen above the sediments with the main intrusion-hosted mineralisation found in a second deeper zone of intrusives under the mineralised sediment halo.

A series of deeper holes are planned to test below GNDD-306, GNDD-311, GNDD-316, and GNDD-338. The first of these holes GNDD-432, which was collared to test 100 metres downdip of GNDD-311, has been completed with samples submitted for assay.

MAGNATA FAULT EXTENSION DRILLING

During the quarter the Company released the results are from a series of drill holes designed to test for extensions of high-grade mineralisation on the Magnata Fault at depth and along strike. The program was particularly pleasing with all 33 drill holes intersecting mineralisation and the footprint of the high-grade Magnata Fault mineralisation being extended significantly.


Magnata Fault Zone

The Magnata and Sanchez Faults are two large east-west oriented sub-vertical strike strip faults. The faults can be seen in outcrop extending for tens of kilometres to the east and west of Hualilan. The Magnata Fault Zone is located at Cerro Sur approximately 1.5 kilometres south of the Sanchez Fault and separates into the M1 and M2 Magnata Faults, both of which host high-grade mineralisation.

The Magnata and Sanchez Faults were historically recognised as major controls of the mineralisation at Hualilan. The mineralising fluids were interpreted to have migrated from a source below or along strike, within the faults forming steeply dipping zones of mineralisation within the Magnata and Sanchez Faults. These fluids migrating up the faults have also formed replacement Manto-style high grade lenses, oriented parallel to the limestone beds, dipping to the west adjacent to the faults.

This program of extension drilling on the Magnata Fault during the quarter was designed as a series of fences of holes spaced at 40 metre intervals along the Magnata Fault. The holes on each fence were collared to intersect the Magnata Fault approximately 40 metres below the previous hole. The location of the drill holes are shown in Figure 5 and the drill results are ordered from west to east in the following discussion.

Issued Capital 974.4m shares 49.0m options 120m perf shares 16m perf rights **Australian Registered Office** Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

GNDD290

GNDD-290 is the most westerly hole reported to date and was drilled to test 50 metres east along strike from GNDD-179 and GNDD-286 which intersected **7.5m at 8.5 g/t AuEq**. GNDD-290 confirmed that the Magnata Fault mineralisation extends another 50 metres to the west which is a total stepout of 100 metres from previous drilling. GNDD-290 intersected four separate zones of mineralisation including **2.1 metres at 2.7 g/t AuEq (1.4 g/t gold, 25.3 g/t silver, 2.1% zinc)** from 139.5m and **4.0 metres at 4.6 g/t AuEq (1.9 g/t gold, 19.9 g/t silver, 5.5% zinc)** from 162.6 metres.

The hole has been followed up by four drillholes (all assays pending) to test for extensions to the Magnata fault mineralisation comprising 50 metre step-outs west along strike. Additionally, GNDD-318, GNDD-353 and GNDD-354 (all assays pending) have been drilled on the same section and GNDD-290 to test up-dip and downdip of GNDD-290 (Figure 6 - Plan View).

GNDD-179, 264, 286

GNDD-179, GNDD-264, GNDD-286, and GNDD-321 (assay pending) were drilled to test for extensions to the mineralisation on the Magnata Fault 50 metres west of previous drilling. The drill holes step approximately 50 metres progressively deeper below GNDD-179 which was designed to intersect the Magnata fault 50 metres below the surface.

The grades on this section appear to be improving with depth GNDD-264 intersecting 22.1m at 2.3 g/t AuEq (1.4 g/t gold, 16.7 g/t silver, 1.7% zinc) from 105.0m. GNDD-286, the deepest hole on the section results have been received for, which was collared to intersect the Magnata Fault 50 metres below GNDD-264 intersected 10.2m at 6.2 g/t AuEq (4.2 g/t gold, 52.5 g/t silver, 3.0% zinc) from 169.0m including a higher-grade 2.2m at 18.5 g/t AuEq (11.5 g/t gold, 170.5 g/t silver, 11.1% zinc). GNDD-321 (assays pending) has been drilled to test another 50 metres down-dip from GNDD-286.

GNDD-294, GNDD272, GNDD-243

Drillholes GNDD-243, GNDD-272 and GNDD-294 were drilled to test progressively underneath earlier drillholes GNDD-014 (14.7m at 3.3 g/t AuEq) and GNDD-117 (10.0m at 2.7 g/t AuEq) which tested the Magnata Fault approximately 50 metres below surface. This fence of drill holes is shown in Figure 7 over the page.

GNDD-272 intersected 11.1m at 20.0 g/t AuEq (17.4 g/t gold, 51.1 g/t silver, 4.5% zinc) from 137.0m including 7.9m at 27.2 g/t AuEq (23.8 g/t gold, 65.2g/t silver, 6.0% zinc) and extended the Magnata Fault mineralisation 60 metres down dip. GNDD-243 was drilled 40 metres downdip from GNDD-272 and extended the mineralisation with 7.1m at 3.6 g/t AuEq (2.2 g/t gold, 27.2 g/t silver, 2.6% zinc) from 136.0m including 1.1m at 16.7 g/t AuEq (9.0 g/t gold, 126.0g/t silver, 14.0% zinc).

GNDD-294 was designed to test another 50 metres down dip from GNDD-243 and returned only a narrow intersection however drillholes GNDD-286 and GNDD-252. drilled off this section either side of GNDD-294, and designed to intersect the Magnata Fault at the same depth as GNDD-294 both intersected much stronger mineralisation confirming mineralisation remains open at depth in this section of the Magnata Fault.

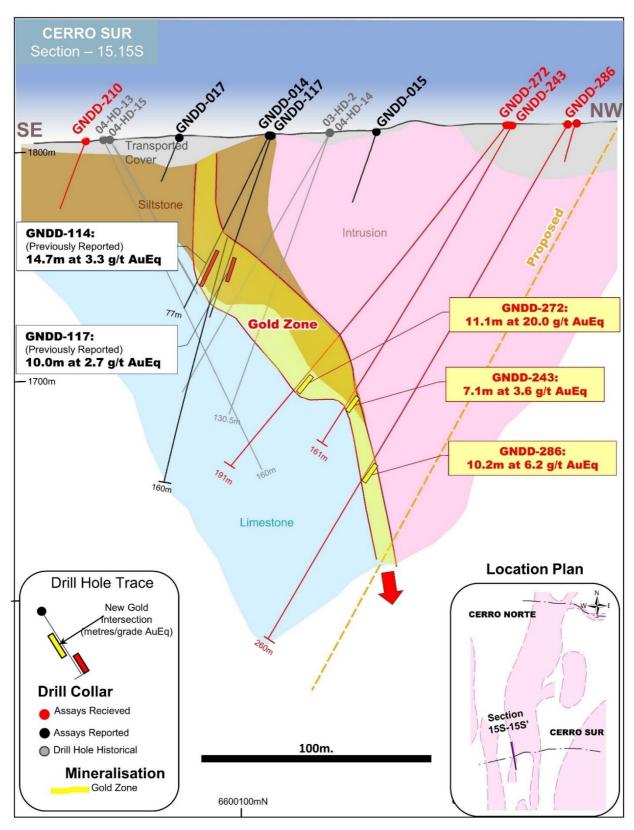


Figure 7 - Magnata Fault Cross Section 15

GNDD-282, GNDD-258, GNDD-240

Drillholes GNDD-240, GNDD-258 and GNDD-282 were drilled as a series of three holes to test the Magnata Fault midway between historical holes GNDD-015 and GNDD-020. The holes intersected mineralisation on both the M1 and M2 Magnata Faults with results including 3.5m at 4.6 g/t AuEq (2.7 g/t gold, 50.2 g/t silver, 2.9% zinc) from 136.0m including of 1.3m at 11.3 g/t AuEq (6.6 g/t gold, 116.0 g/t silver, 7.6% zinc) from 167.0m and 2.0m at 1.5 g/t AuEq (1.4 g/t gold, 0.3 g/t silver, 0.1% zinc) in GNDD-240. The lower tenor of the mineralisation is interpreted as a result of there being limited open space for mineralisation to be deposited into at this location in the Magnata Fault.

GNDD-217, GNDD-223, GNDD-227, GNDD-265, GNDD278,

GNDD-217, GNDD-223, GNDD-227, GNDD-265, and GNDD-278 were drilled on the same section stepping progressively deeper to extend the Magnata Fault mineralisation below GNDD-006 which intersected 6.5 metres at 4.6 g/t AuEq from 78.5m. This series of holes is shown in Cross Section 12 (Figure 8 over the page).

GNDD-217 intersected 21.0m at 7.6 g/t AuEq (5.7g/t gold, 32.1 g/t silver, 3.4% zinc) from 111.0m including 11.7m at 13.3 g/t AuEq (10.1 g/t gold, 54.8 g/t silver, 5.9% zinc) including a higher grade section of 4.4m at 29.9 g/t AuEq(23.1 g/t gold, 139 g/t silver, 11.7% zinc). GNDD-227 was collared to test the Magnata Fault 100 metres below GNDD-217 and intersected 8.0m at 5.7 g/t AuEq (4.2g/t gold, 53.6 g/t silver, 1.7% zinc) from 222.0m including 6.6m at 6.8 g/t AuEq (5.1 g/t gold, 64.2 g/t silver, 2.1% zinc).

The Company believes that the two deeper holes on this fence, GNDD-265 and GNDD-278, are likely to have been stopped short of the main Magnata Fault due to the Magnata Fault having steepened at depth. Accordingly, GNDD-265 is programmed to be extended another 70 metres deeper. The mineralisation intersected GNDD-265 (1.0 m at 10.3 g/t AuEq from 237.0m) and GNDD-278 (1.0 m at 1.1 g/t AuEq from 223.0m and 1.0 m at 1.5 g/t AuEq from 228.0m) is a new zone of mineralisation on the contact of the limestone and the overlying intrusive. Mineralisation is consistently seen at this contact elsewhere at Hualilan.

GNDD-227 intersected mineralisation at the contact between the limestone and intrusive 100 metres along the contact intersecting **3.7 m at 2.15 g/t AuEq** from 179.2m including **0.9 metres at 7.9 g/t AuEq.** GMDD-041E, which a 300 metre extension of metallurgical drillhole GMDD-041 designed to test if the new zone of high-grade mineralisation intersected in GNDD-157 was oriented east-west or north-south, intersected **1.6 metres at 9.7 g/t AuEq** from 306.1m on the limestone-intrusive contact 50 metres south of GNDD-217.

GNDD-212, GNDD-221, GNDD-273, GNDD-274, GNDD-279, GNDD-283

This series of holes was drilled on the same section as earlier drillhole GNDD-145, which failed to intersect mineralisation. The Company interpreted GNDD-145 as likely having been terminated prior to reaching the Magnata Fault.

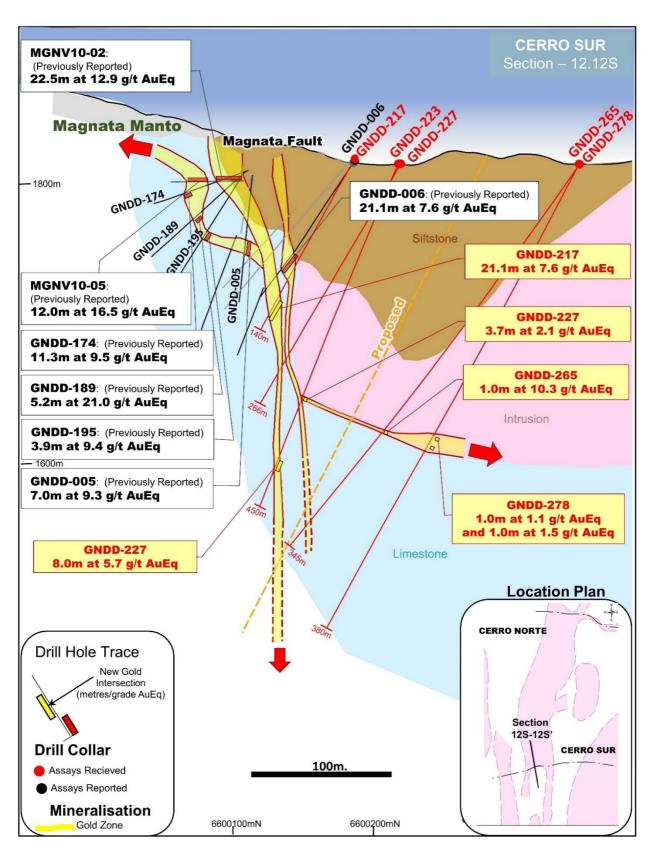


Figure 8 - Magnata Fault Cross Section GNDD-217 and GNDD-227

Issued Capital 974.4m shares 49.0m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

GNDD-221 was collared to intersect the Magnata Fault 50 metres up-dip from GNDD-145 and confirmed the presence of mineralisation on the Magnata Fault intersecting **8.2m** at **2.0** g/t AuEq (1.5 g/t gold, 7.5 g/t silver, 0.8% zinc). GNDD-274 was collared to test he Magnata Fault 100 metres below GNDD-221 and intersected **19.0m** at **1.1** g/t AuEq (0.7 g/t gold, 9.6 g/t silver, 0.5% zinc) from 298.0m including a higher grade zone of **2.0m** at **8.7** g/t AuEq (6.6 g/t gold, 48.8 g/t silver, 3.5% zinc).

GNDD-279 and GNDD-283 were drilled as shallow test of the Magnata Fault just off this section with both holes successfully intersecting near surface mineralisation on the Magnata Fault. GNDD-283 intersected 4.0 metres at 3.2 g/t AuEq (2.9 g/t gold, 17.8 g/t silver, 0.2% zinc) from 7.0m including 1.2m at 10.1 g/t AuEq (9.4 g/t gold, 49.7 g/t silver, 0.3% zinc).

These drill holes, which all successfully intersected mineralisation on the Magnata Fault, confirm that the earlier hole GNDD-145 was terminated above target and accordingly GNDD-145 is programmed to be re-entered and extended.

GNDD-281

GNDD-281 was drilled as a test of the Magnata Fault 50 metres below GNDD-203 which intersected 21.8m at 4.5 g/t AuEq from 299.0m including 3.6m at 16.2 g/t AuEq. GNDD-203 was, prior to this round of drilling, the deepest test of the Magnata Fault. GNDD-281 intersected a number of zones of mineralisation including the successful extension of the mineralisation encountered in GNDD-203 another 50 metres deeper.

The hole intercepted **2.6m** at **2.8g/t AuEq (1.1 g/t gold, 26.2 g/t silver, 3.1% zinc)** from 196.3m and **1.2m** at **4.2g/t AuEq (3.0 g/t gold, 80.4 g/t silver, 0.3% zinc)** from 292.0m and **1.6m** at **1.3g/t AuEq (0.3 g/t gold, 24.6 g/t silver, 1.6% zinc)** from 426.0m. Additionally, GNDD-281 intersected a broad zone of near surface mineralisation above the Magnata Fault returning **23.5m** at **1.3g/t AuEq (1.1 g/t gold, 8.9 g/t silver, 0.3% zinc)** from 42.5m. This extended the near surface mineralisation encountered in GNDD-203 by 50 metres. GNDD-281 and GNDD-288 **(14.2m at 13.6 g/t AuEq)** confirm that mineralisation on the Magnata Fault, which starts at surface, remains open below 400 metres.

GNDD-288, GNDD-289, GNDD-297

GNDD-288 was collared to test the Magnata fault 50 metres below GNDD-157. GNDD-157 had intersected 130.8m at 2.5 g/t AuEq including an unexpected 12.0m at 20.9 g/t AuEq plus a near surface zone of 66.0m at 0.6 g/t AuEq. The deeper zone of mineralisation in GNDD-157 included 4.1m at 56.8 g/t AuEq which was believed to potentially be new, and third, zone of east-west mineralisation associated with the Magnata Fault. This series of holes is shown on Cross Section 10 (Figure 9).

GNDD-288 confirmed that the presence of a third zone of mineralisation intersecting **27.8m at 7.3 g/t AuEq (5.5 g/t gold, 12.9g/t silver, 3.9% zinc)** from 399.0m including a higher grade zone of **14.2m at 13.6 g/t AuEq (10.1 g/t gold, 20.6 g/t silver, 7.3% zinc)**. As Cross Section 10 (Figure 9) shows the high grade zone near the base of GNDD-288 correlates with the high grade zone in GNDD-157 confirming that the holes have intersected a previously unrecognised third east-west zone of high-grade

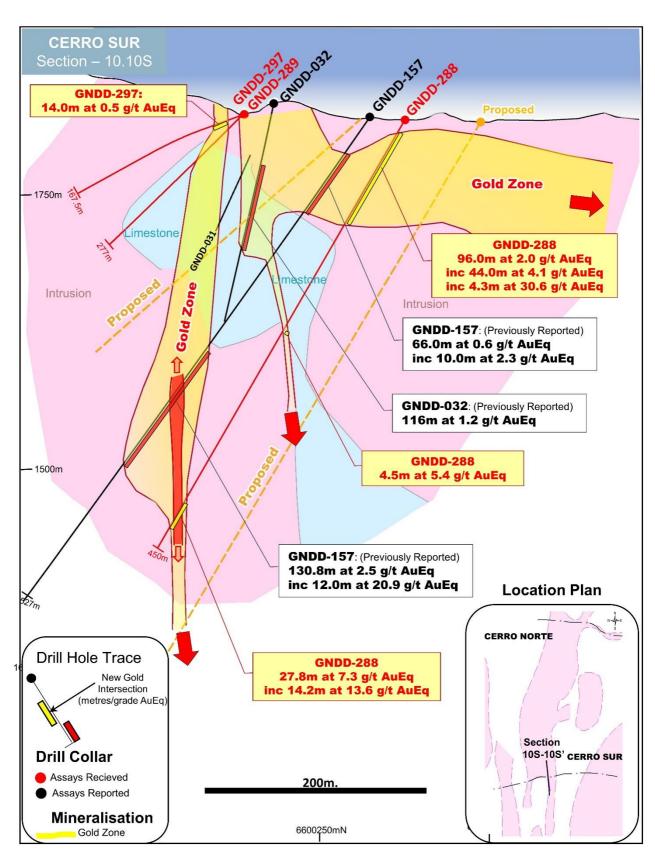


Figure 9 - Magnata Fault Cross Section 10 Showing GNDD-288

Issued Capital 974.4m shares 49.0m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

DirectorsMr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

mineralisation. The intercept in GNDD-288 includes a bonanza grade section of **2.0 metres at 53.4 g/t AuEq** which correlates with the 4 metres at 56.8 g/t AuEq in GNDD-157. This third east-west structure appears to have significant width and mineralisation remains open and strong at depth. Follow up drill holes are planned to test 50 metres below GNDD-288 and 50 metres above GNDD-157.

Additionally, GNDD-288 intersected the main Magnata Fault encountering **4.5m at 5.4 g/t AuEq (3.3 g/t gold, 31.2 g/t silver, 4.0% zinc)** from 216.0m which extended the main Magnata Fault zone 100 metres below GNDD-032 with this main Magnata Fault zone still open at depth.

GNDD-288 intersected a significant zone of near surface mineralisation returning **96.0m** at **2.0g/t AuEq (1.8g/t gold, 2.9g/t silver, 0.3% zinc)** from 13.0m including **44.0m** at **4.1 g/t AuEq (3.7 g/t gold, 4.6 g/t silver, 0.6% zinc)** from 65.0 including a higher-grade section of **4.3m** at **30.6 g/t AuEq (27.6 g/t gold, 35.4 g/t silver, 5.9% zinc)** from 98.2m. This mineralisation is hosted in intrusives and correlates with the intersection of 66.0m at 0.6 g/t AuEq in GNDD-157. This is now interpreted as the southern end of the new Verde Zone which is interpreted to extend at least another 1.5 kilometres to the north.

GNDD-289 and GNDD-297 were near surface holes drilled with a spider rig capable of drilling at low angles. Both holes were collared to test for extensions of the new third zone of mineralisation 150 metres up-dip from GNDD-157. Both holes were collared east of the Main Magnata Fault and accordingly did not cross the main Magnata Fault structure. GNDD-289 and GNDD-297 confirmed the up-dip extension of the new zone of the mineralisation encountered in GNDD-157 returning intersections of 40 and 14 metres of lower grade mineralisation.

GNDD-261 and GNDD-269 GNDD-271

GNDD-261, GNDD-269, and GNDD-271 are the three most easterly holes to test the Magnata Fault. The collar locations of these holes were limited by the start of the Hualilan Hills. However, all three holes intersected mineralisation confirming that mineralisation remains open to the east on the Magnata Fault.

Results included 6.0 metres at 1.3 g/t AuEq (1.1 g/t gold, 12.2 g/t silver, 0.1% zinc) from 6m including 2.0 metres at 3.4 g/t AuEq (2.8 g/t gold, 34.4 g/t silver, 0.3% zinc) and 2.0 metres at 1.5 g/t AuEq (0.2 g/t gold, 87.3 g/t silver, 0.4% zinc) from 48m in GNDD-269. An intersection of 4.0 metres at 1.4 g/t AuEq (1.1 g/t gold, 5.2 g/t silver, 0.6% zinc) from 22.0m including 0.5 metres at 9.6 g/t AuEq (7.5 g/t gold, 17.6 g/t silver, 4.2% zinc) in GNDD-261 and 1.0 metre at 1.9 g/t AuEq (1.8 g/t gold, 3.7 g/t silver, 0.1% zinc) from 77.0m and 3.6 metres at 2.2 g/t AuEq (1.6 g/t gold, 6.4 g/t silver, 1.1% zinc) from 123.5m in GNDD-271.

Skarn mineralisation has been historically mapped in outcrop on the Magnata Fault in the Hualilan Hills another 200 metres to the east of these three drill holes. Additionally, the ground magnetics acquired by the Company shows the Magnata Fault extending at least 1 kilometre to the east of GNDD-261 with this interpreted eastern extension of the Magnata fault cutting directly though the centre of the intrusion interpreted as being responsible for the mineralisation at Hualilan. This is regarded as a

high-priority target by the Company and a series of drill holes are planned to test the Magnata Fault structure across this interpreted intrusion.

The Magnata Fault mineralisation has been historically mapped in outcrop into and over the Hualilan Hills for another 200 metres east of GNDD-261. The eastern extensions of the Magnata Fault will be tested by a combination of the use of a man potable rig in the Hualilan Hills and drilling from the other side of the Hualilan Hills.

VERDE AND GAP ZONE EXTENSIONAL DRILLING

The Verde Zone

The Verde Zone is a recent discovery targeted using surface magnetics and IP (Induced Polarization) at the Hualilan Gold Project. The IP and magnetics indicated a second trend of mineralised intrusives under cover with the same north-south orientation as the Gap Zone mineralisation. The three discovery holes (ASX release 2/3/21) returned 125.5m at 1.1 g/t AuEq including 71.0m at 1.8 g/t AuEq (GNDD-169), 37 metres at 1.0 g/t AuEq (GNDD-164) and 45 metres at 0.5 g/t AuEq (GNDD-163).

Mineralisation in the Verde Zone is primarily hosted in steeply dipping intrusives, however there is a lower grade halo of mineralisation that extends into the overlying sedimentary rocks. The sedimentary rocks above the intrusives have been brecciated by the intrusion creating a second west dipping zone of mineralisation. The overlying mineralisation in the sedimentary rocks dips to the west at 30-40° and is up to 50 metres thick. This overlying halo of lower grade mineralisation is a useful exploration guide to vector to the deeper intrusion-hosted mineralisation. Many early Verde Zone drill holes had not been deep enough to intersect the higher grade intrusion-hosted mineralisation.

Extension Drilling Program

The extension drilling at the Verde and Gap Zones was designed as a series of fences of holes spaced at 80 metres along strike with some 40 metre spaced infill drilling. Holes on each fence were collared to intersect the mineralisation 80 metres below the previous hole. The location of the drill holes are shown in Figure 10 with more detailed location maps in Figure 12 (northern Verde Zone) and Figure 13 (Southern Verde Zone). The drill results are ordered from north to south in the following discussion.

The September Quarter program at the Verde Zone, following the initial discovery only 6 months earlier, has been an overwhelming success. Only five of 58 holes for which results were received failed to intersect significant mineralisation and CEL has now intersected continuous broad zones of mineralisation over 1.35 kilometres of the 1.5-kilometre-long Verde Zone. The remaining 150 metres of strike has yet to be systematically drilled, however GNDD-322, drilled at the reverse angle targeting the Gap Zone within this undrilled 150 metres, intersected strong mineralisation near the base of the hole interpreted as the Verde Zone.

The Verde Zone drilling during the quarter includes a number of deeper drill holes which confirm the companies model that the Verde Zone contains significantly higher-grade intrusion-hosted

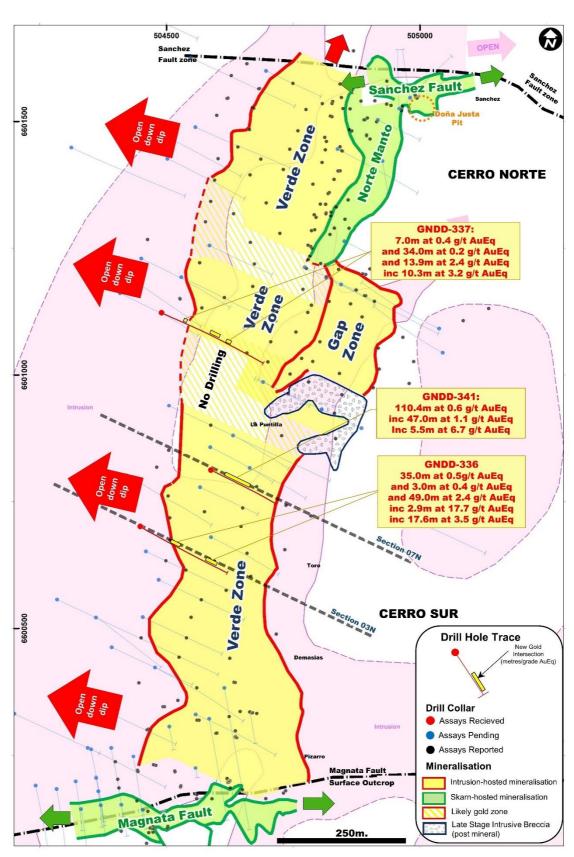


Figure 10 - Plan view showing Verde Zone Mineralisation (currently reported holes in red)

Issued Capital 974.4m shares 49.0m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

mineralisation underneath the halo of lower grade mineralisation hosted in sediments. This deeper drilling indicates the potential for several stacked zones of mineralisation at the Verde Zone. Additionally, several drill holes at the Verde Zone ended in mineralisation and are being extended.

Ongoing Verde Zone Drill Program

The go forward plan is to complete infill drilling over the entire 1.5 kilometre Verde/Gap Zone trend down to 300 metres vertically with at least three of the current drill rigs on site. Drilling is being conducted on fences of holes spaced 80 metres along strike with drilling on each fence of holes spaced at no more than 80 metres. This drilling has been designed to allow the calculation of an inferred resource in accordance with the JORC Code along the entire 1.5 kilometre long Verde Zone trend.

In addition to the infill drilling program targeting a resource, a series of holes will be collared to test another 50-100 metres below the existing drilling at Verde/Gap Zone and both north both and south along strike where mineralisation remains open.

Results During the Quarter

The drill results are ordered from north to south in the following discussion.

GNDD-254

GNDD-254 is located on a fence of drill holes 50 metres south of the Verde Zone discovery hole GNDD-169 (125.5m at 1.1 g/t AuEq). GNDD-254 was designed to test underneath GNDD-164 (22 metres at 0.5 g/t AuEq, 10.0 metres at 0.5 g/t AuEq, and 37.0 metres at 1.0 g/t AuEq) and GNDD-177 (63.4m at 0.7 g/t AuEq) both of which, apart from the deeper intercept in GNDD-164, had encountered lower grade mineralisation predominantly hosted in sediments. The drilling on this fence is shown in the Cross Section in Figure 11 (over the page).

GNDD-254 intercepted five zones of mineralisation from 173.0 metres to almost the end of the hole at 409.0 metres. The upper two intercepts comprised 62.0 metres at 2.1g/t AuEq (1.7 g/t Au, 20.3 g/t Ag, 0.3% Zn) from 173.0m including 17.0 metres at 3.5 g/t AuEq (3.2 g/t Au, 4.4 g/t Ag, 0.5% Zn) from 173.0m and 18.0 metres at 1.0 g/t AuEq (0.8 g/t Au, 4.3 g/t Ag, 0.3% Zn) from 249.0m. These upper zones comprise one broader zone of 94 metres at 1.7 g/t AuEq from 173m hosted in; sandstone (26 metres); intrusives (62 metres); barren intrusive (14 metres); and the upper 7 metres of an underlying limestone unit; however the Company's convention is to report intercepts using no more than 10 metres of internal waste.

Below a further 40 metres of limestone GNDD-254 intersected three additional zones of mineralisation 1.8 metres at 1.3 g/t AuEq (0.3 g/t gold, 73.9 g/t silver 0.3% zinc) from 298.3m and 12.0 metres at 0.8 g/t AuEq (0.8 g/t gold, 0.1 g/t silver) from 312.0m including 6.0 metres at 1.0 g/t AuEq (1.0 g/t gold, 0.1 g/t silver) 298.3m. These zones form a broader zone of 25.8 metres at 0.5 g/t AuEq hosted in intrusives. GNDD-254 then intersected a deeper zone of 26.8m at 1.9 g/t AuEq (1.7 g/t gold, 2.8 g/t silver, 0.4% zinc) from 363.0m hosted in intrusives and limestones.

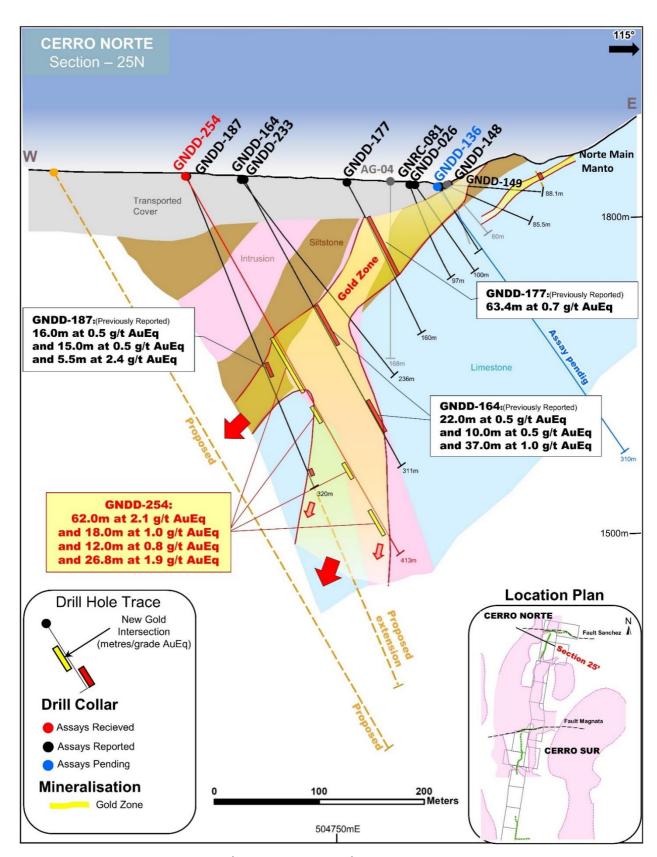


Figure 11 - Cross Section 25N (northern Verde Zone) showing GNDD-254 and earlier drilling

Issued Capital 974.4m shares 49.0m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

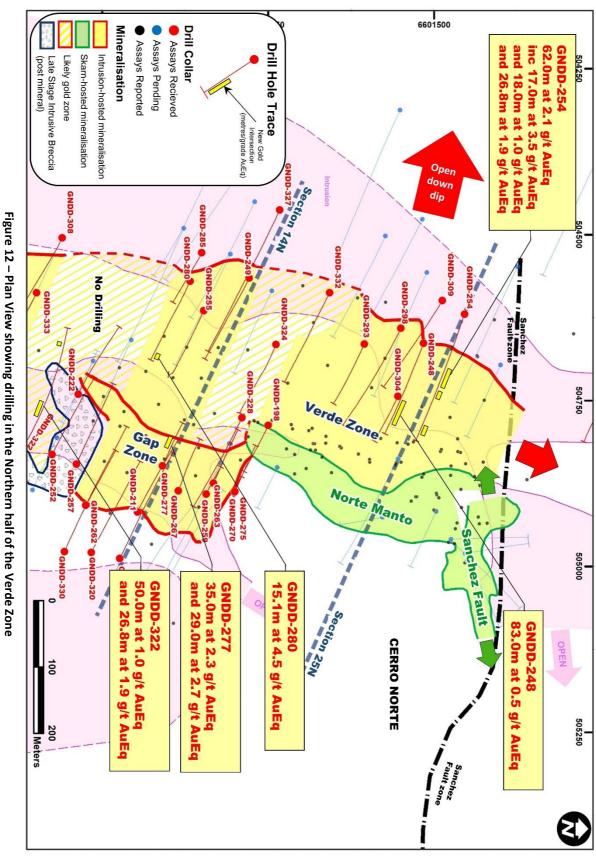
GNDD-254 confirms the presence of wide zones of higher grade intrusion related mineralisation downdip of the earlier drill holes that intersected lower grade mineralisation, predominantly hosted in sediments. As the Company drills deeper at Verde Zone it is noted that the highest grade mineralisation at depth is commonly hosted in interbedded intrusives and limestones.

The Company believes that drillhole GNDD-187, downdip of GNDD-254, which intersected 15.0 metres at 0.5 g/t from 192.0m in sediments and **5.5 metres at 2.4 g/t AuEq** in intrusives near the end of the hole was terminated prior to reaching the main zone of intrusion-hosted mineralisation. CEL will deepen GNDD-187 by 300 metres with a second follow up hole, to test 80 metres downdip, planned.

GNDD-248, GNDD-304 and GNDD-309

GNDD-248, GNDD-304 and GNDD-309 were collared on the next fence of drill holes 40 metres south of GNDD-254. GNDD-304 was collared to test the Verde Zone mineralisation near surface and intersected 47.0 metres at 0.3 g/t AuEq (0.2 g/t gold, 1.1 g/t silver, 0.2% zinc) from 66.0m including some thinner zones of greater than 1 g/t AuEq. This is consistent with the lower grade mineralisation at the Verde Zone that generally is found near surface.

GNDD-248, collared to test 80 metres below GNDD-304, is one of the many Verde Zone drill holes which encountered stacked zones of mineralisation. The hole intercepted 43 metres at 0.3 g/t AuEq (0.2 g/t gold, 0.5 g/t silver, 0.1% zinc) from 136.0m and then a second zone of 83 metres at 0.5 g/t AuEq (0.5 g/t gold, 2.5 g/t silver, 0.1% zinc) from 199.0m. The second zone of mineralisation contained some higher-grade zones including 1.0 metre at 4.7 g/t AuEq, 0.7 metres at 27.7 g/t AuEq, and 1.4 metres at 2.2 g/t AuEq. The mineralisation was hosted mostly in intrusives with higher grade mineralisation occurring at or near the limestone-intrusion contacts.


GNDD-309 was collared 80 metres west of GNDD-248 and designed to test underneath GNDD-248. The hole intersected **23.1** metres at **0.7** g/t AuEq (**0.6** g/t gold, **1.6** g/t silver, **0.1%** zinc). GNDD-309 intersected mainly sediments rather than the dominant intrusives in GNDD-248 and it is postulated that the main intrusion-hosted Verde Zone mineralisation may be deeper at this location. A drill hole is programmed to be collared a further 80 metres west of GNDD-309 to test down-dip.

GNDD-298

GNDD-298 is located on the section another 40 metres south. It was drilled as a downdip test of GNDD-185 (60 metres at 0.7 g/t AuEq) and GNDD-193 (83.5 metres a5t 0.8 g/t AuEq) which intersected lower grade sediment hosted mineralisation. GNDD-298 intersected an upper zone of mineralisation of 21 metres at 0.8 g/t AuEq (0.6 g/t gold, 1.1 g/t silver, 0.2% zinc) from 148.0m hosted in sediments then a combined 18 metres of mineralisation again, predominantly hosted in sediments from 218.0m to 309 metres downhole.

This included **9.0 metres at 0.8 g/t AuEq (0.6 g/t gold, 2.6 g/t silver, 0.5% zinc)** from 300.0m including **1 metre at 5.0 g/t AuEq (3.1 g/t gold, 17.9 g/t silver, 3.9% zinc)** with the higher grade zone associated with the contact between limestone and intrusives. GNDD-298 is interpreted as having intersected the shallow parts of the Verde Zone intrusion-hosted mineralisation. GNDD-366 (assays pending) was

Challenger Exploration Limited ACN 123 591 382 ASX: CEL

Issued Capital 974.4m shares 49.0m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

collared to test 80 metres downdip of GNDD-298 and, contingent of ongoing results, GNDD-298 may be extended deeper.

GNDD-293

GNDD-293 is located on the fence of drilling 40 metres further south of GNDD-298 and was collared to test up dip of GNDD-191 (21.1 metres at 0.8 g/t AuEq in sediments). GNDD-293 intersected 66.0 metres at 0.5 g/t AuEq (0.5 g/t gold, 1.0 g/t silver, 0.1% zinc) from 130.0m including 5.5 metres at 1.5 g/t AuEq (1.4 g/t gold, 3.4 g/t silver, 0.2% zinc) and 2 metres at 2.0 g/t AuEq (1.9 g/t gold, 2.4 g/t silver) in a combination of intrusives and sediments.

The intersection is consistent with the lower grade mineralisation hosted in sediments near surface although the mineralisation is significantly wider than in GNDD-191 downdip. GNDD-356 (assays pending) has been collared 200 metres west of GNDD-293 and it is likely that deeper drilling on this fence of holes will be undertaken in the next round of Verde Zone drilling.

GNDD-280, GNDD-285, GNDD-368

GNDD-280, GNDD-285 and GNDD-368 (assays pending) were drilled on the same fence of drilling to follow up earlier CEL drill hole GNDD-225 which intersected 9.2 meters at 0.2 g/t AuEq, 2.0 metres at 4.3 g/t AuEq, and 9.2 metres at 1.0 g/t AuEq. This fence of drilling is located approximately 550 metres south of the Sanchez Fault. Both GNDD-280 and GNDD-285 holes intersected significantly better widths and grades than GNDD-225.

GNDD-285 intersected several stacked zones of mineralisation including 11.3 metres at 3.7 g/t AuEq (3.0 g/t gold, 11.4 g/t silver, 1.4% zinc) from 312.0m, 10.6 metres at 0.6 g/t AuEq (0.6 g/t gold, 1.2 g/t silver, 0.1% zinc) from 362.4m, and 2.0 metres at 6.9 g/t AuEq (6.7 g/t gold, 12.1 g/t silver, 0.1% zinc) from 393.0m. The mineralisation was hosted in interbedded limestone and intrusives which is typical of the higher grade Verde Zone mineralisation at depth.

GNDD-280 was an up-dip test of GNDD-225 and intersected **15.1 metres at 4.5 g/t AuEq (3.7 g/t gold, 38.6 g/t silver, 0.7% zinc)** from 239.4m including **2.8 metres at 19.1 g/t AuEq (18.4 g/t gold, 29.8 g/t silver, 0.7% zinc)** in limestone. Given the results of GNDD-285 the Company believes that both GNDD-280 and GNDD-225 were not drilled deep enough to intersect the main Verde Zone intrusion related mineralisation intersected in GND-285.

Drillhole GNDD-368 (assays pending) has been collared to test 80 metres downdip of GNDD-285. GNDD368 intersected 45 metres (from 325 metres) of 1-5% pyrite and sphalerite in stockwork veins and disseminated through the intrusive host rock.

GNDD-337

GNDD-337 was collared south of CEL drillhole GNDD-285 within the 200 metres of strike between GNDD-285 and GNDD-308 which is the single section of the Verde Zone yet to be drilled. The only previous drilling in this 200 metres was GNDD-322 which was drilled at the reverse angle targeting a

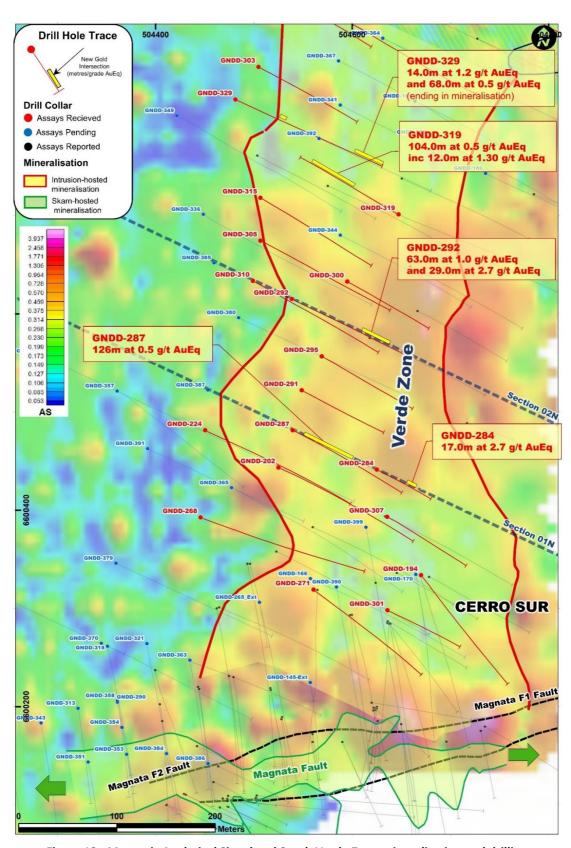


Figure 13 - Magnetic Analytical Signal and South Verde Zone mineralisation and drilling

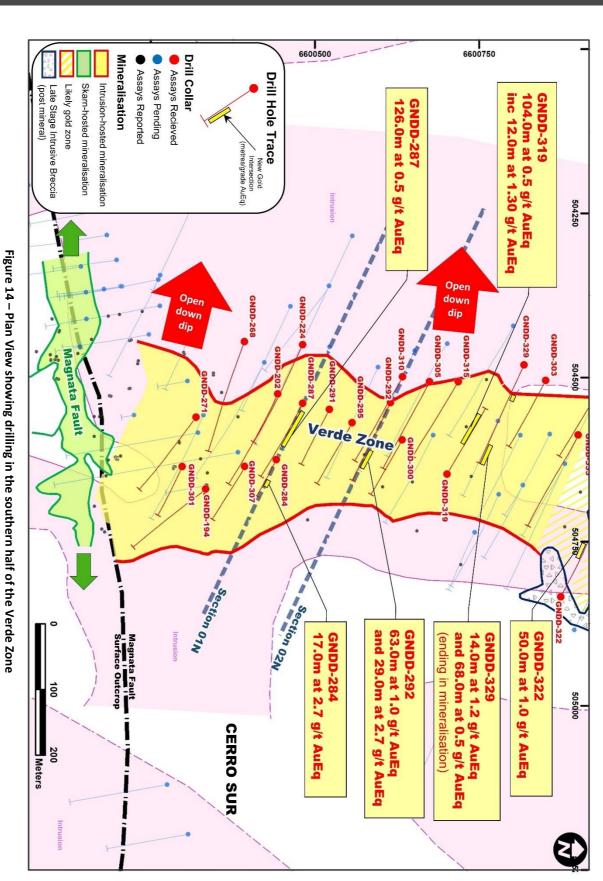
southern extension of the Gap Zone mineralisation. The intersection of 8.9 metres at 2.0 g/t AuEq in limestone near the base of GNDD-322 is interpreted as the hole drilling across the Gap Zone into the western margin of the Verde Zone mineralisation.

GNDD-337 intersected four zones of mineralisation. The two deeper zones were hosted in limestone and comprised 13.9m at 2.4g/t AuEq (2.0 g/t gold, 6.0 g/t silver, 0.7% zinc) from 258.6m including 10.3m at 3.2 g/t AuEq (2.7 g/t gold, 7.9 g/t silver, 1.0% zinc) from 262.2m and 2.0m at 2.0g/t AuEq (1.8 g/t gold, 3.2 g/t silver, 0.3% zinc) from 312.0m. The two shallower intersections were 7.0m at 0.4g/t AuEq (0.4 g/t gold, 0.7 g/t silver, 0.1% zinc) from 90.0m including 1.1m at 1.9 g/t AuEq (1.7 g/t gold, 2.1 g/t silver, 0.2% zinc) and 34.0m at 0.2g/t AuEq (0.2 g/t gold, 3.0 g/t silver) from 195.5m.

GNDD-337 extended the Verde Zone 40 metres south of GNDD-285 and confirms that the Verde Zone appears to comprise one continuous zone of mineralisation covering 1.5 kilometres. GNDD-337 intersected limited intrusives in the top of the hole with the upper two zones of mineralisation hosted in these intrusives. The bottom half of GNDD-337 intersected shale and limestone with the best zone of mineralisation hosted in limestone. Thus, GNDD-337 is interpreted as being drilled above the main zone of intrusion-hosted mineralisation.

GNDD-359 (assays pending) has been drilled as a downdip test of GNDD-337 and is logged as intersecting significantly more intrusives than GNDD-337. This includes several zones logged as containing 1-2% disseminated pyrite with 1.2 metres logged as strong skarn alteration containing 10% pyrite. This skarn alteration and massive sulphide mineralisation is consistent with mineralised intervals in other drill holes for which high-grade gold assays have been received. Additionally, the Company has programmed a follow up hole 80 metres up-dip of GNDD-337, which will be extended deeper than GNDD-337, prior to any decision to extend GNDD-337.

Undrilled Section of Verde Zone - GNDD-322


The 150 metres of strike between the two fences of drill holes containing GNDD-337 and GNDD-308 is the only section of the Verde Zone yet to be drilled. GNDD-322 was drilled at the reverse angle targeting a southern extension of the Gap Zone mineralisation midway between GNDD-337 and GNDD308 and intersected mineralisation hosted in limestone and intrusives near the base of the hole returning 8.9 metres at 2.0 g/t AuEq (1.3 g/t Au, 10.9 g/t Ag,1.5% zinc) from 382.2m downhole.

This intersection is interpreted as GNDD-322 drilling across the Gap Zone into the western margin of the Verde Zone mineralisation or at a location where the Gap Zone mineralisation joins the Verde Zone. This infills between GNDD-285 and GNDD-308 indicating that Verde Zone is a consistent zone of mineralisation at least 1.5 kilometres long.

GNDD-308 and GNDD-333

GNDD-308 was collared 200 metres south of GNDD-280 and GNDD-285 midway between the Sanchez and Magnata Faults in the centre of the 1.5 kilometre Verde Zone. GNDD-308 intersected **36.8 metres** at **0.6 g/t AuEq (0.5 g/t gold, 1.6 g/t silver, 0.3% zinc)** from 258.3m including **4.0 metres at 3.1 g/t AuEq (2.6 g/t gold, 5.6 g/t silver, 0.8% zinc)** from 291.0m at the end of the hole. GNDD-308 was the

Issued Capital 974.4m shares 49.0m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

first of the Verde Zone holes to be deepened. It has been completed to 1,013 metres, the depth capacity of the drill rig with HQ rods, as a test of the depth potential of the mineralising system at Hualilan. The Company is currently completing logging and sampling of GNDD-308 (extension) with assays subject to the 40-50 day lab turn-around time which is standard to the industry at present.

GNDD-333 was drilled on the same fence of holes and was collared 100 metres to the east of GNDD-308 to test up-dip of GNDD-308. GNDD-333 intersected several 1.5 metre to 17 metre zones of mineralisation from 164 to 297 downhole for a combined 47 metres of mineralisation including 5.0 metres at 0.8 g/t AuEq (0.5 g/t gold, 9.1 g/t silver, 0.3% zinc) from 224.0m, and 1.5 metres at 1.4 g/t AuEq (1.2 g/t gold, 3.8 g/t silver, 0.4% zinc) from 248.0.

In the top 200 metres of GNDD-333 and GNDD-308 both holes intersected significant widths of a post mineral intrusive breccia believed to have diluted the mineralisation and, which likely, explains the lack of near surface mineralisation. These intrusive breccias are believed to have been emplaced as sub vertical pipe like bodies 100 metres or less in diameter. GNDD-364 (assays pending) was collared to test 50 metres up-dip of GNDD-333 and is logged as intersecting 20 metres of intrusive breccia underlain by the typical package of Verde sediments and intrusives logged as containing sulphides.

GNDD-341

GNDD-341 was collared 80 metres south of GNDD-308 to test the Verde Zone 80 metres up-dip of drill hole GNDD-303 (Figure 15). GNDD-303 was drilled to test for extensions to the Verde Zone mineralisation 80 metres north of previous CEL drillhole GNDD-220 (108.0m at 0.4 g/t AuEq including 49.0m at 0.6 g/t AuEq). GNDD-303 was terminated at 240 metres due to drilling problems and intersected two thin zones of low-grade mineralisation, 4.0 metres at 0.4 g/t AuEq from 139.0m and 8.0 metres at 0.3 g/t AuEq from 195.0m.

It was postulated that GNDD-303 ended prior to reaching the main zone of mineralisation given the steeply dipping nature of the mineralisation in the middle of the Verde Zone.

GNDD-341 intersected **110.4m** at **0.6g/t** AuEq **(0.5 g/t gold, 0.6 g/t silver, 0.1% zinc)** from 60.6m metres hosted in intrusives immediately under unconsolidated cover. This broad zone included a higher grade zone of **47.0m** at **1.1 g/t** AuEq **(1.0 g/t gold, 1.0 g/t silver, 0.2% zinc)** from 78.0m including a high-grade zone of **5.5m** at **6.7g/t** AuEq **(2.4 g/t gold, 2.2 g/t silver, 0.6% zinc)** from 81.5m.

The intersection in GNDD-341 confirms that GNDD-303 did not reach the downdip projection of the mineralisation intersected in GNDD-341. The downdip projection of the intercept in GNDD-341 is expected from approximately 200 to 360 metres downhole in GNDD-303. GNDD-303 intersected mineralisation from 195 to 203 metres and 207 to 209 metres downhole prior to the hole being ended due to lost drill rods at 240 metres.

The Company intends to redrill GNDD-303 to at least 400 metres. This will be followed by an additional hole which will be collared to the west of the GNDD-303 redrill to test a further 80 metres down-dip under GNDD-303.

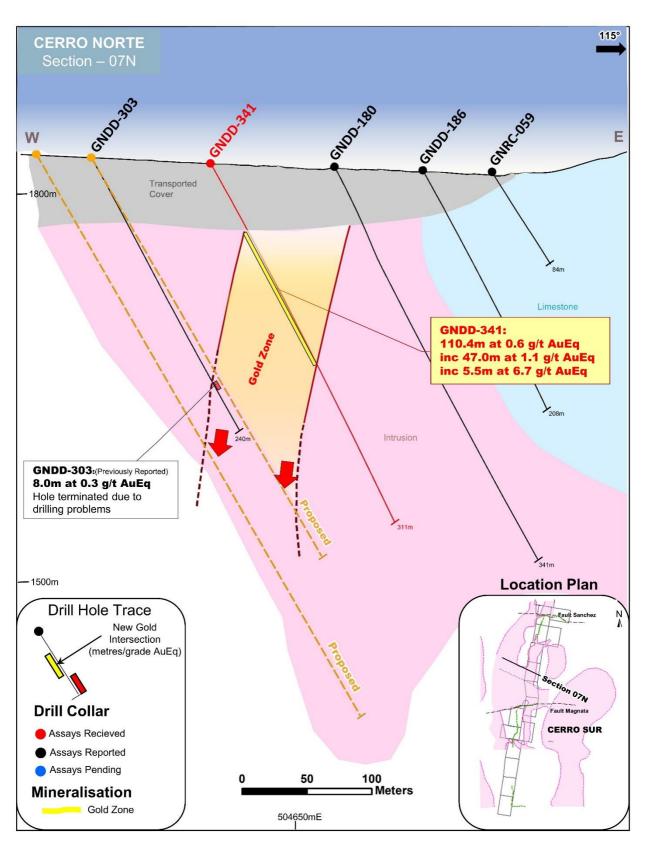


Figure 15 - Cross Section showing GNDD-341, GNDD0303, and proposed drilling

GNDD-329

GNDD-329 was collared 120 metres south of GNDD-308 with GNDD-392 (assays pending) drilled on the same fence of holes as GNDD-329 and collared to test 80 metres up-dip of GNDD-329. GNDD-329 intersected two zones of mineralisation; an upper zone of 14.0 metres at 1.2 g/t AuEq (1.1 g/t gold, 1.4 g/t silver) from 104.0m including 1.7 metres at 7.4 g/t AuEq (7.3 g/t gold, 4.1 g/t silver) hosted in sediments, and a deeper zone of 68.0 metres at 0.5 g/t AuEq (0.5 g/t gold, 0.9 g/t silver) from 282.0m until the end of the hole. GNDD-329 is another hole that will be extended as it ended in mineralisation with the three 2 metre splits at the end of the hole assaying 1.3 g/t Au, 0.7 g/t Au and 0.5 g/t Au.

GNDD-319

GNDD-319 was collared on the fence of drill holes 40 metres south of GNDD-329 and was drilled back to the west as a scissor hole (opposite orientation) to the other Verde Zone drill holes on that section such as GNDD-220 (108.0m at 0.4 g/t AuEq including 49.0m at 0.6 g/t AuEq). GNDD-319 intersected 104.0 metres at 0.5 g/t AuEq (0.5 g/t gold, 1.1 g/t silver) from 108.8m including 12.0 metres at 1.3 g/t AuEq (1.3 g/t gold, 0.5 g/t silver) and several 2-4 metre wide zones grading from 1-2 g/t AuEq.

GNDD-319 confirms that the Verde Zone mineralisation dips steeply to the west and has a horizontal width of at least 70 metres in this location. Drillhole GNDD-349 (assays pending) has been collared 90 metres west of GNDD-220 and drilled to the east (same orientation as other Verde Zone drill holes) to test deeper below GNDD-220 and GNDD-319.

GNDD-300-305-336

GNDD-300 and GNDD-305 were drilled on a fence of drill holes 80 metres south of GNDD-319. GNDD-300 was designed to test near surface and intersected two zones of mineralisation consistent with the near surface lower grade sediment (and lesser intrusives) hosted halo at the Verde Zone. The intersections were 18.0 metres at 0.4 g/t AuEq (0.4 g/t gold, 2.0 g/t silver, 0.1% zinc) from 27.0m and 33.1 metres at 0.4 g/t AuEq (0.4 g/t gold, 1.0 g/t silver, 0.1% zinc) from 87.0m. The hole intersected two deeper narrow zones of higher-grade mineralisation, 0.5 metres at 1.4 g/t AuEq from 173.9m, and 0.6 metres at 3.0 g/t AuEq from 188.0m.

GNDD-305 was collared 100 metres west of GNDD-300 to test down dip of GNDD-300. GNDD-305 intersected 48 metres at 0.3 g/t AuEq (0.2 g/t Au, 1.4 g/t Ag) from 128.0, including 1.0 metres at 1.3 g/t AuEq (1.0 g/t Au, 14.2 g/t Ag) and a second deeper zone of 12.1 metres at 0.4 g/t AuEq (0.4 g/t Au, 1.9 g/t Ag, 0.1% Zn) from 226.7 metres. GNDD-305 was terminated at 299 metres before reaching the section of interbedded limestones and intrusives which is now believed to be associated with the higher-grade mineralisation at Verde Zone.

GNDD-366 was collared to test 80 metres downdip of GNDD-305 and intersected three zones of mineralisation (Figure 16). The deepest intersection confirmed the model of better grades at depth recording 49.0m at 2.4 g/t AuEq (1.5 g/t gold, 10.4 g/t silver, 1.7% zinc) from 310.0m including two high grade zones of 2.9m at 17.7 g/t AuEq (13.8 g/t gold, 55.1 g/t silver, 7.2% zinc) from 312.0 and 17.6m at 3.5 g/t AuEq (1.8 g/t gold, 18.2 g/t silver, 3.2% zinc) from 341.5m. Additionally, GNDD-336

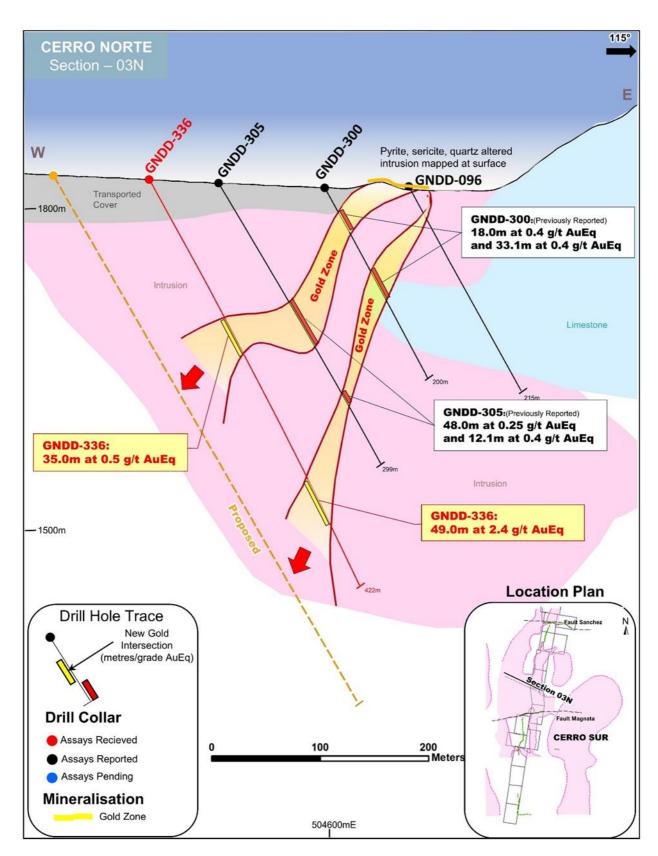


Figure 16 - Cross Section showing GNDD-336 in relation to previous drilling

1974.4m shares 49.0m options 120m perf shares 16m perf rights **Australian Registered Office** Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

intercepted 35.0m at 0.5 g/t AuEq (0.4 g/t gold, 5.3 g/t silver, 0.2% zinc) from 146.0m including 2.0m at 1.8 g/t AuEq (1.3 g/t gold, 15.8 g/t silver, 0.9% zinc) and 1.0m at 3.2 g/t AuEq (2.2 g/t gold, 26.8 g/t silver, 1.7% zinc). This intersection correlates with the upper zone of mineralisation intersected in GNDD-300 and GNDD-305 up-dip.

Given the excellent results of GNDD-336, follow up drilling to test another 80 metres downdip of GNDD-336 is programmed, with this downdip hole planned to a depth of 560 metres. It will target down-dip extensions to the high-grade zone intersected near the base of GNDD-336 and potential higher grade extensions down-dip to the upper zone of mineralisation encountered in GNDD-336 and GNDD-300 and GNDD-305.

GNDD-292 and GNDD-310

GNDD-292, GNDD-310 and GNDD-385 (assays pending) were drilled on the next fence of drill holes 40 metres south of GNDD-300 with the three drill holes stepping progressively deeper under drill hole GNDD-192 (50.0 metres at 0.3 g/t AuEq from 15.0m including 20.0 metres at 0.5 g/t AuEq). The drilling is shown in cross section in Figure 17 (over the page).

GNDD-292 intersected a combined 117.5 metres of mineralisation in three stacked zones from 69.0 to 222.0 metres downhole. Results included 63.0 metres at 1.0 g/t AuEq (0.6 g/t Au, 6.8 g/t Ag, 0.8% zinc) from 128.0, including 1.1 metres at 11.7 g/t AuEq (1.5 g/t Au, 187.0 g/t Ag, 16.9% zinc), 2.7 metres at 6.9 g/t AuEq (2.0 g/t Au, 62.0 g/t Ag, 9.9% zinc), and 3.0 metres at 2.2 g/t AuEq (2.2 g/t Au, 1.8 g/t Ag).

GNDD-310 encountered two zones of mineralisation. A near surface high-grade zone of mineralisation with an intersection of 19.0 metres at 2.3 g/t AuEq (2.3 g/t Au, 1.7 g/t Ag from 30.0 including 2.0 metres at 20.5 g/t AuEq (20.3 g/t Au, 11.5 g/t Ag). This upper zone lies directly beneath unconsolidated cover and is a new zone of mineralisation hosted in shale. The hole went on to intersect 40.0 metres at 0.6 g/t AuEq (0.6 g/t Au, 0.9 g/t Ag) from 186.0m including 2.0 metres at 1.8 g/t AuEq (1.7 g/t Au, 1.9 g/t Ag, 0.1% zinc), 8.0 metres at 1.1 g/t AuEq (1.1 g/t Au, 1.0 g/t Ag), and 2.0 metres at 1.0 g/t AuEq (1.0 g/t Au, 0.8 g/t Ag). This deeper zone is hosted in intrusives and is typical of the Verde Zone mineralisation.

The mineralised portion of GNDD-192 correlates to the magnetic signature of the intrusion-hosted mineralisation which is the flank of a positive magnetic anomaly in the analytical signal (AS) of the reduced to pole (RTP) ground magnetic survey . The lower intensity magnetic signals on the flank of the magnetic high is interpreted as de-magnetization by alteration of the intrusions associated with the mineralisation. This is confirmed by the results of GNDD-292 and 310, both collared to drill under the entire de-magnetized target zone.

GNDD-385 (assays pending) has been collared to test downdip of GNDD-310 (Figure 17) and is logged as intersecting 150 metres of quartz-sericite altered intrusives with 1-3% pyrite disseminated and vein pyrite. A deeper hole designed to test 80 metres down-dip of GNDD-385 is planned.

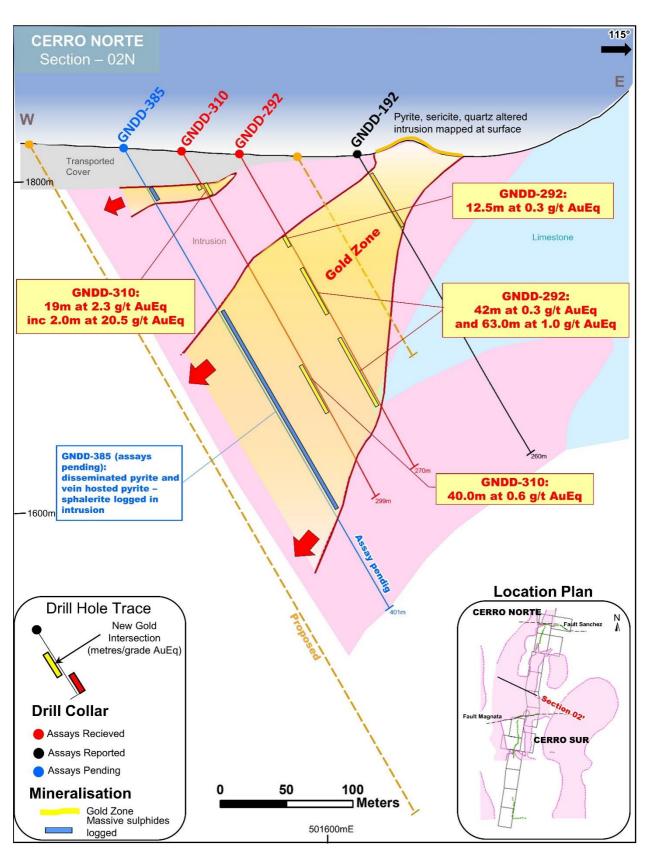


Figure 17 - Cross Section showing GNDD-292, GNDD-310, GNDD-385 (assays pending) and earlier drilling

Issued Capital 974.4m shares 49.0m options 120m perf shares 16m perf rights **Australian Registered Office** Level 1 1205 Hay Street West Perth WA 6005

Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

GNDD-291 and GNDD-295

GNDD-291 and 295 are the only two holes for which assays have been received on the next two fences of drilling 40 and 80 metres south. Drillhole GNDD-291 intercepted three zones of mineralisation for a combined 115 metres of mineralisation including 11.8 metres at 0.6 g/t AuEq (0.5 g/t Au, 7.5 g/t Ag, 0.1% zinc) from 18.0m and 77.0 metres at 0.3 g/t AuEq (0.2 g/t Au, 5.3 g/t Ag, 0.1% zinc) from 62.0m. GNDD-295 intercepted 42.0 metres at 0.3 g/t AuEq (0.2 g/t Au, 2.7 g/t Ag, 0.1% zinc) from 58.0m.

