

Thick Gold Mineralisation Intersected in the Albany-Fraser at the Circle Valley Gold Project

Highlights:

- Thick gold mineralisation intersected at Circle Valley within the Albany-Fraser Mobile Belt, which hosts the multi-million-ounce Tropicana Gold Deposit
- Reconnaissance aircore drilling to map stratigraphy across the strike of a 1.2km gold in soil anomaly has defined a 400m wide zone of gold anomalism (1,200m strike x 400m width), better results include:
 - o 23m @ 0.64g/t Au from 12m including **12m @ 1.05g/t Au** (CVAC061)
 - o 24m @ 0.38g/t Au from 12m including **4m @ 1.49g/t Au** (CVAC062)
- End of hole multi-element analysis points to Tropicana style pathfinder geochemistry:
 - Alteration enrichment up to 4.81% Potassium (K) and 1.77% Sulphur (S)
 - Strong enrichment up to 1,220ppm Barium (Ba), 436ppm Rubidium (Rb) and 136ppm Lead (Pb)
 - Enrichment in metals up to 1.70g/t Silver (Ag), 19.75ppm Molybdenum (Mo) and 0.10ppm Tellurium (Te)
- Mineralisation occurs below shallow transported cover within gently folded east-west trending magnetic fabrics (banded gneiss) in the core of a more magnetic fold closure
- Follow up drilling planned to commence imminently with assistance from the Western Australian Government's Exploration Incentive Scheme co-funded drilling program (\$150,000 funding grant), testing for extension to the north, east and west where the mineralisation remains open, and separately to test for mineralisation in fresh rock below the regolith

Latitude Consolidated Limited (ASX:LCD) ("Latitude" or "the Company") is pleased to report the results of reconnaissance drilling undertaken at the Company's Circle Valley Gold Project in Western Australia (Figure 9). This reconnaissance drilling was designed to build a depth of cover model over the project area and map the basement geology, providing the Company with a greater understanding of the stratigraphic, metamorphic and structural architecture at Circle Valley.

Gold exploration along the western edge of the Albany-Fraser Mobile Belt, where the Circle Valley Gold Project is situated, has met with considerable success as highlighted by the discovery and development of the 7.1Moz Tropicana gold mine (AngloGold Ashanti and Regis Resources Ltd Joint Venture). While the Company views these thick gold intersections in this first pass drilling at Circle Valley as encouraging, the end of hole multi-element geochemistry which points to Tropicana style pathfinder elements is viewed as more important and may be indicative of a large mineralised system. The gold anomalism has a current known strike of 1.2km, a width of 400m and remains open to the north, east and west.

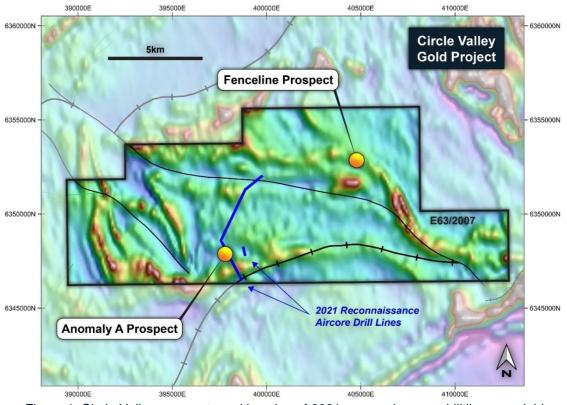


Figure 1: Circle Valley prospects and location of 2021 reconnaissance drill lines overlaid on magnetics.

Two lines of aircore holes were drilled with collars spacings between 20m and 200m. Importantly, numerous holes ended in mineralisation below the transported cover at the top of fresh rock. Results include:

- 23m @ 0.62g/t Au from 12m including 12m @ 1.05g/t Au (CVAC061)
- 24m @ 0.38g/t Au from 12m including 4m @ 1.49g/t Au (CVAC062)
- 4m @ 0.83g/t Au from 20m (CVAC004)
- 1m @ 0.31g/t Au from 15m (CVAC027) hole ends in mineralisation
- 1m @ 0.18g/t Au from 16m (CVAC048) hole ends in mineralisation
- 1m @ 0.17g/t Au from 16m (CVAC048)
- 1m @ 0.12g/t Au from 16m (CVAC048) hole ends in mineralisation

Multi-element results from the final meter of each hole delivered elevated silver across the 400m wide Anomaly A zone with results above 0.5g/t Silver including:

- 1m @ 1.70g/t Ag from 20m (CVAC057) end of hole sample
- 1m @ 1.01g/t Ag from 17m (CVAC048) end of hole sample
- 1m @ 0.86g/t Ag from 36m (CVAC061) end of hole sample
- 1m @ 0.84g/t Ag from 19m (CVAC042) end of hole sample
- 1m @ 0.82g/t Ag from 24m (CVAC058) end of hole sample
- 1m @ 0.74g/t Ag from 20m (CVAC047) end of hole sample
- 1m @ 0.73g/t Ag from 21m (CVAC059) end of hole sample
- 1m @ 0.63g/t Ag from 20m (CVAC057) end of hole sample
- 1m @ 0.60g/t Ag from 21m (CVAC049) end of hole sample
- 1m @ 0.57g/t Ag from 22m (CVAC041) end of hole sample
- 1m @ 0.50g/t Ag from 25m (CVAC054) end of hole sample

