

Corporate Details Zenith Minerals Limited (ASX:ZNC)

ABN: 96 119 397 938

Issued Shares	323.1M
Unlisted options	15.7M
Mkt. Cap. (\$0.23)	A\$74.3M
Cash (30th Sep 21)	A\$6.2M
Equities (30 th Sep 21)	A\$8.3M
Debt	Nil

Directors

Director-CEO
Non-Exec Director
Non-Exec Director
Non-Exec Director
Co Sec
.CFO

Major Shareholders

Directors	6.3%
HSBC Custody. Nom.	9.8%
Citicorp Nom	7.6%
BNP Paribas. Nom.	6.5%
Granich	3.8%

Our Vision

Zenith has a vision to build a gold and base metals business with a team of proven project finders.

Focus is on 100% owned Zenith projects, whilst partners progress multiple additional opportunities using partner funds.

Contact Us

Level 2, 33 Ord Street WEST PERTH WA 6005 PO Box 1426 WEST PERTH WA 6872

Telephone: (08) 9226 1110 Email:info@zenithminerals.com.au Web:www.zenithminerals.com.au

WARATAH WELL LITHIUM – TANTALUM TARGET DRILLING PLANNED

- Drill contractor secured to test large-scale lithium-cesium-tantalum (LCT) pegmatite target at the 100% owned Waratah Well project in Western Australia.
- Extensive outcropping highly fractionated, prospective LCT pegmatite dykes with very high-grade tantalum (up to 1,221 ppm Ta₂O₅) and local high-grade lithium (up to 2.09% Li₂O) extending over large surface area (3km x 2km).
- A total of 7 initial wide-spaced (1km spacing), 200m deep RC drill holes is scheduled to commence in early Dec-21. Drilling is anticipated to take approximately 2 weeks to complete with assay results anticipated 3 to 4 weeks thereafter.
- Drilling will target conceptual deeper lithium (spodumene) bearing pegmatites below the surface tantalum-lithium rich pegmatite dyke swarm, like zonation observed in other lithium deposits in Western Australia.

Commenting on the Waratah Well drill program CEO Mick Clifford said:

"Notwithstanding that the Waratah Well Lithium – Tantalum project is not a core component of our base and precious metals development strategy, to appropriately understand its value and potential a small low-cost drill program is being undertaken. If the conceptual target is confirmed, we can then decide on the most appropriate way forward for the project. Like copper, lithium continues to develop as a core piece of a greener electrical energy future. Tantalum has many everyday applications and remains in high demand. The project has many strategic positives with our 100% ownership giving us ultimate flexibility as to its future."

Waratah Well Project key positives include:

- Developed world location with excellent logistics
 - Excellent location adjacent to gazetted access road leading to regional state road currently used by neighbouring operations to transport mineral concentrates using road trains; and
 - Easy access to the Port of Geraldton which has mineral concentrate handling export facilities.
- o Large field of highly fractionated lithium-tantalum bearing pegmatites
 - Pegmatites mapped over an area approximately 2km x 3km;
 - High-grade lithium, rock chip samples up to 2.09% Li₂O;
 - High-grade tantalum, rock chip sample results up to 1221 ppm Ta₂O₅;
 - Tantalum rich samples contain the tantalum bearing minerals dominated by microlite with lesser wodginite, tantalite, tantite and plumbo-microlite with variable grain sizes between 10 microns and 400 microns;
 - Variable dips to pegmatite bodies flat lying to 60⁰;
 - Pegmatite thickness ranging up to 21 metres.

Waratah Well Lithium-Tantalum Project Background and Drill Targets

The Waratah Well Project is located approximately 20km northwest of the regional town of Yalgoo in the Murchison Region of Western Australia (Figure 1). The coastal town of Geraldton is situated 190km west of the project where a bulk port facility is used for the export of mining concentrates. In addition, the Dampier to Bunbury Gas pipeline runs parallel to the Geraldton – Mt Magnet Road that lies immediately south of the project.