Both holes are typical of the lower grade mineralisation encountered near surface at Verde Zone. GNDD-380 (assays pending) has been collared to test 80 metres down-dip of GNDD-295, a hole is planned to test down dip of GNDD-291 as is drilling to test up-dip of GNDD-291 and GNDD-295.

GNDD-284 and GNDD-287

GNDD-284, GNDD-287 and GNDD-387 (assays pending) are the first holes drilled on a fence of drill holes 40 metres south of GNDD-295. GNDD-284 was collared to test up-dip with the other two drill holes stepping progressively deeper under hole GNDD-284. The drilling is shown in cross section in Figure 18 (over the page). GNDD-284 intersected 17.1 metres at 2.7 g/t AuEq (2.4 g/t Au, 0.7 g/t Ag, 0.7% zinc) from 69.6m including 5.2 metres at 8.5 g/t AuEq (7.4 g/t Au, 13.9 g/t Ag, 2.0% zinc) hosted in intrusives and an underlying shale. GNDD-287, drilled 100 metres downdip, intersected 126.0 metres at 0.5 g/t AuEq (0.4 g/t Au, 2.1 g/t Ag, 0.2% zinc) from 26.0m including 5.5 metres at 2.0 g/t AuEq (1.8 g/t Au, 6.6 g/t Ag, 0.4% zinc) from 67.0m and 2.0 metres at 1.8 g/t AuEq (1.4 g/t Au, 4.4 g/t Ag, 0.6% zinc) from 82.0m hosted in intrusives.

GNDD-387 (assays pending) was collared to test 100 metres downdip of GNDD-287 and is logged as intersecting 200 metres of quartz-sericite altered intrusives with 1-3% pyrite disseminated and vein pyrite including massive sulphide in strong garnet-silica-pyroxene (skarn) alteration from 260 to 261 metres downhole. This skarn alteration and massive sulphide mineralisation is consistent with intervals in other drill holes for which high-grade gold assays have been received.

Infill drilling is planned between GNDD-284 and GNDD-287 with drilling planned at the eastern end (up-dip) of this section using the man portable drill rig in more difficult to access locations. A deeper hole collared to test underneath GNDD-287 will also be drilled contingent on the results of GNDD-287.

GNDD-224, GNDD-307

Drillholes GNDD-224 and GNDD-307 were drilled to follow up GNDD-196 (69.3 metres at 3.4 g/t AuEq from 9.0m) and GNDD-202 (110m at 0.4 g/t AuEq from 33.0m including 59.3m at 0.5 g/t AuEq) hosted in intrusives. This series of holes is located 40 south of GNDD-284 and GNDD-287 and approximately 250 metres north of the Magnata Fault.

GNDD-307 was drilled from the same pad as GNDD-196 using a spider drill rig capable of drilling at low angles. It was drilled at a dip of 25 degrees, compared to the 60 degree dip of GNDD-196, to test up-dip of GNDD-196. GNDD-307 intersected two zones of intrusion hosted mineralisation **23.0 metres**

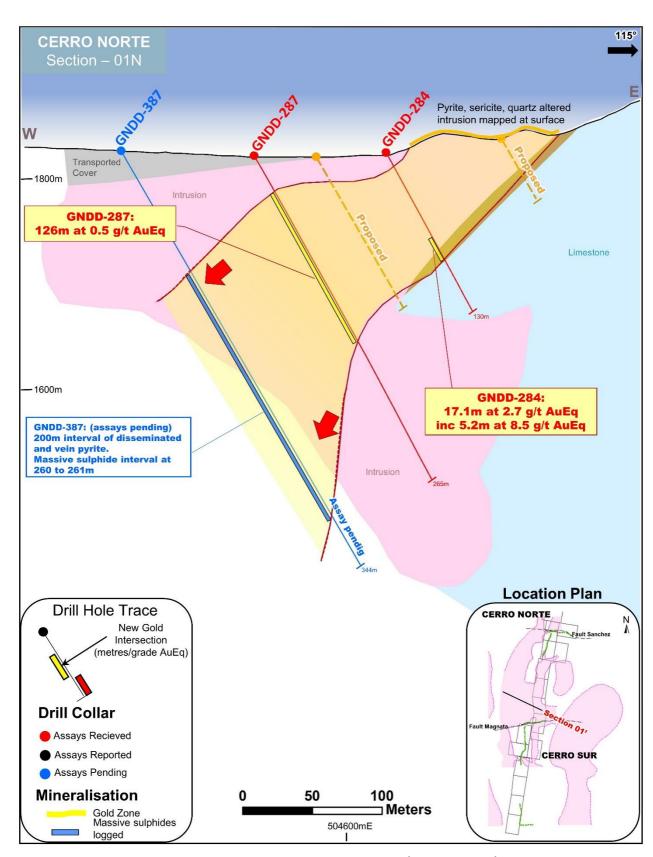


Figure 18 - Cross Section showing GNDD-292, GNDD-310, GNDD-385 (assays pending) and earlier drilling

974.4m shares 49.0m options 120m perf shares 16m perf rights **Australian Registered Office** Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

at 0.4 g/t AuEq (0.3 g/t Au, 4.8 g/t Ag, 0.1% zinc) from surface and 22.0 metres at 0.3 g/t AuEq (0.3 g/t Au, 0.5 g/t Ag, 0.7% zinc) from 69.6m.

GNDD-224 was collared 100 metres west of GNDD-202 to test 100 below GNDD-202 and 200 metres below GNDD-196. GNDD-224 intersected 38.0 meters at 0.3 g/t AuEq (0.3 g/t gold, 0.9 g.t silver) from 134.0m including 1.0 metres at 6.7 g/t AuEq (6.7 g/t gold, 1.4 g/t silver, 0.1% zinc) and 1.3 metres at 1.1 g/t AuEq (0.9 g/t gold, 4.9 g/t silver, 0.4% zinc) from 313.0m with both zones of mineralisation hosted in intrusives.

GNDD-224 and GNDD-307 are typical of the mineralisation in the southern the Verde Zone where the top 250-300 metres is dominated by intrusives with lesser sediments evident. The mineralised intrusives have background 0.2-0.5 g/t gold as disseminated mineralisation with the higher grades occurring where the intrusives contain a micro fracture network which develop locally into breccia zones as was evident in GNDD-196. This microfracture network allowing more open space for hydrothermal fluid flow and gold mineralisation to be deposited.

As part of the Company's resource drill out program another four holes are planned on this fence of drill holes. GNDD-395 (completed and assays pending) which was collared 200 metres west of GNDD-224 as a deep test, two infill holes between GNDD-196-GNDD-202-GNDD-224, and a hole collared 80 metres east of GNDD-196 , which will be drilled using the man portable rig, to test the extension of this mineralisation up into the Hualilan Hills.

GNDD-301

GNDD-301 is located 80 metres south of the GNDD-224 to GNDD-307 fence of drilling and is the most southerly drill hole in the current Verde Zone drilling for which assays have been received. GNDD-301 was collared 10 metres north of the GNDD-079 (61.0 metres at 1.1 g/t AuEq) one of the first of the Company's drill holes to intersect significant intrusion-hosted mineralisation. GNDD-310 was drilled using a spider rig capable of drilling at low angles at a dip of 25 degrees, compared to the 60 degree dip of GNDD-079, to test the near surface component of the Verde Zone mineralisation up-dip of GNDD-079.

GNDD-301 successfully extended the Verde Zone mineralisation to near surface intersecting **48.8** metres at **0.5** g/t AuEq (**0.4** g/t Au, **6.1** g/t Ag, **0.1%** zinc) from 13.2m Including **15.9** metres at **0.9** g/t AuEq (**0.8** g/t Au, **11.7** g/t Ag, **0.7%** zinc) from 26.1m. A follow up drill hole collared 60 metres east of GNDD-079, which will be drilled using the man portable rig, is planned to test the extension of this mineralisation up into the Hualilan Hills.

Gap Zone Drilling

The Gap Zone intrusion-hosted mineralisation is located to the east of the Verde Zone and has the same north-south strike as the Verde Zone. However, unlike the Verde Zone, which dips to the west, the Gap Zone mineralisation dips to the east. The Gap Zone is not as extensive as the Verde Zone having been defined over 300 metres of strike however the Company expects the Gap Zone to make

a meaningful contribution to the mineral endowment of the Hualilan Gold Project. Earlier drilling such as GNDD-139 (207.5m at 0.8 g/t AuEq) was drilled at a low angle to the dip of the mineralisation so the true width of the mineralisation, was yet to be determined.

The drilling reported during the quarter (GNDD-222, GNDD-252, GNDD-255, GNDD-257, GNDD-259, GNDD-262, GNDD-263, GNDD-267, GNDD-275, GNDD-275, GNDD-320 GNDD-322, GNDD-330, and GNDD-334) are from an ongoing series of holes that have been drilled in the reverse orientation in order to drill back across the Gap Zone mineralisation at near true width. This series of holes was designed to infill the existing mineralisation to allow the inclusion of the Gap Zone mineralisation in a resource calculated according to the JORC Code, and to test for extensions along strike and downdip.

The Gap Zone drill results are ordered from south to north in the following discussion.

GNDD-322

GNDD-322 is the most southerly drill hole in this series of reverse oriented holes for which results have been received. The hole is located 100 metres south of the previous southern limit of the Gap Zone mineralisation. The southern extent of the Gap Zone mineralisation was believed to be limited by the emplacement of an intrusive breccia body which replaced the mineralised Gap Zone intrusives. This post mineral intrusive breccia was intersected in drillholes GNDD-051, GNDD-101 (previously reported) and GNDD-153 and GNDD-222 (this Quarterly). It was previously interpreted as sub-vertical pipe like body approximately 200 metres in diameter.

GNDD-322 intersected multiple stacked zones of mineralisation including 50.0 metres at 1.0g/t AuEq (0.9 g/t Au, 1.9 g/t Ag, 0.3% Zn) from 132.0m including 2.4 metres at 14.5 g/t AuEq (12.2 g/t Au, 28.5 g/t Ag, 0.3% zinc). This intersection confirms that the post mineral intrusive breccia is localized to approximately 100 metres of strike and the intercept extends the Gap Zone mineralisation 100 metres beyond the post mineral intrusive breccia to the south.

This is an outstanding result as not only does it extend the Gap Zone 100 meters south it opens the possibility for the Gap Zone mineralisation to extend another 200-300 metres south in an area of limited drilling. Drilling to test both down and up-dip of GNDD-322, and south along strike is now programmed.

GNDD-252 and GNDD-222

GNDD-252 and GNDD-222 were drilled on the next fence of drilling 40 metres north of GNDD-322 where GNDD-153 had returned no significant intersection in post mineral intrusive breccia. GNDD-222 on this section was collared 60 metres east of GNDD-153, and like GNDD-153, returned no significant intersection with the hole intersecting post mineral intrusive breccia.

GNDD-252 was collared another 100 metres further to the east and intersected several zones of mineralisation including of 10.0 metres at 0.7g/t AuEq (0.6 g/t gold, 2.3 g/t silver, 0.3% zinc) from 104.0m, 12.2 metres at 0.9g/t AuEq (0.8 g/t gold, 1.3 g/t silver, 0.3% zinc) from 128.0m and 33.4 metres at 0.9g/t AuEq (0.6 g/t gold, 6.1 g/t silver, 0.7% zinc) from 264.6m. The lower zone of

mineralisation included some higher grade sections including 2.9 metres at 5.8g/t AuEq (2.7 g/t gold, 36.3 g/t silver, 5.8% zinc) from 281.7m.

This builds on the results of GNDD-322 and extends the Gap Zone mineralisation to the south and east of the post mineral intrusive breccia body. GNDD-373 (assays pending) has been collared 60 metres east of GNDD-252 to test where the Gap Zone mineralisation remains open at depth.

GNDD-257

GNDD-257 was collared on the next fence of drilling north 40 metres north of GNDD-252. Similar to the GNDD-262 fence of holes immediately south the majority of the earlier holes on this fence , with the exception of GNDD-188 (66.0 metres at 0.4 g/t AuEq) had intersected post mineral intrusive breccia which is interpreted to have replaced the Gap Zone intrusion-hosted mineralisation. GNDD-257 is the most easterly hole on the section and the intersection of 44.3 metres at 0.4g/t AuEq (0.3 g/t gold, 2.5 g/t silver, 0.2% zinc) from 233.0m and extends the Gap Zone mineralisation to the east. A follow up hole will be collared 80 metres east on this fence of holes to extend the Gap Zone mineralisation downdip of GNDD-257.

GNDD-262 and GNDD-330

GNDD-262 is located on the next fence of drilling 40 metres north of GNDD-257. The hole was designed to test approximately 80m down-dip from GNDD-215 (upper zone of 14.6m at 1.6 g/t AuEq and a lower zone of 41.0m at 0.2 g/t AuEq) near at what was previously interpreted as the southern end of the Gap zone.

GNDD-262 intersected 39 metres of low grade mineralisation (39 metres at 0.2 g/t AuEq) in a combination of intrusives and intrusive breccia. GNDD-262 defines the northern margin of the post mineral intrusive breccia and confirms that this post mineral breccia body, which replaced the Gap Zone mineralisation, is confined to 100 metres of strike. While the post mineral intrusive breccia is generally barren it can be mineralised where it contains clasts of mineralised intrusives and limestones. This is interpreted as causing the low tenor intercept in GNDD-262.

GNDD-330 was collared 80 metres east of GNDD-262 to test deeper below GNDD-262. The hole confirmed the extension of the Gap Zone mineralisation at depth below the intrusive breccia intersecting 49.7 metres at 0.4g/t AuEq (0.4 g/t gold, 0.9 g/t silver, 0.1% zinc) from 286.0m including 6.7 metres at 1.3 g/t AuEq (1.3 g/t gold, 1.5 g/t silver, 0.1% zinc) from 329.0m and 1.8 metres at 2.1g/t AuEq (0.4 g/t gold, 2.6 g/t silver, 3.7% zinc) from 375.2m.

GNDD-320

GNDD-320 was drilled 40 metres north on the same section of drilling as early CEL drill hole GNDD-139 (207.5 m at 0.8 g/t AuEq) which was drilled down the dip of the mineralisation. GNDD-320 was collared to test below GNDD-208 (previously reported) which intersected 35.7m at 1.1 g/t AuEq.

GNDD-320 intersected Gap Zone mineralisation over a total of 155.5 metres downhole when 36.4 metres of limestone waste which is included. Reported intersections for GNDD-320 are **36.3 metres**

at 0.6g/t AuEq (0.4 g/t gold, 2.5 g/t silver, 0.3% zinc) from 181.8m including 7.9 metres at 1.4 g/t AuEq (1.0 g/t gold, 5.8 g/t silver, 0.6% zinc); 29.0 metres at 0.3g/t AuEq (0.3 g/t gold, 0.3 g/t silver) from 254.0m; and 32.5 metres at 0.8g/t AuEq (0.8 g/t gold, 0.6 g/t silver) from 301.0m including 15.5 metres at 1.4 g/t AuEq (1.3 g/t gold, 0.8 g/t silver, 0.1% zinc). GNDD-320 extends the Gap Zone mineralisation 80 metres deeper below GNDD-208 with mineralisation remaining open below this.

GNDD-211, GNDD-277 and GNDD-334

GNDD-277 was one of three new holes drilled another 40 metres north on the same fence of drilling as GNDD-155 (209.0 metres at 1.1 g/t AuEq including 49.0 metres at 3.0 g.t AuEq) which was drilled down the dip of the mineralisation. This drilling is shown in cross section in Figure 19 over the page.

GNDD-277 intersected **35.0** metres at **2.3**g/t AuEq (**2.2** g/t gold, **3.0** g/t silver, **0.1%** zinc) from 63.0m including **29.0** metres at **2.7** g/t AuEq (**2.6** g/t gold, **2.7** g/t silver, **0.1%** zinc) from 63.0m. The intersection correlates with the high grade zone of 34.0 metres at 3.4 g/t AuEq from 59.0m in scissor hole GNDD-155 and confirms the Gap Zone mineralisation extends to near surface under unconsolidated cover and can contain a higher-grade component near surface.

GNDD-211 was collared to test 80 metres down dip of GNDD-277 and intersected 23.2 metres at 0.6g/t AuEq (0.5 g/t gold, 0.8 g/t silver, 0.1% zinc) from 168.8m including 4.4 metres at 1.6 g/t AuEq (1.5 g/t gold, 2.0 g/t silver, 0.3% zinc) from 177.0m. This intersection also correlates well with the intersection in GNDD-155 as GNDD-211 intersects one of the lower grade sections in GNDD-155.

GNDD-334 was collared to extend the Gap Zone mineralisation another 100 metres down dip from GNDD-211 and successfully intersected a combined 68 metres of mineralisation in three zones all hosted in intrusives. The hole intercepted 29.0 metres at 0.3g/t AuEq (0.3 g/t gold, 0.2 g/t silver) from 220.0m, 20.0 metres at 0.3 g/t AuEq (0.3 g/t gold, 0.1 g/t silver) from 275.0m, and 18.7 metres at 0.3g/t AuEq (0.3 g/t gold, 0.3 g/t silver, 0.1% zinc) from 317.0m. The Gap Zone mineralisation remains open at depth however in the short term additional Gap Zone drilling will focus on strike extension of the Gap Zone to the south of GNDD-322 and infill drilling rather than deeper drilling.

Northern margin of the Gap Zone

GNDD-267 was collared on the next fence of drilling 50 metres north of GNDD-277 and GNDD-334. The hole was designed to test up-dip of GNDD-200 which had intersected 66.8 metres at 0.7 g/t AuEq. GNDD-267 is one of series of holes in this round of drilling collared to test for near surface mineralisation near the current northern extent of the Gap Zone mineralisation. Other holes include GNDD-259, and GNDD-263, collared to test the near surface Gap Zone another 50 metres north, and GNDD-275 collared 50 metres north again.

This near surface drilling recorded modest intercepts with best results **16.0 metres at 0.4 g/t AuEq (0.3 g/t gold, 0.8 g/t silver, 0.1% zinc)** from 128.0m in GNDD-259. These holes define the northern strike extend of the Gap Zone near surface.

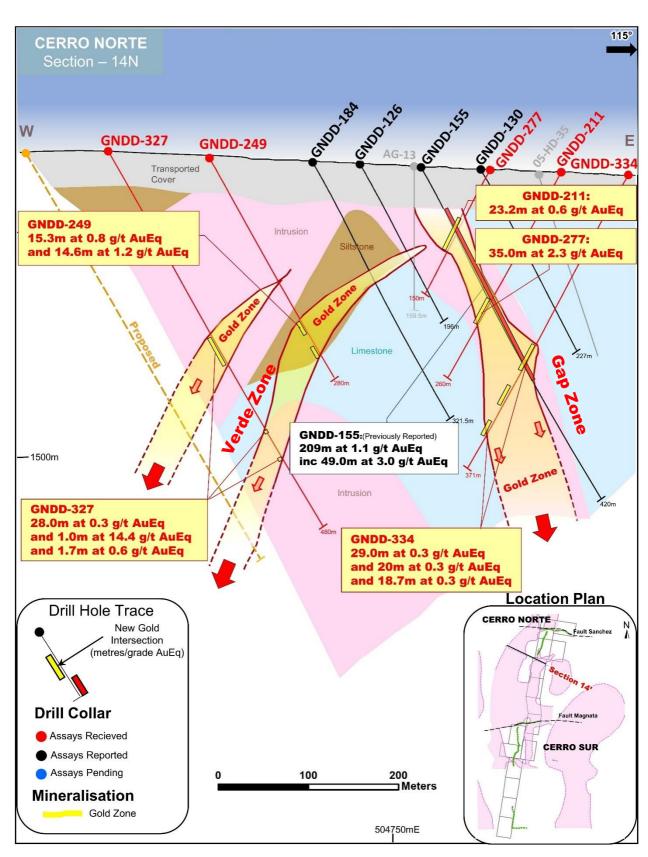


Figure 19 - Cross Section 14N showing GNDD-277 and the Gap and Verde Zone mineralisation

Issued Capital 974.4m shares 49.0m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

GNDD-228 was collared on the same section as GNDD-259 100 metres to the west of GNDD-259 as a deeper test of the northern extent of the Gap Zone. GNDD-228 intercepted three zones of mineralisation; 19.0 metres at 0.3g/t AuEq (0.3 g/t gold, 0.6 g/t silver) from 84.0m, 10.0 metres at 0.4g/t AuEq (0.3 g/t gold, 0.5 g/t silver, 0.1% zinc) from 132.0m, and 42.0 metres at 0.3g/t AuEq (0.3 g/t gold, 0.9 g/t silver, 0.1% zinc) from 279.0m including 1.7 metres at 2.4 g/t AuEq and 2.0 metres at 1.2 g/t AuEq. GNDD-228 confirms that the Gap Zone mineralisation remains open at depth near its interpreted northern margin. Additionally, mineralisation is yet to be closed off to the north-east with GNDD-345 and GNDD-360 (both assays pending) drilled to test for extensions to the north-east.

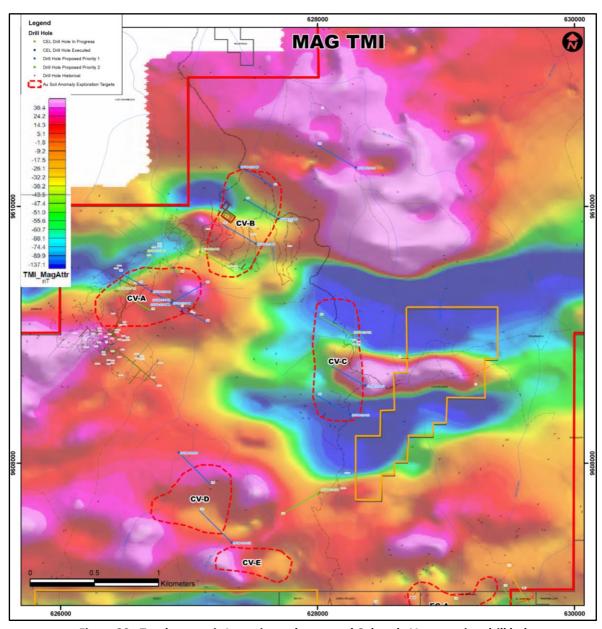


Figure 20 - Total magnetic Intensity and proposed Colorado V concession drill holes

EL GUAYABO GOLD AND COLORADO V GOLD/COPPER PROJECT - ECUADOR

MAIDEN DRILL PROGRAM

The Company commenced its maiden drill program in Ecuador during the quarter. The program will consist of approximately 20,000 metres of diamond core drilling. The Company expects to complete approximately 12,600 metres for 18 drill holes in the El Guayabo concession with an additional 12 drill holes for a total of 7500 metres in Colorado V concession.

The maiden drill program will target a series of gold and copper in soil anomalies as shown in Figures 20 and 21. Additionally, several holes will target magnetic and chargeability/IP anomalies. The program started on CEL's 100% owned El Guaybo concession. At the end of the quarter the Company had completed drill hole GYDD-21-001 which was drilled to 800.5 metres with GYDD-21-002, in progress. Results are expected to be available during the current quarter for the first 5-7 drill holes in the program. Contingent on results this program may be expanded.

ADDITIONAL SURFACE EXPLORATION

During the quarter the Company commenced a program of underground channel sampling at the Ecuaba Adit and underground workings. The Ecuaba Vein is reported as hosting high-grade gold along a northwest-striking shear zone at the western part of the concession.

The Ecuaba vein was historically exploited by small scale miners over a strike extent of approximately 500 m to a depth of 150 m below surface. The vein appears to extend a further 500 m along strike to the northwest towards the edge of the concession. The Ecuaba vein contains quartz, pyrite, arsenopyrite with lesser chalcopyrite and gold. The vein has been strongly deformed by a fault zone that trends parallel to the vein and is well exposed in the underground workings. Fragments of the vein are hosted in silicified fault gouge. Results are expected during the current quarter.

KAROO BASIN - SOUTH AFRICA

The Company continues to pursue its application for shale gas exploration rights in South Africa. As previously reported, the Department of Mineral Resources is progressing a new petroleum resources development bill, and the Minister reportedly indicated during his address in the debate on the Presidential State of the Nation Address in June that the bill will soon undergo public participation, as part of the cabinet and parliamentary approval processes.

Ends

For further information contact:

Kris Knauer
Managing Director
+61 411 885 979
kris.knauer@challengerex.com

Scott Funston
Chief Financial Officer
+61 413 867 600
scott.funston@challengerex.com

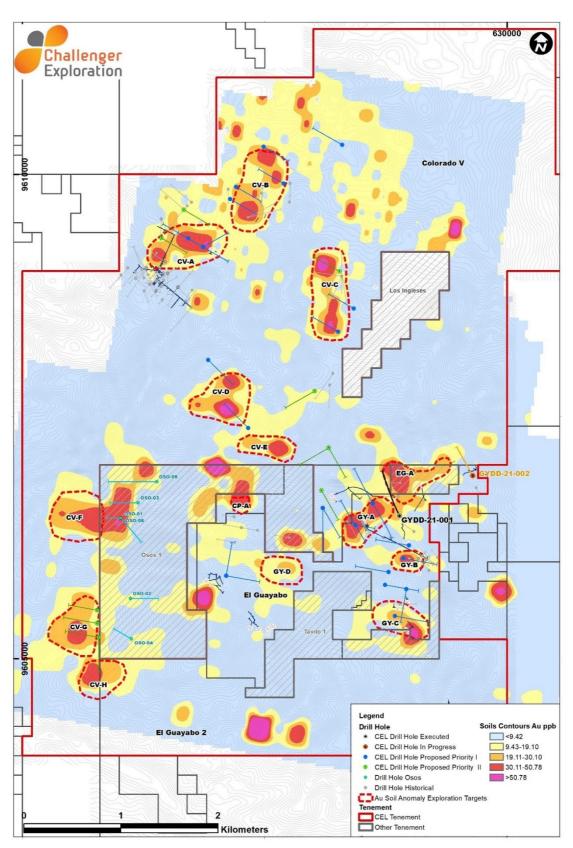


Figure 21 - El Guaybo and Colorado V concessions - gold soil geochemistry and planned drill program

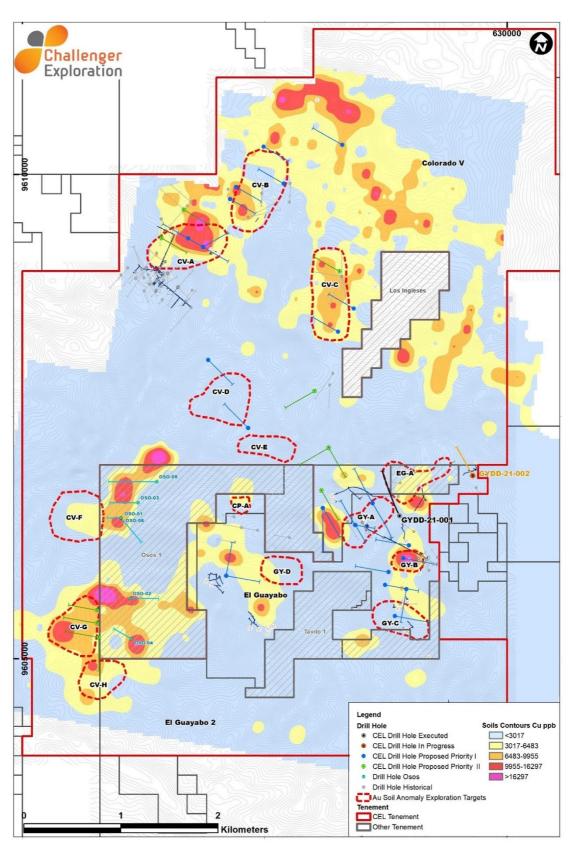


Figure 22 - El Guaybo and Colorado V concessions - Copper soil geochemistry and planned drill program

Table 1: Intercepts reported during the quarter at Sentazon.

Duill Halo From To Internal Cold Ac 7n Aufre Comments								Total intercent	
Drill Hole (#)	From (m)	To (m)	Interval (m)	Gold (g/t)	Ag (g/t)	Zn (%)	AuEq (g/t)	Comments	Total intercept (gram metres)
								0.2 0/1 1/10 0/11	
GNDD201	99.00	102.00	3.00	0.48	7.9	0.17	0.66	0.2 g/t AuEq cut	2.0
and	130.20	130.80	0.60	1.4	2.6	0.07	1.5	1.0 g/t AuEq cut	0.9
GNDD205	214.20	214.90	0.70	15.2	7.1	4.2	17.1	1.0 g/t AuEq cut	12.0
GNDD209	33.60	38.00	4.40	0.18	14.2	0.08	0.40	0.2 g/t AuEq cut	1.7
and	45.65	46.40	0.75	0.77	10.7	1.4	1.5	1.0 g/t AuEq cut	1.1
and	65.00	82.10	17.10	1.9	16.2	1.1	2.6	1.0 g/t AuEq cut	44.5
and	148.00	150.00	2.00	1.0	28.5	0.01	1.3	1.0 g/t AuEq cut	2.7
GNDD214	48.25	52.00	3.75	22.11	125.3	2.6	24.8	1.0 g/t AuEq cut	93.2
GNDD232	139.85	142.35	2.50	0.65	15.2	0.56	1.1	0.2 g/t AuEq cut	2.7
GNDD239	13.00	19.00	6.00	0.25	1.8	0.10	0.31	0.2 g/t AuEq cut	1.9
and	26.40	27.25	0.85	3.3	54.7	2.5	5.1	1.0 g/t AuEq cut	4.3
and	47.00	49.35	2.35	1.9	7.3	1.5	2.6	0.2 g/t AuEq cut	6.2
inc	48.30	49.35	1.05	4.2	16.2	0.71	4.7	1.0 g/t AuEq cut	4.9
GNDD241	NSI								0.0
GNDD246	179.50	182.00	2.50	4.5	9.0	2.9	5.9	0.2 g/t AuEq cut	14.8
inc	179.50	180.35	0.85	12.7	25.0	7.8	16.4	1.0 g/t AuEq cut	13.9
GNDD250	80.00	110.00	30.00	0.26	3.5	0.17	0.38	0.2 g/t AuEq cut	11.4
inc	98.00	103.00	5.00	0.88	9.2	0.63	1.3	1.0 g/t AuEq cut	6.3
GNDD253	112.00	114.00	2.00	1.0	1.1	0.1	1.0	1.0 g/t AuEq cut	2.0
and	133.00	183.00	50.00	1.8	1.0	0.1	1.9	0.2 g/t AuEq cut	93.6
inc	139.00	177.00	38.00	2.2	1.2	0.2	2.3	1.0 g/t AuEq cut	88.7
inc	151.55	153.92	2.37	17.2	3.7	0.3	17.3	10 g/t AuEq cut	41.0
and	201.40	226.53	25.13	0.8	0.3	0.0	0.9	0.2 g/t AuEq cut	21.6
inc	211.00	214.64	3.64	2.4	1.3	0.1	2.4	1.0 g/t AuEq cut	8.8
inc	220.00	222.00	2.00	3.4	0.5	0.0	3.4	1.0 g/t AuEq cut	6.8
GNDD296	59.00	72.00	13.00	0.31	5.0	0.10	0.42	0.2 g/t AuEq cut	5.5
inc	70.00	72.00	2.00	1.7	21.5	0.09	2.0	1.0 g/t AuEq cut	4.1
and	173.00	183.00	10.00	0.39	1.6	1.2	0.95	1.0 g/t AuEq cut	9.5
and	193.00	209.90	16.90	14.1	18.3	5.8	16.9	1.0 g/t AuEq cut	285.0
inc	194.20	201.30	7.10	28.1	36.1	8.3	32.2	1.0 g/t AuEq cut	228.8
inc	207.05	209.90	2.85	13.1	13.0	12.6	18.8	1.0 g/t AuEq cut	53.5
GNDD299	141.00	142.00	1.00	1.1	9.5	0.88	1.6	1.0 g/t AuEq cut	1.6
and	147.50	157.35	9.85	3.4	44.0	5.25	6.2	1.0 g/t AuEq cut	61.4
GNDD-302	NSI								0.0
GNDD314	102.00	106.00	4.00	0.34	11.8	0.22	0.58	0.2 g/t AuEq cut	2.3
and	115.35	118.00	2.65	1.5	13.8	0.06	1.7	2 g/t AuEq cut	4.5
inc	116.59	118.00	1.41	2.4	21.3	0.08	2.7	1.0 g/t AuEq cut	3.8
and	205	210.50	5.50	1.6	25.1	4.6	4.0	1.0 g/t AuEq cut	21.8
and	216	222.50	6.50	0.51	9.6	2.4	1.7	2 g/t AuEq cut	11.0
inc	217	222.50	5.50	0.56	10.5	2.7	1.9	1.0 g/t AuEq cut	10.3
and	284	286.00	2.00	0.83	0.2	0.01	0.84	2 g/t AuEq cut	1.7
and	296.9	299.65	2.75	59.0	25.8	7.2	62.5	10 g/t AuEq cut	171.8
GNDD044e	213.0	217.6	4.6	24.3	23.0	2.2	25.6	10 g/t AuEq cut	117.7
and	230.0	240.2	10.2	12.5	10.6	3.5	14.2	1.0 g/t AuEq cut	144.4
inc	233.0	237.5	4.5	23.6	14.1	4.3	25.6	10 g/t AuEq cut	115.4
and	291.2	291.8	0.6	5.4	8.3	0.1	5.6	1.0 g/t AuEq cut	3.4
GNDD306	78.0	103.0	25.0	0.5	5.8	0.1	0.6	0.2 g/t AuEq cut	14.9

		•	•	•		•		•	,
inc	84.0	92.0	8.0	1.0	13.9	0.2	1.2	1.0 g/t AuEq cut	9.8
and	213.3	242.0	28.8	0.5	8.2	0.3	0.7	0.2 g/t AuEq cut	19.8
inc	213.3	215.0	1.8	1.0	18.1	0.0	1.2	1.0 g/t AuEq cut	2.2
inc	222.7	224.4	1.7	2.5	63.1	3.0	4.6	1.0 g/t AuEq cut	7.8
inc	234.0	236.0	2.0	1.7	21.5	1.0	2.4	1.0 g/t AuEq cut	4.8
GNDD311	5.0	27.0	22.0	0.4	0.8	0.0	0.5	0.2 g/t AuEq cut	10.2
inc	23.0	25.0	2.0	2.3	1.2	0.0	2.3	1.0 g/t AuEq cut	4.6
and	45.0	49.0	4.0	0.6	0.3	0.0	0.6	0.2 g/t AuEq cut	2.3
and	176.0	197.0	21.0	0.2	3.2	0.1	0.3	0.2 g/t AuEq cut	0.0
inc	191.0	195.5	4.5	0.3	6.5	0.4	0.6	1.0 g/t AuEq cut	2.6
GNDD316	102.0	106.0	4.0	0.3	11.2	0.3	0.6	0.2 g/t AuEq cut	2.2
and	286.0	320.0	34.0	0.3	4.7	0.1	0.4	0.2 g/t AuEq cut	14.4
inc	286.0	288.0	2.0	1.3	28.0	0.1	1.7	1.0 g/t AuEq cut	3.4
inc	306.0	308.0	2.0	0.6	9.6	0.9	1.2	1.0 g/t AuEq cut	2.3
inc	316.0	318.0	2.0	1.4	4.4	0.0	1.5	1.0 g/t AuEq cut	2.9
GNDD338	9.00	13.00	4.00	0.36	2.55	0.02	0.40	0.2 g/t AuEq cut	1.60
and	190.00	210.00	20.00	0.40	6.12	0.08	0.51	0.2 g/t AuEq cut	10.18
GNDD346	77.0	81.7	4.7	0.7	4.1	0.4	0.9	0.2 g/t AuEq cut	4.3
inc	80.0	81.7	1.7	1.8	2.1	0.2	1.9	1.0 g/t AuEq cut	3.2
GNDD352	143.5	154.8	11.3	5.4	76.9	5.5	8.8	1.0 g/t AuEq cut	99.1
inc	146.0	150.0	4.0	10.6	140.8	11.7	17.4	10 g/t AuEq cut	69.7
and	301.0	304.0	3.0	0.4	4.4	0.3	0.6	0.2 g/t AuEq cut	1.9
inc	302.0	303.0	1.0	1.0	9.9	0.6	1.4	1.0 g/t AuEq cut	1.4
inc	325.0	326.0	1.0	8.9	5.4	3.0	10.3	10 g/t AuEq cut	10.3
GNDD362	191.0	208.0	17.0	0.2	8.3	0.0	0.3	0.2 g/t AuEq cut	5.2
and	237.9	240.4	2.5	2.1	77.6	11.1	7.9	0.2 g/t AuEq cut	19.6
inc	239.1	240.4	1.3	3.8	137.6	21.2	14.7	1.0 g/t AuEq cut	19.1
and	401.6	405.1	3.5	5.4	9.4	3.9	7.2	0.2 g/t AuEq cut	25.1
inc	402.3	404.5	2.2	8.4	12.1	6.1	11.2	1.0 g/t AuEq cut	24.6
and	415.3	416.5	1.1	2.2	6.7	1.3	2.8	1.0 g/t AuEq cut	3.2
and	423.6	426.3	2.8	0.2	4.2	1.7	1.0	0.2 g/t AuEq cut	2.7
inc	425.0	425.6	0.6	0.1	7.5	5.8	2.8	1.0 g/t AuEq cut	1.7

See below for information regarding AuEq's reported under the JORC Code.

² Gold Equivalent (AuEq) values - Requirements under the JORC Code

- Assumed commodity prices for the calculation of AuEq is Au US\$1780 Oz, Ag US\$24 Oz, Zn US\$2,800 /t
- Metallurgical recoveries for Au, Ag and Zn are estimated to be 89%, 84% and 79% respectively (see JORC Table 1
 Section 3 Metallurgical assumptions) based on metallurgical test work.
- The formula used: AuEq (g/t) = Au (g/t) + [Ag (g/t) x (24/1780) x (0.84/0.89)] + [Zn (%) x (28.00*31.1/1780) x (0.79/0.89)]
- CEL confirms that it is the Company's opinion that all the elements included in the metal equivalents calculation have a reasonable potential to be recovered and sold.

Table 2: Magnata Fault intercepts reported during the Quarter.

Drill Hole	From	То	Interval	Gold	Ag	Zn	AuEq	Comments	Total intercept
(#)	(m)	(m)	(m)	(g/t)	(g/t)	(%)	(g/t)		(gram metres)
GMDD041E	31.00	47.00	16.00	2.60	4.93	0.27	2.78	0.2 g/t AuEq cut	44.5
inc	41.70	43.70	2.00	19.96	28.52	1.21	20.85	1.0 g/t AuEq cut	41.7
and	63.50	68.60	5.10	7.86	83.32	7.86	12.33	1.0 g/t AuEq cut	62.9
and	306.10	307.70	1.60	8.05	9.19	3.59	9.72	1.0 g/t AuEq cut	15.6
and	338.40	343.00	4.60	0.09	1.65	0.45	0.31	0.2 g/t AuEq cut	1.4
GNDD179	76.00	84.00	8.00	0.12	4.53	0.47	0.38	0.2 g/t AuEq cut	3.1
GNDD206	31.55	42.00	10.45	3.6	6.3	0.06	3.7	0.2 g/t AuEq cut	38.8
inc	34.65	38.55	3.90	9.5	14.9	0.03	9.7	1.0 g/t AuEq cut	37.9
and	263.00	265.00	2.00	0.88	0.37	0.10	0.93	0.2 g/t AuEq cut	1.9
and	277.00	281.00	4.00	0.54	0.65	0.01	0.55	0.2 g/t AuEq cut	2.2
GNDD210	8.00	10.00	2.00	0.86	17.9	0.02	1.1	1.0 g/t AuEq cut	2.2
and	28.00	34.00	6.00	0.04	1.4	0.47	0.26	0.2 g/t AuEq cut	1.6
and	308.00	310.00	2.00	1.3	3.8	0.71	1.6	1.0 g/t AuEq cut	3.2
GNDD212	15.00	16.80	1.80	0.5	1.1	0.12	0.53	0.2 g/t AuEq cut	1.0
and	42.20	43.60	1.40	1.2	8.1	0.08	1.4	1.0 g/t AuEq cut	1.9
GNDD217	111.00	132.00	21.00	5.7	32.1	3.4	7.6	0.2 g/t AuEq cut	158.9
inc	114.65	126.35	11.70	10.1	54.8	5.9	13.3	1.0 g/t AuEq cut	156.1
inc	116.7	121.00	4.35	23.1	139	11.7	29.9	1.0 g/t AuEq cut	130.3
GNDD219	12.00	20.00	8.00	0.13	0.46	0.02	0.15	0.2 g/t AuEq cut	1.2
and	68.90	108.25	39.35	0.04	10.8	0.08	0.22	0.2 g/t AuEq cut	8.6
GNDD221	82.80	84.00	1.20	1.1	6.7	0.10	1.2	1.0 g/t AuEq cut	1.4
and	156.85	165.00	8.15	1.5	7.5	0.83	2.0	1.0 g/t AuEq cut	16.2
GNDD223	26.00	28.00	2.00	0.60	0.41	0.02	0.61	0.2 g/t AuEq cut	1.2
GNDD227	81.00	83.00	2.00	0.77	0.52	0.0	0.78	0.2 g/t AuEq cut	1.6
and	179.15	182.85	3.70	1.2	16.8	1.6	2.1	0.2 g/t AuEq cut	8.0
inc	181.95	182.85	0.90	4.2	64.5	6.6	7.9	1.0 g/t AuEq cut	7.1
and	222.00	230.00	8.00	4.2	53.6	1.7	5.7	0.2 g/t AuEq cut	45.2
inc	223.40	230.00	6.60	5.1	64.2	2.1	6.8	1.0 g/t AuEq cut	44.9
GNDD240	114.00	116.00	2.00	1.4	0.31	0.01	1.5	1.0 g/t AuEq cut	2.9
and	167.00	170.45	3.45	2.7	50.2	2.9	4.6	0.2 g/t AuEq cut	15.9
inc	169.20	170.45	1.25	6.6	116.0	7.6	11.3	10 g/t AuEq cut	14.2
GNDD243	136.00	143.10	7.10	2.2	27.2	2.6	3.6	0.2 g/t AuEq cut	25.7
inc	138.00	143.10	5.10	2.1	25.9	2.5	3.5	1.0 g/t AuEq cut	17.8
inc	142.00	143.10	1.10	9.0	126.0	14.0	16.7	10 g/t AuEq cut	18.4
GNDD258	250.00	252.00	2.00	0.26	17.7	2.9	1.7	1.0 g/t AuEq cut	3.5
GNDD261	22.00	26.00	4.00	1.1	5.2	0.56	1.4	0.2 g/t AuEq cut	5.5
inc	22.00	22.50	0.50	7.5	17.6	4.2	9.6	1.0 g/t AuEq cut	4.8
GNDD264	70.00	72.40	2.40	0.16	6.1	1.0	0.66	0.2 g/t AuEq cut	1.6
inc	71.50	72.40	0.90	0.36	12.0	2.0	1.4	1.0 g/t AuEq cut	1.3
and	104.95	127.00	22.05	1.4	16.7	1.7	2.3	1.0 g/t AuEq cut	51.2
GNDD265	56.00	60.00	4.00	0.57	1.3	0.08	0.63	0.2 g/t AuEq cut	2.5
and	152.00	166.00	14.00	0.20	1.1	0.11	0.26	0.2 g/t AuEq cut	3.6
and	237.00	238.00	1.00	8.97	19.7	2.48	10.30	10 g/t AuEq cut	10.3
GNDD266	34.00	50.00	16.00	0.4	9.0	0.6	0.8	0.2 g/t AuEq cut	12.3
inc	38.82	44.00	5.18	0.9	23.1	1.6	1.9	1.0 g/t AuEq cut	10.0
GNDD269	6.00	12.00	6.00	1.1	12.2	0.1	1.3	0.2 g/t AuEq cut	7.9

inc	10.00	12.00	2.00	2.8	34.4	0.3	3.4	1.0 g/t AuEq cut	6.8
and	48.00	50.00	2.00	0.2	87.3	0.4	1.5	1.0 g/t AuEq cut	3.1
and	86.00	96.00	10.00	0.3	1.1	0.0	0.3	0.2 g/t AuEq cut	2.7
GNDD272	35.00	57.00	22.00	0.17	2.7	0.1	0.25	0.2 g/t AuEq cut	5.4
and	96.50	148.10	51.60	3.9	11.8	1.0	4.5	0.2 g/t AuEq cut	232.5
inc	137.00	148.10	11.10	17.4	51.1	4.5	20.0	1.0 g/t AuEq cut	222.3
inc	139.00	146.90	7.90	23.8	65.2	6.0	27.2	10 g/t AuEq cut	215.2
GNDD273	31.50	34.00	2.50	0.61	3.6	0.8	1.0	0.2 g/t AuEq cut	2.5
inc	31.50	32.37	0.87	1.47	6.5	2.0	2.4	1.0 g/t AuEq cut	2.1
and	50.33	59.50	9.17	0.07	5.9	0.6	0.4	0.2 g/t AuEq cut	3.9
GNDD274	298.00	317.00	19.00	0.74	9.6	0.5	1.1	0.2 g/t AuEq cut	20.2
inc	305.00	307.00	2.00	6.58	48.8	3.5	8.7	1.0 g/t AuEq cut	17.4
GNDD276	49.00	50.45	1.45	0.76	9.1	0.48	1.1	1.0 g/t AuEq cut	1.6
and	112.15	115.00	2.85	0.38	0.57	0.02	0.39	0.2 g/t AuEq cut	1.1
and	139.00	153.90	14.90	0.47	1.9	0.18	0.57	0.2 g/t AuEq cut	8.5
inc	143.00	145.00	2.00	1.3	2.5	0.22	1.5	1.0 g/t AuEq cut	2.9
and	188.30	193.15	4.85	0.32	0.59	0.13	0.38	0.2 g/t AuEq cut	1.8
and	212.00	216.00	4.00	0.46	1.8	0.25	0.60	0.2 g/t AuEq cut	2.4
GNDD278	221.00	232.75	11.75	0.43	1.0	0.09	0.48	0.2 g/t AuEq cut	5.6
inc	223.00	224.00	1.00	1.0	1.3	0.07	1.1	1.0 g/t AuEq cut	1.1
inc	228.00	229.00	1.00	1.4	1.9	0.19	1.5	1.0 g/t AuEq cut	1.5
GNDD279	49.00	59.30	10.30	0.66	1.7	0.08	0.71	0.2 g/t AuEq cut	7.4
inc	50.65	52.00	1.35	1.04	0.6	0.0	1.1	1.0 g/t AuEq cut	1.4
inc	58.00	59.30	1.30	1.81	9.1	0.5	2.1	1.0 g/t AuEq cut	2.8
GNDD281	42.50	66.00	23.50	1.1	8.9	0.27	1.3	0.2 g/t AuEq cut	30.5
inc	42.50	60.00	17.50	1.3	11.3	0.29	1.6	1.0 g/t AuEq cut	27.8
and	196.30	198.90	2.60	1.1	26.2	3.1	2.8	0.2 g/t AuEq cut	7.2
inc	196.30	197.95	1.65	1.4	37.7	4.7	4.0	1.0 g/t AuEq cut	6.6
and	224.00	236.00	12.00	0.28	4.9	0.37	0.51	0.2 g/t AuEq cut	6.1
inc	231.10	232.35	1.25	0.72	16.0	3.0	2.2	1.0 g/t AuEq cut	2.8
and	292.00	293.20	1.20	3.0	80.4	0.32	4.2	1.0 g/t AuEq cut	5.0
and	309.00	312.85	3.85	0.43	4.3	0.10	0.53	0.2 g/t AuEq cut	2.0
and	426.00	427.55	1.55	0.27	24.6	1.6	1.3	1.0 g/t AuEq cut	2.0
GNDD282	11.00	19.00	8.00	0.20	1.7	0.07	0.25	0.2 g/t AuEq cut	2.0
and	187.00	197.00	10.00	0.45	1.7	0.02	0.48	0.2 g/t AuEq cut	4.8
and	216.50	224.00	7.50	0.20	2.7	0.11	0.28	0.2 g/t AuEq cut	2.1
GNDD283	7.00	11.00	4.00	2.9	17.8	0.15	3.2	0.2 g/t AuEq cut	12.8
inc	8.50	9.70	1.20	9.4	49.7	0.26	10.1	10 g/t AuEq cut	12.2
GNDD286	95.00	101.00	6.00	0.22	1.5	0.27	0.36	0.2 g/t AuEq cut	2.2
and	112.10	115.90	3.80	0.38	0.57	0.02	0.40	0.2 g/t AuEq cut	1.5
and	169.00	179.20	10.20	4.2	52.5	3.0	6.2	0.2 g/t AuEq cut	63.4
				5.8			8.4		
inc	169.00 174.25	176.45 176.45	7.45	11.5	71.4 170.5	4.0	18.5	1.0 g/t AuEq cut 10 g/t AuEq cut	62.8 40.7
inc			2.20			11.1		0.2 g/t AuEq cut	
GNDD288	13.00	109.00	96.00	1.8	2.9	0.31	2.0		194.0
inc	65.00	109.00	44.00	3.7	4.6	0.63	4.1	1.0 g/t AuEq cut	178.8
inc	98.20	102.50	4.30	27.6	35.4	5.9	30.6	10 g/t AuEq cut	131.7
and	216.00 217.76	220.50 219.66	4.50 1.90	3.3 7.6	31.2 68.7	4.0 8.7	5.4 12.2	0.2 g/t AuEq cut 1.0 g/t AuEq cut	24.2
inc									

and	399.00	426.80	27.80	5.5	12.9	3.9	7.3	0.2 g/t AuEq cut	203.7
	_						_	, , ,	
inc	403.00	407.00	4.00	1.3	2.1	0.62	1.6	1.0 g/t AuEq cut	6.4
inc	410.00	424.20	14.20	10.1	20.6	7.3	13.6	1.0 g/t AuEq cut	192.7
GNDD289	23	62.2	39.2	0.2	2.1	0.1	0.3	0.2 g/t AuEq cut	12.2
inc	27	29	2	1.0	16.9	0.1	1.3	1.0 g/t AuEq cut	2.5
inc	60.9	62.2	1.3	0.3	7.1	2.6	1.5	1.0 g/t AuEq cut	2.0
and	132	136	4	0.7	0.4	0.0	0.7	0.2 g/t AuEq cut	2.8
and	165	179	14	0.3	1.6	0.0	0.3	0.2 g/t AuEq cut	4.2
and	201	207	6	0.2	1.7	0.2	0.3	0.2 g/t AuEq cut	1.7
GNDD290	27.45	36.00	8.55	0.20	6.0	0.07	0.30	0.2 g/t AuEq cut	2.6
and	70.00	74.00	4.00	0.71	13.4	1.1	1.4	0.2 g/t AuEq cut	5.4
inc	70.00	72.00	2.00	1.0	16.1	2.0	2.1	1.0 g/t AuEq cut	4.1
and	139.50	151.16	11.66	0.31	12.1	0.82	0.82	0.2 g/t AuEq cut	9.6
inc	139.50	141.60	2.10	1.4	25.3	2.1	2.7	1.0 g/t AuEq cut	5.6
and	162.60	166.56	3.96	1.9	19.9	5.5	4.6	1.0 g/t AuEq cut	18.0
GNDD294	35.83	45	9.17	0.3	4.1	0.2	0.4	0.2 g/t AuEq cut	3.9
GNDD297	16	30	14	0.5	5.1	0.0	0.5	0.2 g/t AuEq cut	7.7
inc	20	22	2	1.4	21.6	0.0	1.7	1.0 g/t AuEq cut	3.3
and	71	74.6	3.6	0.1	34.0	0.0	0.6	0.2 g/t AuEq cut	2.0

See below for information regarding AuEq's reported under the JORC Code.

² Gold Equivalent (AuEq) values - Requirements under the JORC Code

- Assumed commodity prices for the calculation of AuEq is Au US\$1780 Oz, Ag US\$24 Oz, Zn US\$2,800 /t
- Metallurgical recoveries for Au, Ag and Zn are estimated to be 89%, 84% and 79% respectively (see JORC Table 1
 Section 3 Metallurgical assumptions) based on metallurgical test work.
- The formula used: $AuEq(g/t) = Au(g/t) + [Ag(g/t) \times (24/1780) \times (0.84/0.89)] + [Zn(%) \times (28.00*31.1/1780) \times (0.79/0.89)]$
- CEL confirms that it is the Company's opinion that all the elements included in the metal equivalents calculation have a reasonable potential to be recovered and sold.

Table 3: Verde Zone intercepts reported during the Quarter

Drill Hole	From	То	Interval	Gold	Ag	Zn	AuEq	Comments	Total intercept
(#)	(m)	(m)	(m)	(g/t)	(g/t)	(%)	(g/t)		(gram metres)
GNDD146		127.8		0.4	1.1		0.4	0.2 c/t AuEc out	7.9
	110.0 118.0	127.8	17.8 2.0	2.0	6.6	0.2 1.5	0.4 2.7	0.2 g/t AuEq cut 1.0 g/t AuEq cut	7.9 5.4
GNDD153	NSI	120.0	2.0	2.0	0.0	1.5	2.1	1.0 g/t AuEq cut	0.0
GNDD153 GNDD161	93.0	94.1	1.1	0.6	5.7	1.4	1.2	1.0 g/t AuEq cut	1.4
and	224.8	233.0	8.3	0.6	1.6	0.0	0.6	0.2 g/t AuEq cut	5.4
inc	230.0	233.0	1.2	2.6	3.5	0.0	2.6	1.0 g/t AuEq cut	3.2
and	245.7	247.0	1.3	1.1	0.5	0.0	2.6 1.1	1.0 g/t AuEq cut	1.5
GNDD180	80.0	81.0	1.0	1.3	4.8	0.5	1.5	1.0 g/t AuEq cut	1.5
and	218.8	222.0	3.3	1.0	6.6	0.6	1.4	0.2 g/t AuEq cut	4.5
							2.2	1.0 g/t AuEq cut	
GNDD186	218.8	220.0	1.3	1.6	11.0	1.1			2.8
	104.0	106.0	2.0	0.9	0.6	0.0	0.9	0.2 g/t AuEq cut	1.8
GNDD194	3.0	11.7	8.7	0.5	2.6	0.7	0.8	0.2 g/t AuEq cut	7.2
inc	8.7	11.7	3.0	1.2	3.9	1.7	2.0	1.0 g/t AuEq cut	5.9
and	286.0	288.0	2.0	0.6	0.1	0.0	0.6	0.2 g/t AuEq cut	1.2
GNDD198	48.8	51.0	2.2	0.5	0.5	0.2	0.6	0.2 g/t AuEq cut	1.3
and	82.0	86.0	4.0	1.6	11.8	0.3	1.9	0.2 g/t AuEq cut	7.6
inc	84.0	86.0	2.0	2.7	22.4	0.4	3.2	1.0 g/t AuEq cut	6.4
and	99.0	101.0	2.0	0.5	0.4	0.1	0.6	0.2 g/t AuEq cut	1.2
and	111.0	113.0	2.0	1.2	1.0	0.1	1.3	1.0 g/t AuEq cut	2.5
and	157.0	158.0	1.0	0.0	68.1	0.1	0.9	0.2 g/t AuEq cut	0.9
GNDD211	168.8	192.0	23.2	0.5	0.8	0.1	0.6	0.2 g/t AuEq cut	13.2
inc	177.1	181.5	4.3	1.5	2.0	0.3	1.6	1.0 g/t AuEq cut	7.1
GNDD222	NSI								0.0
GNDD224	134.0	172.0	38.0	0.3	0.9	0.0	0.3	0.2 g/t AuEq cut	11.3
inc	134.0	135.0	1.0	6.7	1.4	0.1	6.7	1.0 g/t AuEq cut	6.7
and	313.0	314.3	1.3	0.9	4.9	0.4	1.1	1.0 g/t AuEq cut	1.4
GNDD228	84.0	103.0	19.0	0.3	0.6	0.0	0.3	0.2 g/t AuEq cut	5.9
inc	84.0	86.0	2.0	1.0	0.3	0.0	1.0	1.0 g/t AuEq cut	2.1
and	132.0	142.0	10.0	0.3	0.5	0.1	0.4	0.2 g/t AuEq cut	3.6
and	279.0	321.0	42.0	0.3	0.9	0.1	0.3	0.2 g/t AuEq cut	13.1
inc	280.0	281.7	1.6	1.9	10.1	0.8	2.4	1.0 g/t AuEq cut	3.9
inc	311.0	313.0	2.0	1.2	0.2	0.0	1.2	1.0 g/t AuEq cut	2.4
GNDD248	136.0	179.0	43.0	0.2	0.5	0.1	0.3	0.2 g/t AuEq cut	12.0
and	199.0	282.0	83.0	0.5	2.5	0.1	0.5	0.2 g/t AuEq cut	44.2
inc	213.0	215.0	2.0	1.3	0.5	0.0	1.3	1.0 g/t AuEq cut	2.6
inc	225.0	226.0	1.0	4.7	1.4	0.0	4.7	10 g/t AuEq cut	4.7
inc	237.1	237.8	0.7	24.8	31.0	5.9	27.7	1.0 g/t AuEq cut	19.4
inc	254.0	255.4	1.4	0.4	114.0	0.8	2.2	1.0 g/t AuEq cut	3.1
GNDD249	207.0	222.3	15.3	0.7	1.5	0.2	0.8	0.2 g/t AuEq cut	11.8
inc	207.0	209.6	2.6	3.0	7.9	0.9	3.5	1.0 g/t AuEq cut	9.0
and	237.0	251.6	14.6	1.1	1.3	0.1	1.2	0.2 g/t AuEq cut	17.0
inc	251.0	251.6	0.6	21.9	16.0	2.2	23.1	1.0 g/t AuEq cut	13.8
GNDD252	104.0	114.0	10.0	0.6	2.3	0.2	0.7	0.2 g/t AuEq cut	7.3
inc	107.0	112.0	5.0	1.0	3.3	0.4	1.2	1.0 g/t AuEq cut	5.8
and	128.0	140.2	12.2	0.8	1.3	0.3	0.9	0.2 g/t AuEq cut	10.9
inc	134.0	138.0	4.0	1.7	2.4	0.6	2.0		7.9

	1	1	•	i		ı	•	ī	1
and	264.6	298.0	33.4	0.6	6.1	0.7	0.9	0.2 g/t AuEq cut	31.2
inc	281.7	284.6	2.9	2.7	36.3	6.1	5.8	1.0 g/t AuEq cut	16.8
inc	290.0	292.0	2.0	1.1	4.6	0.1	1.2	1.0 g/t AuEq cut	2.4
GNDD254	173.0	235.0	62.0	1.7	20.3	0.3	2.1	0.2 g/t AuEq cut	132.2
inc	173.0	190.0	17.0	3.2	4.4	0.5	3.5	1.0 g/t AuEq cut	58.8
inc	197.0	201.0	4.0	9.4	291.6	2.6	14.3	1.0 g/t AuEq cut	57.1
and	249.0	267.0	18.0	0.8	4.3	0.3	1.0	0.2 g/t AuEq cut	17.6
inc	255.5	256.5	1.0	6.5	19.0	1.4	7.3	1.0 g/t AuEq cut	7.3
inc	266.6	267.0	0.4	7.3	28.0	5.7	10.1	1.0 g/t AuEq cut	4.5
and	298.3	300.0	1.8	0.3	73.9	0.3	1.3	0.2 g/t AuEq cut	2.3
and	312.0	324.0	12.0	0.8	0.1	0.0	0.8	0.2 g/t AuEq cut	9.8
inc	314.0	320.0	6.0	1.0	0.1	0.0	1.0	1.0 g/t AuEq cut	6.1
and	363.0	389.8	26.8	1.7	2.8	0.4	1.9	0.2 g/t AuEq cut	51.1
inc	363.0	369.0	6.0	4.6	1.9	0.2	4.7	1.0 g/t AuEq cut	28.4
inc	385.0	389.8	4.8	2.1	8.1	1.5	2.9	1.0 g/t AuEq cut	13.6
GNDD255	158.0	194.7	36.7	0.2	0.8	0.0	0.2	0.2 g/t AuEq cut	7.9
inc	192.0	194.7	2.7	1.0	2.5	0.1	1.1	1.0 g/t AuEq cut	2.8
GNDD257	233.0	277.3	44.3	0.3	2.5	0.2	0.4	0.2 g/t AuEq cut	19.1
inc	259.0	261.0	2.0	2.4	3.5	0.2	2.6	1.0 g/t AuEq cut	5.1
inc	275.0	277.3	2.3	1.2	1.9	0.1	1.3	1.0 g/t AuEq cut	3.0
GNDD259	128.0	144.0	16.0	0.3	0.8	0.1	0.4	0.2 g/t AuEq cut	6.0
inc	143.0	144.0	1.0	0.8	5.5	0.8	1.3	1.0 g/t AuEq cut	1.3
GNDD260	159.0	161.0	2.0	0.2	9.1	1.4	0.9	0.2 g/t AuEq cut	1.8
GNDD262	183.0	222.0	39.0	0.2	1.2	0.1	0.2	0.2 g/t AuEq cut	9.0
GNDD263	59.0	68.0	9.0	0.0	0.1	0.6	0.3	0.2 g/t AuEq cut	2.7
and	110.0	112.0	2.0	1.3	0.6	0.0	1.3	1.0 g/t AuEq cut	2.6
GNDD267	169.0	178.0	9.0	0.3	1.2	0.2	0.4	0.2 g/t AuEq cut	3.6
GNDD268	NSI	170.0	3.0	0.5		0.2	0.4	0.2 g/ t/tally cut	0.0
GNDD270	NSI								0.0
GNDD275	55.0	57.0	2.0	1.1	1.9	0.0	1.1	1.0 g/t AuEq cut	2.3
GNDD277	63.0	98.0	35.0	2.2	3.0	0.1	2.3	0.2 g/t AuEq cut	81.0
inc	63.0	92.0	29.0	2.6	2.7	0.1	2.7	1.0 g/t AuEq cut	78.6
GNDD280	239.4	254.4	15.1	3.7	38.6	0.7	4.5	1.0 g/t AuEq cut	67.6
inc	242.3	245.0	2.8	18.4	29.8	0.7	19.1	10 g/t AuEq cut	52.4
GNDD284	69.6	86.6	17.1	2.4	4.7	0.7	2.7	0.2 g/t AuEq cut	46.8
inc	75.0	80.2	5.2	7.4	13.9	2.0	8.5	1.0 g/t AuEq cut	44.0
inc	77.8	79.0	1.2	21.4	34.4	5.5	24.2	10 g/t AuEq cut	29.0
GNDD285	173.6	175.3	1.7	1.0	1.5	0.5	1.2	1.0 g/t AuEq cut	2.0
	312.0	323.3	11.3	3.0	11.4	1.4	3.7	1.0 g/t AuEq cut	42.0
and					1.2	0.0		0.2 g/t AuEq cut	6.7
and	362.4 362.4	373.0	10.6	0.6			0.6	1.0 g/t AuEq cut	
inc		363.6	1.2	3.7	8.8	0.4	4.0	1.0 g/t AuEq cut	4.6
and	393.0	395.0	2.0	6.7	12.1	0.1	6.9		13.9
GNDD287	26.0	152.0	126.0	0.4	2.1	0.2	0.5	0.2 g/t AuEq cut 1.0 g/t AuEq cut	59.3
inc	67.0	72.5	5.5	1.8	6.6	0.4	2.0	1.0 g/t AuEq cut	11.3
inc	82.0	84.0	2.0	1.5	4.4	0.6	1.8		3.6
and	202.0	209.0	7.0	0.1	1.8	0.2	0.2	0.2 g/t AuEq cut	1.5
GNDD291	18.2	30.0	11.8	0.5	7.5	0.1	0.6	0.2 g/t AuEq cut	7.1
inc	24.0	26.0	2.0	1.0	5.7	0.0	1.1	1.0 g/t AuEq cut	2.2
and	62.0	139.0	77.0	0.2	5.3	0.1	0.3	0.2 g/t AuEq cut	22.7