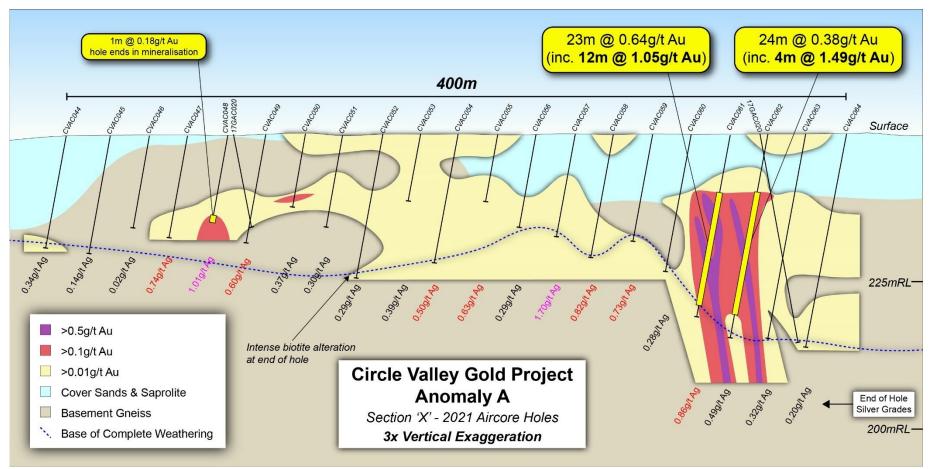


Figure 2: Circle Valley Gold Project – Anomaly A cross section (3x vertical exaggeration applied), note maximum depth of aircore drilling is circa 35m.

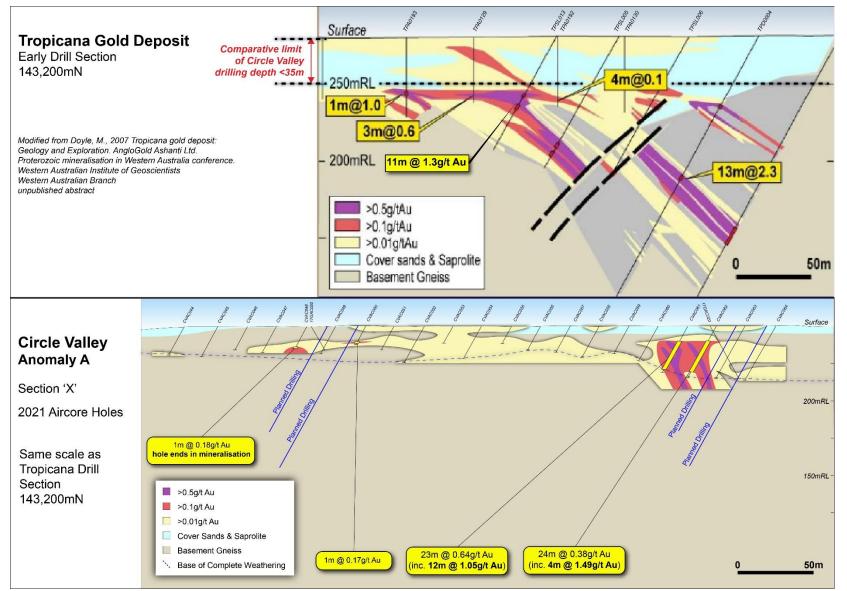


Figure 3: Early Tropicana cross section (top) at same scale as Circle Valley Anomaly A cross section (bottom).

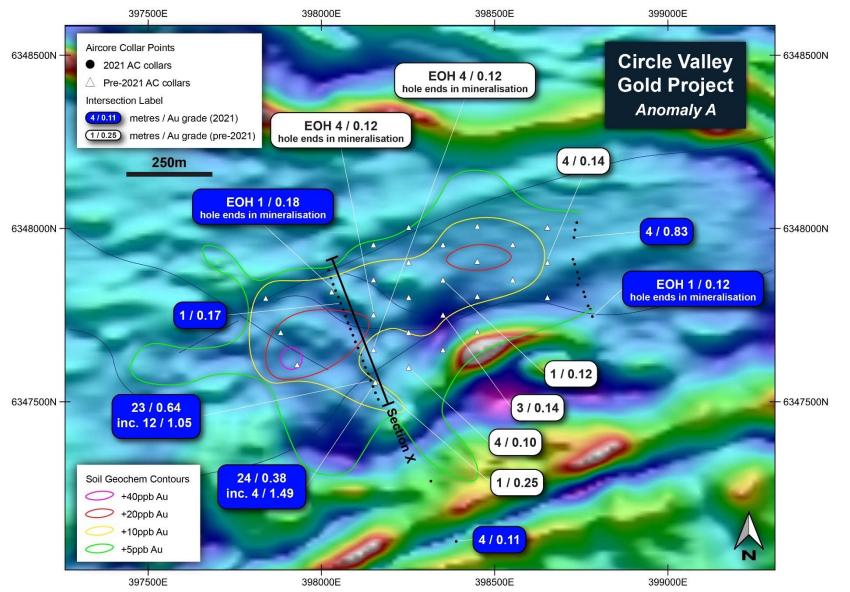


Figure 4: Circle Valley Anomaly A plan showing gold in soil anomaly and aircore drill results overlaid on high resolution magnetics (TMI-1VD).