Tantalum and locally lithium bearing pegmatite sills and dykes crop out over a $3 \text{km} \times 2 \text{km}$ area with a range of dips from 60° to flat lying and thickness from 0.5 m to 21 m (Figures 2 & 3 & Table 1) – refer to ASX Release 27-Apr-18 and 30-Apr-20):

- Lithium rock chip sample grades up to 2.09% Li₂O in the north-western portion of the target area.
- At the north-eastern end of the pegmatite outcrop area 14 closely spaced stacked dykes occur where surface composite rock chip sampling has returned tantalum grades including 262, 299, 360, 366, 421 & 573 ppm Ta₂O₅; this zone is open ended to N, NE & SE where it runs under surface soil cover.
- A second area of dykes returned similarly high tantalum values such as 207, 250, 323, 518, 616, 1184 ppm Ta₂O₅.
- A third zone of narrower dykes occurs in the northwest of the pegmatite belt but with very high grades of 708, 995, 1007, 1166 and 1221 ppm Ta₂O₅.

The key lithium target is to drill for blind lithium spodumene mineralisation beneath the tantalum bearing dykes a geological architecture similar to that noted at the Bald Hills lithium mine (formerly owned by ASX:TAW) – refer to Figure 4. A similar picture is also noted at Liontown's (ASX:LTR) Kathleen Valley lithium project (Figure 4) whereby relatively narrow surface pegmatite dykes merge at depth to form a thick flat lying lithium spodumene rich sill.

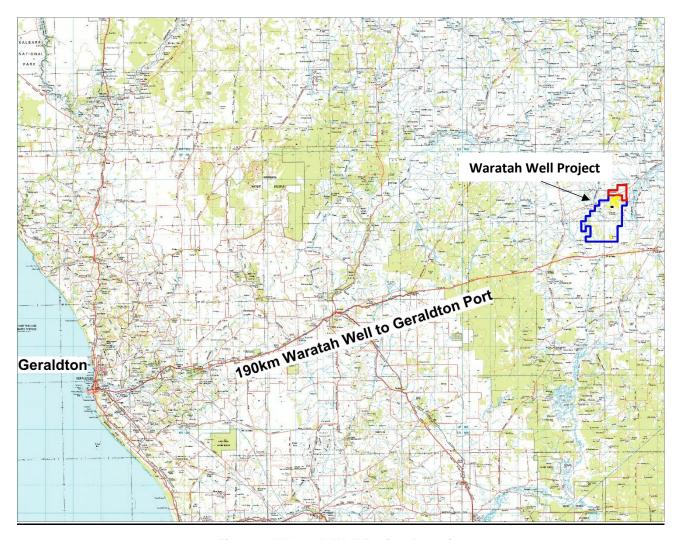
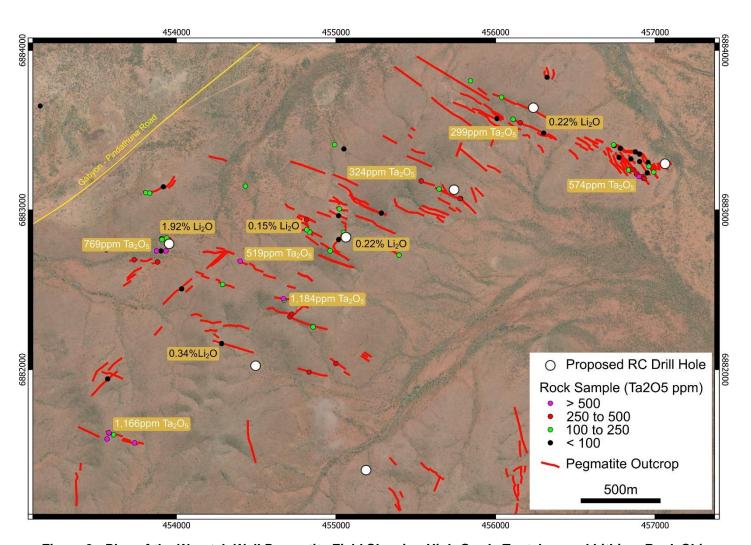
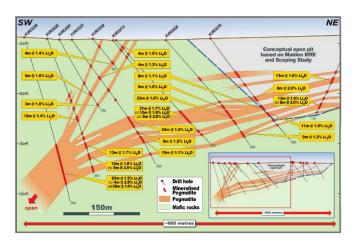
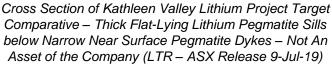
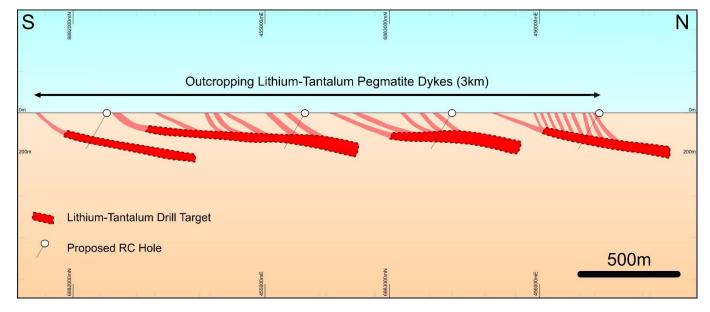