	1	1	•			1	1	ı	1
and	165.0	190.0	25.0	0.1	3.5	0.1	0.2	0.2 g/t AuEq cut	5.1
inc	179.0	181.0	2.0	0.8	6.3	0.3	1.0	1.0 g/t AuEq cut	2.1
GNDD292	69.0	81.5	12.5	0.2	1.7	0.0	0.3	0.2 g/t AuEq cut	3.6
inc	69.0	70.0	1.0	1.0	3.2	0.0	1.0	1.0 g/t AuEq cut	1.0
and	99.0	141.0	42.0	0.2	1.5	0.1	0.3	0.2 g/t AuEq cut	11.1
inc	110.8	112.8	2.0	1.0	7.7	0.3	1.2	1.0 g/t AuEq cut	2.4
and	159.0	222.0	63.0	0.6	8.6	0.8	1.0	0.2 g/t AuEq cut	65.7
inc	196.8	197.8	1.1	1.5	187.0	16.9	11.2	1.0 g/t AuEq cut	11.7
inc	210.7	213.4	2.7	2.0	62.0	9.6	6.9	1.0 g/t AuEq cut	18.7
inv	219.1	222.0	2.9	2.2	1.8	0.0	2.2	1.0 g/t AuEq cut	6.6
GNDD293	130.0	196.0	66.0	0.5	1.0	0.1	0.5	0.2 g/t AuEq cut	34.8
inc	130.0	135.5	5.5	1.4	3.4	0.2	1.5	1.0 g/t AuEq cut	8.2
inc	143.0	145.0	2.0	1.9	2.4	0.0	2.0	1.0 g/t AuEq cut	3.9
inc	179.5	188.9	9.3	0.8	1.8	0.2	0.9	1.0 g/t AuEq cut	8.5
GNDD295	58.0	100.0	42.0	0.2	2.7	0.1	0.3	0.2 g/t AuEq cut	11.2
GNDD298	148.0	169.0	21.0	0.6	1.1	0.2	0.7	0.2 g/t AuEq cut	15.7
inc	148.0	155.0	7.0	1.1	2.3	0.4	1.3	1.0 g/t AuEq cut	9.2
and	205.0	207.0	2.0	1.5	0.2	0.0	1.5	1.0 g/t AuEq cut	3.0
and	230.5	232.2	1.7	0.6	4.2	0.4	0.8	0.2 g/t AuEq cut	1.4
and	281.0	286.0	5.0	0.1	19.7	0.1	0.4	0.2 g/t AuEq cut	1.8
and	300.0	309.0	9.0	0.6	2.6	0.5	0.8	0.2 g/t AuEq cut	7.2
inc	308.0	309.0	1.0	3.1	17.9	3.9	5.0	1.0 g/t AuEq cut	5.0
GNDD300	27.0	45.0	18.0	0.4	2.0	0.1	0.4	0.2 g/t AuEq cut	7.9
and	87.0	120.1	33.1	0.4	0.9	0.0	0.4	0.2 g/t AuEq cut	12.9
inc	108.0	110.0	2.0	1.6	0.7	0.0	1.6	1.0 g/t AuEq cut	3.2
and	173.9	174.4	0.5	0.2	12.6	2.4	1.4	1.0 g/t AuEq cut	0.7
and	188.0	188.6	0.6	1.5	22.3	2.9	3.0	1.0 g/t AuEq cut	1.8
GNDD301	13.2	62.0	48.8	0.4	6.1	0.1	0.5	0.2 g/t AuEq cut	25.3
inc	26.1	42.0	15.9	0.7	11.7	0.1	0.9	1.0 g/t AuEq cut	14.6
GNDD303	139.0	143.0	4.0	0.4	1.3	0.0	0.4	0.2 g/t AuEq cut	1.8
GNDD304	66.0	113.0	47.0	0.2	1.1	0.2	0.3	0.2 g/t AuEq cut	15.7
inc	66.0	68.0	2.0	1.2	3.4	0.1	1.3	1.0 g/t AuEq cut	2.5
inc	94.0	96.0	2.0	0.7	1.7	1.0	1.2	1.0 g/t AuEq cut	2.3
GNDD305	128.0	176.0	48.0	0.2	1.4	0.0	0.2	0.2 g/t AuEq cut	12.0
inc	175.0	176.0	1.0	1.2	14.2	0.0	1.3	1.0 g/t AuEq cut	1.3
and	226.7	238.8	12.1	0.4	1.9	0.1	0.4	0.2 g/t AuEq cut	5.3
inc	237.5	238.8	1.3	0.9	7.4	0.5	1.2	1.0 g/t AuEq cut	1.6
GNDD307	0.0	23.0	23.0	0.3	4.8	0.1	0.4	0.2 g/t AuEq cut	9.5
and	57.0	79.0	22.0	0.3	0.5	0.0	0.4	0.2 g/t AuEq cut	6.6
inc	57.0	59.0	2.0	1.5	0.2	0.0	1.5	1.0 g/t AuEq cut	3.0
GNDD308	258.3	295.0	36.8	0.5	1.6	0.0	0.6	0.2 g/t AuEq cut	21.4
inc	291.0	295.0	4.0	2.6	5.6	0.2	3.1	1.0 g/t AuEq cut	12.3
								0.2 g/t AuEq cut	
GNDD309	185.0	208.1	23.1	0.6	1.6	0.1	0.7	1.0 g/t AuEq cut	16.1
inc	191.0	193.0	2.0	1.0	11.9	0.1	1.2	1.0 g/t AuEq cut	2.3
inc	206.0	208.1	2.1	2.8	1.9	0.8	3.1		6.6
GNDD310	30.0	49.0	19.0	2.3	1.7	0.0	2.3	0.2 g/t AuEq cut	43.4
inc	30.0	32.0	2.0	20.3	11.5	0.0	20.5	1.0 g/t AuEq cut	40.9
and	186.0	226.0	40.0	0.6	0.9	0.0	0.6	0.2 g/t AuEq cut	24.7
inc	188.0	190.0	2.0	1.7	1.9	0.1	1.8	1.0 g/t AuEq cut	3.6

Inc 204.0 212.0 224.0 2.0 1.0 0.8 0.0 1.0 1.0 g/f AuEq cut 2.1			1	•		1		•	ı	1
GNDD315 NSI	inc	204.0	212.0	8.0	1.1	1.0	0.0	1.1	1.0 g/t AuEq cut	8.8
GNDD319 108.0 212.0 104.0 0.5 1.1 0.0 0.5 1.2 1.0 g/f AuEq cut 3.4	inc	222.0	224.0	2.0	1.0	0.8	0.0	1.0	1.0 g/t AuEq cut	2.1
Inc	GNDD315	NSI								0.0
Inc	GNDD319	108.0	212.0	104.0	0.5	1.1	0.0	0.5	- ·	53.2
Inc	inc	128.0	130.0	2.0	1.7	1.2	0.0	1.7		3.4
Inc	inc	140.0	142.0	2.0	1.5	0.9	0.0	1.6	- '	3.1
inc 196.0 208.0 12.0 1.3 0.5 0.0 1.3 1.0 g/t AuEq cut 16.1 GNDD320 181.8 218.0 36.3 0.4 2.5 0.3 0.6 0.2 g/t AuEq cut 20.1 inc 197.0 204.9 7.8 1.0 5.8 0.6 1.4 1.0 g/t AuEq cut 20.1 inc 213.5 215.0 1.5 1.2 4.1 0.7 1.6 1.0 g/t AuEq cut 2.3 and 254.0 283.0 29.0 0.3 0.3 0.0 0.3 0.2 g/t AuEq cut 9.9 and 301.0 333.5 32.5 0.8 0.6 0.0 0.8 0.2 g/t AuEq cut 2.5 inc 303.5 319.0 15.5 1.3 0.8 0.1 1.4 1.1 1.1 1.4 1.0 g/t AuEq cut 2.0 inc 143.6 146.0 2.4 1.1 0.3 0.0 1.4 1.0 g/t AuEq cut 1.7	inc	154.0	156.0	2.0	1.3	3.7	0.0	1.3	- '	2.6
GNDD320	inc	164.0	168.0	4.0	1.2	5.5	0.3	1.4		5.7
inc 197.0 204.9 7.8 1.0 5.8 0.6 1.4 1.0 g/t AuEq cut 10.6 inc 213.5 215.0 1.5 1.2 4.1 0.7 1.6 1.0 g/t AuEq cut 2.3 and 254.0 283.0 29.0 0.3 0.0 0.8 0.2 g/t AuEq cut 25.3 inc 303.5 319.0 15.5 1.3 0.8 0.1 1.4 1.0 g/t AuEq cut 21.0 GNDD322 132.0 182.0 50.0 0.8 1.9 0.3 1.0 0.2 g/t AuEq cut 21.0 inc 143.6 146.0 2.4 12.2 28.5 4.5 1.0 g/t AuEq cut 34.8 inc 180.0 182.0 2.0 1.4 1.1 1.1 0.2 1.2 1.0 g/t AuEq cut 2.8 inc 180.0 182.0 2.0 1.4 1.4 0.6 0.0 1.4 1.0 g/t AuEq cut 2.2 inc 295.6	inc	196.0	208.0	12.0	1.3	0.5	0.0	1.3	1.0 g/t AuEq cut	16.1
Inc	GNDD320	181.8	218.0	36.3	0.4	2.5	0.3	0.6	0.2 g/t AuEq cut	20.1
and 254.0 283.0 29.0 0.3 0.3 0.0 0.3 0.2 g/t AuEq cut 9.9 and 301.0 333.5 32.5 0.8 0.6 0.0 0.8 0.2 g/t AuEq cut 25.3 inc 303.5 319.0 15.5 1.3 0.8 0.1 1.4 1.0 g/t AuEq cut 25.3 inc 143.6 146.0 2.4 12.2 28.5 4.5 14.5 1.0 g/t AuEq cut 34.8 inc 159.4 160.8 1.4 1.1 1.1 0.2 1.2 1.0 g/t AuEq cut 1.7 inc 180.0 182.0 2.0 1.4 0.3 0.0 1.4 1.0 g/t AuEq cut 2.6 inc 295.6 299.0 3.4 0.7 0.7 0.0 0.8 0.2 g/t AuEq cut 2.6 inc 295.6 299.0 3.4 0.7 0.7 0.0 0.8 0.2 g/t AuEq cut 1.79 GND324 128.0 <t< td=""><td>inc</td><td>197.0</td><td>204.9</td><td>7.8</td><td>1.0</td><td>5.8</td><td>0.6</td><td>1.4</td><td>1.0 g/t AuEq cut</td><td>10.6</td></t<>	inc	197.0	204.9	7.8	1.0	5.8	0.6	1.4	1.0 g/t AuEq cut	10.6
and 301.0 333.5 32.5 0.8 0.6 0.0 0.8 0.2 g/t AuEq cut 25.3 inc 303.5 319.0 15.5 1.3 0.8 0.1 1.4 1.0 g/t AuEq cut 21.0 GNDD322 132.0 182.0 50.0 0.8 1.9 0.3 1.0 0.2 g/t AuEq cut 49.4 inc 143.6 146.0 2.4 12.2 28.5 4.5 14.5 1.0 g/t AuEq cut 1.7 inc 180.0 182.0 2.0 1.4 0.3 0.0 1.4 1.0 g/t AuEq cut 2.8 and 295.6 299.0 3.4 0.7 0.7 0.0 0.8 0.2 g/t AuEq cut 2.6 inc 295.6 299.0 3.4 0.7 0.7 0.0 0.8 0.2 g/t AuEq cut 2.6 inc 295.6 297.0 1.4 1.4 0.6 0.0 1.4 1.0 g/t AuEq cut 2.0 and 382.2 391.0 8.9 1.3 10.9 1.5 2.0 1.0 g/t AuEq cut 1.7.9 GNDD324 128.0 130.0 2.0 1.0 1.0 0.0 1.0 1.0 g/t AuEq cut 2.0 and 144.0 146.0 2.0 1.9 1.4 0.0 0.0 1.0 1.0 g/t AuEq cut 2.0 and 152.0 162.0 10.0 0.3 0.8 0.1 0.3 0.2 g/t AuEq cut 3.9 and 350.7 355.7 1.0 13.2 22.1 2.0 1.0 g/t AuEq cut 1.2 and 354.7 355.7 1.0 13.2 22.1 2.0 1.0 1.0 g/t AuEq cut 1.2 and 354.7 355.7 1.0 13.2 22.1 2.0 1.4 1.0 g/t AuEq cut 1.2 and 354.7 355.7 1.0 13.2 22.1 2.0 1.4 1.0 g/t AuEq cut 1.2 and 354.7 355.7 1.0 13.2 22.1 2.0 1.4 1.0 g/t AuEq cut 1.2 and 459.0 462.0 3.0 0.3 1.1 0.0 0.4 0.2 g/t AuEq cut 1.2 and 354.7 355.7 1.0 13.2 22.1 2.0 14.4 1.0 g/t AuEq cut 1.2 and 459.0 462.0 3.0 0.3 1.1 0.0 0.4 0.2 g/t AuEq cut 1.1 GNDD329 104.0 118.0 14.0 1.1 1.4 0.0 0.4 0.2 g/t AuEq cut 1.1 and 282.0 350.0 68.0 0.5 0.9 0.0 0.5 0.2 g/t AuEq cut 1.1 and 282.0 350.0 68.0 0.5 0.9 0.0 0.5 0.2 g/t AuEq cut 1.1 inc 312.0 313.1 1.1 3.0 2.0 0.0 1.2 0.2 g/t AuEq cut 1.3 inc 333.0 333.0 2.0 1.0 1.1 0.0 0.4 0.2 g/t AuEq cut 1.3 inc 312.0 313.1 1.1 3.0 2.0 0.0 1.2 1.0 g/t AuEq cut 1.3 inc 333.0 333.0 2.0 1.0 1.0 1.0 1.0 g/t AuEq cut 1.5 inc 337.0 339.0 2.0 1.2 1.1 0.0 0.4 0.2 g/t AuEq cut 3.4 inc 337.0 339.0 2.0 1.2 1.1 0.0 0.4 0.2 g/t AuEq cut 3.4 inc 337.0 339.0 2.0 1.2 1.1 0.0 0.0 1.2 1.0 g/t AuEq cut 2.5 inc 337.0 339.0 2.0 1.2 1.1 0.0 0.0 1.3 1.0 g/t AuEq cut 2.5 inc 337.0 339.0 2.0 1.2 1.1 0.0 0.0 1.3 1.0 g/t AuEq cut 3.7 inc 337.0 339.0 335.7 6.7 1.3 1.5 0.1 1.3 1.0 g/t AuEq cut 2.5 inc 337.0 339.0 335.7 6.7 1.3 1.5 0.1 1.3 1.0 g/t AuEq cut 2.5 inc 335.2 375.7 0.5 1.3 8.2 12.3 6.7 1.0 g/t Au	inc	213.5	215.0	1.5	1.2	4.1	0.7	1.6	1.0 g/t AuEq cut	2.3
Inc	and	254.0	283.0	29.0	0.3	0.3	0.0	0.3	0.2 g/t AuEq cut	9.9
GNDD322	and	301.0	333.5	32.5	0.8	0.6	0.0	0.8	0.2 g/t AuEq cut	25.3
inc 143.6 146.0 2.4 12.2 28.5 4.5 14.5 1.0 g/t AuEq cut 34.8 inc 159.4 160.8 1.4 1.1 1.1 0.2 1.2 1.0 g/t AuEq cut 1.7 inc 180.0 182.0 2.0 1.4 0.3 0.0 1.4 1.0 g/t AuEq cut 2.8 and 295.6 299.0 3.4 0.7 0.7 0.0 0.8 0.2 g/t AuEq cut 2.6 inc 295.6 297.0 1.4 1.4 0.6 0.0 1.4 1.0 g/t AuEq cut 2.0 and 382.2 391.0 8.9 1.3 10.9 1.5 2.0 1.0 g/t AuEq cut 2.0 and 144.0 146.0 2.0 1.9 1.4 0.0 2.0 1.0 g/t AuEq cut 2.0 and 144.0 166.0 2.0 1.9 1.4 0.0 2.0 1.0 g/t AuEq cut 3.9 and 152.0 162.0 10.0 0.3 0.8 0.1 0.3 0.2 g/t AuEq cut 3.2 GNDD327 229.0 257.0 28.0 0.2 0.2 0.0 0.3 0.2 g/t AuEq cut 3.2 and 367.0 367.6 0.6 1.4 4.4 1.1 1.9 1.0 g/t AuEq cut 1.2 and 354.7 355.7 1.0 13.2 22.1 2.0 14.4 1.0 g/t AuEq cut 1.2 and 354.7 355.7 1.0 13.2 22.1 2.0 14.4 1.0 g/t AuEq cut 1.4 and 354.0 387.7 1.7 0.6 0.2 0.0 0.6 0.2 g/t AuEq cut 1.4 and 459.0 462.0 3.0 0.3 1.1 0.0 0.4 0.2 g/t AuEq cut 1.1 and 459.0 462.0 3.0 0.3 1.1 0.0 0.4 0.2 g/t AuEq cut 1.1 and 282.0 350.0 68.0 0.5 0.9 0.0 0.5 0.2 g/t AuEq cut 1.1 inc 312.0 350.0 68.0 0.5 0.9 0.0 0.5 0.2 g/t AuEq cut 1.1 inc 312.0 313.1 1.1 3.0 2.0 0.0 0.5 0.2 g/t AuEq cut 1.2 inc 337.0 339.0 2.0 1.2 1.1 0.0 0.4 0.2 g/t AuEq cut 1.1 inc 312.0 313.1 1.1 3.0 2.0 0.0 1.0 1.0 g/t AuEq cut 2.1 inc 337.0 339.0 2.0 1.2 1.1 0.0 0.4 0.2 g/t AuEq cut 1.1 inc 315.0 313.1 1.1 3.0 2.0 0.0 0.5 0.2 g/t AuEq cut 1.1 inc 337.0 339.0 2.0 1.2 1.1 0.0 0.4 0.2 g/t AuEq cut 2.1 inc 345.0 347.0 2.0 1.3 1.0 0.0 1.2 1.0 g/t AuEq cut 2.1 inc 345.0 347.0 2.0 1.3 1.0 0.0 1.1 0.0 g/t AuEq cut 3.4 inc 347.0 339.0 2.0 1.2 1.1 0.0 1.2 1.0 g/t AuEq cut 3.4 inc 347.0 339.0 2.0 1.2 1.1 0.0 0.1 1.0 g/t AuEq cut 3.4 inc 347.0 339.0 2.0 1.2 1.1 0.0 0.1 1.0 g/t AuEq cut 3.4 inc 347.0 339.0 2.0 1.2 1.1 0.0 0.1 1.0 g/t AuEq cut 3.4 inc 347.0 339.0 2.0 1.2 1.1 0.0 0.1 1.0 g/t AuEq cut 3.4 inc 349.0 345.0 347.0 2.0 1.3 1.0 0.0 1.1 1.0 g/t AuEq cut 2.5 inc 345.0 347.0 2.0 1.3 1.0 0.0 1.1 1.0 g/t AuEq cut 3.4 inc 349.0 345.7 6.7 1.3 1.5 0.1 1.3 1.0 g/t AuEq cut 3.4 inc 349.0 349.6 19.7 5.7 1.1 0.6 0.0 1.1 1.0 g/t AuEq cut 3.4 inc 357.2 375.7 0.5 1	inc	303.5	319.0	15.5	1.3	0.8	0.1	1.4	1.0 g/t AuEq cut	21.0
inc	GNDD322	132.0	182.0	50.0	0.8	1.9	0.3	1.0	0.2 g/t AuEq cut	49.4
inc 180.0 182.0 2.0 1.4 0.3 0.0 1.4 1.0 g/t AuEq cut 2.8 and 295.6 299.0 3.4 0.7 0.7 0.0 0.8 0.2 g/t AuEq cut 2.6 inc 295.6 297.0 1.4 1.4 1.4 0.6 0.0 1.4 1.0 g/t AuEq cut 2.0 and 382.2 391.0 8.9 1.3 10.9 1.5 2.0 1.0 g/t AuEq cut 2.0 and 144.0 146.0 2.0 1.9 1.4 0.0 2.0 1.0 g/t AuEq cut 2.0 and 152.0 162.0 10.0 0.3 0.8 0.1 0.3 0.2 g/t AuEq cut 3.9 and 152.0 162.0 10.0 0.3 0.8 0.1 0.3 0.2 g/t AuEq cut 3.9 and 307.0 307.6 0.6 1.4 4.4 1.1 1.9 1.0 g/t AuEq cut 1.2 and 354.7 355.7 1.0 13.2 22.1 2.0 14.4 1.0 g/t AuEq cut 1.2 and 366.0 387.7 1.7 0.6 0.2 0.0 0.6 0.2 g/t AuEq cut 1.0 g/t AuEq cut 1.2 and 354.0 387.7 1.7 0.6 0.2 0.0 0.6 0.2 g/t AuEq cut 1.0 g/t AuEq cut 1.1 g/t AuEq cut 1.1 g/t AuEq cut 1.0 g/t AuEq cut 1.1 g/t AuEq cut 2.5 g/t AuEq cut 3.7 g/t AuEq cut 3.	inc	143.6	146.0	2.4	12.2	28.5	4.5	14.5	1.0 g/t AuEq cut	34.8
and 295.6 299.0 3.4 0.7 0.7 0.0 0.8 0.2 g/t AuEq cut 2.6 inc 295.6 297.0 1.4 1.4 0.6 0.0 1.4 1.0 g/t AuEq cut 2.0 and 382.2 391.0 8.9 1.3 10.9 1.5 2.0 1.0 g/t AuEq cut 2.0 and 144.0 146.0 2.0 1.9 1.4 0.0 2.0 1.0 g/t AuEq cut 3.9 and 152.0 162.0 10.0 0.3 0.8 0.1 0.3 0.2 g/t AuEq cut 3.9 and 152.0 162.0 10.0 0.3 0.8 0.1 0.3 0.2 g/t AuEq cut 3.2 GNDD327 229.0 257.0 28.0 0.2 0.2 0.0 0.3 0.2 g/t AuEq cut 1.2 and 354.7 355.7 1.0 13.2 22.1 2.0 14.4 1.0 g/t AuEq cut 1.2 and 354.7 355.7 1.0 13.2 22.1 2.0 14.4 1.0 g/t AuEq cut 1.0 and 459.0 462.0 3.0 0.3 1.1 0.0 0.4 0.2 g/t AuEq cut 1.0 and 459.0 462.0 3.0 0.3 1.1 0.0 0.4 0.2 g/t AuEq cut 1.1 GNDD329 104.0 118.0 14.0 1.1 1.4 0.0 1.2 0.2 g/t AuEq cut 12.1 and 282.0 350.0 68.0 0.5 0.9 0.0 0.5 0.2 g/t AuEq cut 34.5 inc 312.0 313.1 1.1 3.0 2.0 0.0 3.1 1.0 g/t AuEq cut 34.5 inc 312.0 313.1 1.1 3.0 2.0 0.0 3.1 1.0 g/t AuEq cut 3.4 inc 331.0 333.0 2.0 1.2 1.1 0.0 1.2 1.0 g/t AuEq cut 3.4 inc 331.0 333.0 2.0 1.0 1.2 1.1 0.0 0.4 0.2 g/t AuEq cut 3.4 inc 331.0 333.0 2.0 1.0 0.7 0.0 1.0 1.0 g/t AuEq cut 3.4 inc 331.0 333.0 2.0 1.0 0.7 0.0 1.0 1.0 g/t AuEq cut 3.4 inc 331.0 333.0 2.0 1.0 0.7 0.0 1.0 1.0 g/t AuEq cut 2.1 inc 337.0 339.0 2.0 1.2 1.1 0.0 1.2 1.0 g/t AuEq cut 2.5 inc 345.0 347.0 2.0 1.3 1.0 0.0 1.3 1.0 g/t AuEq cut 2.5 inc 345.0 347.0 2.0 1.3 1.0 0.0 1.3 1.0 g/t AuEq cut 2.5 inc 345.0 347.0 2.0 1.3 1.0 0.0 1.3 1.0 g/t AuEq cut 2.5 inc 345.0 347.0 2.0 1.3 1.0 0.0 1.3 1.0 g/t AuEq cut 2.5 inc 345.0 347.0 2.0 1.3 1.0 0.0 1.3 1.0 g/t AuEq cut 2.5 inc 345.0 347.0 2.0 1.3 1.0 0.0 1.3 1.0 g/t AuEq cut 2.5 inc 345.0 347.0 2.0 1.3 1.0 0.0 1.3 1.0 g/t AuEq cut 2.5 inc 345.0 347.0 2.0 1.3 1.0 0.0 1.3 1.0 g/t AuEq cut 2.5 inc 345.0 347.0 2.0 1.3 1.0 0.0 1.3 1.0 g/t AuEq cut 2.5 inc 345.0 347.0 2.0 1.3 1.0 0.0 1.3 1.0 g/t AuEq cut 2.5 inc 345.0 347.0 2.0 1.3 1.0 0.0 1.3 1.0 g/t AuEq cut 2.5 inc 345.0 347.0 2.0 1.3 1.0 0.0 1.3 1.0 g/t AuEq cut 2.7 inc 345.0 347.0 2.0 1.3 1.0 0.0 0.4 0.2 g/t AuEq cut 2.6 inc 345.0 347.0 2.0 1.3 1.0 0.0 0.1 1.3 1.0 g/t AuEq cut 3.7 inc 345.0 345.0 2.2	inc	159.4	160.8	1.4	1.1	1.1	0.2	1.2	1.0 g/t AuEq cut	1.7
inc 295.6 297.0 1.4 1.4 0.6 0.0 1.4 1.0 g/t AuEq cut 2.0 and 382.2 391.0 8.9 1.3 10.9 1.5 2.0 1.0 g/t AuEq cut 17.9 GNDD324 128.0 130.0 2.0 1.0 1.0 0.0 1.0 1.0 g/t AuEq cut 3.9 and 144.0 146.0 2.0 1.9 1.4 0.0 2.0 1.0 g/t AuEq cut 3.9 and 152.0 162.0 10.0 0.3 0.8 0.1 0.3 0.2 g/t AuEq cut 3.2 GNDD327 229.0 257.0 28.0 0.2 0.2 0.0 0.3 0.2 g/t AuEq cut 1.2 and 307.0 307.6 0.6 1.4 4.4 1.1 1.9 1.0 g/t AuEq cut 1.2 and 354.7 355.7 1.0 13.2 22.1 2.0 14.4 1.0 g/t AuEq cut 1.2 and 386.0 387.7 1.7 0.6 0.2 0.0 0.6 0.2 g/t AuEq cut 1.0 and 459.0 462.0 3.0 0.3 1.1 0.0 0.4 0.2 g/t AuEq cut 1.1 GNDD329 104.0 118.0 14.0 1.1 1.4 0.0 1.2 0.2 g/t AuEq cut 1.1 and 282.0 350.0 68.0 0.5 0.9 0.0 0.5 0.2 g/t AuEq cut 12.1 and 282.0 350.0 68.0 0.5 0.9 0.0 0.5 0.2 g/t AuEq cut 12.1 inc 331.0 333.0 2.0 1.0 0.7 0.0 1.0 1.0 g/t AuEq cut 3.4 inc 331.0 333.0 2.0 1.0 0.7 0.0 1.0 1.0 g/t AuEq cut 2.1 inc 337.0 339.0 2.0 1.2 1.1 0.0 0.4 0.2 g/t AuEq cut 12.1 inc 337.0 339.0 2.0 1.2 1.1 0.0 0.0 0.5 0.2 g/t AuEq cut 2.1 inc 337.0 339.0 2.0 1.2 1.1 0.0 0.0 1.2 0.2 g/t AuEq cut 3.4 inc 331.0 333.0 2.0 1.0 0.7 0.0 1.0 1.0 g/t AuEq cut 2.1 inc 337.0 339.0 2.0 1.2 1.1 0.0 0.0 1.2 1.0 g/t AuEq cut 2.5 inc 345.0 347.0 2.0 1.3 1.0 0.0 1.2 1.0 g/t AuEq cut 2.5 inc 345.0 347.0 2.0 1.3 1.0 0.0 1.2 1.0 g/t AuEq cut 2.5 inc 345.0 347.0 2.0 1.3 1.0 0.0 1.3 1.0 g/t AuEq cut 2.5 inc 345.0 347.0 2.0 1.3 1.0 0.0 1.5 1.0 g/t AuEq cut 2.5 inc 375.2 375.7 0.5 1.3 8.2 12.3 6.7 1.0 g/t AuEq cut 3.4 inc 375.2 375.7 0.5 1.3 8.2 12.3 6.7 1.0 g/t AuEq cut 3.4 inc 375.2 375.7 0.5 1.3 8.2 12.3 6.7 1.0 g/t AuEq cut 3.4 inc 375.2 375.7 0.5 1.3 8.2 12.3 6.7 1.0 g/t AuEq cut 3.4 inc 375.2 375.7 0.5 1.3 8.2 12.3 6.7 1.0 g/t AuEq cut 1.5 inc 194.0 199.7 5.7 1.1 0.6 0.0 0.1 1.1 1.0 g/t AuEq cut 3.4 inc 375.2 375.7 0.5 1.3 8.2 12.3 6.7 1.0 g/t AuEq cut 3.4 inc 375.2 375.7 0.5 1.3 8.2 12.3 6.7 1.0 g/t AuEq cut 3.4 inc 375.2 375.7 0.5 1.3 8.2 12.3 6.7 1.0 g/t AuEq cut 3.4 inc 375.2 375.7 0.5 1.3 8.2 12.3 6.7 1.0 g/t AuEq cut 3.4 inc 230.5 249.6 19.1 0.3 0.6 0.2 0.4 0.2 g/t AuEq cut 3.4	inc	180.0	182.0	2.0	1.4	0.3	0.0	1.4	1.0 g/t AuEq cut	2.8
and 382.2 391.0 8.9 1.3 10.9 1.5 2.0 1.0 g/t AuEq cut 17.9 GNDD324 128.0 130.0 2.0 1.0 1.0 0.0 1.0 g/t AuEq cut 2.0 and 144.0 146.0 2.0 1.9 1.4 0.0 2.0 1.0 g/t AuEq cut 3.9 and 152.0 162.0 10.0 0.3 0.8 0.1 0.3 0.2 g/t AuEq cut 3.2 GNDD327 229.0 257.0 28.0 0.2 0.2 0.0 0.3 0.2 g/t AuEq cut 7.1 and 307.0 307.6 0.6 1.4 4.4 1.1 1.9 1.0 g/t AuEq cut 1.2 and 354.7 355.7 1.0 13.2 22.1 2.0 0.6 0.2 g/t AuEq cut 1.0 and 386.0 387.7 1.7 0.6 0.2 0.0 0.6 0.2 g/t AuEq cut 1.1 GNDD329 104.0 118.0	and	295.6	299.0	3.4	0.7	0.7	0.0	0.8	0.2 g/t AuEq cut	2.6
GNDD324 128.0 130.0 2.0 1.0 1.0 0.0 1.0 1.0 g/t AuEq cut 2.0 and 144.0 146.0 2.0 1.9 1.4 0.0 2.0 1.0 g/t AuEq cut 3.9 and 152.0 162.0 10.0 0.3 0.8 0.1 0.3 0.2 g/t AuEq cut 3.2 GNDD327 229.0 257.0 28.0 0.2 0.2 0.0 0.3 0.2 g/t AuEq cut 1.2 and 307.0 307.6 0.6 1.4 4.4 1.1 1.9 1.0 g/t AuEq cut 1.2 and 354.7 355.7 1.0 13.2 22.1 2.0 14.4 1.0 g/t AuEq cut 1.4 and 386.0 387.7 1.7 0.6 0.2 0.0 0.6 0.2 g/t AuEq cut 1.0 and 459.0 462.0 3.0 0.3 1.1 0.0 0.4 0.2 g/t AuEq cut 1.1 GNDD329 104.0 118.0 14.0 1.1 1.4 0.0 1.2 0.2 g/t AuEq cut 12.1 and 282.0 350.0 68.0 0.5 0.9 0.0 0.5 0.2 g/t AuEq cut 12.1 and 282.0 350.0 68.0 0.5 0.9 0.0 0.5 0.2 g/t AuEq cut 34.5 inc 331.0 333.0 2.0 1.0 0.7 4.1 0.0 g/t AuEq cut 34.5 inc 331.0 333.0 2.0 1.0 0.7 0.0 1.0 1.0 g/t AuEq cut 3.4 inc 331.0 333.0 2.0 1.0 0.7 0.0 1.0 1.0 g/t AuEq cut 3.4 inc 331.0 333.0 2.0 1.0 0.7 0.0 1.0 1.0 g/t AuEq cut 2.1 inc 345.0 347.0 2.0 1.2 1.1 0.0 1.2 1.0 g/t AuEq cut 2.5 inc 345.0 347.0 2.0 1.3 1.0 0.0 1.2 1.0 g/t AuEq cut 2.5 inc 345.0 347.0 2.0 1.3 1.5 0.1 1.3 1.0 g/t AuEq cut 2.5 inc 329.0 335.7 6.7 1.3 1.5 0.1 1.3 1.0 g/t AuEq cut 2.5 inc 329.0 335.7 6.7 1.3 1.5 0.1 1.3 1.0 g/t AuEq cut 1.5 inc 329.0 335.7 6.7 1.3 1.5 0.1 1.3 1.0 g/t AuEq cut 1.5 inc 329.0 335.7 6.7 1.3 1.5 0.1 1.3 1.0 g/t AuEq cut 1.5 inc 329.0 335.7 6.7 1.3 1.5 0.1 1.3 1.0 g/t AuEq cut 3.4 GNDD332 182.0 203.0 21.0 0.5 0.6 0.1 0.6 0.2 g/t AuEq cut 3.4 GNDD332 182.0 203.0 21.0 0.5 0.6 0.1 0.6 0.2 g/t AuEq cut 3.4 GNDD332 182.0 203.0 21.0 0.5 0.6 0.1 0.6 0.2 g/t AuEq cut 3.4 GNDD332 182.0 203.0 21.0 0.5 0.6 0.1 0.6 0.2 g/t AuEq cut 3.4 inc 329.0 335.7 6.7 1.3 1.5 0.1 1.3 1.0 g/t AuEq cut 3.4 inc 329.0 335.7 6.7 1.3 0.5 0.6 0.1 0.6 0.2 g/t AuEq cut 3.4 inc 329.0 335.7 6.7 1.3 0.6 0.2 g/t AuEq cut 3.4 inc 329.0 335.7 6.7 1.3 0.6 0.2 g/t AuEq cut 3.4 inc 329.0 335.7 6.7 1.3 0.6 0.2 g/t AuEq cut 3.4 inc 329.0 335.7 6.7 1.1 0.6 0.0 1.1 1.0 g/t AuEq cut 3.4 inc 329.0 325.0 249.6 19.1 0.3 0.6 0.2 0.4 0.2 g/t AuEq cut 3.4 inc 249.0 249.6 0.6 2.2 11.3 3.5 3.9 1.0 g/t AuEq cut 3.4 inc 249.0 249.6 0.6 2.2	inc	295.6	297.0	1.4	1.4	0.6	0.0	1.4	1.0 g/t AuEq cut	2.0
and 144.0 146.0 2.0 1.9 1.4 0.0 2.0 1.0 g/t AuEq cut 3.9 and 152.0 162.0 10.0 0.3 0.8 0.1 0.3 0.2 g/t AuEq cut 3.2 GNDD327 229.0 257.0 28.0 0.2 0.2 0.0 0.3 0.2 g/t AuEq cut 7.1 and 307.0 307.6 0.6 1.4 4.4 1.1 1.9 1.0 g/t AuEq cut 1.2 and 354.7 355.7 1.0 13.2 22.1 2.0 14.4 1.0 g/t AuEq cut 1.4 and 386.0 387.7 1.7 0.6 0.2 0.0 0.6 0.2 g/t AuEq cut 1.0 and 459.0 462.0 3.0 0.3 1.1 1.4 0.0 1.2 0.2 g/t AuEq cut 1.1 GNDD329 104.0 118.0 14.0 1.1 1.4 0.0 1.2 0.2 g/t AuEq cut 12.1 and <t< td=""><td>and</td><td>382.2</td><td>391.0</td><td>8.9</td><td>1.3</td><td>10.9</td><td>1.5</td><td>2.0</td><td>1.0 g/t AuEq cut</td><td>17.9</td></t<>	and	382.2	391.0	8.9	1.3	10.9	1.5	2.0	1.0 g/t AuEq cut	17.9
and 144.0 146.0 2.0 1.9 1.4 0.0 2.0 1.0 g/t AuEq cut 3.9 and 152.0 162.0 10.0 0.3 0.8 0.1 0.3 0.2 g/t AuEq cut 3.2 GNDD327 229.0 257.0 28.0 0.2 0.2 0.0 0.3 0.2 g/t AuEq cut 7.1 and 307.0 307.6 0.6 1.4 4.4 1.1 1.9 1.0 g/t AuEq cut 1.2 and 354.7 355.7 1.0 13.2 22.1 2.0 14.4 1.0 g/t AuEq cut 14.4 and 386.0 387.7 1.7 0.6 0.2 0.0 0.6 0.2 g/t AuEq cut 1.0 and 459.0 462.0 3.0 0.3 1.1 0.0 0.4 0.2 g/t AuEq cut 1.1 GNDD329 104.0 118.0 14.0 1.1 1.4 0.0 1.2 0.2 g/t AuEq cut 12.1 inc 106.6	GNDD324	128.0	130.0	2.0	1.0	1.0	0.0	1.0	1.0 g/t AuEq cut	2.0
GNDD327 229.0 257.0 28.0 0.2 0.2 0.0 0.3 0.2 g/t AuEq cut 7.1 and 307.0 307.6 0.6 1.4 4.4 1.1 1.9 1.0 g/t AuEq cut 1.2 and 354.7 355.7 1.0 13.2 22.1 2.0 14.4 1.0 g/t AuEq cut 1.0 and 386.0 387.7 1.7 0.6 0.2 0.0 0.6 0.2 g/t AuEq cut 1.0 and 459.0 462.0 3.0 0.3 1.1 0.0 0.4 0.2 g/t AuEq cut 1.1 GNDD329 104.0 118.0 14.0 1.1 1.4 0.0 1.2 0.2 g/t AuEq cut 16.3 inc 106.6 108.3 1.7 7.3 4.1 0.0 7.4 1.0 g/t AuEq cut 12.1 and 282.0 350.0 68.0 0.5 0.9 0.0 0.5 0.2 g/t AuEq cut 34.5 inc 312.0	and	144.0	146.0	2.0	1.9	1.4	0.0	2.0	1.0 g/t AuEq cut	3.9
and 307.0 307.6 0.6 1.4 4.4 1.1 1.9 1.0 g/t AuEq cut 1.2 and 354.7 355.7 1.0 13.2 22.1 2.0 14.4 1.0 g/t AuEq cut 14.4 and 386.0 387.7 1.7 0.6 0.2 0.0 0.6 0.2 g/t AuEq cut 1.0 and 459.0 462.0 3.0 0.3 1.1 0.0 0.4 0.2 g/t AuEq cut 1.1 GNDD329 104.0 118.0 14.0 1.1 1.4 0.0 1.2 0.2 g/t AuEq cut 16.3 inc 106.6 108.3 1.7 7.3 4.1 0.0 7.4 1.0 g/t AuEq cut 12.1 and 282.0 350.0 68.0 0.5 0.9 0.0 0.5 0.2 g/t AuEq cut 34.5 inc 312.0 313.1 1.1 3.0 2.0 0.0 3.1 1.0 g/t AuEq cut 3.4 inc 337.0 <t< td=""><td>and</td><td>152.0</td><td>162.0</td><td>10.0</td><td>0.3</td><td>0.8</td><td>0.1</td><td>0.3</td><td>0.2 g/t AuEq cut</td><td>3.2</td></t<>	and	152.0	162.0	10.0	0.3	0.8	0.1	0.3	0.2 g/t AuEq cut	3.2
and 354.7 355.7 1.0 13.2 22.1 2.0 14.4 1.0 g/t AuEq cut 14.4 and 386.0 387.7 1.7 0.6 0.2 0.0 0.6 0.2 g/t AuEq cut 1.0 and 459.0 462.0 3.0 0.3 1.1 0.0 0.4 0.2 g/t AuEq cut 1.1 GNDD329 104.0 118.0 14.0 1.1 1.4 0.0 1.2 0.2 g/t AuEq cut 12.1 and 282.0 350.0 68.0 0.5 0.9 0.0 0.5 0.2 g/t AuEq cut 34.5 inc 284.0 286.5 2.5 2.9 6.4 0.7 3.3 1.0 g/t AuEq cut 3.4 inc 331.0 333.0 2.0 1.0 0.7 0.0 1.0 1.0 g/t AuEq cut 2.1 inc 337.0 339.0 2.0 1.2 1.1 0.0 1.2 1.0 g/t AuEq cut 2.5 inc 345.0 347.0 2.0 1.3 1.0 0.0 1.3 1.0 g/t AuEq cut 2.5 inc 329.0 335.7 49.7 0.4 0.9 0.1 0.4 0.2 g/t AuEq cut 2.1 inc 329.0 335.7 6.7 1.3 1.5 0.1 1.3 1.0 g/t AuEq cut 2.1 inc 329.0 335.7 6.7 1.3 1.5 0.1 1.3 1.0 g/t AuEq cut 3.7 inc 375.2 375.7 0.5 1.3 8.2 12.3 6.7 1.0 g/t AuEq cut 3.4 inc 375.2 375.7 0.5 1.3 8.2 12.3 6.7 1.0 g/t AuEq cut 3.4 inc 375.2 375.7 1.1 0.6 0.0 1.1 1.0 g/t AuEq cut 2.5 inc 30.5 249.6 19.1 0.3 0.6 0.2 0.4 0.2 g/t AuEq cut 3.4 inc 375.2 320.0 1.5 1.0 g/t AuEq cut 3.7 inc 230.5 249.6 19.1 0.3 0.6 0.2 0.4 0.2 g/t AuEq cut 3.4 inc 375.2 320.0 1.5 1.1 0.6 0.0 1.1 1.0 g/t AuEq cut 3.7 inc 230.5 249.6 19.1 0.3 0.6 0.2 0.4 0.2 g/t AuEq cut 3.4 inc 375.2 320.0 1.5 2.2 1.4 0.1 2.3 1.0 g/t AuEq cut 3.4 inc 375.2 320.0 1.5 2.2 1.4 0.1 2.3 1.0 g/t AuEq cut 3.4 inc 375.2 320.0 1.5 2.2 1.4 0.1 2.3 1.0 g/t AuEq cut 3.4 inc 375.2 320.0 1.5 2.2 1.4 0.1 2.3 1.0 g/t AuEq cut 3.4 inc 375.2 320.0 1.5 2.2 1.4 0.1 2.3 1.0 g/t AuEq cut 3.4 inc 375.2 320.0 1.5 2.2 1.4 0.1 2.3 1.0 g/t AuEq cut 3.4 inc 375.2 320.0 1.5 2.2 1.4 0.1 2.3 1.0 g/t AuEq cut 3.4 inc 249.0 249.6 0.6 2.2 11.3 3.5 3.9 1.0 g/t AuEq cut 3.4 inc 249.0 249.6 0.6 2.2 11.3 3.5 3.9 1.0 g/t AuEq cut 3.4 inc 249.0 249.6 0.6 2.2 11.3 3.5 3.9 1.0 g/t AuEq cut 3.4 inc 249.0 249.6 0.6 2.2 11.3 3.5 3.9 1.0 g/t AuEq cut 3.4 inc 249.0 249.6 0.6 2.2 11.3 3.5 3.9 1.0 g/t AuEq cut 3.4 inc 249.0 249.6 0.6 2.2 11.3 3.5 3.9 1.0 g/t AuEq cut 3.4 inc 249.0 249.6 0.6 2.2 11.3 3.5 3.9 1.0 g/t AuEq cut 3.4 inc 249.0 249.6 0.6 2.2 11.3 3.5 3.9 1.0 g/t AuEq cut 2.1	GNDD327	229.0	257.0	28.0	0.2	0.2	0.0	0.3	0.2 g/t AuEq cut	7.1
and 386.0 387.7 1.7 0.6 0.2 0.0 0.6 0.2 g/t AuEq cut 1.0 and 459.0 462.0 3.0 0.3 1.1 0.0 0.4 0.2 g/t AuEq cut 1.1 GNDD329 104.0 118.0 14.0 1.1 1.4 0.0 1.2 0.2 g/t AuEq cut 12.1 and 282.0 350.0 68.0 0.5 0.9 0.0 0.5 0.2 g/t AuEq cut 34.5 inc 284.0 286.5 2.5 2.9 6.4 0.7 3.3 1.0 g/t AuEq cut 3.4 inc 312.0 313.1 1.1 3.0 2.0 0.0 3.1 1.0 g/t AuEq cut 3.4 inc 331.0 333.0 2.0 1.0 0.7 0.0 1.0 1.0 g/t AuEq cut 2.1 inc 337.0 339.0 2.0 1.2 1.1 0.0 1.2 1.0 g/t AuEq cut 2.5 inc 345.0 347.0 2.0 1.3 1.0 0.0 1.3 1.0 g/t AuEq cut 2.7 GNDD330 286.0 335.7 49.7 0.4 0.9 0.1 0.4 0.2 g/t AuEq cut 1.5 inc 329.0 335.7 6.7 1.3 1.5 0.1 1.3 1.0 g/t AuEq cut 3.7 inc 375.2 375.7 0.5 1.3 8.2 12.3 6.7 1.0 g/t AuEq cut 3.4 GNDD332 182.0 203.0 21.0 0.5 0.6 0.1 0.6 0.2 g/t AuEq cut 3.4 inc 375.2 375.7 0.5 1.3 8.2 12.3 6.7 1.0 g/t AuEq cut 3.4 inc 375.2 320 1.5 2.2 1.4 0.1 2.3 1.0 g/t AuEq cut 3.4 inc 34.0 199.7 5.7 1.1 0.6 0.0 1.1 1.0 g/t AuEq cut 3.7 inc 230.5 232.0 1.5 2.2 1.4 0.1 2.3 1.0 g/t AuEq cut 3.4 inc 3.4 inc 375.2 320 1.5 2.2 1.4 0.1 2.3 1.0 g/t AuEq cut 3.4 inc 375.4 auEq cut 3.4 inc 375.2 320 1.5 2.2 1.4 0.1 2.3 1.0 g/t AuEq cut 3.4 inc 230.5 232.0 1.5 2.2 1.4 0.1 2.3 1.0 g/t AuEq cut 3.4 inc 230.5 249.6 0.6 2.2 11.3 3.5 3.9 1.0 g/t AuEq cut 3.4 inc 249.0 249.6 0.6 2.2 11.3 3.5 3.9 1.0 g/t AuEq cut 3.4 inc 249.0 249.6 0.6 2.2 11.3 3.5 3.9 1.0 g/t AuEq cut 3.4 inc 249.0 249.6 0.6 2.2 11.3 3.5 3.9 1.0 g/t AuEq cut 3.4 inc 249.0 249.6 0.6 2.2 11.3 3.5 3.9 1.0 g/t AuEq cut 3.4 inc 249.0 249.6 0.6 2.2 11.3 3.5 3.9 1.0 g/t AuEq cut 3.4 inc 249.0 249.6 0.6 2.2 11.3 3.5 3.9 1.0 g/t AuEq cut 2.1	and	307.0	307.6	0.6	1.4	4.4	1.1	1.9	1.0 g/t AuEq cut	1.2
and 459.0 462.0 3.0 0.3 1.1 0.0 0.4 0.2 g/t AuEq cut 1.1 GNDD329 104.0 118.0 14.0 1.1 1.4 0.0 1.2 0.2 g/t AuEq cut 16.3 inc 106.6 108.3 1.7 7.3 4.1 0.0 7.4 1.0 g/t AuEq cut 12.1 and 282.0 350.0 68.0 0.5 0.9 0.0 0.5 0.2 g/t AuEq cut 34.5 inc 284.0 286.5 2.5 2.9 6.4 0.7 3.3 1.0 g/t AuEq cut 8.3 inc 312.0 313.1 1.1 3.0 2.0 0.0 3.1 1.0 g/t AuEq cut 2.1 inc 337.0 339.0 2.0 1.2 1.1 0.0 1.0 1.0 g/t AuEq cut 2.1 inc 345.0 347.0 2.0 1.3 1.0 0.0 1.3 1.0 g/t AuEq cut 2.7 GNDD330 286.0 <t< td=""><td>and</td><td>354.7</td><td>355.7</td><td>1.0</td><td>13.2</td><td>22.1</td><td>2.0</td><td>14.4</td><td>1.0 g/t AuEq cut</td><td>14.4</td></t<>	and	354.7	355.7	1.0	13.2	22.1	2.0	14.4	1.0 g/t AuEq cut	14.4
GNDD329 104.0 118.0 14.0 1.1 1.4 0.0 1.2 0.2 g/t AuEq cut 16.3 inc 106.6 108.3 1.7 7.3 4.1 0.0 7.4 1.0 g/t AuEq cut 12.1 and 282.0 350.0 68.0 0.5 0.9 0.0 0.5 0.2 g/t AuEq cut 34.5 inc 284.0 286.5 2.5 2.9 6.4 0.7 3.3 1.0 g/t AuEq cut 3.4 inc 312.0 313.1 1.1 3.0 2.0 0.0 3.1 1.0 g/t AuEq cut 3.4 inc 331.0 333.0 2.0 1.0 0.7 0.0 1.0 1.0 g/t AuEq cut 2.1 inc 337.0 339.0 2.0 1.2 1.1 0.0 1.2 1.0 g/t AuEq cut 2.5 inc 345.0 347.0 2.0 1.3 1.0 0.0 1.3 1.0 g/t AuEq cut 2.5 inc 345.0 335.7 49.7 0.4 0.9 0.1 0.4 0.2 g/t AuEq cut 21.6 inc 329.0 335.7 6.7 1.3 1.5 0.1 1.3 1.0 g/t AuEq cut 1.5 inc 329.0 335.7 6.7 1.3 1.5 0.1 1.3 1.0 g/t AuEq cut 3.7 inc 375.2 375.7 0.5 1.3 8.2 12.3 6.7 1.0 g/t AuEq cut 3.4 GNDD332 182.0 203.0 21.0 0.5 0.6 0.1 0.6 0.2 g/t AuEq cut 11.7 inc 194.0 199.7 5.7 1.1 0.6 0.0 1.1 1.0 1.0 g/t AuEq cut 11.7 inc 230.5 232.0 1.5 2.2 1.4 0.1 2.3 1.0 g/t AuEq cut 7.7 inc 230.5 232.0 1.5 2.2 1.4 0.1 2.3 1.0 g/t AuEq cut 3.4 inc 249.0 249.6 0.6 2.2 11.3 3.5 3.9 1.0 g/t AuEq cut 3.4	and	386.0	387.7	1.7	0.6	0.2	0.0	0.6	0.2 g/t AuEq cut	1.0
inc 106.6 108.3 1.7 7.3 4.1 0.0 7.4 1.0 g/t AuEq cut 12.1 and 282.0 350.0 68.0 0.5 0.9 0.0 0.5 0.2 g/t AuEq cut 34.5 inc 284.0 286.5 2.5 2.9 6.4 0.7 3.3 1.0 g/t AuEq cut 8.3 inc 312.0 313.1 1.1 3.0 2.0 0.0 3.1 1.0 g/t AuEq cut 3.4 inc 331.0 333.0 2.0 1.0 0.7 0.0 1.0 1.0 g/t AuEq cut 2.1 inc 337.0 339.0 2.0 1.2 1.1 0.0 1.2 1.0 g/t AuEq cut 2.5 inc 345.0 347.0 2.0 1.3 1.0 0.0 1.3 1.0 g/t AuEq cut 2.7 GNDD330 286.0 335.7 49.7 0.4 0.9 0.1 0.4 0.2 g/t AuEq cut 1.5 inc 316.0 317	and	459.0	462.0	3.0	0.3	1.1	0.0	0.4	0.2 g/t AuEq cut	1.1
and 282.0 350.0 68.0 0.5 0.9 0.0 0.5 0.2 g/t AuEq cut 34.5 inc 284.0 286.5 2.5 2.9 6.4 0.7 3.3 1.0 g/t AuEq cut 8.3 inc 312.0 313.1 1.1 3.0 2.0 0.0 3.1 1.0 g/t AuEq cut 3.4 inc 331.0 333.0 2.0 1.0 0.7 0.0 1.0 1.0 g/t AuEq cut 2.1 inc 337.0 339.0 2.0 1.2 1.1 0.0 1.2 1.0 g/t AuEq cut 2.5 inc 345.0 347.0 2.0 1.3 1.0 0.0 1.3 1.0 g/t AuEq cut 2.7 GNDD330 286.0 335.7 49.7 0.4 0.9 0.1 0.4 0.2 g/t AuEq cut 1.5 inc 329.0 335.7 6.7 1.3 1.5 0.1 1.3 1.0 g/t AuEq cut 9.0 and 375.2 377.0 1.8 0.4 2.6 3.7 2.1 0.2 g/t AuEq cut 3.7 inc 375.2 375.7 0.5 1.3 8.2 12.3 6.7 1.0 g/t AuEq cut 3.4 GNDD332 182.0 203.0 21.0 0.5 0.6 0.1 0.6 0.2 g/t AuEq cut 11.7 inc 194.0 199.7 5.7 1.1 0.6 0.0 1.1 1.0 g/t AuEq cut 6.3 and 230.5 249.6 19.1 0.3 0.6 0.2 0.4 0.2 g/t AuEq cut 7.7 inc 230.5 232.0 1.5 2.2 1.4 0.1 2.3 1.0 g/t AuEq cut 3.4 inc 249.0 249.6 0.6 2.2 11.3 3.5 3.9 1.0 g/t AuEq cut 3.4 inc 249.0 249.6 0.6 2.2 11.3 3.5 3.9 1.0 g/t AuEq cut 3.4	GNDD329	104.0	118.0	14.0	1.1	1.4	0.0	1.2	0.2 g/t AuEq cut	16.3
inc 284.0 286.5 2.5 2.9 6.4 0.7 3.3 1.0 g/t AuEq cut 8.3 inc 312.0 313.1 1.1 3.0 2.0 0.0 3.1 1.0 g/t AuEq cut 3.4 inc 331.0 333.0 2.0 1.0 0.7 0.0 1.0 1.0 g/t AuEq cut 2.1 inc 337.0 339.0 2.0 1.2 1.1 0.0 1.2 1.0 g/t AuEq cut 2.5 inc 345.0 347.0 2.0 1.3 1.0 0.0 1.3 1.0 g/t AuEq cut 2.7 GNDD330 286.0 335.7 49.7 0.4 0.9 0.1 0.4 0.2 g/t AuEq cut 21.6 inc 316.0 317.0 1.0 1.4 0.9 0.0 1.5 1.0 g/t AuEq cut 1.5 inc 329.0 335.7 6.7 1.3 1.5 0.1 1.3 1.0 g/t AuEq cut 9.0 and 375.2 377.0 1.8 0.4 2.6 3.7 2.1 0.2 g/t AuEq cut 3.7 inc 375.2 375.7 0.5 1.3 8.2 12.3 6.7 1.0 g/t AuEq cut 3.4 GNDD332 182.0 203.0 21.0 0.5 0.6 0.1 0.6 0.2 g/t AuEq cut 3.4 GNDD332 182.0 203.0 21.0 0.5 0.6 0.1 0.6 0.2 g/t AuEq cut 11.7 inc 194.0 199.7 5.7 1.1 0.6 0.0 1.1 1.0 g/t AuEq cut 6.3 and 230.5 249.6 19.1 0.3 0.6 0.2 0.4 0.2 g/t AuEq cut 7.7 inc 230.5 232.0 1.5 2.2 1.4 0.1 2.3 1.0 g/t AuEq cut 3.4 inc 249.0 249.6 0.6 2.2 11.3 3.5 3.9 1.0 g/t AuEq cut 3.4	inc	106.6	108.3	1.7	7.3	4.1	0.0	7.4	1.0 g/t AuEq cut	12.1
inc 312.0 313.1 1.1 3.0 2.0 0.0 3.1 1.0 g/t AuEq cut 3.4 inc 331.0 333.0 2.0 1.0 0.7 0.0 1.0 1.0 g/t AuEq cut 2.1 inc 337.0 339.0 2.0 1.2 1.1 0.0 1.2 1.0 g/t AuEq cut 2.5 inc 345.0 347.0 2.0 1.3 1.0 0.0 1.3 1.0 g/t AuEq cut 2.7 GNDD330 286.0 335.7 49.7 0.4 0.9 0.1 0.4 0.2 g/t AuEq cut 21.6 inc 316.0 317.0 1.0 1.4 0.9 0.0 1.5 1.0 g/t AuEq cut 1.5 inc 329.0 335.7 6.7 1.3 1.5 0.1 1.3 1.0 g/t AuEq cut 9.0 and 375.2 377.0 1.8 0.4 2.6 3.7 2.1 0.2 g/t AuEq cut 3.7 inc 375.2 375.7 0.5 1.3 8.2 12.3 6.7 1.0 g/t AuEq cut 3.4 GNDD332 182.0 203.0 21.0 0.5 0.6 0.1 0.6 0.2 g/t AuEq cut 11.7 inc 194.0 199.7 5.7 1.1 0.6 0.0 1.1 1.0 g/t AuEq cut 6.3 and 230.5 249.6 19.1 0.3 0.6 0.2 0.4 0.2 g/t AuEq cut 7.7 inc 230.5 232.0 1.5 2.2 1.4 0.1 2.3 1.0 g/t AuEq cut 3.4 inc 249.0 249.6 0.6 2.2 11.3 3.5 3.9 1.0 g/t AuEq cut 2.1	and	282.0	350.0	68.0	0.5	0.9	0.0	0.5	0.2 g/t AuEq cut	34.5
inc 331.0 333.0 2.0 1.0 0.7 0.0 1.0 1.0 g/t AuEq cut 2.1 inc 337.0 339.0 2.0 1.2 1.1 0.0 1.2 1.0 g/t AuEq cut 2.5 inc 345.0 347.0 2.0 1.3 1.0 0.0 1.3 1.0 g/t AuEq cut 2.7 GNDD330 286.0 335.7 49.7 0.4 0.9 0.1 0.4 0.2 g/t AuEq cut 21.6 inc 316.0 317.0 1.0 1.4 0.9 0.0 1.5 1.0 g/t AuEq cut 1.5 inc 329.0 335.7 6.7 1.3 1.5 0.1 1.3 1.0 g/t AuEq cut 9.0 and 375.2 377.0 1.8 0.4 2.6 3.7 2.1 0.2 g/t AuEq cut 3.7 inc 375.2 375.7 0.5 1.3 8.2 12.3 6.7 1.0 g/t AuEq cut 3.4 GNDD332 182.0 203.0 21.0 0.5 0.6 0.1 0.6 0.2 g/t AuEq cut 11.7 inc 194.0 199.7 5.7 1.1 0.6 0.0 1.1 1.0 g/t AuEq cut 6.3 and 230.5 249.6 19.1 0.3 0.6 0.2 0.4 0.2 g/t AuEq cut 7.7 inc 230.5 232.0 1.5 2.2 1.4 0.1 2.3 1.0 g/t AuEq cut 3.4 inc 249.0 249.6 0.6 2.2 11.3 3.5 3.9 1.0 g/t AuEq cut 2.1	inc	284.0	286.5	2.5	2.9	6.4	0.7	3.3	1.0 g/t AuEq cut	8.3
inc 337.0 339.0 2.0 1.2 1.1 0.0 1.2 1.0 g/t AuEq cut 2.5 inc 345.0 347.0 2.0 1.3 1.0 0.0 1.3 1.0 g/t AuEq cut 2.7 GNDD330 286.0 335.7 49.7 0.4 0.9 0.1 0.4 0.2 g/t AuEq cut 21.6 inc 316.0 317.0 1.0 1.4 0.9 0.0 1.5 1.0 g/t AuEq cut 1.5 inc 329.0 335.7 6.7 1.3 1.5 0.1 1.3 1.0 g/t AuEq cut 9.0 and 375.2 377.0 1.8 0.4 2.6 3.7 2.1 0.2 g/t AuEq cut 3.7 inc 375.2 375.7 0.5 1.3 8.2 12.3 6.7 1.0 g/t AuEq cut 3.4 GNDD332 182.0 203.0 21.0 0.5 0.6 0.1 0.6 0.2 g/t AuEq cut 11.7 inc 194.0 <t< td=""><td>inc</td><td>312.0</td><td>313.1</td><td>1.1</td><td>3.0</td><td>2.0</td><td>0.0</td><td>3.1</td><td>1.0 g/t AuEq cut</td><td>3.4</td></t<>	inc	312.0	313.1	1.1	3.0	2.0	0.0	3.1	1.0 g/t AuEq cut	3.4
inc 345.0 347.0 2.0 1.3 1.0 0.0 1.3 1.0 g/t AuEq cut 2.7 GNDD330 286.0 335.7 49.7 0.4 0.9 0.1 0.4 0.2 g/t AuEq cut 21.6 inc 316.0 317.0 1.0 1.4 0.9 0.0 1.5 1.0 g/t AuEq cut 1.5 inc 329.0 335.7 6.7 1.3 1.5 0.1 1.3 1.0 g/t AuEq cut 9.0 and 375.2 377.0 1.8 0.4 2.6 3.7 2.1 0.2 g/t AuEq cut 3.7 inc 375.2 375.7 0.5 1.3 8.2 12.3 6.7 1.0 g/t AuEq cut 3.4 GNDD332 182.0 203.0 21.0 0.5 0.6 0.1 0.6 0.2 g/t AuEq cut 11.7 inc 194.0 199.7 5.7 1.1 0.6 0.0 1.1 1.0 g/t AuEq cut 6.3 and 230.5 <t< td=""><td>inc</td><td>331.0</td><td>333.0</td><td>2.0</td><td>1.0</td><td>0.7</td><td>0.0</td><td>1.0</td><td>1.0 g/t AuEq cut</td><td>2.1</td></t<>	inc	331.0	333.0	2.0	1.0	0.7	0.0	1.0	1.0 g/t AuEq cut	2.1
GNDD330 286.0 335.7 49.7 0.4 0.9 0.1 0.4 0.2 g/t AuEq cut 1.5 inc 316.0 317.0 1.0 1.4 0.9 0.0 1.5 1.0 g/t AuEq cut 9.0 and 375.2 377.0 1.8 0.4 2.6 3.7 2.1 0.2 g/t AuEq cut 3.7 inc 375.2 375.7 0.5 1.3 8.2 12.3 6.7 1.0 g/t AuEq cut 3.4 GNDD332 182.0 203.0 21.0 0.5 0.6 0.1 0.6 0.2 g/t AuEq cut 11.7 inc 194.0 199.7 5.7 1.1 0.6 0.0 1.1 1.0 g/t AuEq cut 6.3 and 230.5 249.6 19.1 0.3 0.6 0.2 0.4 0.2 g/t AuEq cut 7.7 inc 230.5 232.0 1.5 2.2 1.4 0.1 2.3 1.0 g/t AuEq cut 3.4 inc 249.0 249.6 0.6 2.2 11.3 3.5 3.9 1.0 g/t AuEq cut 2.1	inc	337.0	339.0	2.0	1.2	1.1	0.0	1.2	1.0 g/t AuEq cut	2.5
inc 316.0 317.0 1.0 1.4 0.9 0.0 1.5 1.0 g/t AuEq cut 1.5 inc 329.0 335.7 6.7 1.3 1.5 0.1 1.3 1.0 g/t AuEq cut 9.0 and 375.2 377.0 1.8 0.4 2.6 3.7 2.1 0.2 g/t AuEq cut 3.7 inc 375.2 375.7 0.5 1.3 8.2 12.3 6.7 1.0 g/t AuEq cut 3.4 GNDD332 182.0 203.0 21.0 0.5 0.6 0.1 0.6 0.2 g/t AuEq cut 11.7 inc 194.0 199.7 5.7 1.1 0.6 0.0 1.1 1.0 g/t AuEq cut 6.3 and 230.5 249.6 19.1 0.3 0.6 0.2 0.4 0.2 g/t AuEq cut 7.7 inc 230.5 232.0 1.5 2.2 1.4 0.1 2.3 1.0 g/t AuEq cut 3.4 inc 249.0 249	inc	345.0	347.0	2.0	1.3	1.0	0.0	1.3	1.0 g/t AuEq cut	2.7
inc 329.0 335.7 6.7 1.3 1.5 0.1 1.3 1.0 g/t AuEq cut 9.0 and 375.2 377.0 1.8 0.4 2.6 3.7 2.1 0.2 g/t AuEq cut 3.7 inc 375.2 375.7 0.5 1.3 8.2 12.3 6.7 1.0 g/t AuEq cut 3.4 GNDD332 182.0 203.0 21.0 0.5 0.6 0.1 0.6 0.2 g/t AuEq cut 11.7 inc 194.0 199.7 5.7 1.1 0.6 0.0 1.1 1.0 g/t AuEq cut 6.3 and 230.5 249.6 19.1 0.3 0.6 0.2 0.4 0.2 g/t AuEq cut 7.7 inc 230.5 232.0 1.5 2.2 1.4 0.1 2.3 1.0 g/t AuEq cut 3.4 inc 249.0 249.6 0.6 2.2 11.3 3.5 3.9 1.0 g/t AuEq cut 2.1	GNDD330	286.0	335.7	49.7	0.4	0.9	0.1	0.4	0.2 g/t AuEq cut	21.6
and 375.2 377.0 1.8 0.4 2.6 3.7 2.1 0.2 g/t AuEq cut 3.7 inc 375.2 375.7 0.5 1.3 8.2 12.3 6.7 1.0 g/t AuEq cut 3.4 GNDD332 182.0 203.0 21.0 0.5 0.6 0.1 0.6 0.2 g/t AuEq cut 11.7 inc 194.0 199.7 5.7 1.1 0.6 0.0 1.1 1.0 g/t AuEq cut 6.3 and 230.5 249.6 19.1 0.3 0.6 0.2 0.4 0.2 g/t AuEq cut 7.7 inc 230.5 232.0 1.5 2.2 1.4 0.1 2.3 1.0 g/t AuEq cut 3.4 inc 249.0 249.6 0.6 2.2 11.3 3.5 3.9 1.0 g/t AuEq cut 2.1	inc	316.0	317.0	1.0	1.4	0.9	0.0	1.5	1.0 g/t AuEq cut	1.5
inc 375.2 375.7 0.5 1.3 8.2 12.3 6.7 1.0 g/t AuEq cut 3.4 GNDD332 182.0 203.0 21.0 0.5 0.6 0.1 0.6 0.2 g/t AuEq cut 11.7 inc 194.0 199.7 5.7 1.1 0.6 0.0 1.1 1.0 g/t AuEq cut 6.3 and 230.5 249.6 19.1 0.3 0.6 0.2 0.4 0.2 g/t AuEq cut 7.7 inc 230.5 232.0 1.5 2.2 1.4 0.1 2.3 1.0 g/t AuEq cut 3.4 inc 249.0 249.6 0.6 2.2 11.3 3.5 3.9 1.0 g/t AuEq cut 2.1	inc	329.0	335.7	6.7	1.3	1.5	0.1	1.3	1.0 g/t AuEq cut	9.0
inc 375.2 375.7 0.5 1.3 8.2 12.3 6.7 1.0 g/t AuEq cut 3.4 GNDD332 182.0 203.0 21.0 0.5 0.6 0.1 0.6 0.2 g/t AuEq cut 11.7 inc 194.0 199.7 5.7 1.1 0.6 0.0 1.1 1.0 g/t AuEq cut 6.3 and 230.5 249.6 19.1 0.3 0.6 0.2 0.4 0.2 g/t AuEq cut 7.7 inc 230.5 232.0 1.5 2.2 1.4 0.1 2.3 1.0 g/t AuEq cut 3.4 inc 249.0 249.6 0.6 2.2 11.3 3.5 3.9 1.0 g/t AuEq cut 2.1	and	375.2	377.0	1.8	0.4	2.6	3.7	2.1	0.2 g/t AuEq cut	3.7
GNDD332 182.0 203.0 21.0 0.5 0.6 0.1 0.6 0.2 g/t AuEq cut 11.7 inc 194.0 199.7 5.7 1.1 0.6 0.0 1.1 1.0 g/t AuEq cut 6.3 and 230.5 249.6 19.1 0.3 0.6 0.2 0.4 0.2 g/t AuEq cut 7.7 inc 230.5 232.0 1.5 2.2 1.4 0.1 2.3 1.0 g/t AuEq cut 3.4 inc 249.0 249.6 0.6 2.2 11.3 3.5 3.9 1.0 g/t AuEq cut 2.1	inc	375.2	375.7	0.5	1.3	8.2	12.3	6.7	1.0 g/t AuEq cut	3.4
inc 194.0 199.7 5.7 1.1 0.6 0.0 1.1 1.0 g/t AuEq cut 6.3 and 230.5 249.6 19.1 0.3 0.6 0.2 0.4 0.2 g/t AuEq cut 7.7 inc 230.5 232.0 1.5 2.2 1.4 0.1 2.3 1.0 g/t AuEq cut 3.4 inc 249.0 249.6 0.6 2.2 11.3 3.5 3.9 1.0 g/t AuEq cut 2.1	GNDD332	1				0.6				•
and 230.5 249.6 19.1 0.3 0.6 0.2 0.4 0.2 g/t AuEq cut 7.7 inc 230.5 232.0 1.5 2.2 1.4 0.1 2.3 1.0 g/t AuEq cut 3.4 inc 249.0 249.6 0.6 2.2 11.3 3.5 3.9 1.0 g/t AuEq cut 2.1									- '	
inc 230.5 232.0 1.5 2.2 1.4 0.1 2.3 1.0 g/t AuEq cut 3.4 inc 249.0 249.6 0.6 2.2 11.3 3.5 3.9 1.0 g/t AuEq cut 2.1	and								-	
inc 249.0 249.6 0.6 2.2 11.3 3.5 3.9 1.0 g/t AuEq cut 2.1										
									1.0 g/t AuEq cut	
								0.5	0.2 g/t AuEq cut	8.8