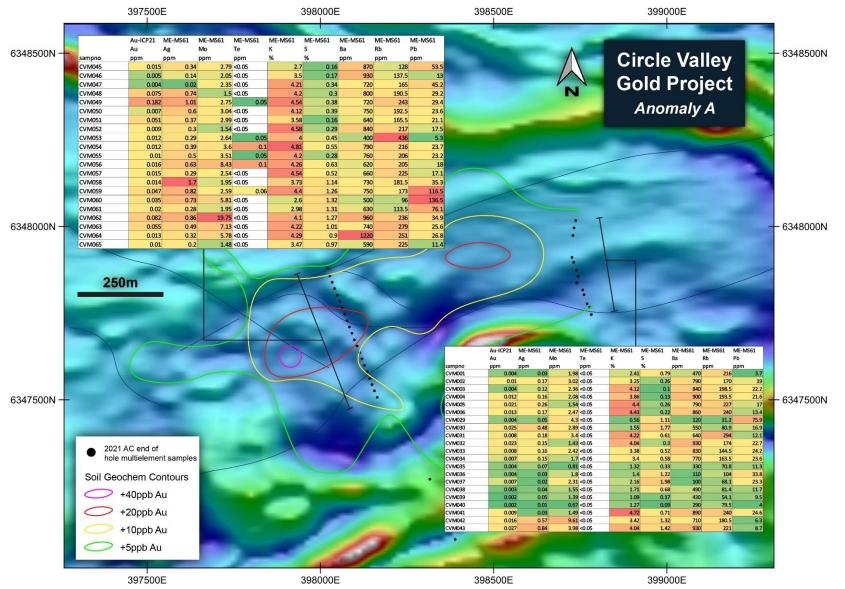
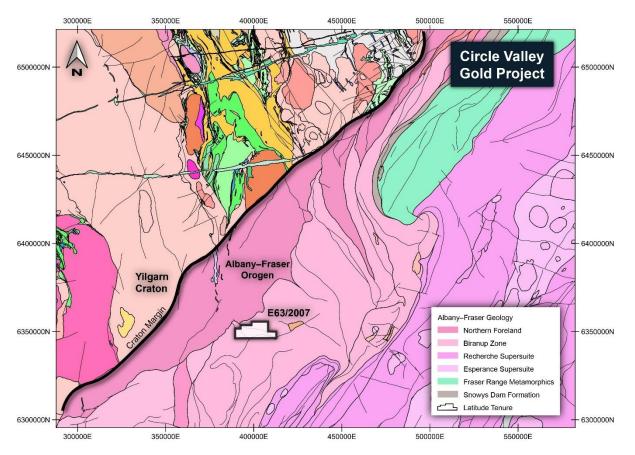



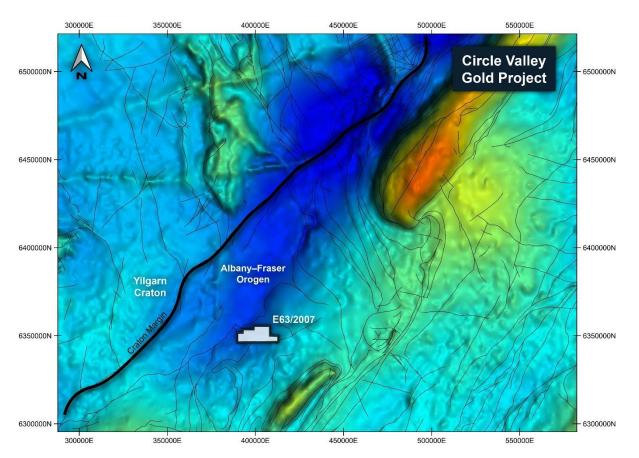
Figure 5: Circle Valley Anomaly A plan showing gold in soil anomaly and end of hole multielement results overlaid on magnetics (TMI-1VD).

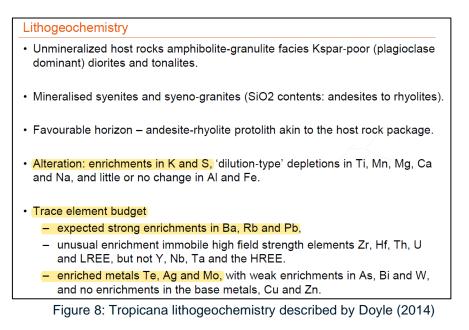
CIRCLE VALLEY

Circle Valley is situated in the Albany-Fraser Orogen adjacent to the Archean Yilgarn Craton, which hosts numerous world class gold and nickel deposits.

Figure 6: Regional Geology of Albany-Fraser Orogen and the Yilgarn Craton margin.

Magnetic surveys of the project area indicate a structurally complex relationships with the underlying basement rocks. Potential Archean remnants exist within the Circle Valley tenure (Biranup Zone) which is considered of appropriate age to host Tropicana Style gold mineralisation. The tenement is overlain by shallow Phanerozoic sediment cover as indicated by the regional gravity data, with the cover becoming increasingly deeper to the north of Circle Valley (Figure 7).




Figure 7: Regional Gravity Survey of the Albany-Fraser Orogen and the Yilgarn Craton margin.

The Company views the Circle Valley project to be prospective for Tropicana style mineralisation occurring in reactivated thrust faults running parallel with the Albany-Fraser Mobile Belt. Prospective host lithologies are the meta-granitic gneiss below shallow, younger Phanerozoic sedimentary cover.

The reconnaissance drilling reported in this announcement was designed to build a depth of cover model over the project area and map the basement geology, providing the Company with a greater understanding of the stratigraphic, metamorphic and structural architecture at Circle Valley. The drilling successfully penetrated the shallow younger sedimentary basin overlying the felsic and mafic gneissic basement rocks. The depth of younger basin sediment cover varies from 1m to 46m. Importantly the end of hole multi-element analysis returned pathfinder results within Anomaly A which show alteration and enrichment of various metals relative to results from outside of Anomaly A. The lithogeochemistry enrichment described by Doyle¹ at Tropicana is presented in Figure 8.

¹ Doyle, M (2014) *Tropicana An integrated approach to understanding granulite-hosted gold.* Available at: https://www.dmp.wa.gov.au/Documents/Geological-Survey/GSWA-AFO-Doyle-presentations-0006.pdf

The Company views the multi-element results as one of the more important outcomes of the Circle Valley reconnaissance drilling program as it begins to define the potential footprint of the mineralisation, which currently stands at 0.4km wide by 1.2km long and remains open to the north, east and west.