Figure 1: Waratah Well Project Location

Figure 2: Waratah Well Project Example of Flat Lying Pegmatite Sill


Figure 3: Plan of the Waratah Well Pegmatite Field Showing High-Grade Tantalum and Lithium Rock Chip Results and Planned Drill Hole Locations

Cross Section of Bald Hills Lithium Project Target Comparative – Thick Flat-Lying Lithium Pegmatite Sills below Narrow Near Surface Tantalum Rich Pegmatites Dykes – Not An Asset of the Company (TAW – ASX Release 9-Apr-17)

Schematic Cross Section of Zenith's Waratah Well Pegmatite with Conceptual Lithium Drill Target Below Surface Outcrop of Lithium-Tantalum Pegmatite Dykes

Figure 4: Waratah Well Project Lithium Pegmatite Drill Target and Target Comparatives

Drilling of the total program is anticipated to take approximately 2 weeks, with assay results available some 3 -4 weeks thereafter.

	Table 1: Significant	Lithium Tantalur	n Rock Chin	Laboratory	Assay Results
--	----------------------	------------------	-------------	------------	---------------

Sample	Easting	Northing	Azimuth	Dip	Li ₂ O (%)	Rb (ppm)	Ta₂O₅ (ppm)
1360	456903	6883303	335	90	0.01	3430	31
1361	456743	6883403			0.07	2630	55
1362	456110	6883568			0.01	984	214
1363	455842	6883809			0.01	4400	122
1364	455021	6883007			0.01	901	195
1365	455016	6882814			0.22	4330	43
1366	455778	6883071	320	20	0.03	752	287