inc	263.5	264.2	0.6	1.5	5.7	2.0	2.5	1.0 g/t AuEq cut	1.6
inc	278.3	280.2	1.9	1.9	19.6	2.5	3.2	1.0 g/t AuEq cut	6.2
GNDD333	164.2	181.0	16.8	0.3	1.3	0.1	0.4	0.2 g/t AuEq cut	6.1
and	224.0	229.0	5.0	0.5	9.1	0.3	0.8	1.0 g/t AuEq cut	3.8
and	248.0	249.5	1.4	1.2	3.8	0.4	1.4	1.0 g/t AuEq cut	2.1
and	262.0	272.3	10.3	0.2	2.6	0.7	0.5	0.2 g/t AuEq cut	5.0
inc	265.8	267.0	1.2	0.7	3.0	0.7	1.0	1.0 g/t AuEq cut	1.2
inc	271.5	272.3	0.8	0.2	7.2	2.0	1.2	1.0 g/t AuEq cut	0.9
and	284.0	297.0	13.0	0.3	3.2	0.3	0.4	0.2 g/t AuEq cut	5.8
GNDD334	220.0	249.0	29.0	0.3	0.2	0.0	0.3	0.2 g/t AuEq cut	9.82
inc	222.0	223.5	1.5	1.2	0.4	0.0	1.2	1.0 g/t AuEq cut	1.81
inc	230.0	231.5	1.5	1.4	0.1	0.0	1.4	1.0 g/t AuEq cut	2.05
and	275.0	295.0	20.0	0.2	0.1	0.0	0.3	0.2 g/t AuEq cut	5.04
and	317.0	335.7	18.7	0.3	0.7	0.1	0.3	0.2 g/t AuEq cut	5.33
GNDD336	146.0	181.0	35.0	0.3	5.3	0.2	0.5	0.2 g/t AuEq cut	18.1
inc	150.0	152.0	2.0	1.3	15.8	0.9	1.8	1.0 g/t AuEq cut	3.7
inc	174.0	175.0	1.0	2.2	26.8	1.7	3.2	1.0 g/t AuEq cut	3.2
and	282.0	285.0	3.0	0.4	0.6	0.0	0.4	0.2 g/t AuEq cut	1.3
and	310.0	359.0	49.0	1.5	10.4	1.7	2.4	0.2 g/t AuEq cut	117.5
inc	312.0	314.9	2.9	13.8	55.1	7.2	17.7	1.0 g/t AuEq cut	51.6
inc	327.5	329.9	2.4	0.2	6.9	1.2	0.8	1.0 g/t AuEq cut	1.9
inc	341.5	359.0	17.6	1.8	18.2	3.2	3.5	1.0 g/t AuEq cut	61.2
GNDD337	90.0	97.0	7.0	0.4	0.7	0.1	0.4	0.2 g/t AuEq cut	2.9
inc	90.0	91.1	1.1	1.7	2.1	0.2	1.9	1.0 g/t AuEq cut	2.1
and	195.5	229.5	34.0	0.2	3.0	0.0	0.2	0.2 g/t AuEq cut	7.0
and	258.6	272.5	13.9	2.0	6.0	0.7	2.4	0.2 g/t AuEq cut	34.0
inc	262.2	272.5	10.3	2.7	7.9	0.9	3.2	1.0 g/t AuEq cut	33.0
and	312.0	314.0	2.0	1.8	3.2	0.3	2.0	1.0 g/t AuEq cut	3.9
GNDD341	60.6	171.0	110.4	0.5	0.6	0.1	0.6	0.2 g/t AuEq	61.9
inc	78.0	125.0	47.0	1.0	1.0	0.2	1.10	1.0 g/t AuEq	51.5
	81.50	87.00	5.50	6.4	2.2	0.63	6.7	1.0 g/t AuEq	36.9

See below for information regarding AuEq's reported under the JORC Code.

² Gold Equivalent (AuEq) values - Requirements under the JORC Code

- Assumed commodity prices for the calculation of AuEq is Au US\$1780 Oz, Ag US\$24 Oz, Zn US\$2,800 /t
- Metallurgical recoveries for Au, Ag and Zn are estimated to be 89%, 84% and 79% respectively (see JORC Table 1
 Section 3 Metallurgical assumptions) based on metallurgical test work.
- The formula used: AuEq (g/t) = Au (g/t) + [Ag (g/t) x (24/1780) x (0.84/0.89)] + [Zn (%) x (28.00*31.1/1780) x (0.79/0.89)]
- CEL confirms that it is the Company's opinion that all the elements included in the metal equivalents calculation have a reasonable potential to be recovered and sold.

About Challenger Exploration

Challenger Exploration Limited's (ASX: CEL) aspiration is to become a globally significant gold producer. The Company is developing two complementary gold/copper projects in South America. The strategy for the 100% owned Hualilan Gold project is for it to provide a high-grade low capex operation in the near term. This underpins CEL with a low risk, high margin source of cashflow while it prepares for a much larger bulk gold operation at both Hualilan and El Guaybo in Ecuador.

The Company is fully funded for the next 2 years with cash at bank of \$36 million and it has committed to a 9-rig 120,000 metre drill program at its Flagship Hualilan Gold project.

- 1. Hualilan Gold Project, located in San Juan Province Argentina, is a near term development opportunity. It has extensive historical drilling with over 150 drill-holes and a non-JORC historical resource (1) of 627,000 Oz @ 13.7 g/t gold which remains open in most directions. The project was locked up in a dispute for the past 15 years and as a consequence had seen no modern exploration until CEL acquired the project in 2019. In the past 2 years CEL has completed 400 drill holes for more than 95,000 metres of drilling. Results have included 6.1m @ 34.6 g/t Au, 21.9 g/t Ag, 2.9% Zn, 6.7m @ 14.3 g/t Au, 140 g/t Ag, 7.3% Zn and 10.3m @ 10.4 g/t Au, 28 g/t Ag, 4.6% Zn. This drilling intersected high-grade gold over 2.5 kilometres of strike and extended the known mineralisation along strike and at depth in multiple locations. Recent drilling has demonstrated the high-grade skarn mineralisation is underlain by a significant intrusion-hosted gold system with intercepts including 209.0m at 1.0 g/t Au, 1.4 g/t Ag, 0.1% Zn and 110.5m at 2.5 g/t Au, 7.4 g/t Au, 0.90% Zn in intrusives. CEL's current program which is fully funded includes a 120,000 metres of drilling, metallurgical test work of key ore types, and an initial JORC Compliant Resource and PFS.
- 2. El Guayabo Gold/Copper Project covers 35 sq kms in southern Ecuador and was last drilled by Newmont Mining in 1997 targeting gold in hydrothermal breccias. Historical drilling has demonstrated potential to host significant gold and associated copper and silver mineralisation. Historical intersections include 156m @ 2.6 g/t Au, 9.7 g/t Ag, 0.2% Cu and 112m @ 0.6 % Cu, 0.7 g/t Au, 14.7 g/t Ag which have never been followed up. The Project has multiple targets including breccia hosted mineralisation, an extensive flat lying late-stage vein system and an underlying porphyry system target, neither of which has been drill tested. CEL's first results confirm the discovery of large-scale gold system with over 250 metres of bulk gold mineralisation encountered in drill hole ZK-02 which contains a significant high-grade core of 134m at 1.0 g/t gold and 4.1 g/t silver including 63m at 1.6 g/t gold and 5.1 g/t silver. CEL Is currently undertaking its maiden 20,000 metre drill program at El Guayabo. About Challenger Exploration

Competent Person Statement – Exploration results

The information in this release provided under ASX Listing Rules 5.12.2 to 5.12.7 is an accurate representation of the available data and studies for the material mining project. The information that relates to sampling techniques and data, exploration results and geological interpretation has been compiled Dr Stuart Munroe, BSc (Hons), PhD (Structural Geology), GDip (AppFin&Inv) who is a full-time employee of the Company. Dr Munroe is a Member of the AusIMM. Dr Munroe has over 20 years' experience in the mining and metals industry and qualifies as a Competent Person as defined in the JORC Code (2012).

Dr Munroe has sufficient experience of relevance to the styles of mineralisation and the types of deposits under consideration, and to the activities undertaken, to qualify as a Competent Person as defined in the 2012 Edition of the Joint Ore Reserves Committee (JORC) Australasian Code for Reporting of Exploration Results. Dr Munroe consents to the inclusion in this report of the matters based on information in the form and context in which it appears. The Australian Securities Exchange has not reviewed and does not accept responsibility for the accuracy or adequacy of this release.

Foreign Resource Estimate Hualilan Project

La Mancha Resources 2003 foreign resource estimate for the Hualilan Project ^										
Category	Tonnes (kt)	Gold Grade (g/t)	Contained Gold (koz)							
Measured	218	14.2	100							
Indicated	226	14.6	106							
Total of Measured & Indicated	445	14.4	206							
Inferred	977	13.4	421							
Total of Measured, Indicated & Inferred	1,421	13.7	627							

[^] Source: La Mancha Resources Toronto Stock Exchange Release dated 14 May 2003 -Independent Report on Gold Resource Estimate. Rounding errors may be present. Troy ounces (oz) tabled here

^{#1} For details of the foreign non-JORC compliant resource and to ensure compliance with LR 5.12 please refer to the Company's ASX Release dated 25 February 2019. These estimates are foreign estimates and not reported in accordance with the JORC Code. A competent person has not done sufficient work to clarify the foreign estimates as a mineral resource in accordance with the JORC Code. It is uncertain that following evaluation and/or further exploration work that the foreign estimate will be able to be reported as a mineral resource. The company is not in possession of any new information or data relating to the foreign estimates that materially impacts on the reliability of the estimates or CEL's ability to verify the foreign estimates estimate as minimal resources in accordance with Appendix 5A (JORC Code). The company confirms that the supporting information provided in the initial market announcement on February 25, 2019 continues to apply and is not materially changed

Appendix 1 - Schedule of Tenements

Duciost	Duonouty Nove	Tenure Title	Interest	Area	DNPM No	Status of
Project	Property Name	Holder	%	(ha)	of Area	Tenure
El Guayabo	El Guayabo	Torata Mining Resources S.A	earning 100%	281	COD225	Granted
El Guayabo	Colorado V	Goldking Mining Company S.A	earning 50%	2331	COD3363.1	Granted
El Guayabo	El Guaybo 2	Mr. Segundo Ángel Marín Gómez	earning 80%	957	COD300964	Granted
Hualilan	Divisadero	Golden Mining S.R.L.	earning 75%	6	5448-M-1960	Granted
Hualilan	Flor de Hualilan	Golden Mining S.R.L.	as above	6	5448-M-1960	Granted
Hualilan	Pereyra y Aciar	Golden Mining S.R.L.	as above	6	5448-M-1960	Granted
Hualilan	Bicolor	Golden Mining S.R.L.	as above	6	5448-M-1960	Granted
Hualilan	Sentazon	Golden Mining S.R.L.	as above	6	5448-M-1960	Granted
Hualilan	Muchilera	Golden Mining S.R.L.	as above	6	5448-M-1960	Granted
Hualilan	Magnata	Golden Mining S.R.L.	as above	6	5448-M-1960	Granted
Hualilan	Pizarro	Golden Mining S.R.L.	as above	6	5448-M-1960	Granted
Hualilan	La Toro	CIA GPL S.R.L.	as above	6	5448-M-1960	Granted
Hualilan	La Puntilla	CIA GPL S.R.L.	as above	6	5448-M-1960	Granted
Hualilan	Pique de Ortega	CIA GPL S.R.L.	as above	6	5448-M-1960	Granted
Hualilan	Descrubidora	CIA GPL S.R.L.	as above	6	5448-M-1960	Granted
Hualilan	Pardo	CIA GPL S.R.L.	as above	6	5448-M-1960	Granted
Hualilan	Sanchez	CIA GPL S.R.L.	as above	6	5448-M-1960	Granted
Hualilan	Andacollo	CIA GPL S.R.L.	as above	6	5448-M-1960	Granted
Hualilan	North of "Pizarro"	Golden Mining S.R.L.	as above	1.9	195-152-C-1981	Granted
Hualilan	South of "La Toro"	CIA GPL S.R.L.	as above	1.9	195-152-C-1981	Granted
Hualilan	Josefina	Golden Mining S.R.L.	as above	2570	30.591.654	Granted
Hualilan		Armando J. Sanchez	100% Option	721.90	414-998-M-05	Granted
Hualilan	Guillermina	Armando J. Sanchez	100% Option	2,921.05	1124-045-S-19	Granted
Hualilan	Agu 3	Armando J. Sanchez	100% Option	1,500.00	1124-114-S-14	Granted
Hualilan	Agu 5	Armando J. Sanchez	100% Option	1443.50	1124-343-S-14	Granted
Hualilan	Agu 6	Armando J. Sanchez	100% Option	1500.00	1124-623-S-17	Granted
Hualilan	Agu 7	Armando J. Sanchez	100% Option	1459.00	1124-622-S-17	Granted
Hualilan	El Petiso	Armando J. Sanchez	100% Option	18.00	2478-C-71	Granted

Appendix 3 - ASX Waivers

The ASX granted the Company a waiver from ASX Listing Rule 7.3.2 to permit the notice of meeting (the "Notice") seeking shareholder approval for the issue of up to 245,000,001 fully paid ordinary shares in the Company ("Waiver Securities") upon the Company satisfying the milestones in relation to each of the Projects ("Milestones") not to state that the Waiver Securities will be issued within 3 months of the date of the shareholder meeting.

The Waiver Securities must be issued no later than 60 months after the date of reinstatement of the Company's securities to official quotation.

All Waiver Securities agreements were amended, received shareholder approval and have been issued.

Performance Shares

The Company has 60,000,000 Class A Performance Shares and 60,000,000 Class B Performance Shares on Issue.

A summary of the terms and conditions of the Performance Shares are as follows:

The Performance Shares shall automatically convert into Shares, provided that if the number of Shares that would be issued upon such conversion is greater than 10% of the Company's Shares on issue as at the date of conversion, then that number of Performance Shares that is equal to 10% of the Company's Shares on issue as at the date of conversion under this paragraph will automatically convert into an equivalent number of Company Shares. The conversion will be completed on a pro rata basis across each class of Performance Shares then on issue as well as on a pro rata basis for each Holder. Performance Shares that are not converted into Shares under this paragraph will continue to be held by the Holders on the same terms and conditions.

(**No Conversion if Milestone not Achieved**): If the relevant Milestone is not achieved by the required date (being seven years from the date of the Proposed Acquisition or such other date as required by ASX), then all Performance Shares held by each Holder shall lapse.

(After Conversion): The Shares issued on conversion of the Performance Shares will, as and from 5.00pm (WST) on the date of issue, rank equally with and confer rights identical with all other Shares then on issue and application will be made by the Company to ASX for official quotation of the Shares issued upon conversion (subject to complying with any restriction periods required by the ASX). (Milestones):

The Performance Shares will, convert upon the satisfaction of the following milestones:

(Class A): A JORC Compliant Mineral Resource Estimate of at least Inferred category on either Project of the following:

a minimum 500,000 ounces of gold (AU) or Gold Equivalent (in accordance with clause 50 of the JORC Code) at a minimum grade of 6 grams per tonne Gold Equivalent; or a minimum 1,500,000 ounces of gold (AU) or Gold Equivalent (in accordance with clause 50 of the JORC Code) at a minimum grade of 2.0 grams per tonne Gold Equivalent; or a minimum 3,000,000 ounces of gold (AU) or Gold Equivalent (in accordance with clause 50 of the JORC Code) at a minimum grade of 1.0 grams per tonne Gold Equivalent.

(Class B): The Class B Performance Shares held by the holder will convert into an equal number of Shares upon the Company:

Completion and announcement by CEL (subject to the provision of information allowable at the time of completion) of a positive Scoping Study (as defined in the JORC Code) on either Project by an independent third-party expert which evidences an internal rate of return of US Ten Year Bond Rate plus 10% (using publicly available industry assumptions, including deliverable spot commodity / mineral prices, which are independently verifiable) provided that the total cumulative EBITDA over the project life is over US\$50m.

No Performance Milestones were met during the quarter.

JORC Code, 2012 Edition – Table 1 report template

Section 1 Sampling Techniques and Data -El Guayabo Project

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 Newmont Mining Corp (NYSE: NEM) ("Newmont") and Odin Mining and Exploration Ltd (TSX: ODN) ("Odin") core drilled the property between February 1995 and November 1996 across two drilling campaigns. The sampling techniques were reviewed as part of a 43-101 Technical report on Cangrejos Property which also included the early results of the El Joven joint venture between Odin and Newmont, under which the work on the El Guayabo project was undertaken. This report is dated 27 May 2004 and found the sampling techniques and intervals to be appropriate with adequate QA/QC and custody procedures, core recoveries generally 100%, and appropriate duplicates and blanks use for determining assay precision and accuracy. Duplicates were prepared by the Laboratory (Bonder Cleg) which used internal standards. Newmont also inserted its own standards at 25 sample intervals as a control on analytical quality Diamond drilling produced core that was sawed in half with one half sent to the laboratory for assaying per industry standards and the remaining core retained on site. Cu assays above 2% were not re-assayed using a technique calibrated to higher value Cu results hence the maximum reported assay for copper is 2%. All core samples were analysed using a standard fire assay with atomic absorption finish on a 30 g charge (30 g FAA). Because of concerns about possible reproducibility problems in the gold values resulting from the presence of coarse gold, the coarse crusher rejects for all samples with results greater than 0.5 g/t were re-assayed using the "blaster" technique - a screen type fire analysis based on a pulverized sample with a mass of about 5 kg. Samples from most of these intersections were also analysed for Cu, Mo, Pb, Zn and Ag. CEL has re-sampled sections of the Newmont and Odin drill core. ½ drill core was cutover intervals that replicated the earlier sampling. Sample intervals ranged from 0.7 – 4.5m with and average of 2.0m. 5

Criteria	JORC Code explanation	Commentary
		 taken so as to be as representative as possible of the exposure being mapped. Colorado V: Soil sampling: A database of 4,495 soil analyses has been provided by Goldking Mining Company S.A. (GK) which has yet to be fully evaluated. No information has been provided on the method of sample collection or assay technique. The soil analyses include replicate samples and second split analyses. Pulps have been securely retained by Goldking Mining Company and have been made available to CEL for check assaying. Check assaying is planned, including collection of field duplicates. Rock chip sampling during regional mapping has been done on selected exposures. Sampling involves taking 2-3 kg of rock using a hammer from surface exposures that is representative of the exposure. Selected intervals of drill core have been cut longitudinally and half core are were submitted for gold determination at GK's on-site laboratory prior to CEL's involvement with the Project. Re-sampling of the core involves taking ¼ core (where the core has previously been sampled) or ½ core (where the core has not previously been sampled). The core is cut longitudinally and sample intervals of 1 – 3 meters have been collected for analysis. ZKO-1 and ZKI-3 have been analysed for of gold by fire assay (30g) wit ICP determination and other elements by 4 acid digest with ICP-AES finish (36 elements) at SGS del Peru S.A.C. SAZKO-1, SAZKO-2, SAZK2-1, ZKO-2, ZKO-5, ZKI-5, ZKI-6, ZK2-1, ZK3-1, ZK3-4, ZK13-1 and ZK18-1 have been analysed for of gold by fire assay (30g) with ICP determination and other elements by 4 acid digest with combined ICP-AES and ICP-MS finish (50 elements) at SGS del Peru S.A.C. Samples from other holes have been analysed for gold by fire assay (30g) with ICP determination and other elements by 4-acid digest with CP-MS (48 elements) at ALS Laboratories in Peru. Underground development has been mapped and channel sampled. Channel samples have been t
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or 	 El Guayabo: Diamond core drilling HQ size from surface and reducing to NQ size as necessary. The historical

Issued Capital 974.4m shares 49.0m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

standard tube, depth of diamond tails, face-sampling bit or other type,

DirectorsMr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Contact T: +61 8 6380 9235 E: admin@challengerex.com

records do not indicate if the core was oriented

Criteria	JORC Code explanation	Commentary
	whether core is oriented and if so, by what method, etc).	 Colorado V: Diamond drilling was done using a rig owned by GK. Core size collected includes HQ, NQ2 and NQ3. There is no indication that oriented core was recovered.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 In a majority of cases core recovery was 100%. In the historical drill logs where core recoveries were less than 100% the percentage core recovery was noted. No documentation on the methods to maximise sample recovery was reported in historical reports however inspection of the available core and historical drilling logs indicate that core recoveries were generally 100% with the exception of the top few metres of each drill hole. No material bias has presently been recognised in core. Observation of the core from various drill holes indicate that the rock is generally fairly solid even where it has been subjected to intense, pervasive hydrothermal alteration and core recoveries are generally 100%. Consequently, it is expected that the samples obtained were not unduly biased by significant core losses either during the drilling or cutting processes Colorado V: Core from GoldKing has been re-boxed prior to sampling where boxes have deteriorated, otherwise the original boxes have been retained. Core lengths have been measured and compared to the depth tags that are kept in the boxes from the drilling and recovered lengths have been recorded with the logging. Where re-boxing of the core is required, core has been placed in the new boxes, row-by row with care taken to ensure all of the core has been transferred. No relationship has been observed between core recovery and sample assay values.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	El Guayabo: Geological logging was completed at 1-3 m intervals which is appropriate given the exploration was reconnaissance in nature. All core was logged qualitatively at 1 to 3 m intervals depending on geology intercepted and core was photographed. Inspections of core and logging have concluded that the logging was representative. 100% of all core including all relevant intersections were logged Progress of El Guayabo core re-logging and re-sampling is summarized below: Logging Core Total Hole_ID Depth (m) Status Photograph Sampling Status Samples GY-01 249.2 Complete Complete Partial 25

Issued Capital 974.4m shares 49.0m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

JORC Code explanation	Commentary					
	GY-02	272.9	Complete	Complete	Partial	88
	GY-03	295.99	Pending	Complete	Pending	
	GY-04	172.21	Pending	Complete	Pending	
	GY-05	258.27	Partial	Complete	Partial	56
	GY-06	101.94	Pending	Complete	Pending	
	GY-07	127.0	Pending	Complete	Pending	
	GY-08	312.32	Pending	Complete	Pending	
	GY-09	166.25	Pending	Complete	Pending	
	GY-10	194.47	Pending	Pending	Pending	
	GY-11	241.57	Complete	Complete	Partial	84
	GY-12	255.7	Partial	Complete	Pending	
	GY-13	340.86	Pending	Pending	Pending	
	GY-14	309.14	Pending	Pending	Pending	
	GY-15	251.07	Pending	Pending	Pending	
	GY-16	195.73	Pending	Pending	Pending	
	GY-17	280.04	Complete	Complete	Partial	36
	GY-18	160.35	Pending	Complete	Pending	
	GY-19	175.42	Pending	Complete	Pending	
	Logged (m)	1,043.71	Re-logged		Samples Submitted	289
	Total (m)	4,185.01	Odin Drilled			
	JDH-01	236.89	Pending	Pending	Pending	
	JDH-02	257.62	Pending	Pending	Pending	
	JDH-03	260.97	Pending	Pending	Pending	
	JDH-04	219.00	Pending	Pending	Pending	
	JDH-05	210.37	Pending	Pending	Pending	
	JDH-06	302.74	Complete	Complete	Partial	98
	JDH-07	105.79	Pending	Pending	Pending	
	JDH-08	352.74	Pending	Pending	Pending	
	JDH-09	256.70	Complete	Complete	Partial	49

Issued Capital 974.4m shares 49.0m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

riteria	JORC Code explanation	Commentary					
		JDH-10	221.64	Complete	Complete	Partial	43
		JDH-11	217.99	Pending	Complete	Pending	
		JDH-12	124.08	Complete	Complete	Partial	22
		JDH-13	239.33	Complete	Complete	Partial	21
		JDH-14	239.32	Complete	Complete	Partial	30
		Logged (m)	1,038.09	Re-logged		Samples Submitted	263
		Total (m)	3,245.18	Newmont D	rilled		

			Core		Total
Hole_ID	Depth (m)	Logging Status	Photograph	Sampling Status	Samples
GYDD-21-01	800.5	Complete	Complete	Complete	581
GYDD-21-02	291.7	Partial	Partial	Partial	215

Colorado V:

- Sorting, re-boxing and re-logging of available drill core is in progress. Core is being logged for lithology, alteration, mineralisation and structure. Where possible, logging is quantitative.
- Progress of Colorado V core re-logging and re-sampling is summarized below:

Hole_ID	Depth (m)	Logging Status	Core Photograph	Sampling Status	Total Samples
ZK0-1	413.6	Complete	Complete	Samples Submitted	281
ZK0-2	581.6	Complete	Complete	Samples Submitted	388
ZK0-3	463.0	Complete	Complete	Samples Submitted	330
ZK0-4	458.0	Complete	Complete	Samples Submitted	350
ZK0-5	624.0	Complete	Pending	Samples Submitted	482
ZK1-1	514.6	Complete	Pending	Samples Submitted	288
ZK1-2	403.1	Complete	Complete	Not Re-Sampled	
ZK1-3	425.0	Complete	Complete	Samples Submitted	279
ZK1-4	379.5	Complete	Complete	Samples Submitted	267

Criteria	JORC Code explanation	Commentary					
		ZK1-5	419.5	Complete	Complete	Samples Submitted	266
		ZK1-6	607.5	Complete	Complete	Samples Submitted	406
		ZK1-7	453.18	Complete	Complete	Samples Submitted	370
		ZK1-8	556.0	Pending	Pending	Pending	
		ZK1-9	220.0	Complete	Complete	Samples Submitted	140
		ZK2-1	395.5	Complete	Complete	Samples Submitted	320
		ZK3-1	372.48	Complete	Complete	Samples Submitted	250
		ZK3-1A	295.52	Pending	Pending	Pending	
		ZK3-2	364.80	Complete	Complete	Samples Submitted	235
		ZK3-4	322.96	Complete	Complete	Samples Submitted	156
		ZK4-1	434.0	Pending	Pending	Pending	
		ZK4-2	390.5	Pending	Pending	Pending	
		ZK4-3	650.66	Pending	Pending	Pending	
		ZK4-4	285.0	Pending	Pending	Pending	
		ZK5-1	321.90	Complete	Complete	Not Re-sampled	
		ZK5-2	321.0	Complete	Complete	Not Re-sampled	
		ZK5-3	446.5	Pending	Pending	Pending	
		ZK5-4	508.0	Pending	Pending	Pending	
		ZK5-5	532.0	Complete	Complete	Samples Submitted	378
		ZK6-1	552.6	Pending	Complete	Pending	
		ZK6-2	531	Pending	Pending	Pending	
		ZK10-1	454.0	Complete	Complete	Samples Submitted	229
		ZK10-2	318.82	Complete	Complete	Samples Submitted	206
		ZK10-3	331.52	Complete	Complete	Samples Submitted	220
		ZK11-1	237.50	Complete	Complete	Not Re-sampled	
		ZK12-1	531.50	Complete	Complete	Not Re-sampled	
		ZK12-2	510.6	Complete	Complete	Not Re-sampled	
		ZK13-1	394.0	Complete	Complete	Samples Submitted	246
		ZK13-2	194.0	Pending	Complete	Pending	

Issued Capital 974.4m shares 49.0m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

riteria	JORC Code explanation	Commentary					
		ZK13-3	197.06	Pending	Pending	Pending	
		ZK13-4	176.57	Pending	Pending	Pending	
		ZK13-5	184.7	Pending	Pending	Pending	
		ZK16-1	324.0	Complete	Complete	Samples Submitted	212
		ZK16-2	385.83	Complete	Complete	Samples Submitted	223
		ZK18-1	410.5	Complete	Complete	Samples Submitted	286
		ZK19-1	548.60	Complete	Complete	Not Re-sampled	
		ZK100-1	415.0	Pending	Pending	Pending	
		ZK103-1	524.21	Pending	Pending	Pending	
		ZK105-1	404.57	Pending	Pending	Pending	
		ZK205-1	347.0	Complete	Complete	Samples Submitted	211
		SAZKO-1A	569.1	Complete	Complete	Samples Submitted	396
		SAZKO-2A	407.5	Complete	Complete	Samples Submitted	260
		SAZK2-1	430.89	Complete	Complete	Samples Submitted	195
		SAZK2-2	354.47	Complete	Complete	Not Re-Sampled	
		CK2-1	121.64	Pending	Pending	Pending	
		CK2-2	171.85	Pending	Pending	Pending	
		CK2-3	116.4	Pending	Pending	Pending	
		CK2-4	146.12	Pending	Pending	Pending	
		CK2-5	357.56	Pending	Pending	Pending	
		CK2-6	392.56	Pending	Pending	Pending	
		CK3-1	185.09	Pending	Pending	Pending	
		CK3-2	21.75	Pending	Pending	Pending	
		CK3-3	138.02	Pending	Pending	Pending	
		CK5-1	273.56	Pending	Pending	Pending	
		CK5-2	273.11	Pending	Pending	Pending	
		CK13-1	227.1	Pending	Pending	Pending	
		CK13-2	231.16	Pending	Pending	Pending	
		CK13-3	197.06	Pending	Pending	Pending	

Issued Capital 974.4m shares 49.0m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Comme	itary					
		CK13-4		176.57	Pending	Pending	Pending	
		CK13-5		184.70	Pending	Pending	Pending	
		CK21-1		143.47	Pending	Pending	Pending	
		Logged	m) 16,	,277.53	Re-logged		Samples Submitted	7,870
		Total (m) 23,	,128.81	Core Shack			
		Total (m) 24,	,029.68	Drilled			
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 All d Sam dried pulve on a Mea not d by O The mine CEL 1 blan were style CEL 1 pulve to remate Colorado No ii Selective size on the style 	was cut willing was ole prepar, crushed erized. A s 30 g charge sures take utlined in which use of a 1-ralisation a core sampled. The present the rial being ted intervisampled. If the sampled.	to a non sub-sample with a content of the hist demons and where longing was serted in d ¼ core alisation camples on the mater as sample on is available of dr. Sample on ples is a	Illing as such the as appropriate initial – 10 mestole of the pulper in atomic absolute that the salute or that the salute initial documents as done by cut into the batched was retained fobserved. In 2-3 kg are craiged as a collectial being mapped. In able on the mestill core have be intervals rang ppropriate for	th (ca 2mm), the was then sent for prion finish with mpling is representation however eatability of original propriate for or dintersections ting the core with sent for preparation for future referenced from surface and the sample of the mineralisation of the mineralisation sent form 0.1m to the mineralisation of the sample of	-	and and ard fire assay tion limit. rial collected is vas undertaken ed ds (CRM) and licate samples ropriate for the ample is g is done so as grain size of the oil samples. and ½ core has h of 1.35m. The

DirectorsMr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commentary
		not previously sampled. $\frac{1}{2}$ or $\frac{1}{2}$ core over intervals of 1-3 metres provides an adequate sample size for the material being sampled.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 El Guayabo: The nature, quality and appropriateness of the assaying and laboratory procedures used by Newmont and Odin are still in line with industry best practice with appropriate QA/QC and chain of custody and are considered appropriate. Available historical data does not mention details of geophysical tools as such it is believed a geophysical campaign was not completed in parallel with the drilling campaign. Duplicates were prepared by the Laboratory (Bonder Cleg) which used internal standards. Newmont also inserted its own standards at 25 sample intervals as a control on analytical quality. Later Odin undertook a re-assaying program of the majority of the higher-grade sections which confirmed the repeatability. Given the above, it is considered acceptable levels of accuracy and precision have been established CEL ¼ and ½ core samples were prepared for assay at SGS Del Ecuador S.A.in Quito, Ecuador with analysis completed by ALS in Vancouver, Canada. Samples were crushed and a 500g subsample was pulverized to 85% passing 75 µm. The technique provides for a near total analysis of the economic elements of interest. CEL rock chip samples were prepared for assay at ALS Laboratories (Quito) with analysis being completed at ALS Laboratories (Peru). The fire assay and 4-acid digest provide for near-total analysis of the economic elements of interest. No standards or blanks were submitted with the rock chip samples. Colorado V: No information is available on the methods used to analyse the soil or drill core samples. Assay results are not provided in this report. Soil samples have been analysed by GK for Au, Cu, Ag, Zn, Pb, As, Mn, Ni, Cr, Mo, Sn, V, Ti, Co, B, Ba, Sb, Bi and Hg. Pulps have been securely retained and check assaying is planned. Drill core was partially assayed for gold only with assays undertaken by Goldking's on site laboratory CEL samples of drill core re-sampled by CEL blanks and CRM (stan
		3 separate CRM's were included in the batches sent for analysis. All three have certified Au values. The results of the analysis of the CRM is shown below. With a few exceptions, the CRM has returned results within +/- 2 SD of the certified reference value. There is no bias in the

DirectorsMr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

JORC Code explanation Criteria Commentary results returned from either SGS or ALS laboratories. CRM3 analyses by fire assay at SGS did not include overlimit (>10 g/t). SGS - CRM1 - Au (ppm) - mean +/- 2SD ALS - CRM1 - Au (ppm) - mean +/- 2SD SGS - CRM2 - Au (ppm) - mean +/- 2SD ALS - CRM2 - Au (ppm) - mean +/- 2SD SGS - CRM3 - Au (ppm) - mean +/- 2SD ALS - CRM3 - Au (ppm) - mean +/- 2SD 11.50 No duplicate samples have been submitted. Two different blanks have been included randomly within the sample batches. A CRM blank with a value of <0.01 ppm (10 ppb) Au was used initially. More recent batches have used a blank gravel material which has no certified reference value. The results are shown below. The first 4 gravel blanks show elevated Au values which is believed to be due to contamination of the blank prior to submission and not due to laboratory contamination. With one exception, the blanks have returned values below 10 ppb. SGS - CRM Blank - Au (ppb)

West Perth WA 6005

Contact T: +61 8 6380 9235 E: admin@challengerex.com

SGS - Gravel Blank - Au (ppb)

ALS - Gravel Blank - Au (ppm)

Criteria	JORC Code explanation	Commentary
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 El Guayabo: All intersections with results greater than 0.5 g/t were re-assayed using the "blaster" technique - a screen type fire analysis based on a pulverised sample with a mass of about 5 kg. Additionally, Odin re-assayed the many of the higher-grade sections with re-assay results demonstrating repeatability of the original results. Neither Newmont nor Odin attempted to verify intercepts with twinned holes Data was sourced from scanned copies of original drill logs and in some cases original paper copies of assay sheets are available. This data is currently stored in a drop box data base with the originals held on site. No adjustments to assay data were made. CEL assay data has not been independently verified or audited. Data is stored electronically in MS Excel and PDF format from the Laboratory and entered into a Project database for analysis. There has been no adjustment of the data. Colorado V: There is no information available on the verification of sample and assay results. No assay data is provided in this report. Soil replicate samples and second split assay results have been provided but not fully analysed at this stage. Of the 4,495 soil samples in the GK database, 166 are replicate samples and 140 are second split re-analyses. 37 samples have no co-ordinates in the database.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 El Guayabo: Newmont undertook survey to located drill holes in accordance with best practice at the time. No formal check surveying has been undertaken to verify drill collar locations at this stage Coordinate System: PSAD 1956 UTM Zone 17S Projection: Transverse Mercator Datum: Provisional S American 1956 Quality of topographic control appears to be+ - 1 meter which is sufficient for the exploration activities undertaken. Rock chip samples have been located using topographic maps with the assistance of hand-held GPS. Colorado V: Coordinate System: PSAD 1956 UTM Zone 17S Projection: Transverse Mercator Datum:

Issued Capital 974.4m shares 49.0m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commentary
		 Provisional S American 1956 No information is available on the collar and down-hole survey techniques used on the Colorado V concession. Rock chip sample locations are determined by using a hand held GPS unit which is appropriate for the scale of the mapping program being undertaken.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Drilling on both concessions is exploration based and a grid was not considered appropriate at that time. A JORC compliant Mineral Resource has not been estimated Sample compositing was not used
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	A sampling bias is not evident.
Sample security	- The measures taken to ensure sample security.	 Newmont sent all its field samples to the Bondar Clegg sample preparation facility in Quito for preparation. From there, approximately 100 grams of pulp for each sample was air freighted to the Bondar Clegg laboratory (now absorbed by ALS-Chemex) in Vancouver, for analysis. There is no record of any special steps to monitor the security of the samples during transport either between the field and Quito, or between Quito and Vancouver. However, Newmont did insert its own standards at 25 sample intervals as a control on analytical quality. CEL samples are kept in a secure location and prepared samples are transported with appropriate paperwork, securely by registered couriers. Details of the sample security and chain of custody are kept at the Project office for future audits. Colorado V: GK analysed samples in an on-site laboratory. It is understood that the samples have remained on site at all times. CEL have collected samples at the core shed at El Guayabo and secured the samples in polyweave sacks for transport by courier to SGS Laboratories in Quito for preparation. SGS in Quito courier the prepared sample pulps to SGS in Peru for analysis. Photographs and documentation are retained to demonstrate the chain of custody of the samples at all stages.
Audits or reviews	- The results of any audits or reviews of sampling techniques and data.	El Guayabo:

Issued Capital 974.4m shares 49.0m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commentary
		 The sampling techniques were reviewed as part of a 43-101 Technical report on Cangrejos Property which also included the early results of the El Joven joint venture between Odin and Newmont, under which the work on the El Guayabo project was undertaken. This report is dated 27 May 2004 and found the sampling techniques and intervals to be appropriate with adequate QA/QC and custody procedures, core recoveries generally 100%, and appropriate duplicates and blanks use for determining assay precision and accuracy. There have been no audits of reviews of CEL data for the El Guayabo. Colorado V: No audits or reviews of sampling techniques and data is known. Goldking did twin two earlier holes with results still being compiled.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The El Guayabo (Code. 225) mining concession is located within El Oro Province. The concession is held by Torata Mining Resources S.A (TMR S.A) and was granted in compliance with the Mining Act ("MA") in on April 27, 2010. There are no overriding royalties on the project other than normal Ecuadorian government royalties. The property has no historical sites, wilderness or national park issues. The mining title grants the owner an exclusive right to perform mining activities, including, exploration, exploitation and processing of minerals over the area covered by the prior title for a period of 25 years, renewable for a further 25 years. Under its option agreement, the owner has been granted a negative pledge (which is broadly equivalent to a fixed and floating charge) over the concession. In addition, a duly notarized Irrevocable Promise to Transfer executed by TMR S.A in favor of AEP has been lodged with the Ecuador Mines Department. The Colorado V mining concession (Code No. 3363.1) located in Bellamaria, Santa Rosa, El Oro, Ecuador was granted in compliance with the Mining Act ("MA") in on July 17, 2001. It is adjacent to El Guayabo concession to the north. The concession is held by Goldking Mining Company S.A. There are no overriding royalties on the project other than normal Ecuadorian government royalties. The El Guayabo 2 Guayabo (Code. 300964) mining concession is located Torata parish, Santa Rosa canton, El Oro province, Ecuador. The concession is held by T Mr. Segundo Ángel Marín Gómez and Mrs. Hermida Adelina Freire Jaramillo and was granted in compliance with the Mining Act ("MA") on 29April 29, 2010. There are no overriding royalties on the project other than normal Ecuadorian government royalties.

DirectorsMr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commentary
		- The property has no historical sites, wilderness, or national park issues.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 El Guayabo: Previous exploration on the project has been undertaken by Newmont and Odin from 1994 to 1997. This included surface pit and rock chip geochemistry, followed by the drilling of 33 drill holes for a total of 7605.52 meters) to evaluate the larger geochemical anomalies. The collection of all exploration data by Newmont and Odin was of a high standard and had appropriate sampling techniques and intervals, adequate QA/QC and custody procedures, and appropriate duplicates and blanks used for determining assay precision and accuracy. The geological interpretation of this data, including core logging and follow up geology was designed and directed by in-country inexperienced geologists. It appears to have been focused almost exclusively for gold targeting surface gold anomalies or the depth extensions of higher-grade gold zones being exploited by the artisanal miners. The geologic logs for all drill holes did not record details that would have been typical, industry standards for porphyry copper exploration at that time. Several holes which ended in economic mineralisation have never been followed up. In short, important details which would have allowed the type of target to be better explored were missed which in turn presents an opportunity to the current owner. Colorado V: All exploration known has been completed by GK. Drilling has been done from 2016 to 2019. 56 drill holes, totaling 21,471.83m have been completed by GK. El Guaybo 2: Exploration work undertaken by the previous owner was limited to field mapping and sampling including assaying of a small number of samples for gold, silver, copper, lead and zinc. The report is only available in Spanish and assays were conducted in a local laboratory in Ecuador with the majority of this work unde
Geology	Deposit type, geological setting and style of mineralisation.	 It is believed that the El Guayabo, El Guayabo 2, and Colorado V concessions contain a "Low Sulfide" porphyry gold copper system and intrusive-related gold. The host rocks for the intrusive complex is metamorphic basement and Oligocene – Mid-Miocene volcanic rocks. This suggests the intrusions are of a similar age to the host volcanic sequence, which also suggests an evolving basement magmatic system. Intrusions are described in the core logs as quartz diorite and dacite. Mineralisation has been recognized in: Steeply plunging breccia bodies and in the metamorphic host rock adjacent to the breccia (up to 200 m in diameter) Quartz veins and veinlets Disseminated pyrite and pyrrhotite in the intrusions and in the metamorphic host rock near the intrusions.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill 	El Guayabo drill hole information is provided below.

Issued Capital 974.4m shares 49.0m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

JORC Code explanation Commentary Criteria EAST ELEVATION **AZIMUTH** DRILLED DRILLHOLE NORTH DIP FINAL holes: CODE (°) **DEPTHP** BY o easting and northing of the drill hole (X) (N) (m.a.s.l) (°) collar DDHGY 01 628928.09 9605517.20 839 01 360 -90.0 249 20 Odin o elevation or RL (Reduced Level -DDHGY 02 629171.15 9606025.55 983.16 360.0 -90.0 272.90 Odin elevation above sea level in metres) DDHGY 03 629041.84 9606312.81 1063.37 305.0 -60.0 295.94 Odin of the drill hole collar DDHGY 04 629171.68 9606025.18 983.2 125.0 -60.0 172.21 Odin o dip and azimuth of the hole DDHGY 05 628509.21 9606405.29 989.87 145.0 -60.0 258.27 Odin down hole length and interception DDHGY 06 629170.56 9606025.97 983.11 305.0 -60.0 101.94 Odin DDHGY 07 629170.81 9606025.80 983.16 305.0 -75.0 127.00 Odin depth hole length. DDHGY 08 628508.95 9606405.74 989.86 145.0 -75.0 312.32 Odin *If the exclusion of this information is* DDHGY 09 629171.22 9606025.88 983.22 45.0 -75.0 166.25 Odin DDHGY 10 629170.77 9606025.24 983.12 225.0 -75.0 194.47 Odin iustified on the basis that the information is not Material and this exclusion does DDHGY 11 628507.97 9606405.33 989.83 160.0 -60.0 241.57 Odin not detract from the understanding of the DDHGY 12 629087.18 9606035.53 996.98 125.0 -60.0 255.7 Odin DDHGY 13 629242.46 9605975.42 997.292 320.0 -65.0 340.86 Odin report, the Competent Person should 320.0 -75.0 309.14 clearly explain why this is the case. DDHGY 14 629242.27 9605975.64 997.285 Odin DDHGY 15 629194.67 9605912.35 977.001 320.0 -60.0 251.07 Odin 320.0 -60.0 195.73 DDHGY 16 629285.92 9606044.44 1036.920 Odin 629122.31 9606058.64 1021.053 125.0 -82.0 280.04 DDHGY 17 Odin DDHGY 18 628993.10 9606035.45 977.215 140.0 -60.0 160.35 Odin DDHGY 19 629087.23 9606034.98 997.332 45.0 -53.0 175.41 Odin

Criteria JORC Code explanation Commentary

DRILLHOLE	EAST	NORTH	ELEVATION	AZIMUTH	DIP	FINAL	DRILLED
CODE	(X)	(N)	(m.a.s.l)	(°)	(°)	DEPTHP	BY
JDH01	627185.78	9606463.27	933.47	280.0	-60.0	236.89	Newmont
JDH02	627260.37	9606353.12	921.56	280.0	-45.0	257.62	Newmont
JDH03	627191.61	9606200.35	952.82	280.0	-45.0	260.97	Newmont
JDH04	627429.81	9606324.00	933.80	280.0	-45.0	219.00	Newmont
JDH05	627755.97	9606248.70	1066.24	280.0	-45.0	210.37	Newmont
JDH06	628356.37	9606416.13	911.58	150.0	-45.0	302.74	Newmont
JDH07	628356.37	9606416.13	911.58	150.0	-75.0	105.79	Newmont
JDH08	628356.37	9606416.13	911.58	150.0	-60.0	352.74	Newmont
JDH09	628507.01	9606408.43	990.18	150.0	-45.0	256.70	Newmont
JDH10	628897.96	9606813.62	985.60	270.0	-45.0	221.64	Newmont
JDH11	628878.64	9606674.39	1081.96	270.0	-45.0	217.99	Newmont
JDH12	629684.61	9606765.31	993.45	150.0	-60.0	124.08	Newmont
JDH13	629122.61	9606058.49	1020.98	125.0	-60.0	239.33	Newmont
JDH14	628897.15	9605562.77	852.59	90.0	-45.0	239.32	Newmont

El Guayabo CEL drill hole information:

hole ID	East (m)	North (m)	Elevation	Azimuth (°)	Dip (°)	final depth	Driller
GYDD-21-001	628893.56	9606473.61		330	-60	800.5	CEL
GYDD-21-002	629648.12	9606889.41		330	-60	tba	CEL

Colorado V drill hole information:

hole ID	East (m)	North (m)	Elevatio	Azimuth	Dip	final	Driller
			n	(°)	(°)	depth	
ZK0-1	626378.705	9608992.99	204.452	221	-60	413.60	Shandong Zhaojin
ZK0-2	626378.705	9608992.99	204.452	221	-82	581.60	Shandong Zhaojin
ZK0-3	626475.236	9609095.444	197.421	221	-75	463.00	Shandong Zhaojin
ZK0-4	626476.119	9609098.075	197.225	221	-90	458.00	Shandong Zhaojin
ZK0-5	626475.372	9609100.909	197.17	300	-70	624.00	Shandong Zhaojin
ZK1-1	626310.629	9608865.923	226.385	61	-70	514.60	Shandong Zhaojin
ZK1-2	626313.901	9608867.727	226.494	150	-70	403.10	Shandong Zhaojin
ZK1-3	626382.401	9608894.404	229.272	61	-70	425.00	Shandong Zhaojin
ZK1-4	626502.206	9608982.539	227.333	61	-70	379.50	Shandong Zhaojin

West Perth WA 6005

Criteria	JORC Code explanation	Comm	nentary						
		ZK1-5	626497.992	9608979.449	227.241	241	-70	419.50	Shandong Zhaojin
		ZK1-6	626500.813	9608979.367	227.315	180	-70	607.50	Shandong Zhaojin
		ZK1-7	626498.548	9608979.541	227.28	241	-82	453.18	Shandong Zhaojin
		ZK1-8	626501.094	9608980.929	227.208	61	-85	556.00	Shandong Zhaojin
		ZK1-9	626416.4	9609040.6	202.416	203	-23	220.00	Lee Mining
		ZK2-1	626329.859	9609005.863	213.226	221	-90	395.50	Shandong Zhaojin
		ZK3-1	628295.833	9608947.769	309.987	279	-38	372.48	
		ZK3-1-A	626416.4	9609040.6	202.416	179	-29	295.52	Lee Mining
		ZK3-2	628295.833	9608947.769	309.987	205	-30	364.80	
		ZK3-4	628295.833	9608947.769	309.987	170	-30	322.96	
		ZK4-1	626281.066	9609038.75	224.176	221	-90	434.00	Shandong Zhaojin
		ZK4-2	626281.066	9609038.75	224.176	221	-70	390.50	Shandong Zhaojin
		ZK4-3	626386.498	9609186.951	225.517	221	-70	650.66	Shandong Zhaojin
		ZK4-4	626287.7817	9609031.298	215	215	-05	285.00	
		ZK5-1	626377.846	9608790.388	273.43	221	-78	321.90	Shandong Zhaojin
		ZK5-2	626377.539	9608793.769	273.542	41	-78	319.00	Shandong Zhaojin
		ZK5-3	626383.556	9608800.999	273.622	330	-70	446.50	Shandong Zhaojin
		ZK5-4	626383.556	9608800.999	273.622	330	-78	508.00	Shandong Zhaojin
		ZK5-5	626432.795	9608847.735	242.572	61	-70	532.00	Shandong Zhaojin
		ZK6-1	626230.28	9609020.202	260.652	221	-70	552.60	Shandong Zhaojin
		ZK6-2	626165.623	9608991.594	271.928	221	-70	531.00	Shandong Zhaojin
		ZK10-1	626700.8538	9609675.002	126.617	221	-53	454.00	Lee Mining
		ZK10-2	626744.7	9609711	110.817	310	-30	318.82	
		ZK10-3	626744.7	9609711	110.817	310	-60	331.52	
		ZK11-1	626446.263	9608705.238	290.028	221	-78	237.50	Shandong Zhaojin
		ZK12-1	626088.326	9609034.197	314.552	221	-70	531.50	Shandong Zhaojin
		ZK12-2	626019.538	9608961.409	294.649	221	-70	510.60	Shandong Zhaojin
		ZK13-1	627763.877	9609906.484	197.899	180	-70	394.00	Shandong Zhaojin
		ZK13-2	627757.925	9609713.788	234.34	0	-70	194.00	Shandong Zhaojin
		ZK13-3	TBA	TBA	TBA	TBA	TBA	197.06	•
		ZK13-4	TBA	TBA	TBA	TBA	TBA	176.57	
		ZK13-5	TBA	TBA	TBA	TBA	TBA	184.70	
		ZK16-1	626432.95	9609539.705	207.288	153	-45	330.00	
		ZK16-2	626432.95	9609539.705	207.288	183	-45	394.00	
		ZK18-1	627123.327	9609846.268	142.465	180	-70	410.50	Shandong Zhaojin
		ZK19-1	626753.271	9608802.634	386.627	221	-70	548.60	Shandong Zhaojin
		ZK100-1	626170.882	9608923.778	251.177	131	-70	415.00	Shandong Zhaojin
		ZK103-1	628203.1453	9607944.85	535.324	215	-53	524.21	Lee Mining

Issued Capital 974.4m shares 49.0m options 120m perf shares 16m perf rights **Australian Registered Office** Level 1 1205 Hay Street

West Perth WA 6005

DirectorsMr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Comm	entary						
		ZK105-1	628172.5923	9607826.055	541.244	183	-54	404.57	Lee Mining
		ZK205-1	626257.123	9608795.904	243.297	160	-70	347.00	Shandong Zhaojin
		SAZK0-1A	627477.062	9609865.618	217.992	180	-70	569.10	Shandong Zhaojin
		SAZK0-2A	627468.807	9609805.054	213.63	180	-70	407.50	Shandong Zhaojin
		SAZK2-1	627330.0126	9609556.466	201.145	76	-05	430.89	Lee Mining
		SAZK2-2	627330.0126	9609556.466	201.145	62	-05	354.47	Lee Mining
		CK2-1	626328.573	9609000.856	216.798	221	-45	121.64	Shandong Zhaojin
		CK2-2	626328.573	9609000.856	216.798	251	-45	171.85	Shandong Zhaojin
		CK2-3	626328.573	9609000.856	216.798	191	-45	116.40	Shandong Zhaojin
		CK2-4	626328.573	9609000.856	216.798	221	-70	146.12	Shandong Zhaojin
		CK2-5	626254.4315	9608931.693	190.593	342	-05	357.56	Lee Mining
		CK2-6	626298.1066	9608961.819	203.231	332	-18	392.56	Lee Mining
		CK3-1	626359.641	9608859.373	205.96	20	-15	185.09	Shandong Zhaojin
		CK3-2	626359.641	9608859.373	205.96	163	00	21.75	Shandong Zhaojin
		CK3-3	626359.641	9608859.373	205.96	50	-15	138.02	Shandong Zhaojin
		CK5-1	626460.1233	9608906.592	202.124	194	-74	273.56	Lee Mining
		CK5-2	626457.0999	96089.8.4999	202.126	251	-69	273.11	Lee Mining
		CK13-1	626610.0642	9608838.445	202.556	41	-05	227.10	Lee Mining
		CK13-2	626610.0642	9608838.445	202.556	41	-40	231.16	Lee Mining
		CK13-3	626605.2307	9608833.471	202.556	221	-59	197.06	Lee Mining
		CK13-4	626604.0848	9608836.544	203.013	209	-45	176.57	
		CK13-5	626607.5245	9608832.296	203.013	136	-45	184.70	
		CK21-1	626693.536	9608691.062	204.927	41	00	143.47	
ata	 In reporting Exploration Results, weighting 	No grad	de cutting has bee	en used to derive t	he weighted	l average ខ្	grades repo	rted.	
gregation	averaging techniques, maximum and/or	• Mir	nimum cut of grad	le of 0.2 g/t Au Eq	uivalent (Au	Eq) was us	ed for dete	rmining int	ercepts.
ethods	minimum grade truncations (eg cutting of	- Agg	regate intercepts	have been report	ted with high	ner grade i	nclusions to	demonstra	ate the impact of aggregation. A
	high grades) and cut-off grades are usually	, bot	tom cut of 0.5 g/t	: Au Equivalent ha	s been used	to determ	ine the high	ner-grade ir	nclusions. Given the generally
	Material and should be stated.		_				_	_	results and longer lengths of lov
	- Where aggregate intercepts incorporate						-		2.6 g.t Au in hole GGY-02:
	short lengths of high grade results and	-		ie intercept comp					3 1 1111
	longer lengths of low grade results, the	_		ne intercept includ			-		
	procedure used for such aggregation show		•	l includes gold gra	-		•		
	procedure used for such aggregation should	u –	SVCI ONC UNIT	i includes gold gra	acs in caces	3 01 2 6/ 17	ч.		

Issued Capital 974.4m shares 49.0m options 120m perf shares 16m perf rights

stated.

Australian Registered Office 1205 Hay Street West Perth WA 6005

be stated and some typical examples of such

aggregations should be shown in detail.

The assumptions used for any reporting of

metal equivalent values should be clearly

Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

Contact T: +61 8 6380 9235 E: admin@challengerex.com

Au Eq assumes a gold price of USD 1,275/oz, a silver price of USD 16.43 /oz and a copper price of USD 6,766 /t.

been applied in calculating the Au Eq, hence the formula for calculating the Au Eq is Au (g/t) + (Ag (g/t) x 16.43/1275) +

Metallurgical recovery factors for gold, silver and copper are assumed to be equal. No metallurgical factors have

(1.650373 x Cu (%)).

Criteria	JORC Code explanation	Commentary	
			onfirms that it is the company's opinion that all the elements included in the metal equivalents calculation ble potential to be recovered and sold.