Key lithogeochemistry observed at Anomaly A (Circle Valley) include:

- 1. Alteration enrichment up to:
 - 4.81% Potassium (K)
 - 1.77% Sulphur (S)
- 2. Strong enrichment up to:
 - 1,220ppm Barium (Ba)
 - 436ppm Rubidium (Rb)
 - 136ppm Lead (Pb)
- 3. Enrichment in metals up to:
 - 1.70g/t Silver (Ag)
 - 19.75ppm Molybdenum (Mo)
 - 0.10ppm Tellurium (Te)

Commenting on the Circle Valley reconnaissance drilling, Company CEO Tim Davidson

said: "These results from Circle Valley are very encouraging. When we designed the program we were not expecting to intersect thick gold mineralisation. We simply wanted to map the depth of cover and improve our understanding of the geological setting to aid with future exploration. The 400m wide zone of gold anomalism at Anomaly A, and similarities between the end of hole multi-element results and pathfinder geochemistry observed at the multi-million ounce Tropicana deposit leave us very encouraged by the prospectivity of this tenure.

Up until now Circle Valley has had no systematic gold exploration and the Company intends to address this with further aircore, RC and diamond drilling planned in the coming months. Initially this will target Anomaly A, as well as the Fenceline prospect 8km to the northeast where thick gold mineralisation has also previously been intercepted.

We are also rapidly progressing Phase 2 exploration at our Murchison Gold Project and expect to begin receiving assay results from this drilling in the coming weeks, along with the release of our Mining Study in early December. The Company remains well funded with an aggressive program of work planned for the coming months and we look forward to updating our shareholders with the results of this work as it comes to hand."

Figure 9: Circle Valley Gold Project Location.

This announcement has been authorised for release by the Latitude Board of Directors.

For further information, please contact:

Tim Davidson – Chief Executive Officer +61 8 6388 2700 info@latitudeconsolidated.com.au www.latitudeconsolidated.com.au

ABOUT LATITUDE CONSOLIDATED

Latitude Consolidated (ASX:LCD) is a junior gold explorer with a portfolio of exploration projects across Western Australia.

Latitude's flagship Murchison Gold Project has a combined 343km² landholding in the prolific Murchison Gold Fields of Western Australia and hosts a large high grade 1.1Moz Mineral Resource. The company is actively exploring on this tenure while also progressing mining studies to determine the best pathway to production.

The Circle Valley project in southern WA sits in the Albany Fraser Mobile Belt. This belt hosts the Tropicana gold mine (3Moz past production). Primary gold mineralisation has been identified in two separate locations at Circle Valley and presents an exciting exploration opportunity for Latitude.

	Measured			Ir	ndicate	d	I	nferred	k	Total			
Project	Tonnes ('000t)	Grade (g/t)	Ounces ('000oz)	Tonnes ('000t)	Grade (g/t)	Ounces ('000oz)	Tonnes ('000t)	Grade (g/t)	Ounces ('000oz)	Tonnes ('000t)	Grade (g/t)	Ounces ('000oz)	
Andy Well	150	11.4	55	1,050	9.3	315	650	6.5	135	1,800	8.6	505	
Turnberry				6,800	1.6	355	4,500	1.8	255	11,300	1.7	610	
TOTAL	150	11.4	55	7,850	2.7	670	5,150	2.4	390	13,100	2.6	1,115	

Global Mineral Resource Summary

Notes:

1. Mineral Resources previously reported to the ASX on 18th May 2021 in announcement titled "Murchison Gold Mineral Resource Grows 44% to +1.1 Million Ounces". The Company is not aware of any new information or data that materially affects the information included in this announcement and that all material assumptions and technical parameters underpinning the estimates continue to apply and have not materially changed.

2. Mineral Resources are produced in accordance with the 2012 Edition of the Australian Code for Reporting of Mineral Resources and Ore Reserves (JORC 2012).

3. Andy Well Mineral Resource is reported using 0.1g/t cut-off grade.

4. Turnberry Open Pit Mineral Resource is reported within a A\$2,400/oz pit shell and above 0.5g/t cut-off grade.

5. Turnberry Underground Mineral Resource is reported outside a A\$2,400/oz pit shell and above 1.5g/t cut-off grade.

6. Numbers in the Mineral Resource table have been rounded.

UPCOMING ACTIVITIES

The company continues to progress exploration and mining study work across its portfolio of gold projects, with the following activities planned for the remainder of 2021 and early 2022:

Diamad Activity	Nov	Dec	Jan	Feb	Mar
Planned Activity	2021	2021	2022	2022	2022
Murchison Gold Project - Western Austra					
Phase 2 Drilling					
Phase 2 Assay Results					
Mine Scoping Study					
Pre-feasibility Study					
Circle Valley Gold Project - Western Aus	ralia				
EIS co-funded drilling					
Assay Results					

COMPETENT PERSON'S STATEMENT

The information in this release that relates to Exploration Results as those terms are defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserve", is based on information reviewed by Mr Duncan Franey, a Competent Person who is a member of The Australasian Institute of Mining and Metallurgy and the Australian Institute of Geoscientists. Mr Franey is a full-time employee of the Company. Mr Franey has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Franey consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

The information in this release that relates to Mineral Resources was first reported by the Company in its announcement to the ASX on 18th May 2021. The Company is not aware of any new information or data that materially affects the information included in this announcement and that all material assumptions and technical parameters underpinning the estimates continue to apply and have not materially changed.