1368 454033 6882506 0.00 2 1369 454399 6882679 0.00 32 1370 454711 6882330 285 45 0.03 10 1371 454283 6882163 0.34 42 1372 453737 6881541 280 0.00 4 1301 456991 6883237 0.00 49 1302 456991 6883237 0.01 52	330 73 321 92 210 519 020 354 210 43 43 43 453 708 900 85 200 128 700 574 200 104 371 1166 38 995
1369 454399 6882679 0.00 32 1370 454711 6882330 285 45 0.03 10 1371 454283 6882163 0.34 42 1372 453737 6881541 280 0.00 4 1301 456991 6883237 0.00 49 1302 456991 6883237 0.01 52	210 519 020 354 210 43 .53 708 900 85 200 128 700 574 200 104 371 1166 38 995
1370 454711 6882330 285 45 0.03 10 1371 454283 6882163 0.34 42 1372 453737 6881541 280 0.00 4 1301 456991 6883237 0.00 49 1302 456991 6883237 0.01 52	020 354 210 43 453 708 900 85 200 128 700 574 200 104 371 1166 38 995
1371 454283 6882163 0.34 42 1372 453737 6881541 280 0.00 4 1301 456991 6883237 0.00 49 1302 456991 6883237 0.01 52	210 43 .53 708 900 85 200 128 700 574 200 104 371 1166 38 995
1372 453737 6881541 280 0.00 4 1301 456991 6883237 0.00 49 1302 456991 6883237 0.01 52	708 900 85 200 128 700 574 200 104 871 1166 38 995
1301 456991 6883237 0.00 49 1302 456991 6883237 0.01 52	900 85 200 128 700 574 200 104 371 1166 38 995
1302 456991 6883237 0.01 52	200 128 700 574 200 104 371 1166 38 995
	700 574 200 104 371 1166 38 995
1303	200 104 371 1166 38 995
	371 1166 38 995
	38 995
	l l
	43 1007
	700 159
	600 1221
	261 37
	205 769
	90 31
	253 617
1729 453909 6882814 0.63 86	600 208
	700 208
	100 61
	790 183
	090 55
	060 37
	300 360
	350 275
	290 208
	090 134
	19 37 550 61
	030 85
	359 116
	050 98
	8.1 366
	120 421
	205 360
	379 299
1632 456860 6883253 0.01 14	430 263
1633 456834 6883250 0.01 15	510 128
1634 456774 6883329 0.03 9	98
1635 456848 6883319 0.02 12	290 85
	352 31
	920 49
	950 299
	660 55
	150 116
	650 61 887 110
	740 104
	130 171
	373 324
	320 61
	79 147
	56 287
	060 134
	599 128
	470 1184
1652 454722 6882347 0.01 9	946 256
1653 454963 6882744 0.01 22	250 177
	250 104
1655 453735 6882688 0.00 27	700 324

Sample	Easting	Northing	Azimuth	Dip	Li ₂ O (%)	Rb (ppm)	Ta₂O₅ (ppm)
1656	453881	6882674			0.00	378	391
1657	453938	6882823			2.09	11400	61
1658	453808	6883109			0.01	629	250
1659	453918	6883145			0.01	437	92
1660	454432	6883149			0.00	1240	189
1305b	453577	6881603			0.01	741	952
1371b	454283	6882163			0.21	3284	55
2029	457643	6886345			0.05	528	15
2030	457627	6886461			0.09	1233	27
2031	457498	6886630			0.04	482	7
2032	457292	6886808			0.03	775	9
2033	456907	6887168			0.01	238	6
2034	456327	6886771			0.01	53	2
2035	455997	6887100			0.01	21	2
2036	456594	6887676			0.00	21	1
2039	456812	6887922			0.00	864	-1
2041	454930	6885765			0.01	698	-1
2042	454512	6885938			0.01	5	-1
2044	453733	6885883			0.02	227	-1
2045	453605	6885814			0.01	294	7
2046	452903	6885874			0.01	301	1
2047	453146	6883651			0.01	490	23
2049	452963	6884318			0.02	886	10
2050	452963	6884847			0.01	446	13
2051	452717	6884440			0.00	513	5
2054	453832	6883105			0.02	575	183
2055	453907	6882821			1.92	14201	65

For further information please refer to the Company's website or contact the Company directly.

Authorised for release by the Zenith Minerals Limited Board of Directors - 3rd November 2021

For further information contact Zenith Minerals Limited:

Director Michael Clifford E: mick@zenithminerals.com.au Phone +61 8 9226 1110

Competent Persons Statement

The information in this report that relates to Exploration Results is based on information compiled by Mr Michael Clifford, who is a Member of the Australian Institute of Geoscientists and an employee of Zenith Minerals Limited. Mr Clifford has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Clifford consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

Material ASX Releases Previously Released

The Company has released all material information that relates to Exploration Results, Mineral Resources and Reserves, Economic Studies and Production for the Company's Projects on a continuous basis to the ASX and in compliance with JORC 2012. The Company confirms that it is not aware of any new information that materially affects the content of this ASX release and that the material assumptions and technical parameters remain unchanged.