Drillhole			sed Inte	Total		Gold		Ag			Cu		Au Equiv	Azimuth	Incl	TD
(#)		From	То	(m)		(g/t)		(g/t)			(%)		(g/t)	(deg)	(deg)	(m)
JDH-001	from	183	190.6	7.6	m @	0.3	g/tAu +	•	not a	ssa	yed		n/a	280	-60	236.9
JDH-002	from	7.6	152.9	145.3	m @	0.4	g/tAu +	-	not a	ssa	yed		n/a	280	-45	257.5
	and	199	243	44.0	m @	0.4	g/tAu +	-	not a	ssa	yed		n/a			
JDH-003	from	35.95	71.6	35.7	m @	0.5	g/tAu +		not a	ssa	yed		n/a	280	-45	261
	and	120.4	254.6	134.2	m @	0.4	g/tAu +	-	not a	ssa	yed		n/a			
	inc	146.81	224.08	77.3	m @	0.5	g/tAu +	-	not a	ssa	yed		n/a			
JDH-004	from	3.96	21.95	18.0	m @	0.4	g/tAu +	-	not a	ssa	yed		n/a	280	-45	219
	and	79.74	120.42	40.7	m @	0.4	g/tAu +	-	not a	ssa	yed		n/a			
	and	150.9	203.7	52.8	m @	0.7	g/tAu +		not a	ssa	yed		n/a			
JDH-005	from	5.2	81.4	76.2	m @	0.4	g/tAu +	-	not a	ssa	yed		n/a	280	-45	210.4
	and	169.7	208.5	38.8	m @	0.2	g/tAu +	-	not a	ssa	yed		n/a			
JDH-006	from	17.99	89.6	71.6	m @	0.2	g/tAu +	2.0	g/t Ag	+	0.10	% Cu	0.42	150	-45	302.7
	and	164.8	281	116.2	m @		g/tAu +					% Cu	1.37			
	inc	227.8	281.09	53.3	m @	1.2	g/t Au +	13.2	g/t Ag	+	0.62	% Cu	2.39			
JDH-007	from	39.7	84.45	44.8	m @	0.3	g/tAu +	1.4	g/t Ag	+	0.04	% Cu	0.38	150	-75	105.8
JDH-008	from	104.7	136.7	32.0	m @	0.1	g/tAu +	3.6	g/t Ag	+	0.13	% Cu	0.41	150	-60	352.7
	and	249.08	316.15	67.1	m @	0.2	g/tAu +	5.7	g/t Ag	+	0.21	% Cu	0.62			
	and	291.76	316.15	24.4	m @	0.5	g/tAu +	9.2	g/t Ag	+	0.34	% Cu	1.13			
JDH-009	from	10.3	122.03	111.7	m @	0.7	g/t Au +	14.6	g/t Ag	+	0.58	% Cu	1.85	150	-45	256.7
	inc	34.6	91.54	56.9	m @	0.2	g/tAu +	19.1	g/t Ag	+	0.82	% Cu	1.80			
	and	201.4	205.4	4.0	m @	11.4	g/t Au +	9.7	g/t Ag	+	0.01	% Cu	11.54			
	and	255.1	eoh	1.5	m @	0.7	g/tAu +	1.5	g/t Ag	+	0.02	% Cu	0.75			
JDH-10	from	1.5	50.9	49.4	m @	0.5	g/tAu +	2.5	g/t Ag	+	0.09	% Cu	0.68	270	-45	221.6
	and	90.54	119	28.5	m @	0.2	g/tAu +	3.0	g/t Ag	+	0.10	% Cu	0.40			
	and	140	203	81.6	m @	0.4	g/tAu +	1.3	g/t Ag	+	0.07	% Cu	0.53			
JDH-011	from	100.7	218	117.3	m @	0.4	g/tAu +	4.6	g/t Ag	+	0.10	% Cu	0.62	270	-45	218.0
JDH-012	from	12.2	53.96	41.8	m @	0.6	g/tAu +	6.5	g/t Ag	+	0.02	% Cu	0.67	150	-60	124.1
JDH-013	from	53.35	69.6	16.3	m @	0.5	q/t Au +	1.2	g/t Ag	+	0.01	% Cu	0.48	150	-60	239.3
	and	89.9	154.9		m @		g/tAu +		g/t Ag			% Cu	1.53			
	inc	114.32	142.76	28.4	m @	2.8	g/tAu +		g/t Ag		0.10	% Cu	3.03			
JDH-014	from	26.96	75.69	48.7	m @	0.4	g/t Au +	5.2	g/t Ag	+	0.10	% Cu	0.63	90	-60	239.4
	and	85.84	116.32		m @		g/tAu +		g/t Ag			% Cu				
	and	128.52	175.3	46.8	m @	0.5	g/tAu +	3.3	g/t Ag	+	0.08	% Cu	0.63			
	and	179.35	217.98	38.6	m @	0.1	g/tAu +	2.5	g/t Ag	+	0.08	% Cu	0.26			

Issued Capital 974.4m shares 49.0m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

GGY-002 fri a GGY-003 fri GGY-004 fri GGY-005 fri a GGY-006 fri GGY-007 fri	from and inc from inc and plus from inc and from inc inc and from inc and from from from inc and from from inc from inc from inc	10 139 141 9.7 27 114 244 40 1 12 14 180 72 0.9	100 69 249.2 174 166 102 166 272.9 260.75 42 162 54 194	110.2 33.0 156.3 75.0 52.0 28.9 220.8 41.0 150.0 40.0	m @ m @ m @ m @ m @ m @ m @ m @	0.4 0.6 2.6 4.6 1.3 0.3 0.2 0.5	g/t Au	+ 1.1 + 2.0 + 9.7 + 19.1 + 3.3 + 2.4 + 2.9 + 2.3	g/t Ag g/t Ag g/t Ag g/t Ag	+ + + + +	0.06 0.08 0.16 0.22 0.18 0.04	% Cu % Cu % Cu % Cu % Cu % Cu	0.51 0.76 2.99 5.21 1.64 0.37	360 360	-90 -90	(m) 249.2 272.9
GGY-002 fri a GGY-003 fri GGY-004 fri GGY-005 fri a GGY-006 fri GGY-007 fri	and inc from inc and plus from inc and inc and inc and inc and inc and inc and from from inc and from inc inc inc	139 141 9.7 27 114 244 40 1 12 14 180 72	249.2 174 166 102 166 272.9 260.75 42 162 54 194	110.2 33.0 156.3 75.0 52.0 28.9 220.8 41.0 150.0 40.0	m @ m @ m @ m @ m @ m @ m @ m @	0.4 0.6 2.6 4.6 1.3 0.3 0.2 0.5	g/t Au	+ 1.1 + 2.0 + 9.7 + 19.1 + 3.3 + 2.4 + 2.9 + 2.3	g/t Ag g/t Ag g/t Ag g/t Ag g/t Ag g/t Ag g/t Ag	+ + + + +	0.06 0.08 0.16 0.22 0.18 0.04	% Cu % Cu % Cu % Cu % Cu	0.51 0.76 2.99 5.21 1.64 0.37	360	-90	
GGY-002 fi a a a GGY-003 fi GGY-004 fi GGY-005 fi a GGY-006 fi GGY-007 fi	from inc and plus from from inc and from inc and from from inc and from from from from from from from from	141 9.7 27 114 244 40 1 12 14 180 72 0.9	174 166 102 166 272.9 260.75 42 162 54 194	33.0 156.3 75.0 52.0 28.9 220.8 41.0 150.0 40.0 14.0	m @ m @ m @ m @ m @ m @ m @ m @	0.6 2.6 4.6 1.3 0.3 0.2 0.5	g/t Au	+ 2.0 + 9.7 + 19.1 + 3.3 + 2.4 + 2.9 + 2.3	g/t Ag g/t Ag g/t Ag g/t Ag g/t Ag g/t Ag	+ + + + +	0.08 0.16 0.22 0.18 0.04	% Cu % Cu % Cu % Cu	0.76 2.99 5.21 1.64 0.37			272.
GGY-002 fri	from inc and from inc and from from inc and from inc and from inc	9.7 27 114 244 40 1 12 14 180 72	166 102 166 272.9 260.75 42 162 54 194	156.3 75.0 52.0 28.9 220.8 41.0 150.0 40.0 14.0	m @ m @ m @ m @ m @ m @ m @	2.6 4.6 1.3 0.3 0.2 0.5	g/t Au g/t Au g/t Au g/t Au g/t Au g/t Au	+ 9.7 + 19.1 + 3.3 + 2.4 + 2.9 + 2.3	g/t Ag g/t Ag g/t Ag g/t Ag g/t Ag	+ + + + +	0.16 0.22 0.18 0.04	% Cu % Cu % Cu	2.99 5.21 1.64 0.37			272.
GGY-003 fr GGY-004 fr GGY-005 fr GGY-006 fr GGY-007 fr	inc and plus from from inc and from from inc and from inc	27 114 244 40 1 12 14 180 72	102 166 272.9 260.75 42 162 54 194 101.9	75.0 52.0 28.9 220.8 41.0 150.0 40.0 14.0	m @ m @ m @ m @ m @ m @	4.6 1.3 0.3 0.2 0.5	g/t Au g/t Au g/t Au g/t Au g/t Au	+ 19.1 + 3.3 + 2.4 + 2.9 + 2.3	g/t Ag g/t Ag g/t Ag g/t Ag	+ + + +	0.22 0.18 0.04	% Cu % Cu	5.21 1.64 0.37			272.
GGY-003 fr GGY-004 fr GGY-005 fr GGY-006 fr GGY-007 fr	and plus from from inc and from from inc	114 244 40 1 12 14 180 72 0.9	166 272.9 260.75 42 162 54 194 101.9	52.0 28.9 220.8 41.0 150.0 40.0 14.0	m @ m @ m @ m @ m @	1.3 0.3 0.2 0.5	g/t Au g/t Au g/t Au g/t Au g/t Au	+ 3.3 + 2.4 + 2.9 + 2.3	g/t Ag g/t Ag g/t Ag	++++	0.18 0.04	% Cu	1.64 0.37	205	60	
GGY-003 fi GGY-004 fi GGY-005 fi GGY-006 fi GGY-007 fi	plus from from inc and from from	244 40 1 12 14 180 72 0.9	272.9 260.75 42 162 54 194 101.9	28.9 220.8 41.0 150.0 40.0 14.0	m @ m @ m @ m @	0.3 0.2 0.5 0.4	g/t Au g/t Au g/t Au g/t Au	+ 2.4 + 2.9 + 2.3	g/t Ag	+	0.04		0.37	205	60	
GGY-003 fr GGY-004 fr GGY-005 fr 6 GGY-006 fr GGY-007 fr	from from inc and from from	40 1 12 14 180 72 0.9	260.75 42 162 54 194 101.9	220.8 41.0 150.0 40.0 14.0	m @ m @ m @ m @	0.2	g/t Au g/t Au g/t Au	+ 2.9	g/t Ag	+		% Cu		205		
GGY-004 fi	from inc and from from inc	1 12 14 180 72 0.9	42 162 54 194 101.9	41.0 150.0 40.0 14.0	m @ m @ m @	0.5	g/t Au	+ 2.3	-				0.22	205	60	
GGY-005 fi	from inc and from from inc	12 14 180 72 0.9	162 54 194 101.9	150.0 40.0 14.0	m @ m @	0.4	g/t Au	_	a/t Aa	_	0.06	% Cu	0.36	305	-60	295.
GGY-006 fi	inc and from from inc	14 180 72 0.9	54 194 101.9	40.0 14.0	m @				9, 19	+	0.03	% Cu	0.56	125	-60	172.
GGY-006 fr GGY-007 fr	from from inc	180 72 0.9	194 101.9	14.0	_	0.6		+ 11.0	g/t Ag	+	0.30	% Cu	0.99	145	-60	258.
GGY-006 fr	from from inc	72 0.9	101.9		m @		g/t Au	+ 25.5	g/t Ag	+	0.60	% Cu	1.95			
GGY-007 fr	from inc	0.9		49.0		0.2	g/t Au	+ 6.1	g/t Ag	+	0.22	% Cu	0.64			
	inc				m @	0.4	g/t Au	+ 2.3	g/t Ag	+	0.03	% Cu	0.45	305	-60	101.
	inc		41	40.1	m @	1.1	g/t Au	+ 2.6	g/t Ag	+	0.04	% Cu	1.20	305	-75	127
	from		127		m @		g/t Au		g/t Ag			% Cu	0.98	505	,,,	
GGY-008 fr		16	271	255.0	m @	0.1	g/t Au	+ 6.5	g/t Ag	+	0.24	% Cu	0.62	145	-75	312.
	inc	235	271		m @		g/t Au		J. J			% Cu	1.32	113	,,,	312.
GGY-009 fi	from	1.65	45	43.4	m @	1.7	g/t Au	+ 3.0	g/t Ag	+	0.06	% Cu	1.80	45	-75	166.
	from	0	69		m @		g/t Au		g/t Ag			% Cu	1.67	225	-75	194.
	inc	21	50		m @		g/t Au		g/t Ag	_		% Cu	2.98	223	-13	154.
	and	75	95		m @		g/t Au		g/t Ag	$\overline{}$		% Cu	0.33			
	from	14	229	215.0	m @		g/t Au		g/t Ag		0.36	% Cu	0.89	160	-60	241.
	inc	14	97		m @		g/t Au	_	J. J	-		% Cu	1.24	100	00	241.
	inc	202	229		m @		g/t Au		J. J			% Cu	1.90			
GGY-012 fr	from	57	192	135.0	m @		g/t Au		g/t Ag	=	0.06	% Cu	0.39	125	-60	256
	and	156	192		m @		g/t Au		g/t Ag			% Cu	0.44	123		
GGY-013 fr	from	229.7	280	50.3	m @	0.2	g/t Au	+ 2.2	g/t Ag	+	0.05	% Cu	0.31	320	-65	340.
GGY-014				nsi	-		3,		9,9				0.00	320	-75	309.
	·	440	422.4		6		- (4 8	. 0.5	- /4 A		0.03	0/ 6				
	from and	110 157	132.4 225.5		m @		g/t Au g/t Au		g/t Ag g/t Ag	_		% Cu % Cu	0.41 0.45	320	-60	251.
							-	_	-					220		105
	from	8 42	30 57		m @		g/t Au		g/t Ag	_		% Cu % Cu	0.26	320	-60	195.
	and and	105	118		m @		g/t Au		g/t Ag g/t Ag	_		% Cu	0.34			
	and	185	188		m @		g/t Au		g/t Ag			% Cu	1.04			
	from	0	24		m @		g/t Au		g/t Ag	=	0.01	% Cu	0.49	125	-82	280.
	and	69	184	115.0	_		g/t Au		g/t Ag			% Cu	0.49	123	-02	200.
	inc	125	147	_	m @		g/t Au	_	g/t Ag	_		% Cu	0.29			
	and	206	241		m @		g/t Au		g/t Ag	_		% Cu	0.41			
	and	254	277		m @		g/t Au		g/t Ag			% Cu	0.63			
GGY-018 fr	from	81	136	55.0	m @	0.2	g/t Au	+ 3.5	g/t Ag	+	0.06	% Cu	0.34	140	-60	160.
	from	89	155		m @		g/t Au	_	g/t Ag					45	-53	175.4

Issued Capital 974.4m shares 49.0m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commenta	ry							
		Comparison	showing historic and re-a	issayed in	tercepts f	or El Guayabo	o drill holes	are shown	below:	
		Drill hole				Total	Au	Ag	Cu	Au Eq
		(#)		From	То	(m)	(g/t)	(g/t)	(%)	(g/t)
		GGY-001	historical intercept	139	249.2	110.2m	0.4	1.1	0.06	0.5
			(re-assayed section)	141	177	36.0m	0.54	2.30	0.08	0.7
			(original assays)	′	′	36.0m	0.56	1.51	0.08	0.7
			(re-assayed section)	205	236	31.0m	0.19	0.89	0.03	0.3
			(original assays)	•	′	31.0m	0.21	0.13	0.03	0.3
		GGY-002	historical intercept	9.7	166	156.3m	2.6	9.7	0.16	3.0
			(re-assayed section)	40	102	62.0m	5.22	21.33	0.25	5.9
			(original assays)	•	′	62.0m	4.83	19.96	0.23	5.5
			historical intercept	114	166	52.0m	1.3	3.3	0.18	1.6
			(re-assayed section)	114	171	57.0m	1.20	3.44	0.18	1.5
			(original assays)	1	′	57.0m	1.24	3.53	0.17	1.6
		GGY-005	historical intercept	12	162	150.0m	0.4	11.0	0.30	1.0
			(re-assayed section)	10	60	50.0m	0.45	19.23	0.33	1.2
			(original assays)	1	′	50.0m	0.51	21.74	0.44	1.5
			(re-assayed section)	64	98	34.0m	0.10	5.25	0.16	0.4
			(original assays)	1	′	34.0m	0.84	6.22	0.16	1.2
			(re-assayed section)	132	162	30.0m	0.10	6.35	0.33	0.7
			(original assays)	1	′	30.0m	0.07	6.18	0.31	0.7
		GGY-011	historical intercept	14	229	215.0m	0.2	9.6	0.36	0.9
			(re-assayed section)	14	126	112.0m	0.17	10.89	0.30	0.8
			(original assays)	1	,	112.0m	0.18	11.73	0.36	0.9
			(re-assayed section)	166	206	40.0m	0.09	5.08	0.22	0.5
			(original assays)	,	,	40.0m	0.09	4.90	0.22	0.5
			(re-assayed section)	218	231	13.0m	0.22	8.52	0.41	1.0
			(original assays)	1	,	13.0m	0.34	19.48	0.96	2.2
		GGY-017	historical intercept	69	184	115.0m	0.5	2.1	0.03	0.5
			(re-assayed section)	94	129	35.0m	0.45	2.76	0.04	0.6
			(original assays)	,	,	35.0m	0.30	4.01	0.03	0.4
			(re-assayed section)	206	258	52.0m	0.37	2.00	0.06	0.5
			(original assays)	,	,	52.0m	0.26	1.42	0.06	0.4
		JDH-006	historical intercept	17.99	89.6	71.6m	0.2	2.0	0.10	0.4
		. , , , ,	(re-assayed section)	10.3	81.3	71.0m	0.18	1.38	0.03	0.2
			(original assays)	,	,	71.0m	0.20	1.59	0.07	0.3

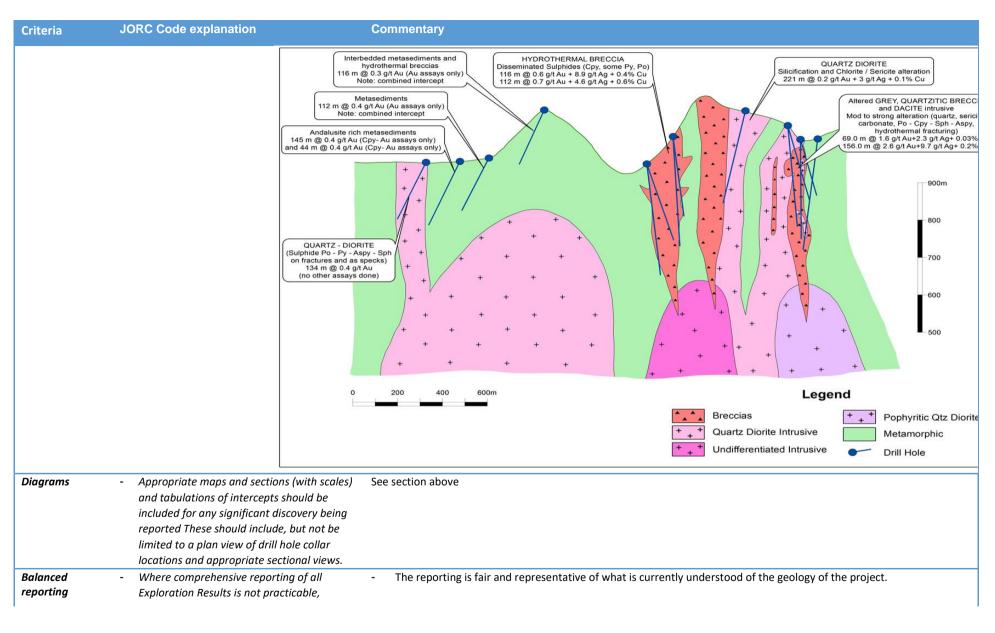
Issued Capital 974.4m shares 49.0m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commenta	ry							
			historical intercept	164.8	281	116.2m	0.6	8.9	0.40	1.4
			(re-assayed section)	150.6	281.1	130.5m	0.26	7.21	0.26	0.8
			(original assays)	•	1	130.5m	0.42	8.02	0.36	1.1
		JDH-009	historical intercept	10.3	122	111.7m	0.7	14.6	0.58	1.8
			(re-assayed section)	6.7	107.8	101.1m	0.21	13.80	0.36	1.0
			(original assays)	•	•	101.1m	0.22	15.08	0.59	1.4
		JDH-10	historical intercept	1.5	50.9	49.4m	0.5	2.5	0.09	0.7
			(re-assayed section)	15.2	50.9	35.7m	0.44	2.88	0.10	0.6
			(original assays)	•	1	35.7m	0.41	2.96	0.10	0.6
		-	historical intercept	140	203	81.6m	0.4	1.3	0.07	0.5
			(re-assayed section)	150.5	203.4	52.9m	0.36	1.34	0.07	0.5
			(original assays)	•	•	52.9m	0.39	1.24	0.06	0.5
		JDH-012	historical intercept	12.2	53.96	41.8m	0.6	6.5	0.02	0.7
			(re-assayed section)	18.3	54	35.7m	0.68	7.62	0.02	0.8
			(original assays)	•	•	35.7m	0.69	7.36	0.02	0.8
		JDH-013	historical intercept	89.9	154.9	65.0m	1.4	2.8	0.06	1.5
			(re-assayed section)	112.3	155	42.7m	2.11	2.84	0.05	2.2
			(original assays)	•	1	42.7m	2.00	3.70	0.08	2.2
		JDH-014	historical intercept	26.96	75.69	48.7m	0.4	5.2	0.10	0.6
			(re-assayed section)	27	61.5	34.5m	0.64	5.99	0.13	0.9
			(original assays)	•	•	34.5m	0.52	6.25	0.13	0.8
			historical intercept	128.52	175.3	46.8m	0.46	3.3	0.08	0.6
			(re-assayed section)	140.7	167.2	26.5m	0.26	2.24	0.07	0.4
			(original assays)	•	•	26.5m	0.65	2.91	0.08	0.8
		Colorado V:								

A cut-off grade of 0.1 g/t Au was used to report the assays of re-samples core and channel samples from underground development with up to 10 metres of internal dilution below cut-off allowable for the reporting of significant intercepts, consistent with a large low-grade mineralized system. Intersections that use a different cut-off are indicated.

Colorado V drill hole results from re-sampling of available core:

Hole_id	From	To	Interval	Au	Ag	Cu	Mo	Note
	(m)	(m)	(m)	(g/t)	(g/t)	(ppm)	(ppm)	
ZK0-1	9.4	37.5	28.1	0.4	1.0			<u>. </u>
and	66.5	89.5	23.0	0.9	4.7			
and	105.7	129.7	24.0	0.3	1.0			
and	167.5	214.0	46.5	0.4	7.1			


Criteria	JORC Code explanation	Commentary	'							
		ZK1-3	46.0	103.7	57.7	0.5	1.9			
		inc	56.0	85.7	29.7	0.8	3.1			
		from	127.0	163.0	36.0	0.5	3.5			
		and	290.5	421.0	130.5	0.5	3.1			
		inc	302.5	380.5	78.0	0.7	3.5			
		ZK1-5	211.4	355.0	145.6	1.5	1.7			_
		inc	253.0	340.0	87.0	2.1	1.9			
		ZK0-2	13.3	108.2	94.9	0.3	1.7			
		inc	75.7	108.2	32.5	0.4	2.6			
		and	172.7	193.1	20.4	0.3	2.1			
		and	225.0	376.4	151.4	0.9	3.8			
		inc	227.0	361.0	134.0	1.0	4.1			
		inc	227.0	290.0	63.0	1.6	5.1			
		ZK3-4	26	38	12	0.3	1.5	513	5	
		and	50	114	64	0.2	1.5	549	5	
		inc	86	88	2	1.5	1.4	458	3	1 g/t Au cut off
		and	180	250	70	0.2	1.6	777	3	
		ZK3-1	49.5	112.5	63	0.1	1.7	654	5	
		inc	94.5	96	1.5	1.5	1.4	3126	7	1 g/t Au cut off
		and	94.5	174	79.5	0.1	2	662	4	
		inc	171	172.5	1.5	1.4	2.6	771	7	1 g/t Au cut off
		SAZK0-1	31.2	90.8	59.6	0.2	1.4	392	3	
		and	131.5	179.5	48	0.1	4.3	824	6	
		and	229.8	292.8	63	0.2	1	325	8	
		and	319	490.8	171.8	0.2	1.5	616	12	,
		inc	352	446.5	94.5	0.3	2.4	996	15	1 g/t Au cut off
		SAK2-1	66.5	275	208.5	0.3	1.5	626	5	
		inc	122	185	63	0.6	2.1	825	3	1 g/t Au cut off
		and	225.5	227	1.5	1.6	1.4	638	2	1 g/t Au cut off
		and	288.5	330.5	42	0.2	2	454	1	,
		inc	288.5	291.5	3	1.3	5.6	1136	1	1 g/t Au cut off
		SAZK0-2	0	80.7	80.7	0.4	1.9	478	3	
		inc	30.7	51.2	20.5	1	2.5	460	5	1 g/t Au cut off
		and	136	148	12	0.6	0.4	61	14	,
		inc	137.5	140.5	3	1.4	0.3	10	4	1 g/t Au cut off
		and	200.5	403.8	203.3	0.3	1.3	588	15	Hole ends in
										mineralisation

Issued Capital 974.4m shares 49.0m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commentary	, 							
		inc	293.5	399.3	105.8	0.5	1.3	635	16	
		inc	214	215.5	1.5	1.8	2.1	681	12	1 g/t Au cut off
		inc	344.5	399.3	54.8	0.7	1.5	767	12	
		inc	361.8	366.3	4.5	5.5	0.8	502	61	1 g/t Au cut off
		and	397.8	399.3	1.5	1.3	2.3	770	2	1 g/t Au cut off
		ZK1-13	46.2	73.2	27	0.1	0.8	306	1	
		and	140	141.5	1.5	1.9	0.7	236	1	1 g/t Au cut off
		and	161	196	35	0.1	1.4	391	2	
		ZK0-5	6.1	19.8	13.7	0.2	1.3	313	10	
			46.3	130.1	83.8	0.5	1.2	356	7	
		inc	67	118	51	0.7	1.4	409	5	0.5 g/t Au cut off
		inc	75.7	76.8	1.1	1.2	1.4	483	2	1 g/t Au cut off
		and	80.7	81.7	1	1.8	2.2	549	4	1 g/t Au cut off
		and	93.7	94.7	1	13.9	3.4	354	7	1 g/t Au cut off
		and	146.5	296.5	150	0.2	1	310	3	
		and	370	371.5	1.5	0.9	5.2	1812	3	
		and	414.3	415.8	1.5	1.2	0.3	127	1	
		and	560.5	562	1.5	2.3	0.6	189	2	
		and	596	598.2	2.2	1.7	2.1	391	4	
		and	607	608.5	1.5	2	0.8	190	2	
		ZK18-1	NSI							<u>.</u>
		ZK0-4	3.70	458.00	454.30*	0.20	1.3	0.04	5.9	
		inc	42.60	154.25	111.65	0.39	1.9	0.05	7.6	0.5 g/t AuEq cut off
		inc	69.70	97.20	27.50	0.66	1.7	0.05	8.6	1.0 g/t AuEq cut off
		ZK10-1	25.02	151.00	125.98	0.16	1.1	0.06	17.9	0.1 g/t AuEq cut off
		and	309.00	326.00	17.00	0.16	0.91	0.07	6.1	0.1 g/t AuEq cut off
		and	354.02	451.00	96.98*	0.17	1.2	0.06	15.8	÷ ,
		inc	435.02	451.00	15.98*	0.32	1.8	0.07	2.6	
		ZK16-2	19.00	267.31	248.31	0.33	2.7	0.07	2.6	0.1 g/t AuEq cut off
		inc	140.00	254.00	114.00	0.53	2.9	0.09	3.3	0.5 g/t AuEq cut off
		inc	224.00	254.00	30.00	0.85	3.6	0.12	3.4	1.0 g/t AuEq cut off
		* Mineralisatio	n to end of	hole						<u> </u>
				mple results						
		Channel_id	From (m)	Interval (m)	•	Au (g/t)	Ag (g/t)	Cu (%)	Mo (ppm)	Comment
		Main Adit	0.0	264.0		0.30	2.1	0.05	9.4	0.1 g/t AuEq cut off

Issued Capital 974.4m shares 49.0m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commentary								
		inc	0.0	150.0	0.60	0.46	2.4	0.07	9.8	0.5 g/t AuEq cut off
		inc	0.0	112.0	0.71	0.55	2.7	0.08	9.3	1 g/t AuEq cut off
		and	276.0	32.0	0.29	0.21	1.4	0.04	5.1	0.1 g/t AuEq cut off
		Main Adit (west drive)	20.0	39.1	0.30	0.28	2.3	0.03	4.5	0.1 g/t AuEq cut off
		and	74.0	56.0	0.69	0.64	1.8	0.01	2.8	0.5 g/t AuEq cut off
		inc	84.0	46.0	0.81	0.76	2.1	0.01	3.0	1.0 g/t AuEq cut off
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	mineralisation is not yet clear. T mineralisation is not known. The preliminary interpretation is inclined holes may not be repres	he owner ca s that the brasentative of	utions that eccia hoste the true wi	only and d minera dth of thi	l only the olisation oc	down hol curs in no	e lengths ear vertic ineralisat	are report al breccia p tion. The re	oipes. Thus, intersections in steeply

Issued Capital 974.4m shares 49.0m options 120m perf shares 16m perf rights **Australian Registered Office** Level 1 1205 Hay Street

West Perth WA 6005

DirectorsMr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commentary
	representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	El Guayabo: Quantec Geophysical services conducted a SPARTAN Broadband Magnetotelluric and TITAN IP/EMAP surveys completed February 3rd to April 1st, 2019 over the El Guayabo property by Quantec Geoscience Ltd. on behalf of AAR Resources. The survey covered 16 square kilometersa with data collected on 300m 3D spacing on a gride oriented at 10 degrees and 100 degrees. The grid was moved 10 degrees so the survey could be orineted perpendicu;lar to the main geological srtuctures. The survey involved a total of 205 Magnetotelluric (MT) sites and 2 test TITAN IP/EMAP profiles were surveyed The final survey results to which will be delivered will consist of: Inversion 2D products DC resistivity model; IP chargeability model using the DC resistivity model as a reference; MT(EMAP) resistivity model; MT(EMAP) resistivity model; IP chargeability model using the MT+DC resistivity model; Inversion 3D products MI (EMAP) and the MT+DC resistivity model; Inversion 3D products Toss-sections and Elevation Plan maps of the 3D MT models;
		Figures showing Survey Locations and Results are included in the boidy of this release DCIP INVERSION PROCEDURES DCIP is an electrical method that uses the injection of current and the measurement of voltage difference along with its rate of decay to determine subsurface resistivity and chargeability respectively. Depth of investigation is mainly controlled by the array geometry but may also be limited by the received signal (dependent on transmitted current) and ground resistivity. Chargeability is particularly susceptible to data with a low signal-to-noise ratio. The differences in penetration depth between DC resistivity and chargeability are a function of relative property contrasts and relative signal-to-noise levels between the two measurements. A detailed introduction to DCIP is given in Telford, et al. (1976). The primary tool for evaluating data is through the inversion of the data in two or three dimensions. An inversion model depends not only on the data collected, but also on the associated data errors in the reading and the "model norm". Inversion models are not unique and may contain "artefacts" from the inversion process. The inversion model may not accurately reflect all the information apparent in the actual data. Inversion models must be reviewed in context with the observed data, model fit, and with an understanding of the model norm used. The DC and IP inversions use the same mesh. The horizontal mesh is set as 2 cells between electrodes. The vertical mesh is designed with a cell thickness starting from 20 m for the first hundred metres to accommodate the topographic variation

JORC Code explanation Commentary Criteria along the profiles, and then increases logarithmically with depth. The inversions were generally run for a maximum of 50 iterations. The DC data is inverted using an unconstrained 2D inversion with a homogenous half-space of average input data as starting model. For IP inversions, the apparent chargeability \square is computed by carrying out two DC resistivity forward models with conductivity distributions $\sigma(xi,zi)$ and $(1-n)\sigma(xi,zi)$ (Oldenburg and Li. 1994), where (xi,zi) specifies the location in a 2D mesh. The conductivity distributions used in IP inversions can be the inverted DC model or a half space of uniform conductivity. Two IP inversions are then calculated from the same data set and parameters using different reference models. The first inversion of the IP data uses the previously calculated DC model as the reference model and is labelled the IP dcref model. The second IP inversion uses a homogeneous half-space resistivity model as the reference model and is labelled IP hsref model. This model is included to test the validity of chargeability anomalies, and to limit the possibility of inversion artefacts in the IP model due to the use of the DC model as a reference. The results of this second IP inversion are presented on the digital archived attached to this report. MAGNETOTELLURIC INVERSIONS The Magnetotelluric (MT) method is a natural source EM method that measures the variation of both the electric (E) and magnetic (H) field on the surface of the earth to determine the distribution at depth of the resistivity of the underlying rocks. A complete review of the method is presented in Vozoff (1972) and Orange (1989). The measured MT impedance Z, defined by the ratio between the E and H fields, is a tensor of complex numbers. This tensor is generally represented by an apparent resistivity (a parameter proportional to the modulus of Z) and a phase (argument of Z). The variation of those parameters with frequency relates the variations of the resistivity with depth, the high frequencies sampling the sub-surface and the low frequencies the deeper part of the earth. However, the apparent resistivity and the phase have an opposite behaviour. An increase of the phase indicates a more conductive zone than the host rocks and is associated with a decrease in apparent resistivity. The objective of the inversion of MT data is to compute a distribution of the resistivity of the surface that explains the variations of the MT parameters, i.e. the response of the model that fits the observed data. The solution however is not unique and different inversions must be performed (different programs, different conditions) to test and compare solutions for artefacts versus a target anomaly. An additional parameter acquired during MT survey is the Tipper. Tipper parameters Tzx and Tzy (complex numbers) represent the transfer function between the vertical magnetic field and the horizontal X (Tzx), and Y (Tzy) magnetic fields respectively (as the impedance Z represent the transfer function between the electric and magnetic fields). This tipper is a 'local' effect, mainly defined by the lateral contrast of the resistivity. Consequently, the tipper can be used to estimate the geological strike direction. Another important use of the tipper is to display its components as vectors, named induction vectors. The induction vectors (defined by the real components of Tzx and Tzy) plotted following the Parkinson-Real-Reverse-Angle convention will point to conductive zones. The tipper is then a good mapping tool to delineate more conductive zones. The depth of investigation is determined primarily by the frequency content of the measurement. Depth estimates from any individual sounding may easily exceed 20 km. However, the data can only be confidently interpreted when the aperture of the array is comparable to the depth of investigation. The inversion model is dependent on the data, but also on the associated data errors and the model norm. The inversion models are not unique, may contain artefacts of the inversion process and may not therefore accurately reflect all the information apparent in the actual data. Inversion models need to be reviewed in context with the observed data, model fit. The user must understand the model norm used and evaluate whether the model is geologically plausible.

Criteria	JORC Code explanation	Commentary				
		For this project, 2D inversions were performed on the TITAN direction is perpendicular to the profile for all sites: the TM field); no TE mode (crossline E-field) were used in the 2D inversions were performed using the TM-mode resist assuming 10% and 5% error for the resistivity and phase incomponent Z. No static shift of the data has been applied on The 3D inversion was carried out using the CGG RLM-3D invover an area of approximately 5km x 3.5km. All MT sites from The 3D inversion was completed using a sub-sample of the National than the measured data from 10 kHz to 0.01 Hz with a nominal 4 impedance tensors (Zxx, Zxy, Zyx, and Zyy) were used as input homogenous half space with resistivity of 100 Ohm-m was mesh with 75 m x 75 m cell size was used in horizontal directover the first 4 km. Padding cells were added in each direct 3D inversion was run for a maximum of 50 iterations. In addition a total of 129 samples distributed along 12 hole chargeability properties (Chargeability M and Susceptibility Sample Core IP Tester, manufactured by Instrumentation G only as first order estimate, and not as "absolute" (true) valus subject to some errors (i.e. wrong size of the core entered in Colorado V:	mode is the versions. Stivity and espectively in the data. Version code in this curred data with the	phase data interpol y, which is equivale le. The 3D inversion rent survey were us th a maximum of 24 es per decade. At ea ith an associated error e starting model fo ne resistivity model. ommodate the inver alysed to measure 01 SI). The equipm hould be noted tha gs by the field crew	ated at 6 frequencies per nt to 5% error on the im s of the MT data were control of the 3D inversion. If requencies at each site ch site, the complete MT ror set to 5% on each paraiset to 0.02 on each paraiset to 50 MT inversion. A The vertical mesh was desion for boundary condition the resistivity (Rho (Ohment used for the analyses these measures should	r decade, apedance covering complex rameter. A couniform efined to ions. The arm and as was the be taken
		Exploration Target:				
		An Exploration Target for two mineralized zones on the Colosoil anomalies, drill hole geological and assay information a		-	_	e gold in
		Exploration Target Anomaly A	Unit	Low estimate	High Estimate	
		Surface area (100 ppb Au in soil envelope):	m^2	250000	250000	
		Depth	m	400	400	
		Bulk Density	kg/m³	2600	2750	
		Tonnage	Mt	260	275	
		Grade Au	g/t	0.4	0.7	
		Grade Ag	g/t	1.5	2.5	
		tonnage above cut-off	%	70%	90%	

Criteria	JORC Code explanation	Commentary			
		Contained Au	Moz	2.3	5.6
		Contained Ag	Moz	8.8	19.9
		Exploration Target Anomaly B	Unit	Low estimate	High Estimate
		Surface area (100 ppb Au in soil envelope):	m²	175000	175000
		Depth	m	400	400
		Bulk Density	kg/m³	2600	2750
		Tonnage	Mt	182	193
		Grade Au	g/t	0.4	0.7
		Grade Ag	g/t	1.5	2.5
		% tonnage above cut-off	%	70%	90%
		Contained Au	Moz	1.6	3.9
		Contained Ag	Moz	6.1	13.9
		Total of Target A & B	Unit	Low estimate	High Estimate
		Tonnage	Mt	442	468
		Contained Au	Moz	4.0	9.5
		Contained Ag	Moz	14.9	33.8
		The potential quantity and grade of the Colorado V Exemploration to estimate a Mineral Resource and that i Mineral Resource.			
		 The following is an explanation of the inputs used in f Surface Area: The surface area of the target ha vertically to the surface. The surface projection gold-in-soil anomaly contour. This area has bee Depth: A depth of 400 metres from surface has underground bulk tonnage mining project woul controlled by steeply plunging / dipping intrusion from surface. 	s been estimated n of the intersect en used to estima s been used as and d be expected to	d by projecting drill ions in the drill hole ate the horizontal en estimate of the decreted. The mine	es coincides with the 100 ppb Au extent of the mineralization. epth that an open pit and eralization at Colorado V is

Criteria	JORC Code explanation	Commentary
		 Bulk Density: The bulk density is based on geological observations of the rocks that host the mineralization. Typical bulk densities for these rock types are in the range used. Gold and Silver grades: The gold and silver grade range has been estimated from the weighted average and median sample grades and deviations from mean from drill core and underground panel sampling. Proportion of tonnage above cut-off grade: These values are estimates based on drill hole intersection grade continuity down-hole assuming that not all of the Target volume, if sampled would be above the economic cut-off grade.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 El Guaybo Project Re-logging and re-assaying core including SWIR/alteration mapping to better vector on the porphyry and breccia targets – available assays 6 elements only, no SWIR, and not logged by porphyry experts. Helicopter magnetic survey on east-west flight lines with 50m spacing, processing and interpretation of these data. Channel sampling of the adit and artisanal workings - > 1km of underground exposure of the system which has never been systematically mapped or sampled. Sampling of additional breccia bodies – only 2 of the 10 known breccias have been systematically defined and properly sampled. Complete interpretation of the 3D MT survey (with IP lines) covering 16 sq. This will include integration of all the geological data and constrained inversion modelling The aim of the program above is to define targets for a drilling program
		 Colorado V Project Re-logging and re-assaying of drill core where only partial gold assays are available. Helicopter magnetic survey on east-west flight lines with 50m spacing, processing and interpretation of these data. Channel sampling of mineralized exposures in the adits and underground workings. Surface mapping and sampling. Compile and integrate existing soil survey data with CEL's MMI soil survey covering 16 sq kms. Additional soil geochemical sampling (MMI and c-horizon) to be completed near main anomalies The aim of the program above is to further test the Exploration Targets and identify targets for drilling.

JORC Code, 2012 Edition – Table 1 report template

Section 1 Sampling Techniques and Data - Hualilan Project

Criteria	JORC Code explanation	Commentary
	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of 	For historic exploration data, there is little information provided by previous explorers to detail sampling techniques. Drill core was cut with a diamond saw longitudinally and one half submitted for assay. Assay was generally done for Au. In some drill campaigns, Ag and Zn were also analysed. There is limited multielement data available. No information is available for RC drill techniques and sampling. For CEL drilling, diamond core (HQ3) was cut longitudinally on site using a diamond saw. Samples lengths are from 0.5m to 2.0m in length (average 1m), taken according to lithology, alteration, and mineralization contacts. For CEL reverse circulation (RC) drilling, 2-4 kg sub-samples from each 1m drilled are collected from a face sample recovery cyclone mounted on the drill machine. CEL channel samples are cut into underground or surface outcrop using a hand-held diamond edged cutting tool. Parallel saw cuts 3-5cm apart are cut 2-4cm deep into the rock which allows for the extraction of a representative sample using and hammer and chisel. The sample is collected onto a plastic mat and collected into a sample bag. Core and channel samples were crushed to approximately 85% passing 2mm. A 500g or a 1 kg sub-sample was taken and pulverized to 85% passing 75µm. A 50g charge was analysed for Au by fire assay with AA determination. Where the fire assay grade is > 10 g/t gold, a 50g charge was analysed for Au by Fire assay with gravimetric determination.
	 Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed 	A 10g charge was analysed for at least 48 elements by 4-acid digest and ICP-MS determination. Elements determined were Ag, As, Ba, Be, Bi, Ca, Ce, Co, Cr, Cs, Cu, Fe, Ga, Ge, Hf, In, K, La, Li, Mg, Mn, Mo, Na, Nb, Ni, P, Pb, Rb, Re, S, Sb Sc, Se, Sn, Sr, Ta, Te, Th, Ti, Tl, U, V, W, Y, Zn and Zr. Ag > 100 g/t, Zn, Pb and Cu > 10,000 ppm and S > 10% were re-analysed by the same method using a different calibration. Sample intervals were selected according to geological boundaries. There was no coarse or visible gold observed in any of the core or channel samples.

Criteria

JORC Code explanation

Commentary

Drilling techniques

 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, facesampling bit, or other type, whether core is oriented and if so, by what method, etc). Collar details for diamond core drilling (DD) and reverse circulation (RC) historic drilling campaigns is provided below from archival data cross checked with drill logs and available plans and sections where available. Collars shown below are in WGS84, zone 19s which is the standard projection used by CEL for the Project. Collar locations have been check surveyed using differential GPS (DGPS) by CEL to verify if the site coincides with a marked collar or tagged drill site. In most cases the drill collars coincide with historic drill site, some of which (but not all) are tagged. The collar check surveys were reported in POSGAR (2007) projection and converted to WGS84.

Hole_id	Туре	East (m)	North (m)	Elevation (m ASL)	Azimuth (°)	Dip (°)	Depth (m)	Date
AG01	DD	2504908.0	6602132.3	1807.6	000	-90	84.5	Jan-84
AG02	DD	2504846.5	6602041.1	1803.4	112	-70	60.0	Jan-84
AG03	DD	2504794.5	6601925.6	1803.1	080	-55	110.0	Jan-84
AG04	DD	2504797.1	6602065.5	1806.6	000	-90	168.0	Jan-84
AG05	DD	2504843.5	6601820.3	1798.1	000	-90	121.8	Jan-84
AG06	DD	2504781.9	6601922.8	1803.8	000	-90	182.2	Jan-84
AG07	DD	2504826.3	6601731.0	1796.9	000	-90	111.5	Jan-84
AG08	DD	2504469.8	6600673.7	1779.7	090	-57	80.2	Jan-84
AG09	DD	2504455.7	6600458.5	1772.6	000	-90	139.7	Jan-84
AG10	DD	2504415.5	6600263.9	1767.7	000	-90	200.8	Jan-84
AG11	DD	2504464.8	6600566.5	1775.9	000	-90	141.0	Jan-84
AG12	DD	2504847.6	6602161.7	1808.8	000	-90	171.4	Jan-84
AG13	DD	2504773.6	6601731.3	1798.7	000	-90	159.5	Jan-84
AG14	DD	2504774.7	6601818.8	1801.2	000	-90	150.2	Jan-84
AG15	DD	2504770.7	6601631.4	1796.7	000	-90	91.3	Jan-84
AG16	DD	2504429.5	6600665.8	1779.8	000	-90	68.8	Jan-84

Hole_id	Туре	East (m)	North (m)	Elevation (m ASL)	Azimuth (°)	Dip (°)	Depth (m)	Date
MG01	RC	2504825.5	6602755.4	1800.0	100	-60	51.0	Jan-95
MG01A	RC	2504810.5	6602755.4	1800.0	100	-60	116.0	Jan-95
MG02	RC	2504835.5	6602805.4	1800.0	100	-60	90.0	Jan-95
MG03	RC	2504853.5	6602880.4	1795.0	100	-60	102.0	Jan-95
MG04	RC	2504843.5	6602975.4	1800.0	100	-60	120.0	Jan-95
MG05	RC	2506130.5	6605055.4	1750.0	85	-60	96.0	Jan-95
MG06	RC	2506005.5	6605115.4	1750.0	100	-60	90.0	Jan-95
MG07	RC	2506100.5	6605015.4	1750.0	100	-60	96.0	Jan-95
MG08	RC	2505300.5	6603070.4	1740.0	95	-70	66.0	Jan-95
MG09	RC	2505285.5	6603015.4	1740.0	0	-90	102.0	Jan-95

Challenger Exploration Limited ACN 123 591 382 ASX: CEL **Issued Capital** 974.4m shares 49.0m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commenta	ry							
		MG10	RC	2505025.5	6600225.4	1724.0	100	-60	120.0	Jan-95
		MG11	RC	2503380.5	6598560.5	1740.0	100	-60	78.0	Jan-95
		MG12	RC	2503270.5	6597820.5	1740.0	100	-60	66.0	Jan-95
			_	East	North	Elevation	Azimuth	Dip	Depth	
		Hole_id	Type	(m)	(m)	(m ASL)	(°)	(°)	(m)	Date
		Hua01	RC	2504845.3	6602041.2	1809.7	117	-50	60.0	1999
		Hua02	RC	2504889.5	6602081.1	1809.7	125	-55		1999
		Hua03	RC	2505003.3	6602158.6	1810.7	000	-90	100.0	1999
		Hua04	RC	2504873.3	6602169.1	1809.7	000	-90	100.0	1999
		Hua05	RC	2505003.2	6602152.6	1810.7	180	-60		1999
		Hua06	RC	2505003.3	6602161.6	1810.7	360	-60	100.0	1999
		Hua07	RC	2504967.7	6602153.2	1810.2	000	-90	100.0	1999
		Hua08	RC	2504973.2	6602153.7	1810.2	000	-90	13.0	1999
		Hua09	RC	2504940.7	6602150.3	1809.7	180	-60	100.0	1999
		Hua10	RC	2504941.8	6602156.8	1809.7	360	-60	100.0	1999
		Hua11	RC	2504913.3	6602167.4	1809.7	360	-60		1999
		Hua12	RC	2504912.8	6602165.9	1809.7	000	-90		1999
		Hua13	RC	2504912.3	6602156.9	1809.7	180	-60		1999
		Hua14	RC	2504854.3	6602168.2	1809.7	360	-60		1999
		Hua15	RC	2504854.8	6602166.2	1809.7	117	-60		1999
		Hua16	RC	2504834.2	6601877.8	1800.7	000	-90		1999
		Hua17	RC	2504865.9	6602449.8	1814.1	90	-50		1999
		Hua20	RC	2504004.1	6600846.4	1792.7	000	-90		1999
		Hua21	RC	2504552.9	6600795.0	1793.9	000	-90		1999
			_	East	North	Elevation	Azimuth	Dip	Depth	
		Hole_id	Type	(m)	(m)	(m ASL)	(°)	(°)	(m)	Date
		DDH20	DD	2504977.3	6602133.3	1804.8	116	-54	49.1	1999-00
		DDH21	DD	2504978.3	6602118.3	1804.8	000	-90	88.6	1999-00
		DDH22	DD	2504762.9	6601587.1	1769.8	116	-65	66.0	1999-00
		DDH23	DD	2504920.4	6601994.3	1767.9	000	-90	58.8	1999-00
		DDH24	DD	2504821.0	6601938.8	1802.0	116	-80	100.3	1999-00
		DDH25	DD	2504862.6	6601964.5	1803.7	116	-74	49.2	1999-00
		DDH26	DD	2504920.4	6601975.3	1795.0	312	-60	80.3	1999-00
		DDH27	DD	2504752.7	6601565.1	1806.6	116	-60	43.2	1999-00
		DDH28	DD	2505003.6	6602174.3	1806.6	116	-50	41.7	1999-00

Issued Capital 974.4m shares 49.0m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commenta	ary							
		DDH29	DD	2504964.1	6602136.6	1810.0	350	-52	113.5	1999-00
		DDH30	DD	2505004.1	6602156.3	1809.3	059	-85	62.1	1999-00
		DDH31	DD	2504897.6	6602112.7	1808.1	116	-75	41.4	1999-00
		DDH32	DD	2504939.4	6602139.2	1809.1	350	-51	100.7	1999-00
		DDH33	DD	2504939.4	6602139.2	1809.1	350	-65	62.9	1999-00
		DDH34	DD	2504826.5	6601920.2	1801.3	116	-70	69.4	1999-00
		DDH35	DD	2505003.9	6602156.7	1808.8	310	-85	174.6	1999-00
		DDH36	DD	2504637.5	6600777.3	1799.9	330	-50	45.5	1999-00
		DDH37	DD	2504826.5	6601920.2	1809.4	000	-90	121.0	1999-00
		DDH38	DD	2504820.8	6601912.2	1801.1	116	-75	67.7	1999-00
		DDH39	DD	2504820.8	6601912.2	1801.1	116	-81	90.7	1999-00
		DDH40	DD	2504832.3	6601928.1	1801.7	116	-70	85.7	1999-00
		DDH41	DD	2504837.8	6601937.5	1801.6	116	-70	64.2	1999-00
		DDH42	DD	2504829.2	6601952.5	1801.8	116	-60	65.1	1999-00
		DDH43	DD	2504829.2	6601952.5	1801.8	116	-70	70.8	1999-00
		DDH44	DD	2504811.3	6601895.1	1802.0	116	-60	102.2	1999-00
		DDH45	DD	2504811.3	6601895.1	1802.0	116	-83	95.3	1999-00
		DDH46	DD	2504884.4	6601976.3	1805.9	116	-45	71.6	1999-00
		DDH47	DD	2504884.4	6601976.3	1805.9	116	-65	71.0	1999-00
		DDH48	DD	2504866.9	6601962.7	1803.1	116	-47	30.7	1999-00
		DDH49	DD	2504866.9	6601962.7	1803.1	116	-72	41.9	1999-00
		DDH50	DD	2504821.4	6601913.9	1801.1	116	-77	87.5	1999-00
		DDH51	DD	2504821.4	6601913.9	1801.1	116	-80	87.5	1999-00
		DDH52	DD	2504825.5	6601901.1	1800.9	116	-83	74.0	1999-00
		DDH53	DD	2504504.1	6600714.0	1788.7	090	-62	85.7	1999-00
		DDH54	DD	2504504.1	6600714.0	1788.7	090	-45	69.1	1999-00
		DDH55	DD	2504997.9	6602163.5	1808.6	360	-53	63.1	1999-00
		DDH56	DD	2504943.1	6602171.3	1810.5	360	-75	50.6	1999-00
		DDH57	DD	2504943.1	6602171.3	1810.5	000	-90	66.2	1999-00
		DDH58	DD	2504970.3	6602153.3	1809.1	360	-71	62.0	1999-00
		DDH59	DD	2504970.3	6602153.3	1809.1	000	-90	66.3	1999-00
		DDH60	DD	2504997.9	6602162.5	1809.0	360	-67	59.9	1999-00
		DDH61	DD	2504997.9	6602162.5	1809.0	000	-90	58.1	1999-00
		DDH62	DD	2504751.4	6601602.6	1789.2	170	-45	68.4	1999-00
		DDH63	DD	2504751.4	6601602.6	1789.2	170	-70	131.5	1999-00
		DDH64	DD	2504776.3	6601596.9	1789.1	170	-45	66.7	1999-00
		DDH65	DD	2504552.7	6600792.0	1793.8	194	-45	124.8	1999-00
		DDH66	DD	2504552.7	6600792.0	1793.8	194	-57	117.0	1999-00

Issued Capital 974.4m shares 49.0m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commentar	У							
		DDH67	DD	2504552.7	6600792.0	1793.8	194	-66	126.1	1999-00
		DDH68	DD	2504623.9	6600779.0	1800.7	000	-90	79.5	1999-00
		DDH69	DD	2504623.9	6600779.0	1800.7	194	-60	101.5	1999-00
		DDH70	DD	2504595.5	6600797.7	1798.1	190	-81	128.0	1999-00
		DDH71	DD	2504631.6	6600797.4	1799.0	194	-63	136.3	1999-00
		DDH72	DD	2504547.2	6600764.1	1799.6	194	-45	75.6	1999-00
		DDH73	DD	2504593.4	6600766.5	1807.5	190	-57	70.8	1999-00
		DDH74	DD	2504598.2	6600831.8	1795.3	190	-62	190.9	1999-00
		DDH75	DD	2504731.2	6600784.7	1821.4	194	-45	40.2	1999-00
		DDH76	DD	2504731.2	6600784.7	1821.4	180	-60	138.7	1999-00
		DDH77	DD	2504734.1	6600785.0	1821.6	000	-90	85.6	1999-00
		DDH78	DD	2504731.2	6600784.7	1821.4	180	-75	132.9	1999-00
		DDH79	DD	2504721.6	6600790.1	1820.4	060	-70	38.6	1999-00
				East	North	Elevation	Azimuth	n Dip	Dept	th
		Hole_id	Туре	(m)	(m)	(m ASL)	(°)	(°)	(m)	
		03HD01A	DD	2504627.8	6600800.1	1798.4	180	-60	13	30.2
		03HD02	DD	2504457.9	6600747.8	1782.9	180	-60	13	30.5
		03HD03	DD	2504480.1	6600448.6	1774.0	360	-45	10	00.2
		04HD04	DD	2504436.6	6600439.3	1773.4	360	-60	10	04.6
		04HD05	DD	2504420.9	6600256.8	1769.5	110	-68	12	22.6
		04HD06	DD	2504428.6	6600236.6	1768.1	110	-68	13	36.0
		04HD07	DD	2504415.7	6600277.7	1769.0	100	-63	10	08.2
		04HD08	DD	2504826.5	6601920.2	1801.3	116	-70	7	70.0
		04HD09	DD	2504832.3	6601928.1	1801.7	116	-70	7	75.9
		04HD10	DD	2504648.5	6600788.9	1801.5	205	-60	12	20.0
		04HD11	DD	2504462.0	6600428.3	1773.6	075	-62		95.1
		04HD12	DD	2504449.3	6600648.9	1779.6	360	-60		77.4
		04HD13	DD	2504434.5	6600646.6	1779.7	360	-60		74.0
		04HD14	DD	2504461.1	6600748.4	1783.1	180	-70		30.6
		04HD15	DD	2504449.9	6600646.2	1779.6	360	-64	16	50.0
		04HD16C	DD	2504457.1	6600311.7	1770.3	195	-65		25.5
		04HD17	DD	2504417.5	6600256.6	1769.5	110	-72		13.2
		04HD18	DD	2504528.5	6600792.0	1791.9	170	-50	14	40.7
		04HD19	DD	2504648.5	6600788.9	1801.5	205	-77	12	20.0
		04HD20	DD	2504648.5	6600788.9	1801.5	205	-80	12	20.0
		04HD21	DD	2504648.5	6600788.9	1801.5	205	-60	12	20.0

Issued Capital 974.4m shares 49.0m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

DD

2504441.0

04HD23

Contact T: +61 8 6380 9235 E: admin@challengerex.com

6600456.0

1772.5

075

-82

499.7

Criteria	JORC Code explanation	Commentary							
		04HD24	DD	2504389.0	6600252.0	1766.5	090	-81	188.2
		04HD25	DD	2504456.0	6600294.0	1768.5	155	-84	500.8
		04HD26	DD	2504424.0	6600409.0	1771.5	180	-69	464.9
		04HD27	DD	2504461.0	6600428.0	1773.0	100	-45	60.0
		04HD28	DD	2504461.0	6600428.0	1773.0	100	-60	63.7
		04HD29	DD	2504438.0	6600087.0	1764.5	108	-45	265.0
		04HD30	DD	2504421.0	6600044.0	1764.0	108	-45	128.2
		04HD31	DD	2504687.0	6601326.0	1794.0	045	-60	242.9
		04HD32	DD	2504828.0	6601916.0	1801.3	116	-70	68.4
		05HD33	DD	2505410.0	6601983.0	1765.0	000	-60	81.4
		05HD34	DD	2505451.0	6602079.0	1763.0	273	-60	269.0
		05HD35	DD	2504905.0	6601689.0	1794.0	140	-65	350.0
		05HD36	DD	2504880.0	6601860.0	1802.0	295	-70	130.0
		05HD37	DD	2504866.0	6601888.0	1797.0	295	-70	130.0
		05HD38	DD	2504838.0	6601937.0	1796.0	115	-70	70.0
		05HD39	DD	2504964.0	6602128.0	1814.0	030	-70	217.5
		05HD40	DD	2504964.0	6602128.0	1814.0	030	-50	150.0
		05HD41	DD	2504931.0	6602125.0	1812.0	022	-60	142.5
		05HD42	DD	2504552.7	6600791.5	1797.0	194	-57	120.0
		05HD43	DD	2504552.7	6600791.5	1797.0	194	-45	95.5
		05HD44	DD	2504603.0	6600799.0	1798.0	190	-61.5	130.5
		05HD45	DD	2504362.0	6600710.0	1767.0	088	-60	121.5
		05HD46	DD	2504405.0	6600282.0	1766.0	090	-75	130.7
		05HD47	DD	2504212.0	6599177.0	1729.0	065	-45	181.5
		05HD48	DD	2504160.0	6599164.0	1728.0	065	-60	100.7

CEL drilling of HQ3 core (triple tube) was done using various truck and track mounted drill machines that are operated by various Argentinian drilling companies based in Mendoza and San Juan. The core has not been oriented as the rock is commonly too broken to allow accurate core orientation.

CEL drilling of reverse circulation (RC) drill holes was done using a track-mounted LM650 universal drill rig set up for reverse circulation drilling. Drilling is being done using a 5.25 inch hammer bit.

Collar details for DD drill holes and RC drill holes completed by CEL are shown below in WGS84, zone 19s projection. Collar locations for drill holes to GNDD282 are surveyed using DGPS. Collar location from GNDD285 are surveyed with a handheld GPS to be followed up with DGPS.