FORWARD LOOKING STATEMENTS

Certain statements in this report relate to the future, including forward looking statements relating to the Company's financial position, strategy and expected operating results. These forward-looking statements involve known and unknown risks, uncertainties, assumptions and other important factors that could cause the actual results, performance or achievements of the Company to be materially different from future results, performance or achievements expressed or implied by such statements. Actual events or results may differ materially from the events or results expressed or implied in any forward-looking statement and deviations are both normal and to be expected. Other than required by law, neither the Company, their officers nor any other person gives any representation, assurance or guarantee that the occurrence of the events expressed or implied in any forward-looking statements will actually occur. You are cautioned not to place undue reliance on those statements.

CIRCLE VALLEY DRILLING AND ASSAY DATA

Table 1 – Collar Table

Drill Hole ID	Туре	Northing	Easting	RL	Dip	Azimuth	End of Hole
		-	-		(Degrees)	(Degrees)	(m)
CVAC001	AC	6348017	398737	250	-60	000	21
CVAC002	AC	6347996	398732	250	-60	000	16
CVAC003	AC	6347974	398729	250	-60	000	31
CVAC004	AC	6347951	398724	250	-60	000	34
CVAC005	AC	6347929	398725	250	-60	000	30
CVAC006	AC	6347911	398726	250	-60	000	34
CVAC007	AC	6351911	399585	250	-90	000	40
CVAC008	AC	6351774	399463	250	-90	000	67
CVAC009	AC	6351696	399394	250	-90	000	72
CVAC010	AC	6351624	399332	250	-90	000	62
CVAC011	AC	6351475	399202	250	-90	000	72
CVAC012	AC	6351359	399048	250	-90	000	30
CVAC013	AC	6351349	399035	250	-90	000	15
CVAC014	AC	6351174	398926	250	-90	000	27
CVAC015	AC	6350996	398841	250	-90	000	69
CVAC016	AC	6350822	398757	250	-90	000	56
CVAC017	AC	6350634	398667	250	-90	000	64
CVAC018	AC	6350454	398582	250	-90	000	88
CVAC019	AC	6350274	398496	250	-90	000	71
CVAC020	AC	6350089	398408	250	-90	000	78
CVAC021	AC	6349904	398320	250	-90	000	45
CVAC022	AC	6349762	398251	250	-90	000	29
CVAC023	AC	6349550	398150	250	-90	000	41
CVAC024	AC	6349370	398066	250	-90	000	11
CVAC025	AC	6349186	397977	250	-90	000	42
CVAC026	AC	6349004	397891	250	-90	000	14
CVAC027	AC	6348827	397807	250	-90	000	16
CVAC028	AC	6348650	397724	250	-90	000	28
CVAC029	AC	6347897	398731	250	-60	000	17
CVAC030	AC	6347874	398739	250	-60	000	26
CVAC031	AC	6347856	398744	250	-60	000	21
CVAC032	AC	6347837	398740	250	-60	000	21
CVAC033	AC	6347817	398757	250	-60	000	18
CVAC034	AC	6347271	398316	250	-90	000	38
CVAC035	AC	6347097	398389	250	-90	000	24
CVAC036	AC	6346921	398464	250	-90	000	47
CVAC037	AC	6346733	398550	250	-90	000	49
CVAC038	AC	6346561	398616	250	-90	000	57
CVAC039	AC	6346454	398622	250	-90	000	66

Drill Hole ID	Туре	Northing	Easting	RL	Dip	Azimuth	End of Hole
		-	-		(Degrees)	(Degrees)	(m)
CVAC040	AC	6347803	398761	250	-60	000	21
CVAC041	AC	6347777	398770	250	-60	000	22
CVAC042	AC	6347767	398777	250	-60	000	19
CVAC043	AC	6347746	398782	250	-60	000	16
CVAC044	AC	6347880	398021	250	-60	000	22
CVAC045	AC	6347858	398027	250	-60	000	23
CVAC046	AC	6347839	398034	250	-60	000	18
CVAC047	AC	6347821	398041	250	-60	000	20
CVAC048	AC	6347802	398049	250	-60	000	17
CVAC049	AC	6347784	398056	250	-60	000	21
CVAC050	AC	6347765	398063	250	-60	000	14
CVAC051	AC	6347747	398070	250	-60	000	18
CVAC052	AC	6347728	398077	250	-60	000	28
CVAC053	AC	6347710	398084	250	-60	000	13
CVAC054	AC	6347692	398091	250	-60	000	25
CVAC055	AC	6347673	398098	250	-60	000	13
CVAC056	AC	6347655	398106	250	-60	000	18
CVAC057	AC	6347636	398113	250	-60	000	20
CVAC058	AC	6347618	398120	250	-60	000	24
CVAC059	AC	6347599	398127	250	-60	000	21
CVAC060	AC	6347581	398135	250	-60	000	27
CVAC061	AC	6347562	398142	250	-60	000	36
CVAC062	AC	6347544	398149	250	-60	000	40
CVAC063	AC	6347526	398156	250	-60	000	40
CVAC064	AC	6347507	398164	250	-60	000	42

Table 2 – Significant Intersections (>0.1g/t Au)

Drill Hole ID	Туре)	Downhole From	Downhole To	Downhole Intersection	Au	Comment
			(m)	(m)	(m)	(g/t)	
CVAC004	Au		20	24	4	0.83	4 m composite
CVAC027	Au		15	16	1	0.31	EOH 1 m sample
CVAC034	Au		12	16	4	0.11	4 m composite
CVAC043	Au		15	16	1	0.12	EOH 1 m sample
CVAC048	Au		16	17	1	0.18	EOH 1 m sample
CVAC050	Au		12	13	1	0.17	EOH 1 m sample
CVAC061	۸		12	35	23	0.64	4 m composites (3 m composite before EOH)
CVAC061	Au	inc.	16	20	4	2.10	4 m composite
CVAC062	Au		12	36	24	0.38	4 m composites
CVAC002	Au	inc.	24	28	4	1.49	4 m composite