Zenith Minerals Limited (ASX:ZNC)

Zenith has a vision to build a gold and base metals business with a team of proven project finders. Focus is on 100% owned Zenith projects, whilst partners progress multiple additional opportunities using third party funds.

Zenith is continuing to focus on its core Australian gold and copper projects including:

Earaheedy Zinc Western
Australia 25% free carry to BFS

New major zinc discovery to be fast tracked with extensive accelerated exploration program underpinned by a recent \$40M capital raising by partner Rumble Resources Limited (ASX:RTR) (ASX Releases 28-Apr-21, 2-Jun-21, 8-Jun-21).

Develin Creek Copper - Zinc Queensland 100% Owned

Inferred Mineral Resource 2.57Mt @ 1.76% Cu, 2.01% Zn, 0.24% Au & 9.6g/t Ag (ASX Release 15-Feb-15). Testing 8 targets with multi-rig drill campaign.

Sulphide City (ASX Release 5-Jul-21). 34m @ 3.5% Cu+Zn 29m @ 3.5% Cu+Zn

incl 10m @ 6.0% Cu+Zn incl 12.3m @ 6.7% Cu+Zn

Red Mountain Gold Queensland 100% Owned

Drilling is following-up the high-grade near surface gold and silver intersected in the maiden & subsequent drill programs (ASX Releases 3-Aug-20 & 13-Oct-20, 9-Nov-20, 21-Jan-21).

Results incl: 13m @ 8.0 g/t Au 15m @ 3.5 g/t Au

5m @ 10.4 g/t Au 12m @ 4.9 g/t Au

Split Rocks Gold Western 100% Owned

Zenith drilling returned - high-grade near surface gold mineralisation at multiple targets (ASX Release 5-Aug-20, 2-Sep-20, 19-Oct-20, 28-Oct-20, 15-Jan-21, 11-Mar-21, 21-Apr-21, 24-Jun-21). Results include:

Dulcie North 32m @ 9.4 g/t Au, incl 9m @ 31.4 g/t Au 16m @ 1.3 g/t Au

Dulcie Laterite Pit 2m @ 14.5 g/t Au 18m @ 2.0 g/t Au

14m @ 3.5 g/t Au

Estrella 2m @ 9.8 g/t Au

Dulcie Far North 5m @ 5.6 g/t Au 3m @ 70 g/t Au

Water Bore 3m @ 6.6 g/t Au

Scotts Grey 8m @ 4.1 g/t Au 4m @ 4.8 g/t Au

Investments

43.9M shares in Bradda Head Holdings Limited (AIM)

3M shares in Rumble Resources Limited (ASX:RTR)

2.5M shares in American Rare Earths (ASX:ARR)

NICKEL X 0.5M shares in Nickel-X Limited (ASX:NKL)

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
	Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the	Surface rock chip sample results analysed at SGS Laboratory in Perth and Nagrom laboratory in Perth (Table 1 in this release).
	minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling.	An additional extensive program of surface handheld pXRF readings for tantalum and associated elements have been taken by the Company to assist in geological mapping and determining mineral and element zonation but those pXRF results are not reported publicly in this release.
Sampling	Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.	Both selective and composite rock chip surface sample results and pXRF readings. Some selective samples and pXRF readings are biased to assess mineral variability of coarse pegmatites. Analysis and repeat pXRF readings indicate relatively homogenous tantalum distribution irrespective of the coarse-grained pegmatite samples.
techniques	Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information.	Surface rock chip sample program undertaken by competent field geologists.
Drilling techniques	Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.).	No drilling results reported this release.
	Method of recording and assessing core and chip sample recoveries and results assessed.	No drilling results reported this release.
Drill sample recovery	Measures taken to maximise sample recovery and ensure representative nature of the samples.	No drilling results reported this release.
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	No drilling results reported this release.

Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	No drilling results reported this release.
	Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography.	No drilling results reported this release.
	The total length and percentage of the relevant intersections logged.	No drilling results reported this release.
	If core, whether cut or sawn and whether quarter, half or all core taken.	No drilling results reported this release.
Sub-sampling	If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry.	No drilling results reported this release.
techniques and sample preparation	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	No drilling results reported this release.
	Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.	No drilling results reported this release.
Sub-sampling techniques and sample	Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling.	No results reported this release.
preparation - continued	Whether sample sizes are appropriate to the grain size of the material being sampled.	No drilling results reported this release.
	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the	Surface rock chip sample results analysed at SGS Laboratory in Perth and Nagrom laboratory in Perth. Analysis using 4 acid digestion and ICP-MS analysis, analysis consider near total.
	technique is considered partial or total.	Surface handheld pXRF readings for tantalum, results considered partial.
Quality of assay data and	For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and	pXRF readings at 30 seconds readings using both soil and geochem modes, calibration checks, blanks and certified reference material. Total 212 pXRF readings and 77 QA-QC checks completed.
laboratory tests	model, reading times, calibrations factors applied and their derivation, etc.	pXRF results cross referenced with rock chip laboratory assays and SEM analysis confirming robustness of tantalum results.
	Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.	Total 212 pXRF readings and 77 QA-QC checks completed.
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel.	Company personnel have observed the assayed samples

	The use of twinned holes.	Not applicable
	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	Field data were all recorded in field laptops and sample record books and then entered into a database
	Discuss any adjustment to assay data.	No adjustments were made.
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	No new drilling results reported this release.
	Specification of the grid system used.	The grid system used to compile data was MGA94 Zone 50
Location of data points - continued	Quality and adequacy of topographic control.	Topography control is +/- 5m
	Data spacing for reporting of Exploration Results.	Refer to Figure 3 in body of this report.
Data spacing and distribution	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	The data alone will not be used to estimate mineral resource or ore reserve
	Whether sample compositing has been applied.	Yes some rock samples are composites of rock chips collected over 5m to 20m intervals along and across strike of pegmatite outcrop.
Orientation of	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	Both biased and unbiased sampling completed.
data in relation to geological structure	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	NA, no drilling.
Sample security	The measures taken to ensure sample security.	Samples were kept in numbered and secured bags until delivered to the laboratory
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	Sampling techniques are consistent with industry standards.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	The Waratah Well Project is located within the 100% Zenith owned exploration licences E59/2170 and E59/2321. The project is located within a pastoral grazing lease.
Sidius	The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	Tenure is 100% held by Zenith and is in good standing with no known impediment to future granting of a mining lease.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	No previous exploration activities reported for lithium-tantalum pegmatites.
Geology	Deposit type, geological setting and style of mineralisation.	LCT type lithium pegmatite, with target being spodumene.
	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:	
	o easting and northing of the drill hole collar	
	o elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar	
Drill hole Information	o dip and azimuth of the hole	No drilling reported this ASX Release
Inionnation	o down hole length and interception depth	
	o hole length.	
	If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	
Data	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated.	No drilling reported this ASX Release
Data aggregation methods	Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	No drilling reported this ASX Release
Data aggregation methods - continued	The assumptions used for any reporting of metal equivalent values should be clearly stated.	No drilling reported this ASX Release
Relationship between mineralisation	These relationships are particularly important in the reporting of Exploration Results.	Refer below
widths and intercept lengths	If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.	No drilling reported this ASX Release

	If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known').	No drilling reported this ASX Release
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Refer to Figures 2-4
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	No drilling reported this ASX Release
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	Mineralogy study completed of tantalum minerals by Townend Mineralogy Laboratory – 5 polished thin sections. The niobium and tantalum minerals were analysed using the SEM.
	The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling).	Drilling in progress.
Further work	Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	Refer to figures in body of report.