			Elevation	Dip	Azimuth	Depth
Hole_id	East (m)	North (m)	(m)	(°)	(°)	(m)

Criteria	JORC Code explanation	Commentary							
		GNDD001	504803.987	6601337.067	1829.289	-57	115	109.0	
		GNDD002	504793.101	6601312.095	1829.393	-60	115	25.6	
		GNDD002A	504795.405	6601311.104	1829.286	-60	115	84.5	
		GNDD003	504824.427	6601313.623	1827.768	-70	115	90.2	
		GNDD004	504994.416	6601546.302	1835.345	-60	115	100.0	
		GNDD005	504473.042	6600105.922	1806.448	-55	090	110.0	
		GNDD006	504527.975	6600187.234	1817.856	-55	170	100.9	
		GNDD007	504623.738	6600196.677	1823.447	-68	190	86.3	
		GNDD007A	504624.021	6600198.394	1823.379	-68	190	219.0	
		GNDD008	504625.047	6600198.059	1823.457	-60	184	109.4	
		GNDD008A	504625.080	6600199.718	1823.264	-60	184	169.0	
		GNDD009	504412.848	6599638.914	1794.22	-55	115	147.0	
		GNDD010	504621.652	6600196.048	1823.452	-68	165	146.5	
		GNDD011	504395.352	6599644.012	1794.025	-64	115	169.2	
		GNDD012	504450.864	6599816.527	1798.321	-55	115	120.0	
		GNDD013	504406.840	6599613.052	1792.378	-58	112	141.0	
		GNDD014	504404.991	6599659.831	1793.728	-59	114	140.0	
		GNDD015	504442.039	6600159.812	1808.700	-62	115	166.7	
		GNDD016	504402.958	6599683.437	1794.007	-60	115	172.0	
		GNDD017	504460.948	6600075.899	1806.143	-55	115	132.6	
		GNDD018	504473.781	6600109.152	1806.458	-60	115	130.0	
		GNDD019	504934.605	6601534.429	1834.720	-70	115	80.0	
		GNDD020	504463.598	6600139.107	1807.789	-58	115	153.0	
		GNDD021	504935.804	6601567.863	1835.631	-60	115	120.0	
		GNDD022	504835.215	6601331.069	1828.015	-60	113	100.0	
		GNDD023	504814.193	6601336.790	1828.535	-55	117	100.0	
		GNDD024	504458.922	6600123.135	1807.237	-70	115	150.0	
		GNDD025	504786.126	6601137.698	1823.876	-60	115	141.0	
		GNDD026	504813.588	6601444.189	1831.810	-55	115	100.0	
		GNDD027	504416.311	6599703.996	1794.702	-55	115	139.2	

Issued Capital 974.4m shares 49.0m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commentary							
		GNDD028	504824.752	6601321.020	1827.837	-57	115	100.0	
		GNDD029	504791.830	6601316.140	1829.344	-71	115	120.2	
		GNDD030	504454.538	6599860.757	1799.266	-60	115	148.0	
		GNDD031	504622.013	6600198.726	1823.191	-60	130	149.0	
		GNDD032	504619.803	6600203.906	1822.790	-55	097	166.6	
		GNDD033	504830.792	6601385.842	1829.315	-55	115	62.0	
		GNDD034	504862.613	6601524.893	1834.263	-60	115	60.0	
		GNDD035	504782.969	6601234.234	1827.709	-78	115	119.5	
		GNDD036	504303.325	6599128.637	1779.458	-55	115	131.0	
		GNDD037	504462.875	6599831.674	1798.456	-55	115	83.5	
		GNDD038	504465.362	6600097.111	1806.580	-55	115	87.7	
		GMDD039	504815.800	6601318.000	1829.100	-70	115	80.0	
		GMDD040	504402.100	6599641.500	1794.800	-55	115	135.5	
		GMDD041	504473.000	6600104.000	1806.400	-55	095	428.0	
		GNDD042	504392.551	6599574.224	1790.603	-60	115	140.0	
		GMDD043	504815.800	6601320.000	1829.100	-67	115	80.0	
		GNDD044	504380.090	6599622.578	1791.934	-65	115	185.0	
		GNDD045	504366.823	6599679.058	1793.712	-57	115	311.0	
		GNDD046	504364.309	6599702.621	1794.533	-60	115	191.0	
		GNDD047	504459.642	6599644.133	1793.422	-60	115	101.0	
		GNDD048	504792.642	6601286.638	1828.497	-74	115	95.0	
		GNDD049	504807.030	6601419.483	1831.588	-60	115	90.0	
		GNDD050	504826.614	6601509.677	1833.357	-60	115	80.0	
		GNDD051	504766.792	6601032.571	1823.273	-60	115	120.0	
		GNDD060	504801.654	6601066.131	1822.596	-60	115	200.0	
		GNDD073	504367.546	6599724.992	1795.493	-57	115	150.2	
		GNDD074	504366.299	6599725.496	1795.450	-73	115	152.0	
		GNDD077	504821.005	6601145.026	1823.951	-60	115	222.0	
		GNDD079	504636.330	6600286.824	1823.053	-60	115	181.4	
		GNDD082	504769.532	6601169.127	1825.621	-60	115	266.0	

Issued Capital 974.4m shares 49.0m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commentary							
		GNDD083	504646.604	6600336.172	1823.893	-60	115	181.0	
		GNDD085	504456.068	6599888.509	1799.895	-60	115	90.0	
		GNDD088	504815.0	6601194	1825.2	-60	115	237.0	
		GNDD088A	504815.621	6601193.811	1825.210	-60	115	265.0	
		GNDD089	504635.811	6600285.352	1823.032	-55	133	200.1	
		GNDD092	504839.792	6601208.375	1824.849	-60	115	300.0	
		GNDD093	504679.396	6600332.075	1827.365	-55	115	209.0	
		GNDD095	504804.597	6601219.844	1826.834	-67	115	203.0	
		GNDD096	504666.622	6600602.793	1820.371	-60	115	215.0	
		GNDD099	504384.933	6599759.693	1796.525	-60	115	150.0	
		GNDD100	504424.250	6599784.711	1796.728	-60	115	120.0	
		GNDD101	504781.691	6600986.509	1821.679	-60	115	220.0	
		GNDD102	504787.340	6601285.049	1828.549	-57	115	260.0	
		GNDD103	504432.004	6599482.162	1788.500	-55	115	299.0	
		GNDD105	504701.392	6601025.961	1824.818	-60	115	300.0	
		GNDD106	504438.745	6599613.089	1792.511	-55	115	300.0	
		GNDD108	504893.480	6601156.138	1824.948	-60	115	200.0	
		GNDD109	504788.659	6601026.581	1822.675	-60	115	209.0	
		GNDD112	504893.408	6601198.421	1825.402	-60	115	188.0	
		GNDD113	504704.700	6601067.100	1826.300	-60	115	230.0	
		GNDD113A	504705.888	6601065.628	1825.877	-60	115	461	
		GNDD114	504430.719	6600110.231	1807.080	-50	115	116.0	
		GNDD115	504860.469	6601289.558	1826.422	-60	115	251.0	
		GNDD116	504441.894	6599558.746	1790.917	-65	115	269.0	
		GNDD117	504428.815	6600110.985	1807.008	-60	115	120.0	
		GNDD118	505085.614	6601107.067	1811.275	-60	295	300.0	
		GNDD119	504827.094	6601535.651	1835.088	-66	115	115.0	
		GNDD120	504411.171	6600099.998	1806.316	-60	110	164.0	
		GNDD121	504863.473	6601140.462	1821.954	-57	115	181.0	
		GNDD122	504659.288	6600648.314	1819.643	-60	115	250.0	

Issued Capital 974.4m shares 49.0m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commentary							
		GNDD123	504823.784	6601510.706	1833.612	-63	130	130.0	
		GNDD124	504410.706	6600099.603	1806.296	-70	115	160.0	
		GNDD125	505135.977	6601131.034	1809.281	-60	295	300.0	
		GNDD126	504716.358	6601149.031	1827.257	-60	115	196.0	
		GNDD127	504889.851	6601503.430	1834.161	-55	115	300.0	
		GNDD128	504715.660	6601106.719	1826.595	-60	115	230.0	
		GNDD129	504637.632	6600284.287	1805.395	-55	185	291.0	
		GNDD130	504838.247	6601093.352	1821.556	-60	115	227.0	
		GNDD131	504650.672	6600737.758	1821.134	-60	115	280.0	
		GNDD132	504819.319	6601357.930	1829.373	-55	115	300.0	
		GNDD133	504869.366	6601639.665	1835.213	-60	170	182.0	
		GNDD134	504639.057	6600284.444	1805.499	-55	154	290.0	
		GNDD135	504845.188	6601547.554	1834.906	-64	350	135.0	
		GNDD136	504837.721	6601445.719	1830.128	-55	115	310.0	
		GNDD137	504647.268	6600701.174	1820.549	-60	115	370.0	
		GNDD138	504883.975	6601540.420	1835.042	-65	350	237.0	
		GNDD139	504755.726	6601084.848	1824.694	-60	115	200.0	
		GNDD140	504991.396	6601549.750	1835.464	-60	60	230.0	
		GNDD141	504779.587	6601255.947	1828.225	-70	115	270.0	
		GNDD142	504433.887	6599629.407	1792.717	-62	115	360.0	
		GNDD143	504902.285	6601209.174	1826.545	-20	115	120.0	
		GNDD144	504961.182	6601524.651	1835.687	-70	40	410.0	
		GNDD145	504557.511	6600224.447	1818.092	-64	170	200.0	
		GNDD146	504772.849	6601212.611	1827.389	-70	115	350.0	
		GNDD147	504959.171	6601525.259	1835.597	-60	355	240.0	
		GNDD148	504845.962	6601442.396	1831.403	-24	115	85.5	
		GNDD149	504847.402	6601441.816	1832.186	-5	115	88.1	
		GNDD150	504848.651	6601525.476	1834.636	-65	350	251.0	
		GNDD151	504673.689	6601219.059	1830.640	-60	115	430.0	
		GNDD152	504901.725	6601465.446	1834.787	-15	115	165.0	

Issued Capital 974.4m shares 49.0m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commentary						
		GNDD153	504690.458	6600986.257	1824.840	-70	115	326.0
		GNDD154	504891.810	6601503.838	1834.134	-65	350	212.0
		GNDD155	504779.116	6601123.548	1823.862	-60	115	420.0
		GNDD156	504842.752	6601402.888	1830.505	-37	115	59.0
		GNDD157	504638.216	6600284.907	1805.408	-55	170	527.0
		GNDD158	504807.600	6601535.300	1837.000	-60	350	170.0
		GNDD159	504910.382	6601145.345	1825.562	-40	115	202.0
		GNDD160	504980.539	6601546.905	1835.243	-55	350	170.0
		GNDD161	504664.113	6600816.520	1822.385	-60	115	251.00
		GNDD162	504723.843	6601279.506	1830.376	-60	115	180.00
		GNDD163	504749.611	6601575.347	1837.394	-60	115	180.00
		GNDD164	504672.435	6601526.078	1836.853	-60	115	311.00
		GNDD165	504488.377	6599862.768	1803.486	-10	115	253.80
		GNDD166	504557.654	6600330.511	1817.438	-60	115	327.00
		GNDD167	504727.540	6600880.315	1820.767	-60	115	251.00
		GNDD168	504559.923	6600382.723	1816.844	-60	115	314.00
		GNDD169	504683.848	6601565.336	1837.928	-60	115	416.00
		GNDD170	504663.000	6600335.000	1822.900	-60	170	123.50
		GNDD170A	504664.576	6600335.390	1826.501	-60	170	380.00
		GNDD171	504674.659	6600904.137	1823.445	-70	115	350.00
		GNDD172	504487.566	6599863.343	1802.727	-45	115	119.70
		GNDD173	504697.019	6601339.596	1833.656	-60	115	191.00
		GNDD174	504474.118	6600097.716	1807.933	-11	115	329.50
		GNDD175	504653.221	6601093.209	1828.285	-60	115	353.00
		GNDD176	504733.851	6600655.255	1817.503	-60	115	350.00
		GNDD177	504759.610	6601481.663	1834.257	-60	115	160.00
		GNDD178	504625.984	6600185.259	1824.078	-60	185	145.20
		GNDD179	504406.541	6600185.242	1809.531	-55	170	192.10
		GNDD180	504678.044	6600779.784	1821.026	-60	115	341.00
		GNDD181	504669.174	6600332.942	1809.056	-60	160	401.00

Issued Capital 974.4m shares 49.0m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commentary						
		GNDD182	504669.526	6601127.040	1828.630	-60	115	332.00
		GNDD183	504775.514	6601523.887	1835.124	-65	115	146.00
		GNDD184	504670.292	6601174.696	1829.453	-60	115	321.50
		GNDD185	504730.718	6601405.556	1832.739	-60	115	180.00
		GNDD186	504735.990	6600742.990	1818.290	-60	115	209.00
		GNDD187	504621.493	6601546.173	1839.975	-67	115	320.00
		GNDD188	504658.832	6601043.631	1826.939	-60	115	277.00
		GNDD189	504473.828	6600097.778	1807.415	-29	115	320.00
		GNDD190	504894.932	6601473.630	1833.192	-65	350	269.00
		GNDD191	504602.016	6601426.850	1837.553	-70	115	260.00
		GNDD192	504617.912	6600575.207	1820.347	-60	115	260.00
		GNDD193	504686.491	6601425.894	1834.934	-60	115	293.00
		GNDD194	504670.153	6600333.303	1808.999	-60	140	300.00
		GNDD195	504473.117	6600098.042	1807.172	-44	115	370.00
		GNDD196	504633.370	6600393.771	1822.260	-60	115	296.00
		GNDD197	504860.921	6601483.879	1831.591	-68	350	72.00
		GNDD198	504787.448	6601250.012	1827.763	-60	115	161.00
		GNDD199	504812.268	6601468.783	1832.487	-56	350	266.00
		GNDD200	504966.362	6601074.292	1816.847	-60	295	280.00
		GNDD201	504310.496	6599798.094	1798.387	-65	115	170.00
		GNDD202	504524.999	6600443.375	1816.607	-60	115	320.00
		GNDD203	504597.900	6600292.924	1820.443	-60	170	361.50
		GNDD204	504858.596	6601037.331	1820.096	-60	295	190.10
		GNDD205	504368.667	6599653.253	1792.808	-60	115	320.00
		GNDD206	504502.882	6600109.342	1814.752	-45	90	315.60
		GNDD207	504522.884	6600357.893	1816.137	-60	115	365.00
		GNDD208	504919.928	6601011.763	1817.683	-60	295	299.00
		GNDD209	504455.248	6599665.027	1793.655	-60	115	212.00
		GNDD210	504462.426	6600034.696	1804.674	-55	115	404.00
		GNDD211	504918.046	6601053.056	1818.575	-60	295	260.00

Issued Capital 974.4m shares 49.0m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commentary						
		GNDD212	504556.481	6600173.681	1823.158	-50	170	90.00
		GNDD213	504437.719	6599952.199	1801.892	-55	115	401.00
		GNDD214	504479.068	6599647.469	1794.866	-25	115	185.30
		GNDD215	504841.586	6601002.965	1820.301	-60	295	215.50
		GNDD216	504575.288	6600730.335	1823.004	-60	115	260.00
		GNDD217	504528.620	6600189.318	1817.887	-60	170	140.00
		GNDD218	504744.099	6601001.774	1823.249	-60	295	250.00
		GNDD219	504559.700	6600171.900	1821.200	-67	170	125.00
		GNDD220	504503.489	6600761.157	1825.667	-60	115	269.00
		GNDD221	504559.700	6600171.900	1821.200	-75	170	165.00
		GNDD222	504740.575	6600963.697	1822.322	-60	295	251.00
		GNDD223	504516.675	6600218.714	1815.407	-60	170	200.00
		GNDD224	504450.361	6600481.295	1818.275	-60	115	338.00
		GNDD225	504526.735	6601150.967	1834.202	-60	115	299.00
		GNDD226	504649.341	6601710.086	1842.687	-60	115	281.00
		GNDD227	504517.120	6600217.001	1815.363	-66	170	266.00
		GNDD228	504776.100	6601210.300	1827.900	-61	115	330.00
		GNDD229	504632.614	6601318.236	1833.884	-60	115	255.00
		GNDD230	504658.776	6601614.082	1840.047	-60	115	284.00
		GNDD231	504919.069	6602642.725	1840.857	-60	110	240.00
		GNDD232	504317.901	6599836.390	1799.881	-65	115	179.30
		GNDD233	504669.895	6601527.348	1836.811	-50	115	236.00
		GNDD234	504822.913	6601277.432	1827.472	-60	115	116.00
		GNDD235	504381.663	6599939.975	1802.201	-65	115	140.00
		GNDD236	504595.397	6601384.531	1836.630	-60	115	260.00
		GNDD237	504628.160	6601590.640	1839.508	-60	115	450.00
		GNDD238	504906.977	6602616.887	1841.656	-60	110	250.00
		GNDD239	504477.711	6599648.097	1794.358	-50	115	91.00
		GNDD240	504474.701	6600231.137	1813.421	-55	170	200.00
		GNDD241	504489.556	6599566.448	1793.976	-45	115	146.50

Issued Capital 974.4m shares 49.0m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commentary						
		GNDD242	504577.073	6601302.101	1835.696	-60	115	340.20
		GNDD243	504443.175	6600220.099	1811.582	-60	170	161.00
		GNDD244	504840.051	6602586.818	1845.192	-60	110	281.00
		GNDD245	504682.392	6601564.613	1837.879	-50	115	306.00
		GNDD246	504304.458	6599841.564	1800.364	-72	115	212.00
		GNDD247	504467.820	6599499.478	1797.272	-35	115	180.00
		GNDD248	504663.877	6601484.106	1837.295	-60	115	320.00
		GNDD249	504565.561	6601221.295	1834.153	-60	115	280.00
		GNDD250	504330.009	6599876.638	1800.342	-60	115	197.00
		GNDD251	504477.971	6599538.205	1794.923	-45	115	170.50
		GNDD252	504831.382	6600924.214	1818.699	-60	295	308.00
		GNDD253	504457.312	6599611.851	1792.452	-60	115	277.90
		GNDD254	504619.880	6601545.848	1839.946	-60	115	413.00
		GNDD255	504614.456	6601152.752	1830.734	-60	115	229.00
		GNDD256	504439.108	6599479.931	1789.382	-40	115	200.00
		GNDD257	504846.070	6600960.942	1819.000	-60	295	290.00
		GNDD258	504479.202	6600229.965	1813.512	-64	170	270.00
		GNDD259	504891.047	6601156.539	1824.952	-78	295	209.00
		GNDD260	504686.229	6601779.816	1843.684	-60	115	281.00
		GNDD261	504735.261	6600179.706	1847.318	-45	120	140.00
		GNDD262	504907.951	6600975.057	1817.254	-60	295	290.00
		GNDD263	504874.653	6601167.487	1825.604	-60	295	152.00
		GNDD264	504404.218	6600202.470	1810.311	-60	170	229.80
		GNDD265	504493.431	6600345.518	1815.122	-55	170	425.00
		GNDD266	504730.982	6600175.224	1847.381	-40	170	90.00
		GNDD267	504886.046	6601114.747	1820.458	-65	295	221.00
		GNDD268	504445.758	6600392.598	1815.641	-60	115	360.00
		GNDD269	504696.082	6600164.192	1843.123	-45	170	112.60
		GNDD270	504888.213	6601199.370	1825.457	-80	295	155.30
		GNDD271	504560.712	6600319.000	1817.861	-60	130	281.00

Issued Capital 974.4m shares 49.0m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commentary							
		GNDD272	504444.186	6600217.869	1811.622	-52	170	191.00	
		GNDD273	504559.651	6600163.955	1825.649	-20	170	80.00	
		GNDD274	504564.640	6600318.832	1818.105	-55	175	340.00	
		GNDD275	504887.265	6601199.716	1825.475	-55	295	131.00	
		GNDD276	504464.535	6600301.076	1814.073	-60	115	340.00	
		GNDD277	504848.561	6601090.785	1821.157	-60	295	155.00	
		GNDD278	504496.144	6600345.519	1815.221	-62	170	380.00	
		GNDD279	504590.000	6600164.000	1829.600	-45	155	90.00	
		GNDD280	504570.040	6601132.497	1831.818	-60	115	266.00	
		GNDD281	504599.717	6600293.500	1820.179	-67	170	470.00	
		GNDD282	504462.194	6600299.930	1814.097	-60	170	370.00	
		GNDD283	504590.0	6600164.0	1829.6	-5	155	95.00	
		GNDD284	504625.209	6600441.245	1819.581	-60	115	130.00	
		GNDD285	504525.3	6601150.7	1833.8	-70	115	401.00	
		GNDD286	504396.4	6600235.1	1813.1	-60	170	260.00	
		GNDD287	504538.7	6600482.6	1815.7	-60	115	265.00	
		GNDD288	504624.0	6600326.0	1819.4	-60	170	450.00	
		GNDD289	504650.0	6600182.0	1824.3	-45	170	278.30	
		GNDD290	504361.2	6600204.4	1813.1	-60	170	200.00	
		GNDD291	504548.7	6600522.0	1817.3	-60	115	203.00	
		GNDD292	504538.5	6600615.0	1820.2	-60	115	270.00	
		GNDD293	504665.0	6601394.7	1837.4	-60	115	215.00	
		GNDD294	504434.8	6600247.2	1812.4	-60	170	290.00	
		GNDD295	504569.0	6600556.6	1818.1	-60	115	221.00	
		GNDD296	504380.1	6599622.6	1791.9	-60	115	299.00	
		GNDD297	504650.0	6600182.0	1824.3	-20	170	167.50	
		GNDD298	504641.1	6601449.8	1840.0	-60	115	350.00	
		GNDD299	504312.9	6599705.1	1797.7	-60	115	170.00	
		GNDD300	504595.1	6600632.7	1819.0	-60	115	200.00	
		GNDD301	504636.0	6600298.0	1823.1	-25	115	90.20	

Issued Capital 974.4m shares 49.0m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commentary						
		GNDD302	504110.5	6599843.6	1800.0	-60	115	221.00
		GNDD303	504504.7	6600851.4	1828.2	-60	115	240.00
		GNDD304	504743.6	6601445.5	1836.9	-60	115	158.00
		GNDD305	504506.7	6600674.4	1823.4	-60	115	299.00
		GNDD306	504187.5	6599940.3	1808.0	-62	115	320.00
		GNDD307	504635.7	6600393.1	1822.3	-20	115	100.00
		GNDD308	504504.9	6600939.5	1827.7	-60	115	300.00
		GNDD309	504599.3	6601512.4	1840.8	-60	115	390.00
		GNDD310	504499.0	6600633.4	1822.4	-60	115	299.00
		GNDD311	504218.7	6600013.8	1805.0	-60	115	246.00
		GNDD312	504463.0	6599679.2	1793.4	-25	115	80.50
		GNDD313	504321.1	6600198.2	1814.9	-60	170	210.00
		GNDD314	504300.0	6599667.1	1797.9	-60	115	350.00
		GNDD315	504506.7	6600718.1	1824.6	-60	115	286.00
		GNDD316	504121.0	6599927.0	1804.4	-60	115	342.60
		GNDD317	504278.0	6599075.0	1779.4	-10	110	155.00
		GNDD318	504351.1	6600261.4	1814.9	-60	170	300.00
		GNDD319	504647.3	6600701.2	1820.5	-60	295	240.00
		GNDD320	504979.1	6600983.3	1813.9	-60	295	374.00
		GNDD321	504391.2	6600264.1	1814.1	-60	170	281.10
		GNDD322	504834.2	6600874.3	1813.0	-60	295	442.60
		GNDD323	503850.0	6599920.0	1810.0	-60	115	479.00
		GNDD324	504665.7	6601261.8	1833.7	-60	115	255.00
		GNDD325	504473.6	6599806.7	1798.3	-41	115	83.50
		GNDD326	503923.5	6600283.9	1800.0	-60	115	320.00
		GNDD327	504463.0	6601267.3	1841.8	-60	115	480.00
		GNDD328	504473.6	6599806.7	1798.3	-30	55	100.70
		GNDD329	504481.2	6600818.2	1828.7	-60	115	350.00
		GNDD330	504977.7	6600942.9	1812.9	-60	295	380.00
		GNDD331	503964.6	6599823.4	1801.4	-70	115	301.60

Issued Capital 974.4m shares 49.0m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commentary						
		GNDD332	504587.7	6601342.5	1839.5	-60	115	320.00
		GNDD333	504587.7	6600900.9	1825.1	-60	115	340.00
		GNDD334	504987.9	6601026.3	1815.4	-60	295	371.00
		GNDD335	503976.4	6599906.2	1804.1	-70	115	300.00
		GNDD336	504448.6	6600701.3	1826.7	-60	115	422.00
		GNDD337	504490.4	6601122.8	1828.7	-60	115	395.00
		GNDD338	504207.5	6600063.5	1813.1	-60	115	299.00
		GNDD339	504367.7	6599591.2	1791.6	-60	115	300.00
		GNDD340	505044.9	6601044.0	1813.6	-60	295	380.00
		GNDD341	504588.0	6600812.6	1823.6	-60	115	311.00
		GNDD342	504312.3	6601448.7	1847.4	-60	115	472.80
		GNDD343	504283.4	6600183.2	1815.3	-60	170	275.00
		GNDD344	504588.0	6600680.0	1820.0	-60	115	320.00
		GNDD345	505037.8	6601091.4	1813.0	-60	295	344.60
		GNDD346	504358.1	6599705.9	1795.3	-75	115	173.00
		GNDD347	504501.9	6601426.5	1841.5	-60	115	330.00
		GNDD348	504242.0	6600189.8	1815.8	-60	170	250.00
		GNDD349	504421.7	6600801.8	1829.8	-60	115	401.00
		GNDD350	504529.4	6601193.0	1834.0	-60	115	395.00
		GNDD351	504331.3	6600143.5	1811.3	-60	170	190.00
		GNDD352	504311.5	6599705.7	1797.6	-62	115	359.00
		GNDD353	504370.5	6600151.3	1810.1	-60	170	120.00
		GNDD354	504365.7	6600178.8	1811.0	-60	170	125.00
		GNDD355	504850.9	6601263.7	1826.0	-60	115	135.00
		GNDD356	504477.0	6601482.2	1842.0	-60	115	384.70
		GNDD357	504360.8	6600521.3	1823.8	-60	115	329.00
		GNDD358	504361.2	6600206.0	1813.1	-63	170	179.80
		GNDD359	504408.4	6601161.1	1827.6	-60	115	380.00
		GNDD360	504844.5	6601178.5	1824.7	-60	115	448.20
		GNDD361	504450.4	6601229.8	1835.4	-60	115	452.00

Issued Capital 974.4m shares 49.0m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commentary						
		GNDD361	504450.4	6601229.8	1835.4	-60	115	452.00
		GNDD362	504188.9	6599718.8	1801.0	-55	115	449.00
		GNDD363	504434.8	6600247.2	1812.4	-60	170	290.00
		GNDD364	504631.4	6600880.6	1821.9	-60	115	270.00
		GNDD365	504477.4	6600422.8	1816.7	-60	115	410.00
		GNDD366	504557.0	6601489.0	1843.5	-60	115	392.00
		GNDD367	504586.3	6600857.5	1824.5	-60	115	320.00
		GNDD368	504374.6	6601221.0	1840.5	-63	115	462.00
		GNDD369	504584.8	6601255.4	1837.0	-60	115	289.70
		GNDD370	504344.7	6600264.3	1816.1	-60	115	350.00
		GNDD371	505120.4	6600275.0	1771.2	-60	170	300.00
		GNDD372	504548.3	6601625.5	1843.4	-60	115	452.00
		GNDD373	504884.7	6600894.9	1814.5	-60	295	452.00
		GNDD374	505273.5	6600329.0	1769.4	-60	170	400.00
		GNDD375	504200.0	6600331.7	1816.3	-60	115	370.00
		GNDD376	504696.5	6601600.0	1841.9	-60	115	238.10
		GNDD377	504920.0	6600746.0	1804.5	-60	115	461.00
		GNDD378	504406.0	6599618.0	1792.7	-60	115	332.00
		GNDD379	504359.6	6600345.9	1818.5	-60	115	350.00
		GNDD380	504484.5	6600596.0	1821.8	-60	115	371.00
		GNDD381	504806.1	6600931.6	1819.0	-60	295	290.00
		GNDD382	504289.2	6599627.9	1795.3	-60	115	350.00
		GNDD383	504352.0	6601761.2	1858.6	-60	115	461.00
		GNDD384	504411.0	6600152.1	1809.7	-60	170	125.00
		GNDD385	504459.4	6600651.9	1824.7	-60	115	401.00
		GNDD386	504453.4	6600142.0	1808.4	-70	170	110.00
		GNDD387	504453.3	6600522.3	1820.7	-60	115	344.00
		GNDD388	505196.0	6600307.0	1769.8	-60	170	250.00
		GNDD389	504917.0	6601503.0	1836.0	-24	115	100.00
		GNDD390	504584.2	6600321.7	1817.4	-65	170	480.00

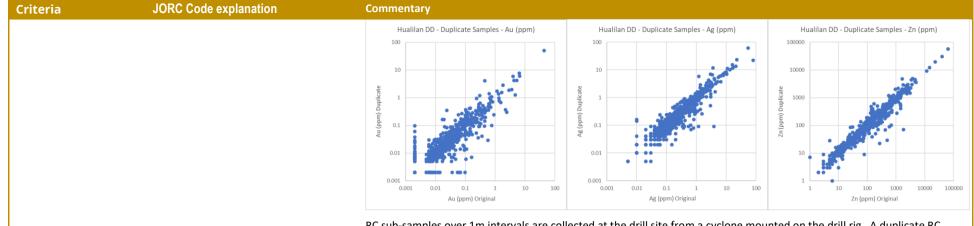
Issued Capital 974.4m shares 49.0m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commentary						
		GNDD391	504391.9	6600462.7	1820.4	-60	115	350.00
		GNDD392	504566.4	6600778.5	1823.4	-60	115	251.00
		GNDD393	504194.6	6599760.1	1804.0	-60	112	469.00
		GNDD394	504474.7	6601924.7	1853.9	-60	115	401.00
		GNDD395	504284.4	6600556.9	1828.5	-60	115	731.00
		GNDD396	505060.8	6599621.1	1746.2	-60	115	211.50
		GNDD397	504926.0	6601422.0	1855.9	-50	170	120.00
		GNDD398	504894.5	6599433.9	1762.7	-60	115	200.00
		GNDD399	504614.1	6600382.6	1818.2	-59	170	605.00
		GNDD400	504922.4	6599377.2	1763.3	-60	115	300.00
		GNDD401	504194.6	6599760.1	1804.0	-50	115	503.00
		GNDD402	504628.4	6601676.4	1845.7	-60	115	320.00
		GNDD403	504926.0	6601422.0	1855.9	-50	130	104.90
		GNDD404	505020.0	6599331.0	1752.0	-60	115	220.00
		GNDD405	504784.9	6601558.9	1839.7	-60	115	170.00
		GNDD406	504507.2	6601600.6	1844.0	-60	112	701.00
		GNDD407	504319.2	6599680.1	1796.3	-60	115	315.00
		GNDD408	504632.3	6600279.4	1820.2	-50	170	377.00
		GNDD409	504944.0	6601440.0	1855.5	-50	115	129.90
		GNDD410	505178.7	6600404.0	1774.0	-60	170	346.40
		GNDD411	504944.0	6601440.0	1855.5	-15	115	70.50
		GNDD412	504465.0	6600561.0	1821.2	-60	115	320.00
		GNDD413	504694.7	6600718.7	1816.1	-60	115	92.00
		GNDD414	504142.5	6599740.4	1800.0	-60	112	572.00
		GNDD415	504614.5	6600712.0	1819.8	-60	115	152.00
		GNDD417	504368.5	6600738.4	1830.3	-60	112	575.00
		GNDD418	504894.0	6601243.6	1826.0	-60	115	140.00
		GNDD419	505292.0	6601995.0	1785.8	-60	115	300.0
		GNDD420	504824.0	6601232.1	1827.8	-60	115	176.00
		GNDD421	504724.3	6601212.4	1829.5	-60	115	212.00

Issued Capital 974.4m shares 49.0m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commentary							
		GNDD422	504695.0	6601600.0	1841.9	-60	115	341.00	
		GNDD423	505106.0	6601553.0	1880.2	-60	040	23.70	
		GNDD424	504712.9	6601195.7	1829.8	-60	115	170.00	
		GNDD425	505106.0	6601553.0	1880.2	-57	350	80.0	
		GNDD427	504730.1	6601673.1	1844.2	-60	115	230.0	
		GNDD428	504151.9	6599780.2	1803.5	-60	115	290.0	
		GNDD429	504738.0	6601360.5	1834.3	-60	115	182.0	
		GNDD430	505398.0	6601916.0	1776.0	-55	115	312.0	
		GNDD431	504770.3	6601345.5	1832.5	-60	115	116.0	
		GNRC052	504443.927	6599554.145	1790.676	-60	115	90	
		GNRC053	504452.888	6599589.416	1791.660	-60	115	96	
		GNRC054	504458.908	6599679.484	1794.408	-60	115	90	
		GNRC055	504461.566	6599726.253	1795.888	-60	115	102	
		GNRC056	504463.187	6599763.817	1796.276	-60	115	102	
		GNRC057	504453.440	6599901.106	1800.270	-60	115	96	
		GNRC058	504716.992	6600488.640	1825.624	-60	115	102	
		GNRC059	504785.101	6600721.845	1817.042	-60	115	84	
		GNRC061	504963.888	6601521.567	1835.635	-60	115	30	
		GNRC062	504943.260	6601531.855	1834.917	-60	115	30	
		GNRC063	504914.884	6601499.583	1833.781	-60	115	36	
		GNRC064	504895.067	6601472.101	1833.039	-60	115	36	
		GNRC065	504865.673	6601481.570	1831.536	-60	115	60	
		GNRC066	504896.480	6601506.894	1834.226	-60	115	48	
		GNRC067	504911.268	6601541.124	1836.127	-60	115	50	
		GNRC068	504990.546	6601552.694	1835.287	-60	030	114	
		GNRC069	504934.855	6601579.782	1836.179	-60	115	120	
		GNRC070	504925.545	6601566.505	1835.127	-60	350	84	
		GNRC071	504878.397	6601572.030	1833.873	-60	350	54	
		GNRC072	504877.872	6601568.814	1833.843	-70	350	72	
		GNRC075	504842.742	6601573.984	1835.428	-60	350	60	

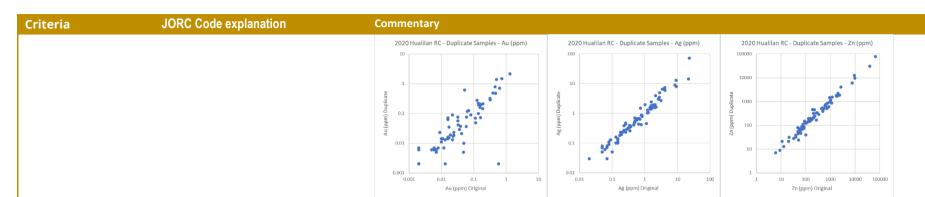
Issued Capital 974.4m shares 49.0m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman


Criteria	JORC Code explanation	Commentary							
		GNRC076	504828.279	6601539.638	1835.244	-60	115	76	
		GNRC078	504842.744	6601450.106	1830.180	-60	115	70	
		GNRC080	504864.734	6601560.758	1834.333	-60	115	86	
		GNRC081	504815.835	6601460.850	1832.033	-73	115	86	
		GNRC084	504965.730	6601530.280	1836.056	-55	030	145	
		GNRC086	504838.724	6601402.481	1829.645	-60	115	60	
		GNRC087	504858.585	6601345.400	1828.417	-60	115	30	
		GNRC090	504821.284	6601359.986	1829.379	-60	115	60	
		GNRC091	504789.111	6601376.410	1830.448	-60	115	80	
		GNRC094	504852.454	6601307.187	1827.304	-60	115	60	
		GNRC097	504831.396	6601289.723	1827.153	-60	115	70	
		GNRC098	504784.865	6601253.409	1827.869	-76	115	96	
		GNRC104	504780.186	6601228.313	1827.663	-64	115	150	
		GNRC107	504623.1	6600197.1	1823.3	-60	185	120	
		GNRC110	504502.0	6600107.0	1814.0	-62	90	60	
		GNRC111	504427.8	6599739.8	1796.4	-60	115	120	
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and 		d into wooden boxe ns are reconciled by					n blocks at th	e end of each
-	results assessed Measures taken to maximise sample	Triple tube drillin	g has been being do	ne by CEL to maxin	nise core recov	ery.			
	recovery and ensure representative nature of the samples. - Whether a relationship exists between sample recovery and grade	RC sub-samples a collected for each splitter to split or	are collected from a h metre of RC drilling ut a 2-4kg sub-samp mpling.	g. Duplicate sample	es are taken at	the rate o	of I every 25-30	0 samples usi	ng a riffle
	and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	A possible relationship has been observed between historic sample recovery and Au Ag or Zn grade whereby low recoveries have resulted in underreporting of grade. Insufficient information is not yet available to more accurately quantify this. Core recovery is influenced by the intensity of natural fracturing in the rock. A positive correlation between recovery and RQD has been observed. The fracturing is generally post mineral and not directly associated with the mineralisation.							
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support 	from the historic drilling have been found. No drill core has survived due to poor storage and neglect. No RC sample chips							

Issued Capital 974.4m shares 49.0m options 120m perf shares 16m perf rights **Australian Registered Office** Level 1 1205 Hay Street

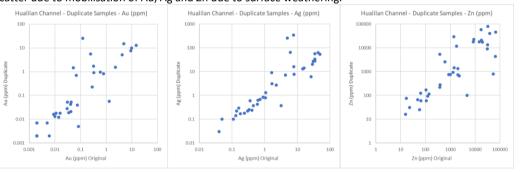
West Perth WA 6005

DirectorsMr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman


Criteria	JORC Code explanation	Commentar	Commentary								
	 appropriate Mineral Resource estimation mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean channel etc) photography. The total length and percentage of the relevant intersections logged. 	level that is geology, alte	suitable ration,	for geolog	ical modell alisation. V	ing resource Vhere possib	estimation ole logging is	and metallur s quantitative	gical test wo . Geologica	ork. RC drill ch	d structure to a nips are logged for ne in MS Excel in a ta.
Sub-sampling techniques and sample preparation	 If core whether cut or sawn and whether quarter half or all core taken. If non-core whether riffled tube sampled rotary split etc and whether sampled wet or dry. For all sample types the nature quality and appropriateness of the sample preparation technique. 	blade chisel or a manual core split press. The geologist logging the core indicates on the drill core where the saw cut is to be made to ensure half-core sample representivity. Sample intervals are selected based on lithology alteration and mineralization boundaries. Sample lengths average 1.38m No second-half core samples have been submitted. The second half of the core samples has been retained in the core trays for future reference. From hole GNDD073, duplicate diamond core samples have been collected for every 25-30m drilled. The duplicate diamond core samples are ¼ core samples. Duplicate core sample results and correlation plots (log scale for Au, Ag and Indian) are shown below:									the saw cut is to ths average 1.38m. and in the core e duplicate
	 Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the 	Ziij are silow	n	RSQ	mean original	duplicate	median original	duplicate	variance original	duplicate	
	situ material collected including for instance results for field duplicate/second-half sampling. - Whether sample sizes are appropriate to the grain size of the material being sampled. S Z n= RS Th	Au (ppm) Ag (ppm) Cd (ppm) Cu (ppm) Fe (%) Pb (ppm) S (%) Zn (ppm)	971971971971971971971	0.977 0.709 0.984 0.393 0.978 0.971 0.983 0.979	0.79 3.04 19.65 1.585 114.7 0.357 508	0.150 0.69 2.73 16.00 1.567 112.9 0.348 472	0.21 0.16 3.60 1.620 15.7 0.110	0.009 0.19 0.15 3.40 1.620 15.1 0.110 80	2.215 13.15 520.20 1.3E+04 2.9 5.7E+05 0.889 1.3.E+07	7.15 463.80 5.4E+03 2.8 7.6E+05 0.832 1.2.E+07	
		n=count RSQ = R squa	ion for (Cu is poor l	because of	1 pair, where	e Cu results	vary significa	ntly. Remov	ving this outlie	er provides at RSQ

RC sub-samples over 1m intervals are collected at the drill site from a cyclone mounted on the drill rig. A duplicate RC sample is collected for every 25-30m drilled.

The duplicate RC sample results and correlation plots (log scale for Au, Ag and Zn) are shown below:


	n	RSQ	mean		median		variance	
			original	duplicate	original	duplicate	original	duplicate
Au (ppm)	85	0.799	0.101	0.140	0.017	0.016	0.041	0.115
Ag (ppm)	85	0.691	1.74	2.43	0.59	0.58	13.59	64.29
Cd (ppm)	85	0.989	15.51	16.34	0.41	0.44	4189	4737
Cu (ppm)	85	0.975	47.74	53.86	5.80	5.70	2.4E+04	3.1E+04
Fe (%)	85	0.997	1.470	1.503	0.450	0.410	7.6	7.6
Pb (ppm)	85	0.887	296.0	350.6	26.3	32.4	6.0E+05	7.4E+05
S (%)	85	0.972	0.113	0.126	0.020	0.020	0.046	0.062
Zn (ppm)	85	0.977	3399	3234	158	177	2.5.E+08	2.1.E+08
n=count RSQ = R squa	ired							

CEL samples have been submitted to the MSA laboratory in San Juan and the ALS laboratory in Mendoza for sample preparation. The sample preparation technique is considered appropriate for the style of mineralization present in the Project.

Sample sizes are appropriate for the mineralisation style and grain size of the deposit.

39 duplicate channel sample assays have been collected from the underground sampling program. These data show more scatter due to mobilisation of Au, Ag and Zn due to surface weathering.

Quality of assay data and laboratory tests

- The nature quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.
- For geophysical tools spectrometers handheld XRF instruments etc the

The MSA laboratory used for sample preparation in San Juan has been inspected by Stuart Munroe (Exploration Manager) and Sergio Rotondo (COO) prior to any samples being submitted. The laboratory procedures are consistent with international best practice and are suitable for samples from the Project. The SGS laboratory in San Juan and the ALS laboratory in Mendoza has not yet been inspected by CEL representatives.

Internal laboratory standards were used for each job to gauge precision and accuracy of assays reported.

CEL submit blank samples (cobble and gravel material from a quarry nearby to Las Flores San Yuan) with drill core, RC subsamples and channel sample to the MSA laboratory, ALS laboratory and SGS laboratory. The blank samples are

Criteria

JORC Code explanation

Commentary

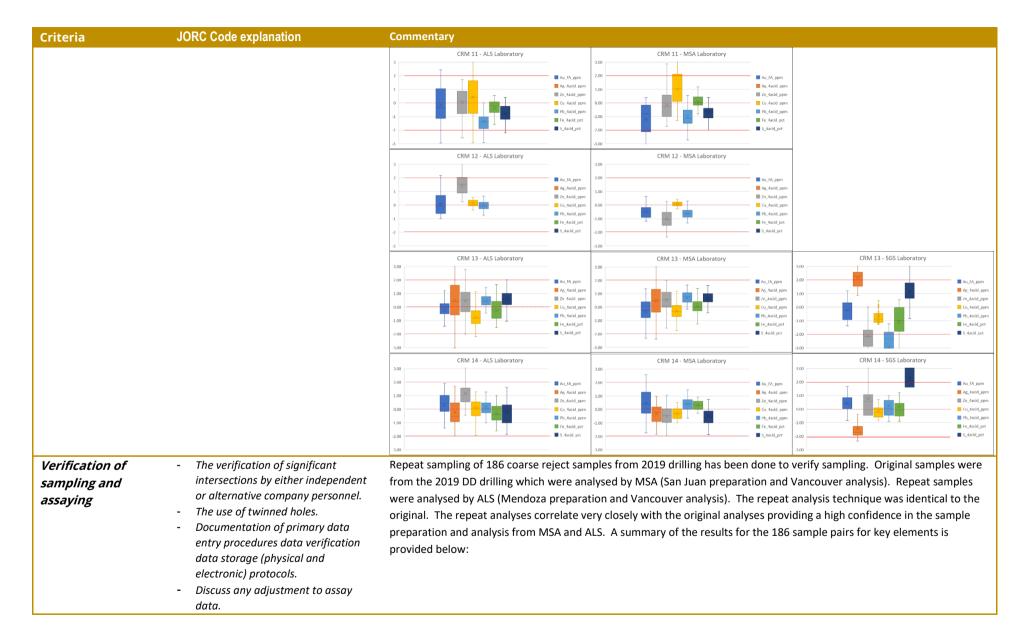
parameters used in determining the analysis including instrument make and model reading times calibrations factors applied and their derivation etc.

 Nature of quality control procedures adopted (eg standards blanks duplicates external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established. strategically placed in the sample sequence immediately after samples that were suspected of containing high grade Au Ag Zn or Cu to test the lab preparation contamination procedures. The values received from the blank samples suggest rare cross contamination of samples during sample preparation.

For GNDD001 – GNDD010 samples analysed by MSA in 2019, three different Certified Standard Reference pulp samples (CRM) with known values for Au Ag Pb Cu and Zn have been submitted with samples of drill core to test the precision and accuracy of the analytic procedures and determination of the MSA laboratory in Canada Two of the standards were only used 4 times each and the third . 26 reference analyses were analysed in the samples submitted in 2019. For CRM 1 one sample returned an Au value > 2 standard deviations (SD) above the certified value. For CRM 2 one sample returned an Au value < 2SD below the certified value. For CRM 3 (graphs below) one sample returned a Cu value > 2SD above the certified value. All other analyses are within 2SD of the expected value. The standards demonstrate suitable precision and accuracy of the analytic process. No systematic bias is observed.

For drill holes from GNDD011 and unsampled intervals from the 2019 drilling, 11 different Certified Standard Reference pulp samples (CRM) with known values for Au Ag Fe S Pb Cu and Zn have been submitted with samples of drill core to test the precision and accuracy of the analytic procedures of the MSA and ALS laboratories. In the results received to date there has been no observed bias in results of the CRM. The standards demonstrate suitable precision and accuracy of the analytic process. No systematic bias is observed. A summary of the standard deviations from the expected values for CRM's used is summarised below. Generally, an average of standard deviations close to zero indicates a high degree of accuracy and a low range of standard deviations with a low fail count indicates a high degree of precision.

37 standard (CRM) sample assays submitted with the channel samples have been finalised. The results are consistent with CRM submitted with drill core samples.



DirectorsMr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

DirectorsMr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

Issued Capital 974.4m shares 49.0m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

DirectorsMr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commentary								
			Mean		Median		Std Devia	ation		
		Element	MSA	ALS	MSA	ALS	MSA	ALS	Correlation coefficient	
		Au (FA and GFA ppm)	4.24	4.27	0.50	0.49	11.15	11.00	0.9972	
		Ag (ICP and ICF ppm)	30.1	31.1	5.8	6.2	72.4	73.9	0.9903	
		Zn ppm (ICP ppm and ICF %)	12312	12636	2574	2715	32648	33744	0.9997	
		Cu ppm (ICP ppm and ICF %)	464	474	74	80	1028	1050	0.9994	
		Pb ppm (ICP ppm and ICF %)	1944	1983	403	427	6626	6704	0.9997	
		S (ICP and ICF %)	2.05	1.95	0.05	0.06	5.53	5.10	0.9987	
		Cd (ICP ppm)	68.5	68.8	12.4	12.8	162.4	159.3	0.9988	
		As (ICP ppm))	76.0	79.5	45.8	47.6	88.1	90.6	0.9983	
		Fe (ICP %)	4.96	4.91	2.12	2.19	6.87	6.72	0.9994	
		REE (ICP ppm)	55.1	56.2	28.7	31.6	98.2	97.6	0.9954	
		Cd values >1000 are set at 1000. REE is the sum off Ce, La, Sc, Y. CE > 500 is set at 500. Below detection is set at zero CEL have sought to twin some of the historic drill holes to check the results of previous exploration. A full analysis of the twin holes has yet to be completed. The holes are: GNDD003 – DDH34 and 04HD08 GNRC110 – DDH53 GNDD144 – 05HD39 GNRC107 – GNDD008/008A GNDD206 – DDH54 Final sample assay analyses are received by digital file in PDF and CSV format. The original files are backed-up and the copied into a drill hole database for geological modelling. Assay results summarised in the context of this report have been rounded appropriately to 2 significant figures. No assay results summarised in the context of this report have been rounded appropriately to 2 significant figures.						d the data		
Location of data points	to locate drill holes (collar and down-hole surveys) trenches mine workings and other locations used Mineral Resource estimation.	down-hole surveys) trenches mine workings and other locations used in survey mark at the entrance to the underground which is located using differential GPS. The locations have been surveyed								

Issued Capital 974.4m shares 49.0m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commentary
	used.	The drill machine is set-up on the drill pad using hand-held equipment according to the proposed hole design.
	 Quality and adequacy of topographic control. 	Diamond core drill holes are surveyed at 30-40m intervals down hole using a Reflex tool. RC drill holes are surveyed down hole every 10 metres using a gyroscope to avoid magnetic influence from the drill rods.
		All current and previous drill collar sites, Minas corner pegs and strategic surface points have been surveyed using DGPS to provide topographic control for the Project.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	No regular drill hole spacing has been applied across the Project, although a nominal 40m x 40m drill spacing is being applied to infill and extension drilling where appropriate. The current drilling is designed to check previous exploration, extend mineralisation along strike, and provide some information to establish controls on mineralization and exploration potential. No Mineral Resource Estimate to JORC 2012 reporting standards has been made at this time. Samples have not been composited.
Orientation of data	- Whether the orientation of sampling	As far as is currently understood and where practicable, the orientation of sampling achieves unbiased sampling of
in relation to	achieves unbiased sampling of	structures and geology controlling the mineralisation.
geological structure	 possible structures and the extent to which this is known considering the deposit type. If the relationship between the drilling orientation and the 	For underground channel sampling, the orientation of the sample is determined by the orientation of the workings. Where the sampling is parallel with the strike of the mineralisation, plans showing the location of the sampling relative to the orientation of the mineralisation, weighted average grades and estimates of true thickness are provided to provide a balanced report of the mineralisation that has been sampled.
	orientation of key mineralised structures is considered to have introduced a sampling bias this should be assessed and reported if material.	Drilling has been designed to provide an unbiased sample of the geology and mineralisation targeted.
Sample security	 The measures taken to ensure sample security. 	Samples were under constant supervision by site security, senior personnel, and courier contractors prior to delivery to the preparation laboratories in San Juan and Mendoza.
Audits or reviews	 The results of any audits or reviews of sampling techniques and data. 	There has not yet been any independent reviews of the sampling techniques and data.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria

JORC Code explanation

Commentary

Mineral tenement and land tenure status

- Type reference name/number location and ownership including agreements or material issues with third parties such as joint ventures partnerships overriding royalties native title interests historical sites wilderness or national park and environmental settings.
- The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.

The current Hualilan project comprises 15 Minas (equivalent of mining leases) and 2 Demasias (mining lease extensions), an additional 8 Minas and 3 exploration licences (Cateos) under a farmin agreement and a further 4 Cateos directly held. This covers all of the currently defined mineralization and surrounding prospective ground. There are no royalties on the project. CEL is earning a 75% interest in the Project by funding exploration to a Definitive Feasibility Study (DFS).

Granted mining leases (Minas Otorgadas) at the Hualilan Project

Name	Number	Current Owner	Status	Grant Date	Area (ha)
Cerro Sur					
Divisadero	5448-M-1960	Golden Mining S.R.L.	Granted	30/04/2015	6
Flor de Hualilan	5448-M-1960	Golden Mining S.R.L.	Granted	30/04/2015	6
Pereyra y Aciar	5448-M-1960	Golden Mining S.R.L.	Granted	30/04/2015	6
Bicolor	5448-M-1960	Golden Mining S.R.L.	Granted	30/04/2015	6
Sentazon	5448-M-1960	Golden Mining S.R.L.	Granted	30/04/2015	6
Muchilera	5448-M-1960	Golden Mining S.R.L.	Granted	30/04/2015	6
Magnata	5448-M-1960	Golden Mining S.R.L.	Granted	30/04/2015	6
Pizarro	5448-M-1960	Golden Mining S.R.L.	Granted	30/04/2015	6
Cerro Norte					
La Toro	5448-M-1960	CIA GPL S.R.L.	Granted	30/04/2015	6
La Puntilla	5448-M-1960	CIA GPL S.R.L.	Granted	30/04/2015	6

Criteria	JORC Code explanation	Commentary					
		Pique de Ortega	5448-M-1960	CIA GPL S.R.L.	Granted	30/04/2015	6
		Descrubidora	5448-M-1960	CIA GPL S.R.L.	Granted	30/04/2015	6
		Pardo	5448-M-1960	CIA GPL S.R.L.	Granted	30/04/2015	6
		Sanchez	5448-M-1960	CIA GPL S.R.L.	Granted	30/04/2015	6
		Andacollo	5448-M-1960	CIA GPL S.R.L.	Granted	30/04/2015	6

Mining Lease extensions (Demasias) at the Hualilan Project

Name	Number	Current Owner	Status	Grant date	Area (ha)
Cerro Sur					
North of "Pizarro" Mine	195-152-C-1981	Golden Mining S.R.L.	Granted	05/12/2014	1.9
Cerro Norte					
South of "La Toro" Mine	195-152-C-1981	CIA GPL S.R.L.	Granted	05/12/2014	1.9

Mining Lease Farmin Agreements

Name	Number	Transfrred to CEL	Status	Grant Date	Area (ha)
Marta Alicia	2260-S-58	Yes	Current		23.54
Marta	339.154-R-92	Yes	Current		478.50
Marta 1	339.153-R-92	Yes	Current		163.42
AK4	1124.299-R-18	Yes	Current		1500.00
Solitario 1-5	545.604-C-94	Yes	Current		685.00
Solitario 1-4	545.605-C-94	Yes	Current		310.83
Solitario 1-1	545.608-C-94	Yes	Subject to Approval		TBA
Solitario 6-1	545.788-C-94	Yes	Subject to Approval		TBA

Criteria JORC Code explanation Commentary Exploration Licence Farmin Agreements Transfrred to CEL Name Number **Status Grant Date** Area (ha) 295.122-R-1989 Yes Current 1882.56 Subject to 228.441-R-1993 Yes 2800.00 Approval 545.880-0-1994 Yes 149.99 Current Exploration Licences Held (Direct Award) Number Transfrred to CEL Status **Grant Date** Area (ha) Name 1124.495-I-20 Yes 2059.60 Ayen Current 1124-248G-20 Yes Current 933.20 1124-188-G-20 Yes Current 267.40 1124-188-G-20 Yes Current 600.00 There are no know impediments to obtaining the exploration license or operating the Project. Exploration done Intermittent sampling dating back over 500 years has produced a great deal of information and data including sampling Acknowledgment and appraisal of geologic maps reports trenching data underground workings drill hole results geophysical surveys resource estimates plus by other parties exploration by other parties. property examinations and detailed studies by several geologists. Prior to the current exploration no work has been completed since 2006. There is 6 km of underground workings that pass through mineralised zones. Records of the underground geology and sampling have been compiled and digitised as are sample data geological mapping trench data adit exposures and drill hole results. Historic geophysical surveys exist but have largely yet to be check located and digitised. Drilling on the Hualilan Project (Cerro Sur and Cerro Norte combined) extends to over 150 drill holes. The key historical

sampling

exploration drilling and sampling results are listed below.

Contact T: +61 8 6380 9235 E: admin@challengerex.com

1984 – Lixivia SA channel sampling & 16 RC holes (AG1-AG16) totalling 2040m 1995 - Plata Mining Limited (TSE: PMT) 33 RC holes (Hua- 1 to 33) + 1500 samples

1998 – Chilean consulting firm EPROM (on behalf of Plata Mining) systematic underground mapping and channel

1999 – Compania Mineral El Colorado SA ("CMEC") 59 core holes (DDH-20 to 79) plus 1700m RC program

Criteria	JORC Code explanation	Commentary						
		- 2003 – 2005 –	· La Mancha (T	SE Listed) undert	ook 7447m o	f DDH core dr	illing (HD-01 to	o HD-48)
		- Detailed resou	urce estimation	n studies were ur	ndertaken by	EPROM Ltda.	(EPROM) in 19	996 and CMEC (1999 revise
		2000) both of	which were wi	ritten to professi	onal standard	ls and La Man	cha 2003 and	2006.
				ion data by the v Is and custody pr			nigh standard a	and had appropriate
Geology	 Deposit type geological setting and style of mineralisation. 		n all rock types	where it prefere	entially replac		shale and san	dstone and occurs in fault
		mineralisation. It has b	een divided in	to three phases	– prograde sk	arn retrograd	e skarn and a	with vein-hosted Au-Ag late quartz–galena event iled geometallurgical work.
		Gold occurs in native for pyrite, chalcopyrite sph						lso commonly contains
			contacts or in thicknesses of	east-west strikin	g steeply dipp ain abundant	oing siliceous t sulphides. Th	faults that cros e intersection	within fractured dacitic ss the bedding at a high between the bedding- eralisation.
Drill hole Information	 A summary of all information mate to the understanding of the explore results including a tabulation of the following information for all Mater. 	has been used with up has been allowed. No	to 2m of inter	nal diltion or a cu	ut-off grade o	f 0.2 g/t Au ec	quivalent and ι	de of 1 g/t Au equivalent up to 4m of internal diltion rovided in the previous
	drill holes:	Hole_id	From (m)	Interval (m)	Au (g/t)	Ag (g/t)	Zn (%)	
	 easting and northing of the drill hor 	le AG16	38.6	1.2	0.1	28.6	1.7	
	collar	MG10	108.0	3.0	1.3	No assay	No assay	
	 elevation or RL (Reduced Level – 	DDH36	24.7	9.3	1.6	46.3	1.2	
	elevation above sea level in metres	of DDH53	17.3	1.4	1.0	1.7	0.00	
	the drill hole collar	DDH53	24.0	8.9	3.7	239.5	0.03	
	 dip and azimuth of the hole 	DDH53	35.7	3.9	3.9	87.8	0.06	
	,							
	- down hole length and interception	DDH53	41.0	3.0	2.6	7.6	0.20	
	 down hole length and interception depth 	DDH53 DDH54	41.0 20.0	3.0 1.1	2.6 1.2	7.6 0.7	0.20 0.00	
	- down hole length and interception	DDH54 DDH54						

Issued Capital 974.4m shares 49.0m options 120m perf shares 16m perf rights

justified on the basis that the

information is not Material and this

exclusion does not detract from the

Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

DDH65

DDH66

DDH66

Contact T: +61 8 6380 9235 E: admin@challengerex.com

1.0

7.2

2.4

1.8

23.7

69.9

33.4

42.9

114.4

0.30

2.4

2.2

82.0

83.1

87.9

Criteria	JORC Code explanation	Commentary					
	understanding of the report the	DDH66	104.9	2.8	1.8	29.0	0.10
	Competent Person should clearly	DDH67	98.7	1.3	0.2	7.8	1.3
	explain why this is the case.	DDH68	4.0	17.9	2.2	6.3	0.20
		DDH68	73.7	0.5	0.8	9.0	1.2
		DDH69	4.0	16.1	2.3	1.6	0.10
		DDH69	76.9	0.3	0.1	7.0	28.0
		DDH69	79.7	0.8	1.3	120.0	4.5
		DDH70	84.0	7.0	5.2	13.5	0.70
		DDH71	11.0	2.0	0.5	218.0	0.06
		DDH71	39.9	1.0	1.3	6.0	0.03
		DDH71	45.5	1.1	0.4	22.8	0.60
		DDH71	104.0	10.0	33.5	126.7	7.9
		DDH72	26.0	11.7	3.8	14.1	1.3
		DDH72	52.7	6.3	1.5	30.4	0.04
		DDH73	62.5	3.5	0.5	15.6	0.60
		DDH74	119.9	0.5	7.3	98.5	2.6
		DDH76	61.3	0.7	4.0	11.1	0.50
		DDH76	74.4	4.0	0.8	8.8	0.30
		DDH76	84.8	1.2	1.4	10.9	2.0
		DDH78	109.1	0.7	1.1	13.4	1.9
		03HD01A	90.1	1.7	2.1	37.4	2.4
		03HD03	55.0	2.4	2.5	25.6	2.3
		04HD05	80.3	2.0	0.9	42.7	0.02
		04HD05	97.5	1.8	1.9	35.0	0.04
		04HD05	102.0	1.0	1.3	42.1	0.01
		04HD05	106.0	1.0	0.7	28.0	0.05
		04HD05	108.0	5.6	2.8	19.9	1.2
		04HD06	65.4	1.2	46.6	846.0	0.50
		04HD06	75.0	1.0	1.0	2.9	0.01
		04HD06	104.5	7.6	1.8	5.0	1.2
		04HD06	115.1	0.9	16.4	23.1	7.7
		04HD07	98.3	2.2	1.4	32.5	0.90
		04HD10	44.3	0.2	3.9	81.5	5.6
		04HD10	55.5	0.5	1.3	11.5	0.46
		04HD10	78.6	1.7	4.8	93.7	2.4
		04HD11	28.0	1.0	0.1	9.3	1.4
		04HD12	49.3	0.7	1.5	16.1	0.10

Issued Capital 974.4m shares 49.0m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commentary					
		04HD13	61.5	1.0	0.8	7.9	0.20
		04HD15	103.7	0.3	1.7	32.9	0.80
		04HD16C	107.5	6.8	8.6	117.1	9.1
		04HD16C	111.8	2.5	7.6	75.6	11.5
		04HD16C	144.9	1.9	9.1	31.2	5.5
		04HD16C	171.1	0.4	0.5	9.4	1.7
		04HD17	134.9	0.7	2.5	14.3	4.1
		04HD17	139.1	0.5	10.5	9.4	0.20
		04HD17	199.6	0.2	0.8	3.5	5.9
		04HD17	202.1	1.9	4.5	1.5	0.70
		04HD20	43.2	1.8	0.9	83.9	0.20
		04HD21	70.1	0.2	4.8	60.6	6.4
		04HD21	141.1	0.6	12.9	105.0	4.8
		04HD24	72.0	2.0	2.5	3.2	0.04
		04HD24	83.0	2.0	3.1	25.3	0.04
		04HD24	94.0	4.2	0.7	21.2	0.10
		04HD25	92.0	1.7	2.4	51.5	6.3
		04HD26	21.7	2.3	1.5	32.5	3.0
		04HD28	42.8	0.4	1.9	4.5	0.10
		04HD29	37.0	1.0	0.1	112.0	0.01
		05HD42	90.5	1.0	1.9	6.1	0.03
		05HD42	115.0	3.0	29.0	103.1	0.20
		05HD43	69.0	1.0	1.8	2.3	0.01
		05HD43	81.0	3.0	2.8	51.5	0.50
		05HD43	90.7	2.3	1.4	29.6	0.30
		05HD44	87.5	1.1	3.8	3.4	0.01
		05HD44	91.2	1.4	0.0	3.6	2.8
		From GNDD001 the follow	ving significant a	ssay results ha	ve been rece	eived reported	to a cut-off of 1.0 g/t AuEq (gold

From GNDD001 the following significant assay results have been received reported to a cut-off of 1.0 g/t AuEq (gold equivalent) unless otherwise indicated. Drill collar location is provided in the previous section.