	₽	rom	ഉ	F	-	-	-		-	-	-	_		-	_	-	_
Hole_ID	SampleID	Depth_From	Depth_To	Au_ppm	Pb_ppm	Cu_ppm	Ag_ppm	Al_pct	As_ppm	Ba_ppm	Be_ppm	Bi_ppm	Ca_pct	Cd_ppm	Ce_ppb	Co_ppm	Cr_ppm
CVAC001		20	21	0.004	3.7	6.9	0.03	7.18	1.2	470	1.35	0.25	0.29	0.02	80900	24.7	134
CVAC002	CVM002	15	16	0.01	19	8.3	0.17	5.16	1.2	790	1.3	0.12	0.13	0.01	47800	10	24
CVAC003	CVM003	30	31	0.004	22.2	6.3	0.12	6.41	0.8	840	2.07	0.16	0.28	0.03	55900	3	15
CVAC003	CVM004	25	26	0.012	21.6	5.5	0.16	6.24	0.9	900	2.31	0.14	0.57	0.02	53800	3.7	13
CVAC004	CVM005	33	34	0.021	17	3.7	0.26	6.19	0.9	790	1.94	0.13	0.15	0.02	84000	2.6	10
CVAC005	CVM006	29	30	0.013	13.4	4.7	0.17	6.57	1.2	860	1.67	0.21	0.22	0.01	78000	2.7	18
CVAC006	CVM007	33	34	0.017	10	6.4	0.24	6.49	1.5	750	1.83	0.19	0.06	0.01	69800	3.8	18
CVAC007		33	34	0.004	14.7	14.2	0.05	5.9	18.6	80	0.89	0.14	0.22	0.09	36400	4.7	66
CVAC008		66	67	0.005	18.4	21.5	0.03	9.44	3.3	50	1.48	0.23	0.21	0.05	43700	7.4	88
CVAC014		26	27	0.003	24.4	10.8	0.02	8.27	14	300	1.14	0.2	0.16	0.05	126000	9.5	31
CVAC015		68	69	0.002	37.5	4.6	0.02	9.34	1.4	20	1.38	0.08	0.05	0.01	43600	1.7	12
CVAC016		55	56	0.002	10.8	9.4	0.03	9.1	10.6	90	1.43	0.22	0.09	0.02	46800	3.1	17
CVAC017		63	64	0.002	33.3	23.5	0.09	7.63	0.9	960	2.9	0.66	0.72	0.09	110000	14.9	24
CVAC018 CVAC019		87 70	88 71	0.003	23.4 16.6	18.2 94.7	0.05	6.25 8.02	0.6 1.2	840 820	1.42 2.57	0.14	1.62 0.69	0.07	29400 111500	15.5 18.3	38 34
CVAC019 CVAC020		77	78	0.004	38.8	6.9	0.04	7.27	0.6	1090	2.37	0.2	0.09	0.02	54400	8.7	23
CVAC020 CVAC021		44	45	0.002	12.2	22.4	0.04	8.04	0.0	740	3.03	0.24	0.73	0.05	109000	16.8	16
CVAC022		28	29	0.004	41	35	0.05	9.89	0.8	670	2.38	0.27	0.4	0.05	130500	29.2	40
CVAC023		40	41	0.004	16.9	14.2	0.06	7.68	0.7	770	2.26	0.16	0.29	0.02	101500	9.4	18
CVAC024		10	11	0.007	35.4	28.7	0.23	7.88	2.2	960	1.71	0.22	0.39	0.03	109500	12.4	14
CVAC025	CVM026	35	36	0.003	13.2	3.5	0.02	6.14	0.7	480	1.41	0.04	0.27	0.02	61500	5.5	17
CVAC026	CVM027	13	14	0.003	13	36.6	0.06	9.49	2.3	230	0.94	0.59	0.49	0.04	73100	38.4	45
CVAC027	CVM028	15	16	0.308	15.7	20.3	0.1	8.45	0.6	650	2.11	0.74	2.53	0.12	124500	33.6	111
CVAC028	CVM029	27	28	0.004	75.9	39.4	0.05	8.93	3	120	1.11	0.3	0.02	0.09	39300	35.8	42
CVAC029	CVM030	15	16	0.025	16.9	128.5	0.48	7.65	1.5	550	1.66	1.02	0.25	0.02	50900	24.8	31
CVAC030	CVM031	25	26	0.008	12.1	20.6	0.18	7.33	1.1	640	2.34	0.16	0.31	0.01	65500	47.7	72
CVAC031	CVM032	20	21	0.023	22.7	4.8	0.15	6.07	0.8	930	1.43	0.09	0.38	0.02	48200	10.6	13
CVAC032	CVM033	20	21	0.008	24.2	11	0.16	5.82	1.3	830	1.55	0.11	0.48	0.02	60600	22.1	20
CVAC033		17	18	0.007	23.6	7.4	0.15	6.01	2.1	770	1.67	0.11	0.34	0.03	62800	18.7	18