Drilling in 2019 Significant Results:

Hole_id	Interval (m)	From	Au (g/t)	Ag (g/t)	Zn (%)	AuEq (g/t)	
GNDD001	10.00	27.00	0.94	4.9	0.33	1.1	(2)
inc	3.00	32.00	2.3	5.8	0.50	2.6	
GNDD002A	5.00	31.00	0.74	2.7	0.67	1.1	
and	3.00	81.50	3.1	8.6	5.8	5.7	
GNDD003	6.10	55.00	34.6	22	2.9	36.2	(1)

Criteria	JORC Code explanation	Commentary							
		GNDD004	20.50	5.50	1.1	5.3	0.45	1.4	(2)
		inc	8.47	6.03	2.0	7.8	0.68	2.4	
		and	3.43	18.67	1.2	3.2	0.26	1.3	
		GNDD005	19.00	29.00	1.3	8.1	0.62	1.6	(2)
		inc	2.00	29.00	0.79	18	3.3	2.5	
		and	4.00	43.00	5.1	22	0.49	5.6	
		and	7.00	59.00	7.8	72	1.4	9.3	
		inc	3.00	61.00	16.5	135	1.6	18.9	(1)
		and	10.00	75.00	0.75	38	0.27	1.4	(2)
		inc	3.00	77.00	1.7	39	0.43	2.3	
		inc	1.00	83.00	1.2	156	0.72	3.5	
		GNDD006	6.50	78.50	4.2	21	0.29	4.6	
		inc	3.80	78.50	6.8	34	0.41	7.4	
		and	1.45	90.00	2.1	41	0.92	3.1	
		GNDD007	45.92	13.00	0.43	7.8	0.12	0.58	(2)
		inc	3.00	45.00	1.9	5.2	0.26	2.0	
		inc	3.00	55.00	2.3	35	0.54	2.9	
		GNDD007A	27.00	25.00	0.43	7.2	0.09	0.56	(2)
		inc	1.80	46.00	2.4	3.1	0.12	2.5	
		and	0.70	60.30	0.8	25	0.21	1.2	
		and	6.70	149.00	14.3	140	7.3	19.3	
		inc	3.06	150.60	27.5	260	12.9	36.5	(1)
		and	0.60	176.40	1.9	6.7	0.99	2.4	
		GNDD008	35.50	16.50	0.33	8.1	0.10	0.47	(2)
		inc	1.00	36.00	1.7	6.2	0.08	1.9	
		inc	1.63	43.37	1.7	8.4	0.14	1.9	
		inc	1.15	47.85	1.2	16	0.56	1.7	
		and	5.70	91.00	12.3	182	0.67	15.0	(1)
		and	1.00	99.70	0.93	43	0.52	1.7	
		and	2.40	107.00	6.3	222	1.9	10.0	
		GNDD008A	35.50	17.50	0.24	13	0.08	0.43	(2)
		and	20.00	95.00	3.3	45	0.55	4.1	(2)
		inc	2.64	96.60	22.8	218	0.68	25.9	(1)
		inc	10.00	105.00	0.6	28.2	0.71	1.2	
		GNDD009	7.00	72.00	2.3	102	0.08	3.6	
		and	3.00	100.00	0.85	50	0.02	1.5	
		and	10.32	109.10	10.4	28	4.6	12.7	

Issued Capital 974.4m shares 49.0m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commentary							
		inc	4.22	115.20	21.9	58	8.7	26.4	(1)
		GNDD010	32.00	27.00	0.29	8.6	0.13	0.46	(2)
		inc	5.00	30.00	0.65	21	0.09	0.95	
		and	1.30	55.00	1.1	30	0.80	1.8	
		and	7.22	136.00	7.5	60	1.1	8.8	(2)
		inc	3.00	139.00	17.7	143	2.5	20.6	

- (1) cut-off of 10 g/t AuEq
- (2) cut-off of 0.2 g/t AuEq

Drilling in 2020-21 Significant Results:

Hole_id	from	interval	Au	Ag	Zn (%)	AuEq	Cu (%)	Pb (%)	Note
	(m)	(m)	(g/t)	(g/t)		(g/t)			
GNDD011	81.00	1.00	1.9	43	0.13	2.5	0.01	0.06	
and	139.80	4.80	1.4	5.7	2.6	2.6	0.02	0.02	
and	147.20	0.70	9.4	13	6.6	12.4	0.07	0.00	1
and	151.40	0.50	1.2	5.5	0.25	1.4	0.00	0.00	
GNDD012	40.70	1.00	6.3	290	0.12	10.1	0.18	1.2	
GNDD013	116.40	6.93	1.3	12	2.7	2.6	0.05	0.18	
inc	122.50	0.83	4.0	61	10.1	9.1	0.21	1.2	
GNDD014	118.50	7.55	2.4	15	3.6	4.2	0.05	0.16	
GNDD015	54.00	1.00	0.69	8.6	0.39	1.0	0.03	0.24	
and	156.00	1.90	1.0	31	2.8	2.6	0.02	0.79	
GNDD016	64.00	1.00	0.80	27	0	1.1	0.02	0.06	
and	109.50	5.00	1.8	27	8.3	5.8	0.16	0.01	
and	116.55	4.45	6.0	83	3.9	8.8	0.13	0.02	
GNDD017	34.30	1.7	0.31	24	2.0	1.5	0.06	1.0	
GNDD018	37.75	0.85	1.1	3.6	0.1	1.2	0.01	0.05	
and	63.20	3.75	7.1	78	3.6	9.6	0.28	3.6	
inc	64.40	2.55	10.3	114	4.9	13.9	0.41	5.2	1
GNDD019	24.00	1.90	1.0	5.3	5.3	3.4	0.12	0.03	
GNDD020	71.25	8.25	17.7	257	0.30	21.1	0.60	0.68	
inc	74.00	5.50	26.0	355	0.42	30.7	0.05	0.21	1
and	83.30	0.65	0.03	2.7	10.70	4.7	0.00	0.02	
GNDD021	14.80	1.20	11.0	9.0	0.39	11.3	0.01	0.08	1
and	31.50	0.35	28.1	104	5.8	31.9	0.35	0.12	1
and	98.20	19.80	0.29	2.2	3.4	1.8	0.01	0.04	2
GNDD021 and	14.80 31.50	1.20 0.35	11.0 28.1	9.0 104	0.39 5.8	11.3 31.9	0.01 0.35	0.08 0.12	1

Criteria	JORC Code explanation	Commentary									
		inc	98.20	9.80	0.40	4.4	6.8	3.4	0.01	0.07	
		inc	104.20	0.80	0.88	13	22.7	10.9	0.02	0.30	1
		GNDD022	NSI								
		GNDD023	58.00	5.00	0.32	3.7	0.1	0.41	0.01	0.09	
		GNDD024	85.00	6.00	2.5	19	0.15	2.8	0.40	1.4	
		inc	88.00	1.00	14.9	107	0.46	16.5	2.4	8.3	1
		GNDD025	53.00	88.00	0.94	2.3	0.10	1.0	0.00	0.08	2
		inc	61.00	14.00	3.1	5.3	0.19	3.2	0.01	0.11	
		inc	79.00	11.00	1.3	4.1	0.16	1.4	0.00	0.25	
		inc	93.00	1.00	1.1	2.5	0.09	1.1	0.00	0.37	
		inc	113.00	2.00	1.2	4.4	0.02	1.2	0.00	0.01	
		inc	139.00	2.00	0.99	0.50	0.01	1.0	0.00	0.00	
		GNDD026	NSI								
		GNDD027	NSI								
		GNDD028	41.40	18.60	0.21	3.2	2.0	1.1	0.08	0.01	2
		inc	52.00	8.00	0.42	6.0	3.8	2.2	0.18	0.02	
		GNDD029	36.00	12.00	0.17	2.1	0.39	0.36	0.01	0.16	2
		GNDD030	33.00	3.00	0.95	53	0.05	1.6	0.01	0.05	
		GNDD031	32.00	28.00	0.43	5.7	0.15	0.56	0.01	0.04	2
		inc	48.00	1.10	3.3	17	0.34	3.7	0.02	0.33	
		inc	53.00	1.00	4.2	54	0.92	5.3	0.12	0.22	
		GNDD032	9.00	20.00	0.16	6.7	0.09	0.29	0.00	0.02	2
		and	49.00	116.00	1.05	4.0	0.20	1.2	0.01	0.07	2
		inc	77.00	3.00	0.93	33.7	2.1	2.3	0.09	0.02	
		and	101.00	10.00	6.1	18.1	0.11	6.4	0.04	0.47	
		inc	101.00	6.00	9.6	18.7	0.15	9.9	0.05	0.61	1
		and	136.00	4.00	9.8	18.5	1.5	10.7	0.06	0.27	
		GNDD033	NSI								
		GNDD034	47.60	0.30	0.03	1.4	24.4	10.6	0.34	0.04	
		GNDD035	88.75	5.75	9.5	28.7	3.5	11.4	0.10	0.44	
		inc	88.75	3.15	17.1	28.8	5.6	19.9	0.14	0.56	1
		GNDD036	NSI								
		GNDD037	NSI								
		GNDD038	71.50	2.85	0.53	15.6	2.8	1.9	0.06	0.13	
		GNDD042	NSI								
		GNDD044	NSI								
		GNDD045	85.90	2.10	1.4	28.8	0.1	1.8	0.01	0.02	

Issued Capital 974.4m shares 49.0m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commentary									
		GNDD046	82.90	0.45	4.1	27	0.06	4.5	0.01	0.03	
		and	124.15	2.85	29.5	522	10.8	40.8	0.41	0.25	1
		GNDD047	61.00	38.50	1.3	1.2	0.04	1.3	0.00	0.02	2
		inc	62.50	6.00	6.3	3.5	0.15	6.4	0.01	0.10	
		and	74.10	1.50	1.0	1.9	0.00	1.0	0.00	0.00	
		and	83.55	0.45	7.3	12.2	0.00	7.5	0.00	0.00	
		and	98.50	1.00	1.2	0.8	0.00	1.2	0.00	0.00	
		GNDD048	36.00	19.00	0.6	5.0	0.25	0.81	0.01	0.06	2
		inc	38.00	3.15	2.7	12.1	0.09	2.9	0.03	0.14	
		GNDD049	NSI								
		GNDD050	21.00	22.00	0.21	2.9	0.53	0.48	0.01	0.15	2
		inc	21.00	2.00	1.4	4.8	0.07	1.5	0.01	0.07	
		GNRC051	NSI								
		GNRC052	69	6	1.7	4.4	0.32	1.9	0.03	0.00	
		GNRC053	NSI								
		GNRC054	13	7	0.22	3.9	0.03	0.28	0.00	0.01	2
		and	66	15	0.53	4.0	0.66	0.87	0.01	0.13	2
		inc	77	3	1.3	8.5	1.9	2.3	0.02	0.31	
		GNRC055	18	7	0.28	6.9	0.04	0.38	0.00	0.01	2
		GNRC056	56	1	2.3	138	0.08	4.1	0.01	0.07	
		GNRC057	37	12	0.06	2.4	0.58	0.34	0.01	0.06	2
		GNRC058	NSI								
		GNRC059	NSI								
		GNDD060	NSI								
		GNRC061	NSI								
		GNRC062	17	3	3.8	7.9	2.7	5.0	0.24	0.17	
		GNRC063	19	1	0.01	0.46	2.8	1.2	0.04	0.01	
		GNRC064	22	1	0.01	4.2	3.8	1.7	0.00	0.00	
		and	27	1	0.69	27	1.2	1.6	0.35	0.23	
		GNRC065	33	6	0.00	2.1	4.9	2.1	0.05	0.01	
		GNRC066	NSI								
		GNRC067	NSI								
		GNRC068	9	69	3.4	8.3	2.8	4.7	0.23	0.08	2
		inc	9	27	7.9	16	7.0	11.2	0.59	0.16	
		and	51	1	1.0	40	0.93	1.9	0.08	0.12	
		and	59	1	1.3	4.9	0.09	1.4	0.00	0.02	
		and	66	2	1.6	1.2	0.02	1.7	0.01	0.00	

Issued Capital 974.4m shares 49.0m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commentary									
		and	72	4	1.9	3.0	0.06	1.9	0.01	0.04	
		GNRC069	18	7	0.62	3.0	0.11	0.71	0.01	0.16	2
		inc	19	1	2.2	8.6	0.15	2.4	0.03	0.59	
		and	53	10	0.65	5.7	0.37	0.88	0.01	0.03	2
		inc	59	3	1.7	11	0.84	2.3	0.03	0.07	
		and	84	15	0.54	2.4	0.13	0.63	0.01	0.00	2
		inc	84	4	0.90	5.2	0.36	1.1	0.02	0.01	
		and	96	1	1.0	1.4	0.06	1.0	0.03	0.00	
		GNRC070	41	1	6.6	3.1	0.36	6.8	0.02	0.21	
		GNRC071	48	2	0.45	5.4	2.1	1.4	0.01	0.12	
		GNRC072	43	19	0.16	4.9	0.13	0.28	0.00	0.09	2
		GNDD073	NSI								
		GNDD074	41	2	1.2	20.5	0.04	1.4	0.00	0.02	
		and	47	2	0.8	16.7	0.13	1.1	0.03	0.03	
		GNRC075	31	18	0.78	1.6	0.07	0.83	0.01	0.22	2
		inc	37	2	2.2	1.6	0.08	2.2	0.01	0.32	
		and	46	2	1.8	2.4	0.08	1.9	0.00	0.07	
		GNRC076	35	5	12.2	7.2	0.02	12.3	0.01	0.10	
		inc	35	1	53.1	18	0.00	53.3	0.00	0.02	1
		GNDD077	168.50	14.00	0.68	5.9	0.64	1.0	0.01	0.01	2
		inc	168.50	1.00	1.5	59.3	6.6	5.2	0.13	0.08	
		inc	180.60	1.90	1.8	4.9	0.78	2.2	0.02	0.01	
		and	192.90	1.10	0.70	5.5	0.61	1.0	0.02	0.00	
		GNRC078	11	17	0.13	1.7	0.43	0.34	0.01	0.09	2
		inc	12	1	0.74	4.8	0.91	1.2	0.03	0.33	
		GNDD079	21.00	61.00	1.1	1.1	0.11	1.1	0.00	0.02	2
		inc	21.00	9.00	1.9	1.9	0.09	2.0	0.00	0.02	
		inc	40.00	2.00	2.7	1.7	0.08	2.8	0.00	0.06	
		inc	46.00	6.00	5.0	1.2	0.07	5.1	0.00	0.01	
		inc	74.00	3.00	1.0	0.86	0.17	1.1	0.00	0.12	
		GNRC080	NSI								
		GNRC081	23	30	0.28	2.0	0.33	0.45	0.01	0.10	2
		inc	32	5	1.0	3.6	0.73	1.4	0.01	0.20	
		GNDD082	168.00	15.00	0.68	0.39	0.04	0.70	0.00	0.01	2
		inc	168.00	1.00	2.4	0.46	0.11	2.4	0.00	0.02	
		inc	175.00	0.50	10.0	5.6	0.44	10.2	0.01	0.20	
		and	193.40	34.10	1.45	1.0	0.25	1.6	0.02	0.13	2

Issued Capital 974.4m shares 49.0m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commentary									
		inc	193.40	1.00	2.2	7.9	1.6	3.0	0.14	1.7	
		inc	203.50	0.90	2.6	10.6	2.9	4.0	0.16	1.4	
		inc	209.80	2.20	0.59	4.5	0.74	1.0	0.03	0.25	
		and	235.00	31.00	0.4	0.6	0.08	0.43	0.00	0.00	
		inc	242.50	1.50	1.0	2.1	0.21	1.1	0.01	0.01	
		GNDD083	11.00	21.00	0.22	10.0	0.15	0.41	0.00	0.01	2
		inc	19.20	1.80	1.0	6.1	0.10	1.1	0.00	0.00	
		and	170.00	1.00	1.3	3.6	0.22	1.4	0.02	0.26	
		GNRC084	4	1	1.2	2.0	0.07	1.2	0.00	0.06	
		and	41	3	5.2	6.4	5.0	7.5	0.08	0.14	
		and	60	4	3.6	11.6	5.0	6.0	0.02	0.05	
		and	78	21	0.81	2.6	0.08	0.88	0.00	0.00	2
		inc	91	1	6.7	10.7	0.42	7.0	0.01	0.00	
		and	97	2	1.6	1.2	0.03	1.6	0.01	0.00	
		and	143	2	0.67	4.9	0.87	1.1	0.00	0.01	
		GNDD085	22.50	1.30	5.47	75.6	0.08	6.5	0.01	0.09	
		and	39.30	2.20	2.11	2.4	0.55	2.4	0.01	0.24	
		GNRC086	3	21	0.38	1.5	0.33	0.55	0.01	0.08	2
		inc	4	1	0.85	3.4	0.89	1.3	0.03	0.27	
		and	22	2	2.9	1.9	0.08	3.0	0.01	0.03	
		GNRC087	22	4	0.65	15.9	0.26	1.0	0.00	0.04	
		GNDD088A	45.05	23.45	0.07	0.23	0.53	0.31	0.00	0.01	2
		and	90.50	1.50	1.8	0.10	0.01	1.8	0.00	0.00	
		and	224.00	39.00	5.5	2.0	0.30	5.6	0.01	0.00	2
		incl	231.50	14.40	14.4	3.3	0.67	14.8	0.00	0.00	
		incl	238.50	7.40	23.4	5.7	1.27	24.1	0.01	0.01	1
		GNDD089	20.00	30.00	0.95	1.69	0.09	1.0	0.00	0.02	2
		inc	22.00	2.00	1.4	2.7	0.18	1.5	0.00	0.00	
		inc	30.50	1.70	2.9	2.3	0.12	3.0	0.00	0.01	
		inc	40.00	10.00	1.4	0.55	0.09	1.4	0.00	0.02	
		and	94.50	21.70	0.88	1.59	0.43	1.1	0.00	0.04	2
		inc	94.50	5.10	2.4	1.6	0.06	2.4	0.01	0.07	
		inc	102.50	1.50	1.9	1.5	0.15	2.0	0.01	0.03	
		inc	109.00	1.50	1.8	11.3	0.32	2.1	0.01	0.16	
		GNRC090	7	13	0.35	2.7	0.25	0.49	0.01	0.07	2
		inc	14	1	1.1	7.3	0.45	1.4	0.02	0.21	-
		GNRC091	30	24	0.38	3.7	0.20	0.51	0.01	0.10	2

Issued Capital 974.4m shares 49.0m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commentary										
		inc	43	4	1.4	3.5	0.40	1.6	0.01	0.36		
		GNDD092	164.50	9.00	0.29	0.72	0.12	0.35	0.00	0.05	2	
		and	213.00	17.00	0.23	0.63	0.06	0.26	0.00	0.04	2	
		and	257.50	1.00	3.6	5.9	0.60	3.9	0.05	0.21		
		GNDD093	75.30	1.40	2.1	10.6	7.8	5.6	0.18	0.22		
		and	153.65	0.50	1.4	7.3	0.17	1.6	0.11	0.03		
		GNRC094	13	12	0.83	4.6	0.44	1.1	0.01	0.06	2	
		inc	13	1	1.1	6.3	0.17	1.2	0.02	0.12		
		inc	17	1	8.3	20.6	0.27	8.7	0.06	0.52		
		inc	23	1	0.21	4.5	3.8	1.9	0.01	0.03		
		GNDD095	47.00	17.47	0.28	1.0	0.44	0.49	0.02	0.09	2	
		inc	50.00	1.30	1.0	0.92	2.8	2.3	0.18	0.61		
		and	121.00	1.00	2.6	1.7	0.01	2.6	0.00	0.00		
		GNDD096	NSI									
		GNRC097	49	8	0.39	2.2	0.04	0.44	0.00	0.02	2	
		inc	50	1	1.1	2.8	0.03	1.2	0.00	0.03		
		GNRC098	40	19	0.21	1.8	0.19	0.32	0.01	0.16	2	
		and	88	8	4.9	4.5	0.76	5.3	0.02	0.07	2	
		inc	88	2	15.6	15.9	2.8	17.0	0.07	0.20	2	
		inc	94	2	2.6	1.2	0.13	2.7	0.00	0.03		
		GNDD099	53.00	2.80	0.42	19.8	2.0	1.5	0.09	0.33		
		and	64.00	0.90	3.1	9.7	0.22	3.3	0.01	0.01		
		and	101.00	1.00	2.9	64.4	0.04	3.7	0.01	0.04		
		GNDD100	NSI									
		GNDD101	NSI									
		GNDD102	36.00	11.00	0.59	3.2	0.18	0.71	0.01	0.11	2	
		inc	36.00	2.00	1.5	5.9	0.13	1.6	0.01	0.14		
		and	77.40	8.90	0.10	2.5	0.82	0.49	0.01	0.06	2	
		inc	84.30	0.90	-	1.3	3.3	1.4	0.02	0.03		
		GNDD103	NSI									
		GNRC104	141	1	45.6	40.0	2.6	47.2	0.25	3.4	1	
		GNDD105	NSI									
		GNDD106	100.00	25.00	0.66	0.29	0.01	0.67	0.00	0.00	2	
		inc	114.00	1.50	1.8	1.7	0.01	1.8	0.00	0.00		
		inc	121.00	4.00	2.6	0.34	0.01	2.6	0.00	0.00		
		and	141.35	1.05	1.2	2.8	0.84	1.6	0.01	0.01		
		and	205.00	8.00	0.48	1.0	0.02	0.50	0.00	0.00	2	

Issued Capital 974.4m shares 49.0m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commentary									
		inc	211.00	2.00	1.1	2.2	0.03	1.1	0.00	0.00	
		GNRC107	16	27	3.6	14.8	0.25	3.9	0.01	0.1	2
		inc	23	1	0.17	74.4	0.07	1.1	0.01	0.1	
		inc	29	2	1.2	12.2	0.06	1.3	0.01	0.1	
		inc	35	7	13.3	12.6	0.80	13.8	0.02	0.3	
		and	52	1	0.18	73.2	0.11	1.2	0.00	0.1	
		and	93	1	0.12	51.2	3.1	2.1	0.03	0.65	
		GNDD108	NSI								
		GNDD109	NSI								
		GNRC110	11	44	2.8	62.7	0.05	3.7	0.01	0.25	2
		inc	12	1	1.7	1.0	0.00	1.7	0.00	0.04	
		inc	20	11	1.8	37.2	0.02	2.3	0.01	0.37	
		inc	36	12	8.3	190	0.12	10.7	0.02	0.51	
		inc	41	3	27.3	613	0.05	35.1	0.03	0.87	1
		GNRC111	31	18	0.31	12.2	0.13	0.52	0.01	0.03	2
		inc	33	1	1.3	59.4	0.02	2.1	0.01	0.27	
		inc	41	1	2.1	82.7	0.01	3.2	0.01	0.10	
		GNDD112	95.00	0.40	0.5	26.6	6.0	3.5	0.10	1.9	
		GNDD113	149.50	37.50	0.59	17.0	0.12	0.86	0.01	0.08	2
		inc	151.00	9.00	1.3	56.2	0.17	2.1	0.05	0.11	
		inc	170.50	1.50	1.7	5.7	0.33	2.0	0.01	0.11	
		and	219.00	11.00	0.79	2.2	0.08	0.86	0.00	0.08	2
		inc	223.00	7.00	1.1	2.5	0.09	1.1	0.00	0.05	
		GNDD113A	61.00	2.00	0.59	2.6	0.74	0.95	0.03	0.07	
		and	139.00	107.00	0.30	3.0	0.09	0.37	0.00	0.04	2
		inc	185.00	1.40	1.6	2.5	0.07	1.7	0.00	0.05	
		inc	197.00	2.00	1.2	0.94	0.17	1.3	0.00	0.04	
		inc	202.00	1.50	3.2	2.4	0.90	3.6	0.02	0.16	
		inc	209.00	2.00	1.2	1.9	0.25	1.3	0.01	0.25	
		and	262.00	104.00	1.5	2.7	0.39	1.7	0.01	0.12	2
		inc	266.00	2.00	1.0	1.8	0.22	1.1	0.00	0.02	
		inc	274.00	2.00	1.3	1.4	0.06	1.3	0.00	0.01	
		inc	280.00	15.00	3.6	6.9	0.56	3.9	0.04	0.73	
		inc	289.45	3.65	6.7	20.2	1.5	7.6	0.15	2.6	1
		inc	298.65	7.45	2.9	3.7	0.63	3.2	0.02	0.01	
		inc	315.50	1.20	1.0	1.4	0.13	1.1	0.00	0.02	
		inc	333.80	4.20	11.3	22.8	5.3	13.9	0.12	0.04	

Issued Capital 974.4m shares 49.0m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commentary									
		inc	333.80	0.70	60.8	133	31.4	76.1	0.70	0.22	1
		inc	354.00	4.00	1.4	0.8	0.02	1.4	0.00	0.00	
			274.00	84.00	1.7	3.3	0.48	2.0	0.02	0.14	4
		and	390.00	30.00	0.35	0.36	0.05	0.38	0.00	0.00	2
		inc	394.00	2.00	1.2	0.33	0.04	1.2	0.00	0.00	
			139.00	227.00	0.83	2.7	0.22	1.0	0.01	0.07	3
			139.00	281.00	0.71	2.2	0.19	0.82	0.01	0.06	3
			106.00	314.00	0.65	2.1	0.17	0.75	0.01	0.05	
		GNDD114	64.00	14.70	3.2	3.3	0.08	3.3	0.01	0.06	
		inc	77.80	0.90	50.3	27.2	0.18	50.7	0.03	0.65	
		GNDD115	68.70	1.10	0.62	9.2	2.0	1.6	0.04	0.36	
		and	144.00	2.00	0.30	16.2	1.2	1.0	0.07	0.38	
		and	176.50	34.50	0.28	0.68	0.01	0.29	0.00	0.03	2
		GNDD116	27.50	4.50	1.3	14.6	0.06	1.5	0.00	0.02	2
		inc	27.50	1.00	3.7	41.4	0.13	4.3	0.01	0.05	
		and	73.70	0.80	2.4	3.9	0.26	2.5	0.00	0.00	
		GNDD117	30.00	54.80	0.58	4.2	0.13	0.69	0.01	0.07	2
		inc	61.00	10.00	2.5	10.2	0.16	2.7	0.01	0.14	
		inc	84.20	0.60	1.4	4.1	0.11	1.5	0.01	0.02	
		and	106.70	0.40	8.5	43.4	3.3	10.5	0.25	2.92	1
		GNDD118	NSI								
		GNDD119	52.40	0.80	0.21	17.4	4.2	2.3	0.03	0.25	
		GNDD120	NSI								
		GNDD121	NSI								
		GNDD122	11.50	18.10	0.64	2.2	0.03	0.68	0.00	0.01	2
		inc	21.00	6.00	1.1	3.2	0.04	1.2	0.00	0.01	
		and	54.00	21.00	0.41	0.80	0.12	0.47	0.00	0.04	2
		inc	71.00	2.00	1.2	1.0	0.14	1.2	0.00	0.09	
		and	191.00	1.50	1.6	24.4	0.95	2.3	0.10	1.24	
		and	213.80	3.20	1.7	2.1	0.23	1.8	0.01	0.02	
		and	236.00	1.50	4.8	4.9	0.63	5.1	0.03	0.16	
		GNDD123	21.00	30.00	0.11	1.6	0.32	0.27	0.01	0.04	2
		GNDD124	44.00	7.00	0.08	3.6	0.65	0.40	0.02	0.13	2
		GNDD125	NSI								
		GNDD126	107.30	1.10	12.8	10.3	0.74	13.3	0.00	0.16	1
		and	120.00	2.00	3.2	3.6	0.16	3.4	0.01	0.00	
		and	157.30	0.50	1.0	22.1	2.2	2.2	0.11	2.3	

Issued Capital 974.4m shares 49.0m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commentary									
		and	179.00	2.00	1.7	0.62	0.01	1.7	0.00	0.00	
		GNDD127	NSI								
		GNDD128	63.00	20.00	0.49	0.42	0.02	0.50	0.00	0.00	2
		inc	77.50	1.50	4.1	0.36	0.04	4.1	0.00	0.00	
		GNDD129	15.00	21.00	0.72	1.8	0.10	0.79	0.00	0.05	2
		inc	24.00	10.00	1.0	2.1	0.13	1.1	0.00	0.04	
		and	132.50	0.70	6.7	14.1	0.15	7.0	0.01	0.12	
		GNDD130	NSI								
		GNDD131	NSI								
		GNDD132	14.50	18.10	0.12	2.5	0.18	0.23	0.01	0.04	2
		GNDD133	95.70	4.30	1.3	2.2	0.23	1.40	0.01	0.13	2
		inc	95.70	1.05	3.8	5.3	0.52	4.1	0.02	0.22	
		and	163.00	11.50	0.3	1.0	0.01	0.31	0.00	0.00	2
		GNDD134	17.70	15.30	0.80	7.5	0.07	0.92	0.00	0.11	2
		inc	19.00	10.00	1.04	9.9	0.08	1.2	0.01	0.12	
		and	47.00	39.75	0.26	0.5	0.10	0.31	0.00	0.04	2
		and	129.50	7.50	0.45	0.5	0.06	0.48	0.00	0.02	2
		and	161.00	20.00	0.29	3.6	0.23	0.44	0.01	0.03	2
		inc	177.50	0.50	3.79	29.8	5.23	6.4	0.16	0.10	
		and	196.00	4.00	5.3	86.2	10.60	11.0	0.24	0.57	
		and	240.00	2.00	6.2	1.3	0.02	6.2	0.00	0.00	
		and	272.00	50.00	0.22	0.5	0.14	0.28	0.00	0.00	2
		and	500.10	0.95	2.3	8.1	0.16	2.5	0.21	0.00	
		and	519.00	20.00	0.73	0.7	1.80	1.5	0.02	0.00	2
		inc	529.50	2.90	4.7	3.6	11.6	9.8	0.12	0.00	
		and	560.25	17.75	0.20	0.7	0.38	0.37	0.01	0.00	2
		inc	560.25	0.75	0.09	2.0	4.94	2.3	0.05	0.00	
		inc	570.20	0.50	1.22	9.6	2.36	2.4	0.17	0.02	
		and	630.30	0.70	0.9	1.6	0.21	1.0	0.18	0.00	
		GNDD135	31.00	22.55	0.44	1.1	0.07	0.48	0.01	0.07	2
		inc	41.00	2.00	1.6	0.70	0.07	1.7	0.00	0.02	
		and	78.00	27.20	0.52	2.6	0.37	0.72	0.01	0.07	2
		inc	79.60	3.40	1.4	3.9	0.29	1.6	0.00	0.05	
		inc	95.00	2.00	1.9	2.0	0.16	2.0	0.01	0.09	
		inc	104.30	0.90	0.08	5.3	3.2	1.5	0.01	0.02	
		GNDD137	27.00	38.00	0.38	1.1	0.05	0.42	0.00	0.02	2
		inc	33.00	4.00	1.70	1.2	0.13	1.8	0.00	0.02	

Issued Capital 974.4m shares 49.0m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commentary										
		and	186.25	1.35	8.12	29.5	7.3	11.6	0.12	0.03		
		GNDD138	43.00	54.00	0.28	2.2	0.20	0.40	0.01	0.09	2	
		GNDD139	80.00	207.50	0.75	1.7	0.10	0.82	0.00	0.02	2	
		inc	80.00	32.00	1.6	2.5	0.06	1.6	0.00	0.03		
		inc	148.00	4.25	1.2	3.8	0.15	1.3	0.00	0.09		
		inc	167.00	14.00	1.5	0.32	0.01	1.5	0.00	0.01		
		inc	243.00	9.00	2.4	3.7	0.62	2.8	0.00	0.01		
		inc	266.00	6.00	1.6	0.61	0.01	1.6	0.00	0.00		
			243.00	29.00	1.2	1.6	0.24	1.3	0.00	0.00	4	
		GNDD141	101.50	6.50	14.3	43.6	3.4	16.3	0.15	1.6	2	
		inc	101.50	2.50	36.8	111	8.6	41.9	0.30	4.2	1	
		GNDD142	55.8	0.7	0.7	13.3	4.0	2.7	0.05	0.03		
		and	81.5	27.5	2.4	11.1	0.9	2.9	0.03	0.06	2	
		inc	92.0	11.5	5.4	19.9	2.0	6.5	0.08	0.13		
		inc	107.0	2.0	0.9	5.3	0.2	1.0	0.00	0.03		
		and	125.0	11.0	0.3	3.2	0.1	0.39	0.00	0.01	2	
		inc	132.9	1.1	1.6	4.6	0.1	1.7	0.01	0.08		
		and	152.0	40.0	5.1	11.7	1.9	6.1	0.05	0.12	2	
		inc	153.1	1.0	23.4	40.1	13.5	29.8	0.34	0.00	1	
		inc	160.0	10.7	10.7	28.4	4.9	13.2	0.13	0.15		
		inc	166.2	4.5	23.9	41.3	11.0	29.2	0.29	0.27	1	
		inc	177.2	12.8	5.2	9.3	0.7	5.6	0.02	0.24		
		inc	187.1	1.0	44.0	53.8	6.5	47.5	0.15	2.1	1	
		and	237.0	0.5	1.1	2.7	0.1	1.2	0.01	0.17		
			81.5	110.5	2.5	7.4	0.9	3.0	0.03	0.06	3	
		GNDD143	NSI									
		GNDD145	NSI									
		GNDD148	16.00	7.00	0.14	1.7	0.43	0.35	0.01	0.18	2	
		and	59.00	2.00	0.00	1.0	2.7	1.2	0.01	0.01		
		GNDD149	8.00	4.00	0.63	1.5	0.28	0.77	0.01	0.07		
		GNDD150	40.00	22.00	0.29	0.91	0.08	0.33	0.00	0.07	2	
		and	76.00	35.90	0.24	2.6	0.44	0.46	0.00	0.10	2	
		and	180.29	1.31	16.8	26.1	2.9	18.4	0.10	0.27		
		GNDD151	379.75	0.50	0.71	18.6	8.9	4.8	0.17	0.17		
		GNDD152	23.50	4.10	0.5	2.7	0.1	0.55	0.00	0.03	2	
		GNDD154	125.90	2.60	4.6	34.6	3.0	6.3	0.11	0.24		
		and	146.00	22.00	0.21	1.0	0.04	0.24	0.00	0.00	2	

Issued Capital 974.4m shares 49.0m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commentary									
		inc	146.00	1.00	1.8	12.6	0.12	2.0	0.00	0.01	
		GNDD155	59.00	209.00	1.0	1.4	0.09	1.1	0.00	0.02	2
		inc	59.00	34.00	3.8	4.6	0.20	3.9	0.02	0.03	
		inc	81.00	4.00	13.4	10.5	0.06	13.5	0.05	0.02	
		inc	102.00	6.00	1.2	1.1	0.10	1.2	0.00	0.03	
			59.00	49.00	2.8	3.6	0.16	3.0	0.01	0.02	4
		inc	151.55	0.45	7.7	2.9	4.5	9.6	0.00	0.10	
		inc	182.00	1.00	8.8	17.1	2.2	10.0	0.07	0.89	
		inc	224.00	2.00	2.0	0.29	0.01	2.0	0.00	0.00	
		inc	244.00	11.00	1.1	0.56	0.04	1.1	0.00	0.00	
		inc	266.00	0.55	1.8	1.2	0.02	1.8	0.00	0.00	
		and	338.00	9.00	0.41	0.33	0.05	0.43	0.00	0.00	2
		GNDD156	5.00	7.00	0.68	3.0	0.70	1.0	0.02	0.15	
		GNDD157	20.00	66.00	0.52	1.1	0.08	0.57	0.00	0.07	2
		inc	54.00	10.00	2.2	1.8	0.14	2.3	0.00	0.24	
		and	132.90	10.00	0.18	6.6	0.52	0.48	0.01	0.08	2
		inc	132.90	0.50	0.88	13.1	1.4	1.6	0.03	0.67	
		inc	142.30	0.60	1.0	29.1	6.6	4.2	0.11	0.33	
		and	237.20	130.80	2.3	1.6	0.37	2.5	0.00	0.01	2
		inc	237.20	0.80	1.7	59.1	5.6	4.9	0.18	1.2	
		inc	255.80	1.20	0.63	5.3	9.4	4.8	0.01	0.01	
		inc	289.00	12.00	20.4	4.8	1.0	20.9	0.00	0.00	
		inc	290.50	4.06	55.7	12.9	2.1	56.8	0.01	0.01	1
		inc	321.00	2.00	1.3	0.6	0.01	1.3	0.00	0.00	
		inc	331.00	6.00	2.5	1.9	0.61	2.8	0.01	0.01	
		inc	343.00	9.00	1.7	0.6	0.10	1.7	0.00	0.00	
		and	407.50	0.50	2.2	1.2	0.37	2.4	0.00	0.00	
		GNDD158	107.00	19.00	0.59	1.0	0.12	0.65	0.00	0.03	2
		inc	120.05	0.95	2.8	4.2	0.31	2.9	0.00	0.13	
		and	139.00	6.00	0.43	0.78	0.25	0.55	0.00	0.03	2
		GNDD159	NSI								
		GNDD162	98.00	14.80	2.0	3.5	0.29	2.2	0.01	0.09	
		inc	102.10	6.90	3.9	6.4	0.51	4.2	0.03	0.15	
		GNDD163	93.00	45.00	0.38	1.7	0.26	0.51	0.01	0.08	2
		inc	101.00	3.00	1.3	7.9	0.51	1.6	0.01	0.19	
		inc	125.20	1.65	1.7	3.7	0.88	2.2	0.02	0.13	
		GNDD164	136.00	22.00	0.38	0.8	0.14	0.45	0.00	0.03	2

Issued Capital 974.4m shares 49.0m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commentary									
		inc	141.50	0.50	1.1	1.1	0.29	1.2	0.00	0.03	
		inc	150.00	1.60	1.4	1.2	0.06	1.4	0.00	0.02	
		and	171.00	10.00	0.48	0.23	0.01	0.48	0.00	0.00	2
		inc	171.00	2.00	1.1	0.23	0.01	1.1	0.00	0.00	
		and	239.00	37.00	0.75	2.1	0.46	1.0	0.02	0.00	2
		inc	239.00	4.45	4.9	14.9	3.4	6.5	0.14	0.01	
		GNDD167	NSI								
		GNDD169	120.00	60.80	0.78	0.74	0.15	0.86	0.01	0.01	2
		inc	152.00	28.80	1.5	1.22	0.31	1.70	0.01	0.02	
		inc	152.00	1.50	1.8	3.8	0.91	2.3	0.02	0.02	
		inc	176.00	4.80	8.4	5.3	1.5	9.2	0.05	0.09	
		inc	180.05	0.75	52.5	33.2	9.6	57.1	0.32	0.60	
		and	208.00	125.50	1.1	3.6	0.09	1.1	0.00	0.03	2
		inc	208.00	71.00	1.7	6.0	0.15	1.8	0.01	0.05	2
		inc	228.80	29.00	3.7	12.5	0.26	4.0	0.02	0.11	
		inc	302.50	9.00	0.92	0.46	0.02	0.94	0.00	0.00	2
		inc	307.70	1.30	4.7	0.80	0.01	4.7	0.00	0.00	
		inc	321.00	12.50	0.26	0.92	0.02	0.28	0.00	0.00	2
		GNDD170A	13.00	10.00	0.57	5.2	0.29	0.76	0.01	0.07	
		and	174.00	6.00	0.67	0.28	0.02	0.68	0.00	0.00	
		GNDD171	126.00	10.75	0.37	1.9	0.15	0.46	0.00	0.08	2
		inc	134.00	1.40	1.1	5.9	0.76	1.5	0.01	0.39	
		and	193.00	3.90	0.32	0.42	0.01	0.33	0.00	0.00	2
		and	270.00	0.50	1.3	2.5	0.65	1.6	0.01	0.01	
		and	327.00	2.60	1.9	6.1	1.1	2.4	0.04	0.09	
		GNDD173	83.00	66.00	0.54	3.1	0.07	0.61	0.00	0.04	2
		inc	87.00	6.00	2.0	18.8	0.28	2.4	0.02	0.23	
		inc	116.00	6.00	1.4	2.8	0.13	1.5	0.01	0.05	
		inc	130.40	0.60	8.9	23.9	0.07	9.3	0.00	0.04	
		GNDD174	24.00	76.00	1.0	31.0	0.91	1.8	0.04	0.13	2
		inc	60.90	11.25	6.4	64.1	5.3	9.5	0.23	0.58	
		inc	60.90	5.95	10.7	109	7.9	15.5	0.38	0.95	1
		inc	96.00	4.00	0.20	359	0.26	4.9	0.02	0.22	
		and	163.00	39.50	0.47	2.3	0.31	0.63	0.02	0.02	2
		inc	167.55	4.20	1.5	15.0	2.5	2.8	0.11	0.02	
		inc	199.00	2.00	1.5	0.17	0.01	1.5	0.00	0.00	
		GNDD175	176.00	6.00	0.34	6.3	0.12	0.47	0.00	0.07	2

Issued Capital 974.4m shares 49.0m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commentary									
		GNDD176	73.90	2.95	0.86	3.3	0.16	1.0	0.00	0.15	2
		inc	76.10	0.75	2.5	1.7	0.18	2.6	0.00	0.04	
		and	247.20	1.25	0.29	98.9	0.06	1.6	0.00	0.04	
		GNDD177	41.50	63.35	0.58	1.8	0.24	0.70	0.01	0.07	2
		inc	55.00	1.30	1.3	3.5	0.08	1.4	0.02	0.15	
		inc	60.00	2.00	1.0	1.2	0.19	1.1	0.01	0.01	
		inc	71.80	0.50	1.3	7.3	0.19	1.5	0.01	0.06	
		inc	86.00	11.20	2.1	3.0	0.64	2.4	0.01	0.14	
		GNDD178	14.00	28.00	0.22	17.5	0.26	0.56	0.01	0.04	2
		inc	20.00	2.00	0.20	118	0.11	1.7	0.01	0.11	
		inc	39.00	1.30	0.80	4.8	3.9	2.6	0.04	0.04	
		and	53.00	2.00	0.05	81.0	0.04	1.1	0.00	0.03	
		and	65.15	1.85	1.1	3.3	0.81	1.5	0.01	0.12	
		and	89.15	0.85	4.9	302	0.40	8.9	0.11	0.67	
		GNDD179	76.00	8.00	0.12	4.53	0.47	0.38	0.01	0.33	2
		GNDD181	7.70	3.60	0.66	22.2	1.0	1.4	0.03	0.19	2
		inc	7.70	1.45	1.1	45.3	1.5	2.3	0.07	0.36	
		and	180.60	7.40	0.46	0.54	0.03	0.48	0.00	0.00	2
		inc	180.60	0.55	1.2	0.83	0.07	1.2	0.00	0.00	
		GNDD182	92.00	34.00	0.28	1.1	0.09	0.33	0.00	0.01	2
		inc	92.00	19.00	0.37	1.0	0.07	0.41	0.00	0.01	2
		inc	96.00	2.00	2.0	1.9	0.01	2.0	0.01	0.01	
		and	148.70	4.30	31.8	96.5	8.1	36.6	0.55	5.3	
		inc	148.70	3.45	39.6	118	10.0	45.4	0.68	6.5	1
		GNDD183	35.00	55.50	1.0	1.5	0.43	1.2	0.01	0.10	2
		inc	37.00	2.00	1.1	1.0	0.09	1.1	0.00	0.11	
		inc	57.00	2.00	0.95	0.44	0.11	1.0	0.00	0.03	
		inc	72.00	15.00	3.2	3.5	0.88	3.6	0.02	0.21	
		and	112.00	24.00	0.16	6.8	1.1	0.71	0.02	0.01	2
		inc	119.00	1.20	2.6	95.1	17.1	11.3	0.34	0.20	
		GNDD184	NSI	55.50	1.0	1.5	0.43	1.2	0.01	0.10	
		GNDD185	59.00	60.00	0.59	1.5	0.27	0.73	0.01	0.08	2
		inc	67.00	4.45	1.8	3.3	0.37	2.0	0.02	0.08	
		inc	83.00	10.00	1.0	1.7	0.21	1.1	0.00	0.04	
		inc	114.00	5.00	1.4	2.0	1.09	1.9	0.01	0.12	
		and	138.00	7.10	1.0	8.9	1.08	1.6	0.02	0.12	
		GNDD187	145.00	16.00	0.40	0.61	0.14	0.47	0.00	0.06	2

Issued Capital 974.4m shares 49.0m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commentary									
		inc	149.00	2.00	1.6	2.5	0.64	1.9	0.02	0.29	
		and	192.00	15.00	0.46	0.93	0.16	0.54	0.01	0.03	2
		and	302.50	5.50	1.7	26.0	0.69	2.4	0.03	0.36	
		inc	302.50	2.50	3.7	55.9	1.2	5.0	0.07	0.72	
		GNDD188	198.00	66.00	0.29	6.6	0.13	0.43	0.00	0.05	2
		inc	212.00	4.00	0.89	21.9	0.19	1.3	0.00	0.08	
		inc	252.00	4.55	1.1	4.5	0.38	1.3	0.01	0.03	
		GNDD189	58.60	5.20	16.7	129	6.1	21.0	0.23	1.05	
		inc	60.00	3.80	21.1	148	6.6	25.8	0.21	0.06	1
		and	174.00	6.65	0.15	2.0	0.22	0.27	0.01	0.00	2
		and	191.00	6.00	0.21	2.1	0.30	0.37	0.02	0.24	2
		GNDD190	47.30	7.70	0.12	4.6	4.9	2.3	0.26	0.02	
		and	161.10	1.90	0.19	5.7	0.2	0.35	0.01	0.02	2
		and	186.00	5.00	0.22	0.1	0.0	0.23	0.00	0.00	2
		and	200.00	4.00	0.31	0.1	0.01	0.31	0.00	0.00	2
		GNDD191	188.35	21.15	0.52	3.2	0.43	0.74	0.02	0.02	
		and	217.35	0.50	2.5	16.8	2.5	3.8	0.09	0.05	
		and	238.00	2.00	0.36	3.5	0.81	0.75	0.02	0.01	2
		GNDD192	15.00	50.00	0.28	0.60	0.06	0.31	0.00	0.01	2
		inc	28.00	20.00	0.44	0.59	0.06	0.47	0.00	0.01	2
		and	107.45	1.75	0.53	8.2	0.09	0.68	0.04	0.01	2
		and	176.00	0.60	1.2	24.8	7.0	4.6	0.24	0.01	
		GNDD193	96.30	83.45	0.66	1.3	0.20	0.77	0.01	0.03	2
		inc	96.30	9.50	1.51	2.7	0.14	1.6	0.03	0.05	
		inc	121.35	13.85	1.34	1.7	0.48	1.6	0.01	0.04	
		inc	147.75	1.20	0.85	1.8	1.9	1.7	0.01	0.06	
		inc	160.50	11.10	0.99	2.1	0.35	1.2	0.01	0.06	
		and	191.00	7.50	1.30	9.3	0.47	1.6	0.01	0.01	2
		inc	194.70	3.80	2.08	16.6	0.88	2.7	0.02	0.01	
		and	218.00	1.50	0.05	72.3	0.06	1.0	0.01	0.07	
		and	251.00	1.90	1.1	7.6	0.18	1.3	0.04	0.01	
		GNDD195	29.00	2.55	1.3	1.1	0.02	1.4	0.00	0.01	2
		inc	30.00	1.55	1.6	1.4	0.02	1.7	0.00	0.01	
		and	60.00	3.85	5.3	48.6	8.0	9.4	0.14	0.15	
		inc	60.80	3.05	6.1	52.0	8.1	10.2	0.13	0.13	1
		and	346.30	3.70	0.89	0.75	0.04	0.92	0.02	0.00	2
		inc	346.30	0.50	5.2	1.3	0.01	5.2	0.08	0.00	

Issued Capital 974.4m shares 49.0m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commentary									
		GNDD196	9.00	69.20	3.3	4.8	0.10	3.4	0.01	0.07	2
		inc	17.00	12.00	1.7	0.69	0.06	1.8	0.00	0.03	
		inc	69.00	9.20	21.9	16.0	0.38	22.2	0.03	0.38	
		inc	69.00	1.30	137	47.6	0.21	137.2	0.01	1.2	1
		and	279.50	0.60	2.0	0.22	0.00	2.0	0.00	0.00	
		GNDD199	26.00	146.00	0.40	1.1	0.23	0.51	0.01	0.07	2
		inc	26.00	60.00	0.63	1.5	0.18	0.72	0.01	0.09	2
		inc	36.00	2.00	1.6	1.3	0.06	1.6	0.01	0.06	
		inc	44.00	1.00	1.8	5.4	0.15	1.9	0.00	0.06	
		inc	58.00	10.00	1.4	1.2	0.23	1.5	0.00	0.10	
		inc	169.00	3.00	1.0	7.9	1.8	1.9	0.06	0.07	
		and	187.00	41.00	0.19	0.70	0.06	0.23	0.00	0.01	2
		GNDD200	168.25	66.75	0.61	0.56	0.07	0.65	0.00	0.00	2
		inc	176.45	7.15	1.0	0.59	0.03	1.1	0.00	0.00	
		inc	208.00	6.00	1.1	0.62	0.05	1.1	0.00	0.00	
		inc	232.00	1.00	4.7	5.6	1.3	5.3	0.05	0.00	
		GNDD201	99.00	3.00	0.48	7.9	0.17	0.66	0.04	0.07	2
		and	130.20	0.60	1.4	2.6	0.07	1.5	0.01	0.03	
		GNDD202	33.00	110.00	0.26	3.1	0.12	0.35	0.00	0.01	2
		inc	71.75	59.25	0.35	4.7	0.20	0.50	0.01	0.01	2
		inc	98.00	10.00	1.0	21.7	0.70	1.6	0.03	0.02	
		inc	127.00	2.00	1.2	1.1	0.02	1.2	0.00	0.01	
		and	238.00	6.00	0.57	1.0	0.03	0.59	0.00	0.01	2
		inc	240.55	1.45	1.5	0.57	0.05	1.5	0.00	0.01	
		GNDD203	210.50	0.60	3.6	81.9	10.2	9.0	0.38	3.93	
		and	227.00	2.00	1.4	4.3	0.12	1.5	0.01	0.04	
		and	299.00	21.80	2.4	22.2	4.0	4.5	0.06	0.45	2
		inc	300.25	20.55	2.6	23.1	4.2	4.7	0.07	0.48	
		inc	300.25	3.55	9.3	96.8	13.1	16.2	0.31	2.0	2
		GNDD204	95.00	44.00	3.2	4.5	0.11	3.3	0.00	0.04	2
		inc	97.38	20.62	6.4	6.4	0.11	6.6	0.00	0.06	
		and	183.00	1.00	1.2	6.7	0.44	1.5	0.01	0.33	
		GNDD205	214.20	0.70	15.2	7.1	4.2	17.1	0.03	0.00	
		GNDD206	31.55	10.45	3.6	6.3	0.06	3.7	0.01	0.08	2
		inc	34.65	3.90	9.5	14.9	0.03	9.7	0.03	0.21	_
		and	263.00	2.00	0.88	0.37	0.10	0.93	0.00	0.00	2
		and	277.00	4.00	0.54	0.65	0.01	0.55	0.00	0.00	2

Issued Capital 974.4m shares 49.0m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commentary									
		GNDD207	114.00	0.90	2.0	1.9	0.09	2.1	0.02	0.06	
		and	122.55	2.45	8.5	15.5	1.0	9.1	0.04	0.90	
		and	169.50	3.50	0.16	68.2	0.13	1.1	0.01	0.12	2
		inc	170.70	2.30	0.20	98.2	0.17	1.5	0.01	0.16	
		and	217.40	25.60	0.36	0.93	0.05	0.39	0.00	0.01	2
		inc	233.00	4.00	1.4	0.64	0.01	1.4	0.00	0.01	
		and	269.35	1.95	1.7	3.4	0.35	1.9	0.01	0.11	
		GNDD208	170.00	73.65	0.51	1.4	0.21	0.62	0.01	0.04	2
		inc	180.00	2.00	2.2	0.88	0.01	2.2	0.00	0.00	
		inc	208.00	35.65	0.85	2.6	0.41	1.1	0.01	0.07	2
		inc	212.00	13.00	1.9	5.0	0.78	2.3	0.03	0.20	
		GNDD209	33.60	4.40	0.18	14.2	0.08	0.40	0.00	0.06	2
		and	45.65	0.75	0.77	10.7	1.4	1.5	0.03	0.13	
		and	65.00	17.10	1.9	16.2	1.1	2.6	0.02	0.18	
		and	148.00	2.00	1.0	28.5	0.01	1.3	0.00	0.01	
		GNDD210	8.00	2.00	0.86	17.9	0.02	1.1	0.00	0.17	
		and	28.00	6.00	0.04	1.4	0.47	0.26	0.00	0.03	2
		and	308.00	2.00	1.3	3.8	0.71	1.6	0.02	0.02	
		GNDD211	168.80	23.20	0.51	0.82	0.12	0.57	0.00	0.02	2
		inc	177.10	4.35	1.5	2.0	0.27	1.6	0.00	0.00	
		GNDD212	15.00	1.80	0.5	1.1	0.12	0.53	0.00	0.01	2
		and	42.20	1.40	1.2	8.1	0.08	1.4	0.00	0.01	
		GNDD214	48.25	3.75	22.1	125	2.6	24.8	0.05	0.09	
		GNDD215	126.20	14.60	1.4	2.4	0.35	1.6	0.01	0.03	2
		inc	132.50	8.30	2.1	2.1	0.40	2.3	0.01	0.01	
		and	159.00	41.00	0.15	3.1	0.08	0.23	0.01	0.04	2
		GNDD216	81.00	4.00	0.30	0.29	0.0	0.30	0.00	0.00	2
		and	204.00	2.00	0.61	3.5	0.2	0.75	0.03	0.07	2
		GNDD217	111.00	21.00	5.7	32.1	3.4	7.6	0.03	0.16	2
		inc	114.65	11.70	10.1	54.8	5.9	13.3	0.06	0.26	
		inc	116.65	4.35	23.1	139	11.7	29.9	0.14	0.58	
		GNDD218	198.00	5.05	0.39	0.16	0.01	0.39	0.00	0.00	2
		GNDD219	12.00	8.00	0.13	0.46	0.02	0.15	0.00	0.01	2
		and	68.90	39.35	0.04	10.8	0.08	0.22	0.00	0.02	2
		GNDD220	86.00	108.00	0.38	1.6	0.05	0.42	0.01	0.00	2
		inc	88.00	2.00	1.1	10.5	0.50	1.4	0.01	0.03	=
		inc	137.00	49.00	0.59	1.3	0.05	0.63	0.01	0.00	2

Issued Capital 974.4m shares 49.0m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commentary									
		inc	146.00	4.00	1.2	1.4	0.10	1.2	0.01	0.00	
		inc	158.30	3.70	1.8	1.9	0.02	1.8	0.01	0.01	
		inc	182.00	2.00	1.7	2.8	0.0	1.7	0.01	0.00	
		GNDD221	82.80	1.20	1.1	6.7	0.10	1.2	0.00	0.04	
		and	156.85	8.15	1.5	7.5	0.83	2.0	0.03	0.13	
		GNDD223	26.00	2.00	0.60	0.41	0.02	0.61	0.00	0.01	2
		GNDD225	79.00	9.15	0.19	0.79	0.02	0.21	0.00	0.01	2
		and	207.00	2.00	4.3	1.1	0.0	4.3	0.01	0.00	
		and	235.00	9.20	0.93	0.63	0.0	1.0	0.00	0.04	
		GNDD226	109.00	16.00	0.49	2.4	0.33	0.67	0.02	0.27	2
		inc	116.00	7.35	0.71	4.0	0.54	1.0	0.03	0.45	
		and	146.00	44.00	0.41	0.65	0.10	0.46	0.00	0.04	2
		inc	170.00	2.00	1.3	0.84	0.06	1.4	0.00	0.04	
		inc	188.00	2.00	3.8	1.1	0.17	3.9	0.01	0.06	
		GNDD227	81.00	2.00	0.77	0.52	0.0	0.78	0.00	0.00	2
		and	179.15	3.70	1.2	16.8	1.6	2.1	0.03	0.43	2
		inc	181.95	0.90	4.2	64.5	6.6	7.9	0.13	1.8	
		and	222.00	8.00	4.2	53.6	1.7	5.7	0.06	0.05	2
		inc	223.40	6.60	5.1	64.2	2.1	6.8	0.07	0.06	
		GNDD229	167.00	38.25	0.65	6.5	0.34	0.88	0.02	0.07	2
		inc	171.00	6.00	1.7	30.1	1.5	2.7	0.09	0.21	
		inc	204.50	0.75	4.8	5.9	0.34	5.0	0.02	0.05	
		GNDD230	211.00	6.00	0.18	2.5	0.04	0.23	0.00	0.00	2
		and	227.00	15.00	0.19	1.1	0.09	0.24	0.00	0.01	2
		and	256.00	4.00	0.48	0.72	0.05	0.51	0.00	0.02	2
		GNDD232	139.85	2.50	0.65	15.2	0.56	1.1	0.03	0.10	2
		and	174.00	4.00	1.7	45.3	0.21	2.4	0.02	0.11	2
		inc	176.00	2.00	2.9	71.1	0.38	4.0	0.04	0.20	
		GNDD233	113.00	2.00	0.52	0.60	0.09	0.56	0.00	0.01	2
		and	180.10	2.35	0.39	0.46	0.04	0.42	0.00	0.01	2
		GNDD236	175.00	52.00	1.1	4.1	0.26	1.2	0.01	0.02	2
		inc	177.00	2.00	2.9	9.6	0.44	3.3	0.02	0.01	
		inc	201.00	2.00	1.0	5.6	1.9	1.9	0.02	0.29	
		inc	216.60	4.40	8.4	33.6	0.19	8.9	0.01	0.00	
		GNDD237	139.00	12.00	0.32	1.2	0.28	0.46	0.01	0.21	2
		and	201.55	155.45	0.61	2.1	0.11	0.69	0.00	0.01	2
		inc	201.55	72.45	0.55	3.8	0.16	0.66	0.01	0.01	2

Issued Capital 974.4m shares 49.0m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commentary									
		inc	234.00	9.00	1.2	14.2	0.24	1.5	0.01	0.02	
		inc	254.50	1.75	6.7	10.8	0.51	7.1	0.03	0.02	
		and	298.00	59.00	0.91	1.0	0.06	1.0	0.01	0.01	2
		inc	302.00	2.00	3.3	0.3	0.00	3.3	0.00	0.00	
		inc	336.00	2.00	1.3	11.4	1.5	2.1	0.13	0.10	
		inc	349.65	1.95	17.5	2.9	0.00	17.5	0.00	0.00	
		GNDD239	13.00	6.00	0.25	1.8	0.10	0.31	0.00	0.00	2
		and	26.40	0.85	3.3	54.7	2.5	5.1	0.05	0.07	
		and	47.00	2.35	1.9	7.3	1.5	2.6	0.02	0.22	2
		inc	48.30	1.05	4.2	16.2	0.71	4.7	0.03	0.50	
		GNDD240	114.00	2.00	1.4	0.31	0.01	1.5	0.00	0.00	
		and	167.00	3.45	2.7	50.2	2.9	4.6	0.07	0.86	2
		inc	169.20	1.25	6.6	116	7.6	11.3	0.19	2.3	1
		GNDD241	NSI								
		GNDD242	185.45	8.55	0.54	0.45	0.05	0.57	0.00	0.02	2
		inc	185.45	1.60	1.0	1.2	0.25	1.1	0.00	0.09	
		and	306.50	0.70	2.3	0.89	0.00	2.3	0.00	0.00	
		GNDD243	136.00	7.10	2.2	27.2	2.6	3.6	0.06	0.31	2
		inc	138.00	5.10	2.1	25.9	2.5	3.5	0.06	0.30	
		inc	142.00	1.10	9.0	126	14.0	16.7	0.33	1.8	1
		GNDD245	139.00	43.70	1.0	1.8	0.35	1.1	0.01	0.09	2
		inc	143.00	2.00	3.6	3.0	0.82	4.0	0.00	0.05	
		inc	181.27	1.43	18.7	38.0	6.8	22.1	0.18	1.8	1
		GNDD246	179.50	2.50	4.5	9.0	2.9	5.9	0.05	0.01	2
		inc	179.50	0.85	12.7	25.0	7.8	16.4	0.12	0.04	
		GNDD248	136.00	43.00	0.22	0.50	0.12	0.28	0.00	0.02	2
		and	199.00	83.00	0.46	2.5	0.09	0.53	0.00	0.01	2
		inc	213.00	2.00	1.3	0.45	0.02	1.3	0.00	0.00	
		inc	225.00	1.00	4.7	1.4	0.01	4.7	0.00	0.00	1
		inc	237.10	0.70	24.8	31.0	5.9	27.7	0.23	0.01	
		inc	254.00	1.40	0.44	114	0.76	2.2	0.04	0.09	
		GNDD249	207.00	15.30	0.68	1.5	0.16	0.77	0.01	0.13	2
		inc	207.00	2.60	3.0	7.9	0.87	3.5	0.05	0.75	
		and	237.00	14.60	1.1	1.3	0.14	1.2	0.01	0.04	2
		inc	251.00	0.60	21.9	16.0	2.2	23.1	0.05	0.68	
		GNDD250	80.00	30.00	0.26	3.5	0.17	0.38	0.01	0.07	2
		inc	98.00	5.00	0.88	9.2	0.63	1.3	0.02	0.22	

Issued Capital 974.4m shares 49.0m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commentary									
		GNDD252	104.00	10.00	0.60	2.3	0.25	0.73	0.01	0.05	2
		inc	107.00	5.00	0.95	3.3	0.40	1.2	0.01	0.09	
		and	128.00	12.15	0.76	1.3	0.27	0.90	0.00	0.01	2
		inc	134.00	4.00	1.7	2.4	0.64	2.0	0.01	0.02	
		and	264.57	33.43	0.57	6.1	0.65	0.93	0.02	0.36	2
		inc	281.70	2.90	2.7	36.3	6.1	5.8	0.16	3.4	
		inc	290.00	2.00	1.1	4.6	0.14	1.2	0.01	0.08	
		GNDD253	112.00	2.00	1.0	1.1	0.1	1.0	0.01	0.0	
		and	133.00	50.00	1.8	1.0	0.1	1.9	0.00	0.0	2
		inc	139.00	38.00	2.2	1.2	0.2	2.3	0.01	0.0	
		inc	151.55	2.37	17.2	3.7	0.3	17.3	0.01	0.0	1
		and	201.40	25.13	8.0	0.3	0.0	0.9	0.00	0.0	2
		inc	211.00	3.64	2.4	1.3	0.1	2.4	0.01	0.1	
		inc	220.00	2.00	3.4	0.5	0.0	3.4	0.00	0.0	
		GNDD254	173.00	62.00	1.7	20.3	0.33	2.1	0.01	0.08	2
		inc	173.00	17.00	3.2	4.4	0.49	3.5	0.02	0.17	
		inc	197.00	4.00	9.4	292	2.6	14.3	0.09	0.43	
		and	249.00	18.00	0.80	4.3	0.27	1.0	0.02	0.06	2
		inc	255.45	1.00	6.5	19.0	1.4	7.3	0.06	0.01	
		inc	266.55	0.45	7.3	28.0	5.7	10.1	0.44	1.9	
		and	298.25	1.75	0.27	73.9	0.29	1.3	0.02	0.11	2
		and	312.00	12.00	0.82	0.07	0.00	0.82	0.00	0.00	2
		inc	314.00	6.00	1.0	0.05	0.00	1.0	0.00	0.00	
		and	363.00	26.75	1.7	2.8	0.44	1.9	0.02	0.01	2
		inc	363.00	6.00	4.6	1.9	0.19	4.7	0.01	0.00	
		inc	385.00	4.75	2.1	8.1	1.5	2.9	0.07	0.01	
		GNDD255	158	36.65	0.19	0.75	0.04	0.22	0.00	0.01	2
		inc	192	2.65	1.0	2.5	0.12	1.1	0.01	0.05	
		GNDD257	233.00	44.25	0.32	2.5	0.17	0.43	0.01	0.07	2
		inc	259.00	2.00	2.4	3.5	0.18	2.6	0.00	0.07	
		inc	275.00	2.25	1.2	1.9	0.14	1.3	0.00	0.01	
		GNDD258	250.00	2.00	0.26	17.7	2.9	1.7	0.09	1.7	
		GNDD259	128.00	16.00	0.32	0.81	0.10	0.38	0.00	0.09	2
		inc	143.00	1.00	0.82	5.5	0.85	1.3	0.03	0.61	
		GNDD260	159.00	2.00	0.19	9.1	1.4	0.90	0.05	0.16	2
		GNDD261	22.00	4.00	1.1	5.2	0.56	1.4	0.01	0.00	2
		inc	22.00	0.50	7.5	17.6	4.2	9.6	0.11	0.10	

Issued Capital 974.4m shares 49.0m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commentary									
		GNDD262	183.00	39.00	0.19	1.2	0.06	0.23	0.00	0.02	2
		GNDD263	59.00	9.00	0.05	0.08	0.57	0.30	0.00	0.00	2
		and	110.00	2.00	1.3	0.56	0.00	1.32	0.00	0.00	
		GNDD264	70.00	2.40	0.16	6.1	1.0	0.66	0.03	0.47	2
		inc	71.50	0.90	0.36	12.0	2.0	1.4	0.04	1.0	
		and	104.95	22.05	1.4	16.7	1.7	2.3	0.05	0.43	
		GNDD265	56.00	4.00	0.57	1.3	0.08	0.63	0.01	0.04	2
		and	152.00	14.00	0.20	1.1	0.11	0.26	0.01	0.09	2
		and	237.00	1.00	8.97	19.7	2.48	10.30	0.04	0.38	1
		GNDD266	34.00	16.00	0.4	9.0	0.6	8.0	0.03	0.1	2
		inc	38.82	5.18	0.9	23.1	1.6	1.9	0.07	0.2	
		GNDD267	169.00	9.00	0.3	1.2	0.2	0.4	0.01	0.02	2
		GNDD268	NSI								
		GNDD269	6.00	6.00	1.1	12.2	0.1	1.3	0.01	0.2	2
		inc	10.00	2.00	2.8	34.4	0.3	3.4	0.01	0.5	
		and	48.00	2.00	0.2	87.3	0.4	1.5	0.01	0.0	
		and	86.00	10.00	0.3	1.1	0.0	0.3	0.00	0.0	2
		GNDD270	NSI								
		GNDD272	35.00	22.00	0.17	2.7	0.1	0.25	0.00	0.03	2
		and	96.50	51.60	3.9	11.8	1.0	4.5	0.04	0.19	2
		inc	137.00	11.10	17.4	51.1	4.5	20.0	0.15	0.79	
		inc	139.00	7.90	23.8	65.2	6.0	27.2	0.20	1.0	
		GNDD273	31.50	2.50	0.61	3.6	0.8	1.0	0.00	0.75	2
		inc	31.50	0.87	1.5	6.5	2.0	2.4	0.00	1.9	
		and	50.33	9.17	0.07	5.9	0.6	0.42	0.01	0.10	2
		GNDD274	298.00	19.00	0.74	9.6	0.5	1.1	0.01	0.2	2
		inc	305.00	2.00	6.58	48.8	3.5	8.7	0.11	2.2	
		GNDD275	55.00	2.00	1.1	1.9	0.05	1.1	0.01	0.01	
		GNDD276	49.00	1.45	0.76	9.1	0.48	1.1	0.02	0.26	
		and	112.15	2.85	0.38	0.57	0.02	0.39	0.00	0.01	2
		and	139.00	14.90	0.47	1.9	0.18	0.57	0.01	0.13	2
		inc	143.00	2.00	1.3	2.5	0.22	1.5	0.01	0.16	
		and	188.30	4.85	0.32	0.59	0.13	0.38	0.00	0.07	2
		and	212.00	4.00	0.46	1.8	0.25	0.60	0.01	0.22	2
		GNDD277	63.00	35.00	2.2	3.0	0.11	2.3	0.00	0.03	2
		inc	63.00	29.00	2.6	2.7	0.09	2.7	0.00	0.03	
		GNDD278	221.00	11.75	0.43	1.0	0.09	0.48	0.00	0.05	2