CVAC034		37	38	0.004	11.3	14.9	0.07	8.41	0.7	330	2.36	0.13	2.44	0.07	70900	35.2	77
CVAC035		23	24	0.004	33.8	12.6	0.03	8.68	1	110	2.58	0.04	0.45	0.13	211000	13.6	63
CVAC036		45	46	0.007	23.3	10.6	0.02	8.03	0.8	100	1.31	0.02	0.03	0.01	137000	7.2	26
CVAC037 CVAC038		48 56	49 57	0.003	11.7 9.5	24.4 72.4	0.04	8.73 7.22	0.5	490 430	1.74 1.34	0.07	2.34	0.04	93900 104000	32.1 19.6	21 86
CVAC038 CVAC039		65	66	0.002	9.5	1.6	0.05	6.77	0.5	290	1.34	0.03	0.66	0.05	14200	33.4	532
CVAC039		20	21	0.002	24.6	2.8	0.01	6.79	1.6	890	1.09	0.02	0.00	0.02	72100	4.2	17
CVAC041		21	22	0.000	6.3	52.4	0.57	6.23	1.2	710	1.71	0.59	0.13	0.02	61700	66.3	47
CVAC042		15	16	0.027	8.7	32.3	0.84	6.68	2.4	930	1.58	0.98	0.23	0.02	58600	22.5	31
CVAC043		15	16	0.123	20.6	2.8	0.17	7.17	0.6	700	2.68	0.24	0.8	0.03	64400	5.8	16
CVAC044	CVM045	21	22	0.015	53.5	24.7	0.34	8.59	2.1	870	1.41	0.71	0.27	0.02	102500	16.1	64
CVAC045		22	23	0.005	13	14.3	0.14	7.3	1.4	930	1.56	0.13	0.33	0.01	91500	4.5	20
CVAC046	CVM047	17	18	0.004	45.2	3.4	0.02	6.11	1.3	720	1.11	0.07	0.08	0.01	61500	2.1	24
CVAC047	CVM048	19	20	0.075	29.2	7.1	0.74	6.39	0.9	800	1.6	0.17	0.37	0.01	45500	5.6	18
CVAC048		16	17	0.182	29.4	11.2	1.01	5.96	0.7	720	0.9	0.47	0.05	0.01	28800	17.5	16
CVAC049		20	21	0.007	23.6	10.8	0.6	6.37	1.3	750	1.5	0.34	0.07	0.01	83600	14.7	22
CVAC050		13	14	0.051	21.1	7.6	0.37	5.84	1.1	640	1.38	0.18	0.24	0.02	66100	25	24
CVAC051		17	18	0.009	17.5	4.8	0.3	6.77	0.1	840	1.29	0.32	0.07	0.01	41100	7.8	15
CVAC052		27	28	0.012	5.3	46.2	0.29	7.5	1.3	400	1.92	1.65	0.79	0.06	108500	34.2	210
CVAC053		12	13	0.012	23.7	9.6	0.39	5.53	1.5	790	0.81	0.44	0.07	0.01	55700	24.3	26
CVAC054		24	25	0.01	23.2	7.6	0.5	6.06	1.3	760	1.61	0.33	0.44	0.02	72700	8.3	23
CVAC055		11	12	0.016	18	9.3	0.63	5.05	3.1	620	0.95	2.08	0.02	0.01	55300	6.6	28
CVAC056		17	18	0.015	17.1	7.7	0.29	5.66	3.1	660 730	0.97	0.29	0.05	0.02	74400 84100	30.8	23
CVAC057 CVAC058		19 23	20 24	0.014	35.3 116.5	11.9 9.2	0.82	6.18 7.37	1.1 1.9	730	1.26	0.43	0.08	0.02	84100 97100	6.1 10.6	15 20
CVAC058 CVAC059		23	24	0.047	136.5	9.2	0.82	7.69	2.5	500	1.13	0.93	0.06	1.17	194000	18.5	17
CVAC060		26	27	0.035	76.1	9.5	0.73	7.15	1.5	630	1.13	0.97	0.07	0.15	174000	9.6	17
CVAC060		35	36	0.02	34.9	18.7	0.20	7.62	1.6	960	2.42	0.69	0.21	0.13	112000	11.3	19
CVAC062		39	40	0.055	25.6	33.6	0.49	7.75	0.9	740	2.45	1.05	0.42	0.05	85700	17.9	32
CVAC063		37	38	0.013	26.8	19.6	0.32	6.63	1.3	1220	1.76	0.24	0.14	0.04	82800	9.7	23
CVAC064		41	42	0.01	11.4	12.1	0.2	8.2	1.3	590	2.33	0.18	1.3	0.03	75800	18	15
				-						-			-	-			