Issued Capital 974.4m shares 49.0m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commentary												
		inc	223.00	1.00	1.0	1.3	0.07	1.1	0.00	0.03				
		inc	228.00	1.00	1.4	1.9	0.19	1.5	0.01	0.12				
		GNDD279	49.00	10.30	0.66	1.7	0.08	0.71	0.00	0.02	2			
		inc	50.65	1.35	1.04	0.6	0.0	1.1	0.00	0.0				
		inc	58.00	1.30	1.81	9.1	0.5	2.1	0.01	0.1				
		GNDD280	239.35	15.05	3.7	38.6	0.68	4.5	0.01	0.06				
		inc	242.25	2.75	18.4	29.8	0.66	19.1	0.03	0.03	1			
		GNDD281	42.50	23.50	1.1	8.9	0.27	1.3	0.01	0.19	2			
		inc	42.50	17.50	1.3	11.3	0.29	1.6	0.01	0.23				
		and	196.30	2.60	1.1	26.2	3.1	2.8	0.09	0.91	2			
		inc	196.30	1.65	1.4	37.7	4.7	4.0	0.13	1.4				
		and	224.00	12.00	0.28	4.9	0.37	0.51	0.01	0.04	2			
		inc							231.10	1.25	0.72	16.0	3.0	
		and	292.00	1.20	3.0	80.4	0.32	4.2	0.01	0.11				
		and	309.00	3.85	0.43	4.3	0.10	0.53	0.00	0.01	2			
		and	426.00	1.55	0.27	24.6	1.6	1.3	0.03	0.03				
		GNDD282	11.00	8.00	0.20	1.7	0.07	0.25	0.00	0.03	2			
		and	187.00	10.00	0.45	1.7	0.02	0.48	0.00	0.03	2			
		and	216.50	7.50	0.20	2.7	0.11	0.28	0.01	0.08	2			
		GNDD283	7.00	4.00	2.9	17.8	0.15	3.2	0.01	0.06	2			
		inc	8.50	1.20	9.4	49.7	0.26	10.1	0.02	0.13	1			
		GNDD284	69.55	17.05	2.4	4.7	0.66	2.7	0.02	0.14	2			
		inc	75.00	5.20	7.4	13.9	2.0	8.5	0.06	0.45				
		inc	77.80	1.20	21.4	34.4	5.5	24.2	0.17	0.86	1			
		GNDD285	173.60	1.65	1.0	1.5	0.50	1.2	0.02	0.03				
		and	312.00	11.30	3.0	11.4	1.38	3.7	0.06	0.03				
		and	362.40	10.60	0.6	1.2	0.05	0.6	0.01	0.01	2			
		inc	362.40	1.15	3.7	8.8	0.42	4.0	0.05	0.04				
		and	393.00	2.00	6.7	12.1	0.09	6.9	0.07	0.01				
		GNDD286	95.00	6.00	0.22	1.5	0.27	0.36	0.01	0.06	2			
		and	112.10	3.80	0.38	0.57	0.02	0.40	0.01	0.00	2			
		and	169.00	10.20	4.2	52.5	3.0	6.2	0.10	0.09	2			
		inc	169.00	7.45	5.8	71.4	4.0	8.4	0.13	0.12				
		inc	174.25	2.20	11.5	171	11.1	18.5	0.37	0.31	1			
		GNDD287	26.00	126.00	0.37	2.1	0.17	0.47	0.00	0.01	2			
		inc	67.00	5.50	1.8	6.6	0.35	2.0	0.01	0.01				
			07.00	3.30	1.0	5.0	0.55	2.0	0.01	0.01				

Issued Capital 974.4m shares 49.0m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Contact T: +61 8 6380 9235 E: admin@challengerex.com 0.08

Criteria	JORC Code explanation	Commentary									
		inc	82.00	2.00	1.5	4.4	0.59	1.8	0.00	0.00	
		and	202.00	7.00	0.13	1.8	0.16	0.22	0.00	0.02	2
		GNDD288	13.00	96.00	1.8	2.9	0.31	2.0	0.01	0.04	2
		inc	65.00	44.00	3.7	4.6	0.63	4.1	0.01	0.07	
		inc	98.20	4.30	27.6	35.4	5.9	30.6	0.11	0.33	1
		and	216.00	4.50	3.3	31.2	4.0	5.4	0.15	0.55	2
		inc	217.76	1.90	7.6	68.7	8.7	12.2	0.32	1.2	
		inc	218.55	1.11	11.7	101	12.5	18.4	0.48	2.1	1_
		and	399.00	27.80	5.5	12.9	3.9	7.3	0.05	0.02	2
		inc	403.00	4.00	1.3	2.1	0.62	1.6	0.01	0.00	
		inc	410.00	14.20	10.1	20.6	7.3	13.6	0.09	0.04	
		GNDD289	23.00	39.20	0.23	2.1	0.13	0.31	0.00	0.01	2
		inc	27.00	2.00	1.0	16.9	0.07	1.3	0.00	0.04	
		inc	60.90	1.30	0.32	7.1	2.6	1.5	0.08	0.04	
		and	132.00	4.00	0.68	0.41	0.02	0.69	0.00	0.00	2
		and	165.00	14.00	0.27	1.6	0.03	0.30	0.00	0.01	2
		and	201.00	6.00	0.17	1.7	0.23	0.29	0.01	0.15	2
		GNDD290	27.45	8.55	0.20	6.0	0.07	0.30	0.01	0.00	2_
		and	70.00	4.00	0.71	13.4	1.1	1.4	0.02	0.01	2
		inc	70.00	2.00	1.0	16.1	2.0	2.1	0.04	0.01	
		and	139.50	11.66	0.31	12.1	0.82	0.82	0.02	0.29	2_
		inc	139.50	2.10	1.4	25.3	2.1	2.7	0.10	1.3	
		and	162.60	3.96	1.9	19.9	5.5	4.6	0.05	0.31	
		GNDD291	18.20	11.80	0.46	7.5	0.10	0.60	0.01	0.04	2
		inc	24.00	2.00	1.0	5.7	0.05	1.1	0.01	0.05	
		and	62.00	77.00	0.19	5.3	0.10	0.29	0.00	0.02	2
		and	165.00	25.00	0.13	3.5	0.06	0.20	0.00	0.02	2
		inc	179.00	2.00	0.81	6.3	0.34	1.0	0.00	0.09	
		GNDD292	69.00	12.50	0.25	1.7	0.03	0.29	0.00	0.01	2
		inc	69.00	1.00	1.0	3.2	0.04	1.0	0.00	0.04	
		and	99.00	42.00	0.22	1.5	0.07	0.26	0.00	0.01	2
		inc	110.80	2.00	1.0	7.7	0.25	1.2	0.00	0.00	
		and	159.00	63.00	0.61	8.6	0.75	1.0	0.01	0.26	2
		inc	196.75	1.05	1.5	187	16.9	11.2	0.20	0.12	
		inc	210.70	2.70	2.0	62.0	9.6	6.9	0.22	4.9	
		inv	219.05	2.95	2.2	1.8	0.01	2.2	0.00	0.00	

Criteria	JORC Code explanation	Commentary									
		GNDD293	130.00	66.00	0.48	1.0	0.09	0.53	0.00	0.02	2
		inc	130.00	5.50	1.4	3.4	0.19	1.5	0.01	0.03	
		inc	143.00	2.00	1.9	2.4	0.03	2.0	0.00	0.01	
		inc	179.50	9.35	0.79	1.8	0.23	0.91	0.01	0.03	
		GNDD294	35.83	9.17	0.29	4.1	0.18	0.42	0.04	0.24	2
		GNDD295	58.00	42.00	0.20	2.7	0.08	0.27	0.00	0.01	2
		GNDD296	59.00	13.00	0.31	5.0	0.10	0.42	0.01	0.06	2
		inc	70.00	2.00	1.7	21.5	0.09	2.0	0.00	0.04	
		and	173.00	10.00	0.39	1.6	1.2	0.95	0.01	0.00	
		and	193.00	16.90	14.1	18.3	5.8	16.9	0.18	0.00	
		inc	194.20	7.10	28.1	36.1	8.3	32.2	0.31	0.00	
		inc	207.05	2.85	13.1	13.0	12.6	18.8	0.26	0.00	
		GNDD297	16.00	14.00	0.47	5.1	0.03	0.55	0.00	0.02	2
		inc	20.00	2.00	1.4	21.6	0.01	1.7	0.00	0.00	
		and	71.00	3.60	0.11	34.0	0.03	0.55	0.00	0.03	2
		GNDD298	148.00	21.00	0.63	1.1	0.23	0.75	0.01	0.13	2
		inc	148.00	7.00	1.1	2.3	0.39	1.3	0.02	0.26	
		and	205.00	2.00	1.5	0.15	0.01	1.5	0.00	0.00	
		and	230.50	1.70	0.60	4.2	0.42	0.83	0.01	0.01	2
		and	281.00	5.00	0.06	19.7	0.11	0.36	0.00	0.04	2
		and	300.00	9.00	0.57	2.6	0.47	0.80	0.01	0.00	2
		inc	308.00	1.00	3.1	17.9	3.87	5.0	0.12	0.01	
		GNDD299	141.00	1.00	1.1	9.5	0.88	1.6	0.03	0.09	
		and	147.50	9.85	3.4	44.0	5.3	6.2	0.11	0.20	
		GNDD300	27.00	18.00	0.36	2.0	0.13	0.44	0.00	0.00	2
		and	87.00	33.10	0.36	0.94	0.04	0.39	0.00	0.01	2
		inc	108.00	2.00	1.6	0.73	0.01	1.6	0.00	0.00	
		and	173.85	0.50	0.23	12.6	2.42	1.4	0.07	0.01	
		and	188.00	0.60	1.5	22.3	2.9	3.0	0.11	0.90	
		GNDD301	13.20	48.80	0.41	6.1	0.08	0.52	0.00	0.05	2
		inc	26.10	15.90	0.75	11.7	0.06	0.92	0.00	0.05	
		GNDD303	139.00	4.00	0.42	1.3	0.01	0.44	0.00	0.01	2
		GNDD304	66.00	47.00	0.23	1.1	0.21	0.33	0.00	0.06	2
		inc	66.00	2.00	1.2	3.4	0.11	1.3	0.01	0.14	
		inc	94.00	2.00	0.72	1.7	0.99	1.2	0.00	0.34	
		GNDD305	128.00	48.00	0.22	1.4	0.02	0.25	0.00	0.01	2

riteria	JORC Code explanation	Commentary									
		inc	175.00	1.00	1.2	14.2	0.00	1.3	0.09	0.00	
		and	226.70	12.10	0.37	1.9	0.11	0.44	0.00	0.10	2
		inc	237.50	1.30	0.93	7.4	0.50	1.2	0.02	0.54	
		GNDD306	78.00	25.00	0.49	5.8	0.08	0.60	0.02	0.04	2
		inc	84.00	8.00	1.0	13.9	0.20	1.2	0.04	0.09	
		and	213.25	28.75	0.45	8.2	0.30	0.69	0.02	0.03	2
		inc	213.25	1.75	1.0	18.1	0.03	1.2	0.00	0.02	
		inc	222.70	1.70	2.5	63.1	3.0	4.6	0.19	0.08	
		inc	234.00	2.00	1.7	21.5	1.0	2.4	0.04	0.03	
		GNDD307	0.00	23.00	0.33	4.8	0.05	0.41	0.00	0.02	2
		and	57.00	22.00	0.28	0.50	0.03	0.30	0.00	0.00	2
		inc	57.00	2.00	1.5	0.24	0.01	1.5	0.00	0.00	<u> </u>
		GNDD308	258.25	36.75	0.49	1.6	0.16	0.58	0.00	0.06	2
		inc	291.00	4.00	2.6	5.6	0.84	3.1	0.02	0.05	
		GNDD309	185.00	23.10	0.62	1.6	0.12	0.70	0.00	0.04	2
		inc	191.00	2.00	1.0	11.9	0.11	1.2	0.00	0.11	
		inc	206.00	2.10	2.8	1.9	0.77	3.1	0.02	0.17	
		GNDD310	30.00	19.00	2.3	1.7	0.01	2.3	0.00	0.00	2
		inc	30.00	2.00	20.3	11.5	0.02	20.5	0.00	0.00	
		and	186.00	40.00	0.60	0.92	0.02	0.62	0.00	0.00	2
		inc	188.00	2.00	1.7	1.9	0.06	1.8	0.00	0.00	
		inc	204.00	8.00	1.1	1.0	0.00	1.1	0.00	0.00	
		inc	222.00	2.00	1.0	0.75	0.01	1.0	0.00	0.00	
		and	288.00	2.00	1.1	6.5	0.16	1.3	0.02	0.15	
		GNDD311	5.00	22.00	0.44	0.84	0.02	0.46	0.00	0.01	2
		inc	23.00	2.00	2.3	1.2	0.04	2.3	0.00	0.02	
		and	45.00	4.00	0.57	0.31	0.01	0.58	0.00	0.01	2
		and	176.00	21.00	0.20	3.2	0.13	0.29	0.01	0.01	2
		inc	191.00	4.50	0.31	6.5	0.44	0.59	0.02	0.01	
		GNDD314	102.00	4.00	0.34	11.8	0.22	0.58	0.01	0.06	2
		and	115.35	2.65	1.5	13.8	0.06	1.7	0.00	0.01	2
		inc	116.59	1.41	2.4	21.3	0.08	2.7	0.00	0.01	
		and	205.00	17.50	0.71	11.5	2.4	1.9	0.04	0.22	2
		inc	205.00	5.50	1.6	25.1	4.6	4.0	0.08	0.42	
		inc	205.00	2.15	3.7	33.6	11.4	9.1	0.18	0.88	
		inc	216.00	6.50	0.51	9.6	2.4	1.7	0.04	0.24	2

iteria	JORC Code explanation	Commentary									
		inc	217.00	5.50	0.56	10.5	2.7	1.9	0.04	0.27	
		inc	217.00	3.00	0.83	14.3	3.9	2.7	0.06	0.32	
		and	284.00	2.00	0.83	0.2	0.01	0.84	0.00	0.00	2
		and	296.90	2.75	59.0	25.8	7.2	62.5	0.27	0.00	1
		GNDD315	219.00	2.00	0.95	0.75	0.01	1.0	0.00	0.01	2
		GNDD316	102.00	4.00	0.29	11.2	0.30	0.56	0.07	0.09	2
		and	286.00	34.00	0.32	4.7	0.10	0.42	0.01	0.03	2
		inc	286.00	2.00	1.3	28.0	0.05	1.7	0.00	0.00	
		inc	306.00	2.00	0.64	9.6	0.93	1.2	0.05	0.21	
		inc	316.00	2.00	1.4	4.4	0.03	1.5	0.01	0.01	
		GNDD319	108.00	104.00	0.48	1.1	0.03	0.51	0.00	0.01	2
		inc	128.00	2.00	1.7	1.2	0.02	1.7	0.00	0.00	
		inc	140.00	2.00	1.5	0.88	0.01	1.6	0.00	0.01	
		inc	154.00	2.00	1.3	3.7	0.00	1.3	0.00	0.00	
		inc	164.00	4.00	1.2	5.5	0.27	1.4	0.02	0.12	
		inc	196.00	12.00	1.3	0.53	0.01	1.3	0.00	0.00	
		GNDD320	181.75	36.25	0.4	2.52	0.25	0.55	0.01	0.03	2
		inc	197.00	7.85	1.0	5.77	0.61	1.4	0.03	0.04	
		inc	213.50	1.50	1.2	4.09	0.68	1.6	0.03	0.04	
		and	254.00	29.00	0.3	0.26	0.02	0.34	0.00	0.00	2
		and	301.00	32.50	0.76	0.6	0.04	0.78	0.00	0.00	2
		inc	303.50	15.50	1.32	0.8	0.06	1.4	0.00	0.00	
		GNDD322	132.00	50.00	0.85	1.9	0.27	1.0	0.00	0.01	2
		inc	143.60	2.40	12.2	28.5	4.46	14.5	0.05	0.15	
		inc	159.40	1.40	1.1	1.1	0.21	1.2	0.01	0.03	
		inc	180.00	2.00	1.4	0.26	0.01	1.4	0.00	0.00	
		and	295.60	3.40	0.75	0.69	0.01	0.76	0.01	0.00	2
		inc	295.60	1.40	1.4	0.64	0.01	1.4	0.01	0.00	
		and	382.15	8.85	1.3	10.9	1.45	2.0	0.06	0.01	
		GNDD324	128.00	2.00	1.0	1.0	0.01	1.0	0.01	0.05	
		and	144.00	2.00	1.9	1.4	0.01	2.0	0.01	0.01	
		and	152.00	10.00	0.27	0.81	0.11	0.32	0.00	0.01	2
		GNDD327	229.00	28.00	0.25	0.20	0.01	0.25	0.00	0.01	2
		and	307.00	0.60	1.4	4.4	1.1	1.9	0.03	0.83	
		and	354.70	1.00	13.2	22.1	2.0	14.4	0.11	0.01	
		and	386.00	1.70	0.57	0.21	0.01	0.57	0.00	0.00	2

Criteria	JORC Code explanation	Commentary									
		and	459.00	3.00	0.34	1.1	0.01	0.36	0.00	0.00	2
		GNDD329	104.00	14.00	1.1	1.4	0.02	1.2	0.00	0.00	2
		inc	106.60	1.65	7.3	4.1	0.02	7.4	0.00	0.01	
		and	282.00	68.00	0.48	0.87	0.03	0.51	0.01	0.01	2
		inc	284.00	2.50	2.9	6.4	0.72	3.3	0.04	0.30	
		inc	312.00	1.10	3.0	2.0	0.00	3.1	0.00	0.00	
		inc	331.00	2.00	1.0	0.7	0.00	1.0	0.01	0.00	
		inc	337.00	2.00	1.2	1.1	0.00	1.2	0.00	0.00	
		inc	345.00	2.00	1.3	1.0	0.00	1.3	0.01	0.00	
		GNDD330	286	49.70	0.39	0.88	0.08	0.43	0.00	0.01	2
		inc	316	1.00	1.4	0.89	0.03	1.5	0.00	0.01	
		inc	329	6.70	1.3	1.5	0.06	1.3	0.00	0.00	
		and	375.2	1.80	0.41	2.6	3.7	2.1	0.03	0.01	2
		inc	375.2	0.50	1.3	8.2	12.3	6.7	0.11	0.02	
		GNDD333	164.20	16.80	0.32	1.3	0.07	0.37	0.00	0.02	2
		and	224.00	5.00	0.50	9.1	0.31	0.75	0.01	0.13	
		and	248.00	1.45	1.2	3.8	0.43	1.4	0.02	0.19	
		and	262.00	10.30	0.17	2.6	0.65	0.49	0.01	0.03	2
		inc	265.80	1.20	0.68	3.0	0.73	1.0	0.02	0.04	
		inc	271.50	0.80	0.22	7.2	2.0	1.2	0.04	0.00	
		and	284.00	13.00	0.27	3.19	0.32	0.44	0.01	0.04	2
		GNDD334	220.00	29.00	0.33	0.19	0.02	0.34	0.00	0.00	2
		inc	222.00	1.50	1.2	0.43	0.01	1.2	0.00	0.00	
		inc	230.00	1.50	1.4	0.09	0.01	1.4	0.00	0.00	
		and	275.00	20.00	0.25	0.12	0.01	0.25	0.00	0.00	2
		and	317.00	18.65	0.25	0.74	0.06	0.29	0.00	0.03	2
		GNDD336	146.00	35.00	0.35	5.3	0.23	0.52	0.00	0.04	2
		inc	150.00	2.00	1.3	15.8	0.88	1.8	0.01	0.31	
		inc	174.00	1.00	2.2	26.8	1.68	3.2	0.03	0.08	
		and	282.00	3.00	0.40	0.61	0.04	0.42	0.00	0.05	2
		and	310.00	49.00	1.5	10.4	1.67	2.4	0.05	0.06	2
		inc	312.00	2.92	13.8	55.1	7.22	17.7	0.16	0.49	
		inc	327.45	2.40	0.20	6.9	1.16	0.79	0.03	0.09	
		inc	341.45	17.55	1.8	18.2	3.24	3.5	0.11	0.05	
		GNDD337	90.00	7.00	0.38	0.70	0.07	0.41	0.00	0.05	2
		inc	90.00	1.10	1.7	2.1	0.22	1.9	0.01	0.19	

Issued Capital 974.4m shares 49.0m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commentary									
		and	195.50	34.00	0.16	3.0	0.01	0.21	0.00	0.01	2
		and	258.60	13.90	2.0	6.0	0.74	2.4	0.02	0.04	2
		inc	262.20	10.30	2.7	7.9	0.95	3.2	0.03	0.04	
		and	312.00	2.00	1.8	3.2	0.27	2.0	0.01	0.02	
		GNDD338	9.00	4.00	0.36	2.55	0.02	0.40	0.00	0.01	2
		and	190.00	20.00	0.40	6.12	0.08	0.51	0.01	0.02	2
		GNDD346	77.00	4.70	0.67	4.1	0.45	0.92	0.04	0.27	2
		inc	80.00	1.70	1.8	2.1	0.16	1.9	0.02	0.04	
		GNDD352	143.50	11.30	5.4	76.9	5.5	8.8	0.18	0.42	
		inc	146.00	4.00	10.6	141	11.7	17.4	0.27	0.43	1
		and	301.00	3.00	0.42	4.4	0.35	0.63	0.01	0.07	2
		inc	302.00	1.00	1.0	9.9	0.63	1.4	0.02	0.15	
		inc	325.00	1.00	8.9	5.4	3.0	10.3	0.10	0.00	1
		GNDD362	191.00	17.00	0.19	8.3	0.04	0.31	0.00	0.01	2
		and	237.90	2.50	2.1	77.6	11.1	7.9	0.36	0.36	2
		inc	239.1	1.3	3.8	138	21.2	14.7	0.70	0.65	
		and	401.60	3.50	5.4	9.4	3.9	7.2	0.12	0.00	2
		inc	402.25	2.20	8.4	12.1	6.1	11.2	0.18	0.00	
		and	415.30	1.15	2.2	6.7	1.3	2.8	0.05	0.00	
		and	423.55	2.75	0.19	4.2	1.7	1.0	0.09	0.00	2
		inc	425.00	0.60	0.13	7.5	5.8	2.8	0.23	0.00	
		GNDD341	60.60	110.40	0.52	0.60	0.08	0.56	0.00	0.00	2
		inc	78.00	47.00	1.0	0.95	0.18	1.1	0.01	0.01	2
		inc	81.50	5.50	6.4	2.2	0.63	6.7	0.01	0.01	
						ecifically	drilled fo	r metallurg	ical test sa	ample mat	erial:
		GMDD039	18.00	8.00	0.15	1.9	0.60	0.43	0.01	0.07	2
		and	67.60	1.00	24.5	58	3.9	26.9	0.27	1.8	1
		GMDD040	116.72	8.68	5.5	12	2.2	6.7	0.06	0.00	
		inc	122.50	2.90	11.8	24	4.2	14.0	0.14	0.00	1
		GMDD041	31.00	16.0	2.6	4.9	0.27	2.8	0.01	0.25	2
		inc	41.70	2.0	20.0	29	1.2	20.8	0.06	1.7	
		and	63.50	5.1	7.9	83	7.9	12.3	0.47	0.21	
		and	306.10	1.6	8.0	9.2	3.6	9.7	0.11	0.00	
		and	338.40	4.6	0.09	1.7	0.5	0.31	0.01	0.00	2
		GMDD043	18.00	10.00	0.09	1.7	0.48	0.32	0.01	0.10	2
		and	70.50	0.30	25.9	81	9.4	31.0	0.33	3.1	1

Issued Capital 974.4m shares 49.0m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

- (1) cut off 10 g/t Au equivalent
- (2) cut off 0.2 g/t Au equivalent
- (3) combined zones with 0.2 g/t Au cut off (grades include internal dilution from between zones)
- (4) combined zones with 1.0 g/t Au cut-off (grades include internal dilation from between zones) NSI: no significant intersection

Channel Sample Significant Results:

Channel_id	from	interval	Au	Ag	Zn (%)	AuEq	Cu (%)	Pb (%)	Note
_	(m)	(m)	(g/t)	(g/t)	• •	(g/t)			
RNNV09-01	1.17	10.71	6.4	40.9	1.5	7.5	0.17	0.92	
RNNV09-01A	0.00	12.34	12.0	34.9	0.51	12.7	0.05	0.40	
inc	2.00	8.41	17.2	39.5	0.41	17.8	0.06	0.51	1
RNNV09-01B	0.00	13.94	3.5	29.8	0.80	4.2	0.04	0.53	
inc	10.04	1.95	15.0	84.0	2.5	17.2	0.16	2.3	1
RNNV09-01C	0.00	24.11	16.9	37.8	5.8	19.8	0.25	0.58	
inc	6.24	13.79	23.3	59.0	7.8	27.4	0.18	0.48	1
RNNV09-01D	0.00	8.16	10.0	23.3	0.68	10.6	0.30	0.13	
inc	0.00	6.56	12.4	21.9	0.8	13.0	0.33	0.15	1
RNNV09-02	0.00	4.77	0.84	15.5	3.1	2.4	0.44	1.0	
RNNV09-03	0.00	3.55	7.1	45.5	1.1	8.2	1.1	1.3	
RNNV10-01	NSI								
RNNV10_02	0.00	1.98	8.8	62.9	1.2	10.1	0.04	0.28	1
RNNV10_03A	0.00	3.21	1.0	39.1	12.6	7.0	0.52	0.25	
inc	1.60	1.60	2.0	54.8	20.7	11.7	0.65	0.50	1
RNNV10_03B	0.00	7.31	22.6	60.5	5.6	25.8	0.38	0.26	
inc	1.65	5.66	28.5	54.1	3.6	30.8	0.24	0.32	1
RNNV10_04A	2.25	29.73	19.5	22.8	5.9	22.4	0.10	0.09	2
inc	2.25	23.60	24.6	27.9	7.3	28.1	0.12	0.11	
inc	4.37	5.89	96.0	85.1	3.7	98.7	0.20	0.12	1
RNNV10_04B	99.56	4.32	0.05	2.5	2.8	1.3	0.06	0.03	2
inc	101.88	2.00	0.08	3.2	5.4	2.4	0.11	0.06	
and	117.23	34.00	0.77	20.7	2.5	2.1	0.13	0.10	2
inc	118.18	2.07	0.19	160	23.2	12.3	1.7	0.88	
inc	124.86	2.08	0.36	1.0	2.8	1.6	0.06	0.00	
inc	131.64	11.91	1.9	25.5	1.6	3.0	0.05	0.13	
inc	146.46	0.92	0.72	6.2	2.6	1.9	0.04	0.03	
and	168.53	0.96	0.85	14.6	0.48	1.2	0.0	0.41	
and	215.15	6.45	0.30	6.2	0.80	0.73	0.02	0.17	2

Challenger Exploration Limited ACN 123 591 382 ASX: CEL 974.4m shares 49.0m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commentary										
		inc	218.81	1.76	0.60	7.9	1.8	1.5	0.06	0.28		
		RNNV10_04C	18.78	2.79	1.0	1.2	0.09	1.1	0.01	0.04	2	
		inc	20.62	0.95	1.7	2.5	0.11	1.8	0.01	0.05		
		GN23-831	0.00	0.00	0.31	9.8	1.5	1.1	0.04	0.13		
		RNNV10_06	0.00	9.28	1.4	87.1	7.6	5.8	0.92	0.23	2	
		inc	0.00	8.28	1.5	96.1	8.4	6.4	0.92	0.26		
		inc	6.33	1.06	0.05	36.5	30.0	13.5	0.17	0.18	1	
		RNNV10_07	0.00	3.87	0.16	4.5	1.1	0.69	0.06	0.05	2	
		inc	2.87	1.00	0.33	14.8	3.2	1.9	0.21	0.17		
		RNNV10_08	0.94	2.82	19.4	87.6	3.8	22.2	0.14	2.5	2	
		inc	0.94	1.80	30.2	135	5.6	34.4	0.21	3.9	1	
		RNNV10_09	NSI									
		RNNV10_10	0.00	1.13	0.20	3.3	0.31	0.38	0.00	0.04	2	
		RNNV11-01	0.0	96.5	9.8	81.8	10.6	15.4	0.62	0.99		
		RNNV11-02	2.0	55.3	4.7	172	3.59	8.4	0.21	0.62		
		inc	3.9	20.6	7.9	352	3.29	13.8	0.30	0.99	1	
		RNNV11-03	0.0	10.2	0.19	6.4	3.21	1.7	2.0	0.04		
		RNNV11-04	0.0	5.4	2.3	6.6	4.87	4.5	0.15	0.07		
		RNNV11-05	0.0	4.7	3.7	24.6	4.20	5.9	0.03	0.14		
		RNNV12-01	0.0	35.2	3.2	18.2	8.0	6.9	0.09	0.07		
		RNNV12-02	0.0	6.0	1.9	41.4	10.5	6.9	0.22	0.05		
		RNNV12-03	0.0	12.8	8.7	16.9	5.2	11.2	0.59	0.02		
		RNNV12-04	0.0	21.1	12.7	37.7	7.1	16.3	0.11	0.40		
		inc	0.0	5.2	13.4	41.0	18.2	21.8	0.18	0.43	1	
		inc	14.7	6.5	29.1	51.3	4.7	31.8	0.19	0.89	1	
		RNNV12-05	0.0	64.8	23.4	104	8.3	28.3	0.20	1.5		
		inc	7.6	8.8	45.2	88.7	6.8	49.3	0.34	0.68	1	
		inc	20.1	26.5	29.3	114	8.2	34.4	0.24	2.9	1	
		inc	49.7	3.1	13.3	337	13.1	23.3	0.24	0.80	1	
		inc	56.9	3.3	67.7	268	11.5	76.0	0.24	1.3	1	
		RNNV12-06	0.0	5.0	1.3	156	7.5	6.6	0.08	0.21		
		RNNV12-07	0.0	3.1	10.9	19.4	4.8	13.3	0.09	0.30		
		RNNV12-08	0.0	3.5	17.6	37.3	0.31	18.2	0.02	0.10		
		RNNV12-09	0.0	5.4	30.9	83.9	8.4	35.6	0.34	1.8	1	
		RNNV12-10	0.0	8.7	3.8	837	1.4	15.0	0.22	0.76	1	
		RNNV12-11	0.0	2.3	29.7	70.8	0.86	30.9	0.07	0.14	1	
		RNNV12-12	0.0	19.8	13.7	102	3.0	16.3	0.11	0.41	1	

Issued Capital 974.4m shares 49.0m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commentary									
		MUNV10-01	0.00	15.28	0.19	9.0	0.12	0.35	0.02	0.16	2
		MUNV10-02	4.16	24.91	2.0	12.1	2.4	3.2	0.11	0.30	
		MUNV10-03	0.00	3.81	3.1	55.2	8.0	7.3	0.43	1.1	
		MUNV10-04	0.00	4.28	2.1	109	2.8	4.7	2.8	1.6	
		MGNV10-01	2.00	44.34	0.33	5.2	0.19	0.48	0.01	0.04	2
		inc	44.67	1.66	5.9	96.9	2.3	8.1	0.13	0.16	
		MGNV10-02	0.00	22.47	9.8	21.0	6.5	12.9	0.11	0.45	
		inc	0.00	4.21	34.7	29.4	22.1	44.7	0.32	1.9	1
		inc	8.39	2.54	14.1	93.7	0.67	15.6	0.13	0.29	1
		inc	15.92	2.77	8.2	18.1	0.15	8.5	0.03	0.25	1
		MGNV10-03	0.00	35.04	2.5	41.0	0.72	3.3	0.04	0.16	2
		inc	0.00	20.49	4.2	67.7	1.1	5.5	0.07	0.26	
		MGNV10-04	0.00	4.79	0.14	1.7	0.26	0.28	0.05	0.05	2
		MGNV10-05	0.00	12.00	13.8	105	3.0	16.5	0.05	0.21	
		inc	0.00	3.70	33.2	298	4.2	38.9	0.06	0.09	
		MGNV10-06	0.00	9.91	4.2	25.3	4.5	6.5	0.07	0.20	
		MGNV10-07	0.00	9.59	3.6	57.3	6.4	7.1	0.35	4.8	
		MGNV10-07	19.80	2.02	0.23	5.1	3.0	1.6	0.03	0.04	
		MGNV10-08	0.00	4.21	3.0	17.6	2.5	4.2	0.04	0.20	
		MGNV10-09	0.00	6.48	5.5	44.3	6.4	8.9	0.14	0.07	
		MGNV10-10	0.00	1.00	1.1	3.3	0.94	1.6	0.01	0.14	
		SZNV10-01	2.0	30.4	1.2	8.8	1.9	2.2	0.06	0.01	2
		inc	23.6	8.7	3.9	28.8	6.3	7.0	0.19	0.02	
		SZNV10-02	0.0	52.0	1.3	7.9	4.5	3.4	0.40	0.06	2
		inc	0.0	6.3	2.6	27.5	1.9	3.7	0.33	0.08	
		inc	11.3	25.7	2.0	8.1	7.7	5.5	0.48	0.07	
		inc	18.7	6.2	7.0	17.0	3.0	8.5	0.14	0.13	1
		inc	41.5	1.8	0.03	0.34	3.2	1.4	0.12	0.02	
		SZNV10-03	0.0	4.4	8.2	63.2	0.8	9.4	0.05	0.09	
		SZNV10-04	0.0	3.5	9.1	27.4	3.7	11.1	0.20	0.08	
		SZNV11-01	0.0	14.9	0.34	2.3	4.0	2.1	0.19	0.01	2
		inc	0.0	11.2	0.43	2.3	5.0	2.6	0.25	0.01	
		SZNV11-02	0.0	3.4	4.0	27.5	2.5	5.4	0.37	0.04	
		SZNV11-03	0.0	9.3	2.1	34.1	2.4	3.6	0.53	0.07	2
		inc	1.0	8.3	2.3	37.6	2.5	3.9	0.56	0.07	
		SZNV11-04	0.0	6.1	0.08	2.0	7.6	3.4	0.33	0.04	2
		inc	0.0	4.3	0.06	1.4	10.3	4.6	0.24	0.02	

Issued Capital 974.4m shares 49.0m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commentary										
		SZNV11-05	0.0	3.3	0.53	20.1	4.0	2.5	0.68	0.15	2	
		inc	2.0	1.3	1.2	44.9	8.6	5.5	0.89	0.22		
		SZNV11-06	0.0	17.2	0.06	5.0	11.4	5.1	0.68	0.12		
		SZNV11-07	0.0	3.8	0.03	1.2	8.9	3.9	0.46	0.06		
		SZNV11-08	0.0	7.1	3.8	18.7	9.6	8.1	0.62	1.2		
		SZNV11-09	0.0	30.7	0.91	70.2	13.5	7.7	0.74	0.74		
		SZNV11-10	0.0	3.1	0.38	55.8	14.8	7.5	0.47	0.16		
		SZNV11-11	0.0	4.6	0.26	9.1	12.6	5.8	1.0	0.16		
		inc	0.0	3.6	0.32	11.2	15.9	7.4	1.3	0.21		
		SZNV11-12	0.0	12.0	8.3	28.9	1.4	9.3	0.11	0.13		
		L5NV10-01	8.55	9.40	0.26	5.5	0.10	0.38	0.01	0.04	2	
		L5NV10-02	0.00	6.30	1.7	32.8	0.48	2.3	0.01	0.08	2	
		inc	2.00	4.30	2.4	42.7	0.28	3.1	0.01	0.11		
		L5NV10-03	0.00	1.44	1.2	11.3	0.11	1.3	0.01	0.48	2	
		L5NV10-04	0.00	9.04	26.0	50.8	0.10	26.7	0.03	1.1		
		inc	2.20	6.85	33.1	60.9	0.13	34.0	0.03	1.2	1	
		L5NV10-05	0.00	2.69	20.1	268	0.08	23.5	0.02	1.0	1	
		L6NV10-01	0.00	5.21	10.4	19.1	0.18	10.7	0.02	0.48	2	
		inc	2.00	1.79	27.3	39.3	0.22	27.9	0.01	0.84		
		L6NV10-02	0.00	3.77	0.70	4.5	0.41	0.93	0.01	0.07	2	
		and	14.44	10.46	11.2	215	0.31	14.0	0.03	0.98	2	
		inc	18.10	6.81	17.0	329	0.16	21.3	0.03	1.5		
		BCNV10-02	2.82	1.92	0.32	2.2	0.43	0.54	0.01	0.00	2	
		FHNV10-01A	6.40	1.78	0.09	2.9	0.35	0.28	0.01	0.01	2	
		FHNV10-01B	0.00	9.21	3.0	89.6	2.2	5.1	0.13	3.5	2	
		inc	1.92	4.63	5.6	175	3.8	9.5	0.23	6.8		
		FHNV10-02	0.00	13.01	12.0	80.2	5.6	15.5	0.40	4.8		
		inc	0.00	8.49	17.8	114	6.2	21.9	0.53	6.9	1	
		FHNV10-03	0.00	12.71	2.1	64.2	3.5	4.4	0.28	1.6		
		FHNV10-04	0.00	4.24	3.1	136	7.7	8.1	0.57	7.0		
		FHNV10-05	0.00	1.67	6.4	360	12.7	16.4	0.69	9.7		
		FHNV10-06	0.00	3.83	3.8	156	20.2	14.6	0.61	4.2		
		FHNV10-07	3.45	1.03	0.08	1.3	0.50	0.31	0.01	0.02	2	
		GN24-539	0.00	1.00	0.24	4.7	0.51	0.52	0.05	0.34	2	
		CINV10-02	0.00	5.27	0.69	4.4	0.07	0.78	0.00	0.02	2	
		inc	3.33	1.94	1.5	5.3	0.08	1.6	0.00	0.02		
		CIINV10-01A	1.80	6.96	0.90	17.9	0.26	1.24	0.02	0.18	2	

Issued Capital 974.4m shares 49.0m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commentary									
		CIINV10-01B	0.00	7.02	1.45	79.3	0.23	2.55	0.02	0.34	2
		CIINV10-03	0.00	26.89	0.80	43.2	0.21	1.44	0.02	0.17	2
		inc	8.22	13.53	1.11	76.6	0.33	2.23	0.03	0.29	
		CIIIVN10-01	0.00	81.00	NSI						
		CHNV10-01A	0.00	9.94	8.0	6.6	0.38	8.3	0.12	0.80	
		inc	5.10	3.09	21.6	12.7	0.61	22.0	0.22	1.4	1
		CHNV10-01B	1.70	7.27	1.4	3.2	1.1	2.0	0.02	0.44	2
		inc	3.32	5.65	1.6	3.7	1.4	2.3	0.02	0.49	
		CHNV10-02	0.00	19.30	0.69	8.6	0.95	1.2	0.03	0.44	2
		inc	0.00	2.92	0.89	34.6	4.8	3.4	0.07	1.9	
		inc	9.16	3.21	0.87	4.2	0.55	1.2	0.02	0.29	
		inc	16.07	1.60	1.9	15.0	0.31	2.2	0.09	0.42	
		CHNV10-03	0.00	3.94	0.40	2.0	0.50	0.64	0.02	0.15	2
		inc	3.21	0.73	1.3	1.4	0.70	1.6	0.02	0.15	
		CHNV10-04	0.00	7.96	2.0	8.5	1.1	2.6	0.03	0.62	
		DJNV10-01A	0.00	59.54	2.2	11.2	5.1	4.5	0.23	0.07	
		inc	57.49	2.06	15.7	49.7	2.1	17.2	0.08	0.11	1
		DJNV10-01B	4.14	20.23	0.06	2.6	0.32	0.23	0.00	0.01	2
		SNV10-01	0.00	15.55	70.9	59.1	0.18	71.7	0.10	1.7	
		inc	0.00	4.00	202	172	0.07	203.8	0.03	2.3	1
		inc	8.19	6.30	43.7	22.6	0.15	44.0	0.06	2.1	1
		SNV10-02	0.00	12.52	2.3	12.3	1.36	3.0	0.14	0.55	

(2) cut off 0.2 g/t Au equivalent

NSI: no significant intersection

Data aggregation methods

- In reporting Exploration Results weighting averaging techniques maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated.
- Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.
- The assumptions used for any reporting of metal equivalent values should be clearly stated.

Weighted average significant intercepts are reported to a gold grade equivalent (AuEq). Results are reported to cut-off grade of a 1.0 g/t Au equivalent and 10 g/t Au equivalent allowing for up to 2m of internal dilution between samples above the cut-off grade and 0.2 g/t Au equivalent allowing up to 10m of internal dilution between samples above the cut-off grade. The following metals and metal prices have been used to report gold grade equivalent: Au US\$ 1780 / oz Ag US\$24 /oz and Zn US\$ 2800 /t.

Metallurgical recoveries for Au, Ag and Zn have been estimated from metallurgical test work completed by SGS Metallurgical Operations in Lakefield, Ontario using a combination of gravity and flotation of a combined metallurgical sample from 5 drill holes. Using data from the test results, and for the purposes of the AuEq calculation gold recovery is estimated at 89%, silver at 84% and zinc at 79%. Accordingly, the formula used is AuEq (g/t) = Au (g/t) + [Ag (g/t) x (24/1780) x (0.84/0.89)] + [Zn (%) x (28.00*31.1/1780) x (0.79/0.89)]. Metallurgical test work and geological and petrographic descriptions suggest all the elements included in the metal equivalents calculation have a reasonable potential of eventual economic recovery.

Criteria	JORC Code explanation	Commentary
		While Cu and Pb are reported in the table above, these metals are not used in the Au equivalent calculation at this early stage of the Project. No top cuts have been applied to the reported grades.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known its nature should be reported. If it is not known and only the down hole lengths are reported there should be a clear statement to this effect (eg 'down hole length true width not known'). 	The mineralisation is moderately or steeply dipping and strikes NNE and ENE. For some drill holes, there is insufficient information to confidently establish the true width of the mineralized intersections at this stage of the exploration program. Apparent widths may be thicker in the case where bedding-parallel mineralisation may intersect ENE-striking cross faults and veins. Representative cross section interpretations have been provided with release of significant intersections to allow estimation of true widths from individual drill intercepts.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	Representative maps and sections are provided in the body of reports released to the ASX.
Balanced reporting	- Where comprehensive reporting of all Exploration Results is not practicable representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	All available final data have been reported.
Other substantive exploration data	 Other exploration data if meaningful and material should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density groundwater geotechnical 	Geological context and observations about the controls on mineralisation where these have been made are provided in the body of the report. Specific gravity measurements have been taken from the drill core recovered during the drilling program. These data are expected to be used to estimate bulk densities in future resource estimates.

Criteria	JORC Code explanation	Commentary
	and rock characteristics; potential deleterious or contaminating substances.	Eight Induced Polarisation (IP) lines have been completed in the northern area. Each line is approximately 1 kilometre in length lines are spaced 100m apart with a 50m dipole. The initial results indicate possible extension of the mineralisation with depth. Data will be interpreted including detailed re-processing and drill testing.
		A ground magnetic survey and drone magnetic survey have been completed. The results of these data are being processed and interpreted with the geological information provided from surface and in the drilling and will be used to guide future exploration.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale stepout drilling). Diagrams clearly highlighting the areas of possible extensions including the main geological interpretations and future drilling areas provided this information is not commercially sensitive. 	 CEL Plans to undertake the following over the next 12 months Additional data precision validation and drilling as required; Detailed interpretation of known mineralized zones; Geophysical tests for undercover areas. Structural interpretation and alteration mapping using high resolution satellite data and geophysics to better target extensions of known mineralisation. Field mapping program targeting extensions of known mineralisation. Investigate further drilling requirements to upgrade both the unclassified mineralisation and mineralisation in the existing historical resources to meet JORC 2012 requirements; Further metallurgical test work on lower grade mineralisation in the intrusions and oxidised mineralisation.

Section 3 Estimation and Reporting of Mineral Resources

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Database integrity	- Measures taken to ensure that data has not been corrupted by for example transcription or keying errors between its initial collection and its use for Mineral - Measures time time to the same than the same time to the same time time to the same time time time to the same time time time time time time time ti	Geological logging completed by previous explorers was done on paper copies and transcribed into the drill hole database. The data was checked for errors. Checks can be made against the original logs and core photographs.
	Resource estimation purposes Data validation procedures used.	Assay data is received in digital format. Backup copies are kept and the data is copied into the drill hole database.
		The drill hole data is backed up and is updated periodically by a Company GIS and data team.
Site visits	 Comment on any site visits undertaken by the Competent Person and the outcome of those visits. If no site visits have been undertaken indicate why this is the case. 	Site visits have been undertaken from 3 to 16 October 2019 15 to 30 November 2019 and 1-19 February 2020. The performance of the drilling program collection of data and sampling procedures were initiated during these visits.
Geological interpretation	 Confidence in (or conversely the uncertainty of) the geological interpretation of the mineral deposit. Nature of the data used and of any assumptions made. 	The interpretation is considered appropriate given the stage of the project and the nature of activities that have been conducted. The interpretation captures the essential geometry of the mineralised structure and lithologies with drill data supporting the findings from the initial underground sampling activities.
	 The effect if any of alternative interpretations on Mineral Resource estimation. The use of geology in guiding and controlling Mineral Resource estimation. The factors affecting continuity both of grade and geology. 	The most recent resource calculation (2006 and 2003 – La Mancha) used all core drilling at the time and detailed underground channel sampling collected by EPROM CMEC and La Mancha. Overlying assumptions included a reduction of the calculated grade in each resource block by a factor of 10% to account for possible errors in the analyses and samples. An arbitrary reduction factor was applied to the 2006 resource whereby the net reported tonnage was reduced by 25% for indicated resource blocks 50% for inferred resource blocks and 75% of potential mineral resource blocks. The reason for the application of these tonnage reduction factors was not outlined in the resource report. It is noted that at the time of this report La Mancha was in a legal dispute concerning the project with its joint venture partner and given the acquisition of a 200000 Oz per annum producing portfolio the project was likely no longer a core asset for La Mancha at that time. Additionally, under the original acquisition agreement La Mancha had to issue additional acquisition shares based on resource targets.

Criteria	JORC Code explanation	Commentary
		The effect of removing the assumptions relating to application of the arbitrary tonnage reduction factors applied increases the overall resource tonnage by in excess of 50%. Removing these correction factors would bring the overall tonnage and grade close the earlier (2003 1999 and 1996) tonnage and grade estimates albeit in different categories (lower confidence) which are considered more appropriate.
		The mineralisation is defined to the skarn and vein bodies detailed cross section and plan maps were prepared for these bodies with their shapes used in controlling the resource estimate.
		The structure of the area is complex and a detailed structural interpretation is recommended as this may provide a better understanding of the continuity of mineralisation and possible extensions to it. The deposit contains bonanza gold values and while very limited twinning has indicated acceptable repeatability a rigorous study of grade continuity needs to be undertaken as part of future resource calculations.
Dimensions	 The extent and variability of the Mineral Resource expressed as length (along strike or otherwise) plan width and depth below surface to the upper and lower limits of the Mineral Resource. 	For the historic resource no reliable information has been provided to the owner however through further ongoing investigation is being conducted by the owner to address this information gap.
Estimation and modelling techniques	 The nature and appropriateness of the estimation technique(s) applied and key assumptions including treatment of extreme grade values domaining interpolation parameters and maximum distance of extrapolation from data 	The historic resource estimation techniques are considered appropriate. The 2003 and 2006 resources used a longitudinal section polygonal method was used for estimating resources with individual blocs representing weighted averages of sampled underground and/or areas of diamond drill pierce points with zones of influence halfway to adjacent holes. The area of the block was calculated in AutoCad directly from the longitudinal sections.
	points. If a computer assisted estimation method was chosen include a description of computer software and parameters used. The availability of check estimates previous estimates and/or mine	Check assaying by PG Consulting returned values in the check assay sample which were 3.4% and 13% greater for Au and Ag than the original assays. A number pf previous resource estimates were available to check the 2006 resource estimate when the arbitrary tonnage reduction factors are removed brings the overall tonnage and grade close the earlier (2003 1999 and 1996) tonnage and grade estimates albeit indifferent categories which are considered more appropriate.

DirectorsMr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commentary
	production records and whether the Mineral Resource estimate takes appropriate account of such data. The assumptions made regarding recovery	It was assumed only gold silver and zinc would be recovered and that no other by products would be recovered. This is viewed as conservative given metallurgical data pointing to the production of a saleable zinc concentrate.
	of by-products. - Estimation of deleterious elements or other non-grade variables of economic	Based on the preliminary metallurgy estimation of deleterious elements or other non-grade variables of economic significance was not required.
	significance (eg sulphur for acid mine drainage characterisation). In the case of block model interpolation	The minimum mining width of 0.8m was assumed for veins less than 0.6m and for wider widths a dilution of 0.2m was used to calculate the grade.
	the block size in relation to the average sample spacing and the search employed.	No assumptions were made regarding correlation between variables.
	 Any assumptions behind modelling of selective mining units. Any assumptions about correlation between variables. Description of how the geological 	The mineralisation is defined within skarn and associated vein deposits. Detailed cross section and plan maps were prepared for these domains with their shapes used in controlling the resource estimate. Long sections of the veins and skarn were taken and sampling was plotted and the blocks outlined considering this.
	interpretation was used to control the resource estimates.Discussion of basis for using or not using grade cutting or capping.	Grade cutting was not used in the calculation of the resource and no discussion was given as to why it was not employed. It is recommended that a study be undertaken to determine if an appropriate top cut need be applied No data is available on the process of validation.
	 The process of validation the checking process used the comparison of model data to drill hole data and use of reconciliation data if available 	
Moisture	 Whether the tonnages are estimated on a dry basis or with natural moisture and the method of determination of the moisture content. 	No data is available.
Cut-off parameters	 The basis of the adopted cut-off grade(s) or quality parameters applied. 	The Mineral Resource Estimate is above a cut-off grade of 3.89 g/t Au. This is based on the assumed mining cost at the time of the estimate.

JORC Code explanation Criteria Commentary The Mineral Resource Estimate considered the assumptions outlined below which are considered Mining factors Assumptions made regarding possible mining methods minimum mining appropriate; or assumptions dimensions and internal (or if applicable Metal prices: Au US\$550 Oz Ag US\$10 Oz external) mining dilution. It is always Metallurgical Recovery; Au – 80% Ag – 70% Zn - nil necessary as part of the process of Operating cost: US\$55t based on underground cut and fill mining and flotation and determining reasonable prospects for cvanidation combined eventual economic extraction to consider The minimum mining width of 0.8m was assumed for veins less than 0.6m and for wider widths a potential mining methods but the dilution of 0.2m was used to calculate the grade. assumptions made regarding mining methods and parameters when estimating Mineral Resources may not always be rigorous. Where this is the case this should be reported with an explanation of the basis of the mining assumptions made. The basis for assumptions or predictions Metallurgical Historical metallurgical test-work assumptions were 80% recovery for Au, Ag and Zn. regarding metallurgical amenability. It is The most recent historic test work was conducted in 1999 by Lakefield Research (cyanidation) factors or always necessary as part of the process of and CIMM Labs (flotation) in Chile on 4 samples which all contain primary sulphide minerals assumptions determining reasonable prospects for and so can be considered primary, partial oxide or fracture oxide samples. eventual economic extraction to consider The test work was conducted using a 150 micron grind which would appear to coarse based on potential metallurgical methods but the petrography conducted by CEL which shows that the gold particles average 30-40 microns. assumptions regarding metallurgical Rougher flotation tests were performed with a 20 minute and 30 minute floatation time. treatment processes and parameters Generally, the longer residence time improved recovery. Recoveries to concentrate for gold range from 59.6% - 80.6% and for silver from 63.1% - 87.2%. made when reporting Mineral Resources may not always be rigorous. Where this is Knelson concentrate tests with floatation of tailings were also completed. Applying a joint the case this should be reported with an process Knelson concentrator and floatation of the tailings of the concentrator it is found that explanation of the basis of the the global recovery is approximately 80% for gold. While the testwork was focused predominantly on gold recovery some rougher flotation metallurgical assumptions made. testwork was undertaken targeting Zn recovery producing up to 85% recoveries. In sulphide samples this produced a Zn concentrate containing 42% Zn with grades in excess of 50% Zn in concentrate expected with additional floatation stages. The report concluded that it was possible to produce a commercial Au-Ag concentrate and a 7n concentrate.

Criteria	JORC Code explanation	Commentary
Environmental - Assumptifactors or waste an options. I the proces		 Extraction of gold and silver by cyanidation was tested on 3/8 and ¾ inch (9.525mm and 19.05mm) crush sizes that are designed to test a heap leach processing scenario. Bottle roll of these crush size resulted in 41-39% gold recovery and 31-32% silver recovery with high cyanide consumption. No tests have been done on material at a finer grind size. More recently, CEL has completed initial metallurgical test work on a 147 kg composite sample of mineralised limestone drill core from GMDD039, GMDD040, GMDD041, GNDD043, GNDD003 and GNDD018 and a 55 kg composite sample of mineralised intrusion (dacite) drill core from GNDD113, GNDD113A, GNDD155 and GNDD157. The of skarn mineralisation in limestone that has a weighted average grade of 10.4 g/t Au, 31.7 g/t Ag, 3.2 % Zn, 0.15 % Cu and 0.46 % Pb. The sample of mineralised dacite has a weighted average grade of 1.1 g/t Au, 7.0 g/t Ag and 0.1 % Zn. Separate tests on 2 kg sub-samples were done with differing grinding times, Knelson and Mosley table gravity separation techniques and floatation techniques to provide a series of gravity and floatation concentrates. Key results are: Combined gravity and floatation concentration process resulted in recoveries 85-95% for Au, 82-87% for silver, and 77-80% for zinc. Cu had similar recoveries to Ag and Pb had similar recoveries to Zn. A simple gravity separation followed by a sulfide flotation process when re-combined produced a single product with a median grade of 47 g/t Au, 120 g/t Ag and 13% Zn with a recovered weight of 24-33% of the sample weight. Tailings fragment analysis indicates a grind of (p₈₀) 72-106 μm. Generally, a coarser grind resulted in a higher % weight recovered to the concentrate with a corresponding lower grade without significantly impacting recovery. QEMSCAN analysis of the sample indicates much of the Zn not recovered is due to the presence of Zn oxide (franklinite) and silicates (hemimorphite). Sulphides present are dominated by pyrite and
factors or	 Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic 	It is considered that there are no significant environmental factors which would prevent the eventual extraction of gold from the project. Environmental surveys and assessments will form a part of future pre-feasibility.

Issued Capital 974.4m shares 49.0m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commentary
	extraction to consider the potential environmental impacts of the mining and processing operation. While at this stage the determination of potential environmental impacts particularly for a greenfields project may not always be well advanced the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the environmental assumptions made.	
Bulk density	- Whether assumed or determined. If assumed the basis for the assumptions. If determined the method used whether wet or dry the frequency of the measurements the nature size and representativeness of	Densities of 2.7 t/m3 were used for mineralised veins and 2.6 t/m3 for wall rock. No data of how densities were determined is available. The bulk densities used in the evaluation process are viewed as appropriate at this stage of the Project.
	 the samples. The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs porosity etc) moisture and differences between rock and alteration zones within the deposit. Discuss assumptions for bulk density estimates used in the evaluation process of the different materials. 	CEL is collecting specific gravity measurements from drill core, which it is expected will be able to be used to estimate the block and bulk densities in future resource estimates. For RC drilling, the weights of material recovered from the drill hole is able to be used as a measure of the bulk density.
Classification	 The basis for the classification of the Mineral Resources into varying confidence categories. Whether appropriate account has been taken of all relevant factors (ie relative 	The Mineral Resource Estimate has both Indicated and Inferred Mineral Resource classifications under the National Instrument 43-101 code and is considered foreign. These classifications are considered appropriate given the confidence that can be gained from the existing data and results from drilling.

DirectorsMr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commentary
	confidence in tonnage/grade estimations reliability of input data confidence in continuity of geology and metal values quality quantity and distribution of the data).	The reliability of input data for the 2003 and 2006 resources is acceptable as is the confidence in continuity of geology and metal values quality quantity and distribution of the data. Appropriate account has been taken of all relevant factors with the exception of studies into the appropriateness of the application of a top cut.
	- Whether the result appropriately reflects the Competent Person's view of the deposit.	The reported 2006 NI43-101 (non-JORC Code compliant Measured and Indicated) estimate for the Hualilan Project is measured resource of 164294 tonnes averaging 12.6 grams per tonne gold and 52.1 g/t silver and 2.5% zinc plus an indicated resource of 51022 tonnes averaging 12.4 grams per tonne gold and 36.2 g/t silver and 2.6% zinc plus an inferred resource of 213952 tonnes grading 11.7 grams per tonne gold and 46.6 g/t silver and 2.3% zinc. (Source La Mancha resources Toronto Stock Exchange Release April 7 2007 - Interim Financials) — See Table 1.
		The 2006 estimate did not include the east-west mineralised Magnata Vein despite the known mineralisation in the Magnata Vein being drilled on a 25 x 50-metre spacing. The 2003 NI43-101 (non-JORC Code compliant) estimate attributed approximately half of its measured and indicated tonnage to the Magnata Vein. The 2006 estimate also included arbitrary tonnage reduction factors of 25% for indicated category 50% for inferred category and 75% for potential category.
		The 2006 estimate also included a significant tonnage of Potential Category Resources which have not been reported.
		The reported 2003 NI43-101 (non-JORC Code compliant) estimate for the Hualilan project is a measured resource of 299578 tonnes averaging 14.2 grams per tonne gold plus an indicated resource of 145001 tonnes averaging 14.6 grams per tonne gold plus an inferred resource of 976539 tonnes grading 13.4 grams per tonne gold representing some 647809 ounces gold. (Source La Mancha resources Toronto Stock Exchange Release May 14 2003 - Independent Report on Gold Resource Estimate) – See Table 1.
		The 2003 Mineral Resource classification and results appropriately reflect the Competent Person's view of the deposit and the current level of risk associated with the project to date.
		Historic 2003 NI43-101 (non-JORC Code compliant):

Criteria	JORC Code explanation	Commentary					
		CATEGORY	TONNES	Au (g/t)	Ag (g/t)	Zn%	
		Measured	299,578	14.2			
		Indicated	145,001	14.6			
		Inferred	976,539	13.4			
		Historic 2006 NI43-1	01 (non-JORC Code comp	liant)			
		CATEGORY	TONNES	Au (g/t)	Ag (g/t)	Zn%	
		Measured	164,294	12.5	52.1	2.5	
		Indicated	51,022	12.4	36.2	2.6	
		Inferred	213,952	11.7	46.6	2.3	
Audits or reviews	 The results of any audits or reviews of Mineral Resource estimates. 	The earlier (1996 an report. This indepen	e estimate has not been d 2000) Mineral Resound dent report was done the This report concluded the realistic.	rce Estimates we to NI-43-101 star	ndard and the	e results of this	report were
Discussion of relative accuracy/ confidence	 Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For 	relied upon. The ava	onfidence in the data qualification in the data qualified assate given the confidence Intinuity and top cut.	y data correlate	well. The app	oroach or proc	edure are
	example the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits or if such an approach is not deemed appropriate a	and closer spaced di strike and dip direct encouraging in term	variable in nature in this rilling is required to impions. It is noted that the soft grade repeatability	prove the unders e results from th	tanding of th e twinning of	e grade contin three holes by	uity in both y La Mancha
	qualitative discussion of the factors that		s very high grades and t	=			
	could affect the relative accuracy and	that an arbitrary gra	de reduction factor of 2	10% nas aiready	been applied	to the resource	ce as repor

Criteria	JORC Code explanation	Commentary
	confidence of the estimate. The statement should specify whether it relates to global or local estimates and if local state the relevant tonnages which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used. These statements of relative accuracy and confidence of the estimate should be compared with production data where available.	No production data is available for comparison

JORC Code, 2012 Edition – Table 1 report template

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. 	 Committee Bay Resources (CBR) 2004 - 2006: reportedly collected 85 stream sediment samples. CEL has no information on how the samples were taken, the location or the assay techniques that were used. Cardero Resource Corporation (Cardero) - 2007: No samples were taken Centenera Mining Corporation (Centenera) – 2016-2017: 110 stream sediment samples and 26 rock chip samples were collected. CEL has no information on how the samples were taken, the

Criteria	JORC Code explanation	Commentary
	 In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	precise location or the assay techniques that were used.
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is oriented and if so, by what method, etc). 	- No drilling has been reported by previous explorers
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	- No drilling has been reported by previous explorers
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	No rock chip sample or stream sediment sample logs have been found.
Sub-sampling techniques and	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and 	 No details of the sampling techniques, sample sizes and sample preparation has been found.

Criteria	JORC Code explanation	Commentary
sample preparation	 whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 No details of the assay data and laboratory tests have been found. Centenera: Report samples were prepared and analysed by SGS Laboratory in Peru and that blanks, standards and duplicate samples were included in the samples sent for analysis. No data has been found to check the QAQC.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	- No information on sample verification has been found.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. 	 No information on sample location surveys or the grid reference system has been found. Centenera: a plan of the combined stream sediment and rock chip samples without geographic reference was provided in a

Criteria	JORC Code explanation	Commentary
	- Quality and adequacy of topographic control.	TSX release dated 21 March 2017

West Perth WA 6005

Criteria	JORC Code explanation	Commentary
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	- No information on the data spacing has been found.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 There has been no exploration data that has been taken relative to the orientation of the geological controls.
Sample security	- The measures taken to ensure sample security.	 No detailed sample security information has been found Centenera: State that their samples were under supervision of their geologists in accordance with standard industry practice.
Audits or reviews	- The results of any audits or reviews of sampling techniques and data.	- No audits have been undertaken.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Comme	ntary			
Mineral tenement and land tenure	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, 	 The Cordon del Peñon is composed of six Minas (Mining Leases) and one Cateo (Exploration Licence): 				
status			File No.	Area (Ha)	Name	Owner
Status	historical sites, wilderness or national park and environmental	Cateo	414-998-M-05	721.90		Armando J. Sanchez
	settings.	Mine	1124-045-S-19	2,921.05	Guillermina	Armando J. Sanchez
	- The security of the tenure held at the time of reporting along	Mine	1124-114-S-14	1,500.00	Agu 3	Armando J. Sanchez

Criteria	JORC Code explanation	Commentary				
	with any known impediments to obtaining a licence to operate in the area.	Mine	1124-343-S-14	1443.50	Agu 5	Armando J. Sanchez
		Mine	1124-623-S-17	1500.00	Agu 6	Armando J. Sanchez
		Mine	1124-622-S-17	1459.00	Agu 7	Armando J. Sanchez
		Mine	2478-C-71	18.00	El Petiso	Armando J. Sanchez &
						Carlos Ocampo
Exploration	 Acknowledgment and appraisal of exploration by other parties. 	 The licences are currently held in good standing. CEL has an option to acquire the Cordon del Peñon within 4 years of the date of the agreement for US\$250,000 cash and US\$ 200,000 in cash or shares at 10 day VAWP prior to notifying the Vendor of the intention to acquire the project. CEL will make annual payments of US\$5,000 for the first 4 years. There are no known impediments to operating within the Cordon del Peñon Previous exploration has been completed by Committee Bay 				
done by other parties		Cent CEL expl base CEL	oration as the an appraisal only has publi	Corporate able to a sere has be to continue to the continue to	ion (Centen appraise the en no data p s hade to the	•
Geology	- Deposit type, geological setting and style of mineralisation.	style basi stre and CEL mine	e sediment ho s of the anom am sediment W). are keeping a eralisation wh	sted repla alous eler and rock o n open mi iich may b	ncement min ment assem thip samples and on the some present a	isation may be Carlin- neralisation on the blage from the s (Au-Ag-As-Sb, Th, Te tyle/s of t the Cordon del eralisation has not

Criteria	JORC Code explanation	Commentary
		been identified and the anomalous mineral assemblage indicate multiple mineralisation styles are possible.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	- There are no drill holes reported on the Cordon del Peñon
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	- No weighted average or aggregate results are reported
Relationship between mineralisation widths and	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, 	- No information is known of mineralisation widths

Criteria	JORC Code explanation	Commentary
intercept lengths	there should be a clear statement to this effect (eg 'down hole length, true width not known').	
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	 A plan of the Centenera stream sediment sample results is provided above which was published by Centenera in a release dated 21 March 2017
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	 CEL believes the information provided is representative of the known data for the Cordon del Peñon
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	 Cardero Resources Corporation completed ASTER satellite alteration mapping and a structural study. The results of this work are not available to CEL
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 The following initial exploration program is indented to be undertaken by CEL: Ground magnetic survey on E-W survey lines spaced 80 – 100m apart, covering as much of the Cordon del Peñon as possible with a ground based survey. Surface geological mapping (stream and creek traverses) over key areas identified by previous stream sediment and roc chip sample surveys with the intention of identifying and sampling possible sources for past stream sediment anomalies.