Table 3 – End of Hole Multi-Element Results

e	SampleID	Depth_From	To	mqq	pct	mqq	mqq	mqq	mqq	t	qdd	E.	bct	mqq	mqq	pct	mqq	mqq	Ę
Hole	Samp	Dept	Depth	Cs_p	Fe_p	Ga_p	Ge_p	Ht_pt	n_pr	K_pct	La_p	Li_ppm	Mg_p	Mn_p	Mo_p	Na_p	d_ dN	Ni_pr	P_ppm
CVAC001	CVM001	20	21	16.15	3.63	15.85	0.09	1.9	0.026	2.41	39500	28.9	1.44	525	1.98	0.69	14	96.8	210
CVAC002		15	16	3.2	1.46	10.1	0.06	2	0.009	3.25	25200	8.3	0.09	237	3.02	0.86	6.9	5.3	40
CVAC003		30	31	3.98	1.48	13.85	0.1	2	0.013	4.12	31500	14	0.16	302	2.36	0.67	9.4	8.3	90
CVAC003 CVAC004		25 33	26 34	4.49	1.4	12.75 14.25	0.08	2.7	0.011	3.86 4.4	29900 46100	12.7 17.1	0.12	269 212	2.08	1.48 0.65	7.3	8.3 4.2	90 120
CVAC004 CVAC005		29	34	4.20	1.61	14.25	0.09	2.2	0.014	4.43	40100	12.9	0.15	212	2.47	0.05	9.7	6.2	70
CVAC006		33	34	4.33	1.87	14.05	0.09	2.6	0.016	3.88	37500	18.4	0.23	243	2.78	0.00	9.3	5.6	60
CVAC007	CVM008	33	34	0.29	6.54	13.3	0.05	1.7	0.039	0.34	18000	111.5	0.59	278	19.65	4.16	5.4	26	90
CVAC008	CVM009	66	67	0.13	5.84	21.4	0.05	1.9	0.075	0.12	27600	57.2	0.42	529	2.37	2.46	14.7	29	550
CVAC014		26	27	0.86	3.3	18.55	0.08	3.9	0.035	1.03	48400	59.2	0.33	213	5.66	2.28	13.1	18.1	160
CVAC015		68	69	0.06	1.87	21.3	0.025	6.1	0.032	0.11	1900	37.8	0.21	143	0.95	1.64	16.3	7.7	30
CVAC016 CVAC017		55 63	56 64	0.15 2.32	3.37 3.46	22.2 18.4	0.07	4.9 2.9	0.045	0.25 2.55	31000 59100	33.5 16.4	0.27	251 522	2.13	2.06	16.3 12.9	9.9 16.5	120 330
CVAC018		87	88	1.29	3.4	13.7	0.06	2.3	0.003	2.25	13500	10.4	1.08	663	1.55	2.01	5.7	21.9	160
CVAC019		70	71	3.97	3.46	19.15	0.21	4	0.06	2.45	95500	22.9	1.01	507	1.21	3.26	12.2	29.6	300
CVAC020	CVM021	77	78	1.83	2.73	16.5	0.09	2.1	0.031	3.28	29900	15.5	0.77	750	1.1	2.64	8.6	15.6	180
CVAC021	CVM022	44	45	4.39	2.7	18	0.16	3.6	0.05	2.81	63000	49	0.48	703	2.41	2.29	11.9	13	230
CVAC022		28	29	1.63	3.46	21.6	0.2	2.5	0.048	1.87	59800	49.9	0.32	282	2.25	1.57	11.4	50.7	330
CVAC023		40	41	2	1.95	17.15	0.18	3.6	0.026	2.29	78100	17.1	0.62	282	1.3	3.14	10.3	10.7	150
CVAC024 CVAC025		10 35	11 36	0.57	1.48	19.5	0.22	3.7 2.7	0.074	3.16 2.89	74800 31800	5.9 6.3	0.07	66	1.48	1.77 2.68	12.5 8.5	14.1 6.2	140
CVAC025 CVAC026		35 13	30 14	0.57	1.33	13.55 22.6	0.13	3.6	0.019	0.93	31800	1.9	0.39	156 129	1.63	2.68	8.5 10.8	23.6	230
CVAC027		15	16	3.67	5.05	22	0.22	1.4	0.059	2.03	60100	17.1	1.96	661	2.72	2.6	27.1	92.5	1760
CVAC028		27	28	0.3	2.21	20.6	0.06	4.4	0.049	0.56	8800	11.1	0.08	114	4.3	0.51	12.3	31.8	90
CVAC029	CVM030	15	16	1.62	2.24	17.75	0.08	2.2	0.018	1.55	26500	7.1	0.08	105	2.89	0.9	8.2	15.5	160
CVAC030	CVM031	25	26	29.1	4.83	16.25	0.14	2.2	0.039	4.22	36000	44	2.49	507	3.4	0.51	8.4	32.9	430
CVAC031		20	21	4.66	1.11	11.2	0.12	2.4	0.012	4.04	24900	5	0.07	173	1.43	1.25	6.5	2.3	70
CVAC032		20	21	3.45	1.61	11.55	0.12	2.3	0.015	3.38	33500	6.7	0.07	219	2.42	1.29	6.8	4.3	80
CVAC033		17	18	4.21	1.6	12.35	0.14	2.8	0.016	3.4	34800	7.1	0.09	227	1.7	1.34	6.8	5.2	70
CVAC034 CVAC035		37 23	38 24	3.81	7.18 2.73	18.4	0.14	1 5.2	0.034	1.32 1.4	32600 281000	19.7 28.1	1.64 0.63	951 269	0.81	2.47	7.3	65.5 39.1	2180 400
CVAC036		45	46	0.62	2.49	20.5	0.15	8.6	0.053	2.16	27200	33.1	0.00	96	2.31	0.95	17.4	9	80
CVAC037		48	49	1.22	3.59	20.7	0.16	2.9	0.054	1.71	46500	25.4	1.14	432	1.55	3.09	7.4	29.6	1180
CVAC038	CVM039	56	57	0.71	3.28	15.15	0.15	1.5	0.027	1.09	51000	11.1	1.34	440	1.39	3.37	4	40.3	620
CVAC039	CVM040	65	66	2.62	6.84	19.25	0.07	1.4	0.019	1.27	7600	76	4.35	413	0.67	2.76	3.7	271	290
CVAC040		20	21	7.28	2.29	15.1	0.11	2.1	0.017	4.72	45300	9.6	0.15	168	1.49	0.61	8.9	5.3	70
CVAC041		21	22	8.67	3.3	15.55	0.09	2.6	0.033	3.42	31700	21.9	0.64	253	9.61	0.48	7.9	20.1	330
CVAC042 CVAC043		15 15	16 16	12.1 4.37	4.08	18.65 14.75	0.12	3	0.035	4.04 3.39	29600 32700	23.5 9.1	0.82	392 313	3.98 1.15	0.48	14.1 7.9	11.8 6.3	740
CVAC043 CVAC044		21	22	1.78	0.96	14.75	0.09	1.7	0.013	2.7	43400	8	0.12	100	2.79	1.08	6.5	31.3	100
CVAC045		22	23	2.14	0.95	15.25	0.1	2.8	0.017	3.5	48900	7	0.11	78	2.05	1.29	9.1	4.9	90
CVAC046	CVM047	17	18	1.98	1.85	14.25	0.08	2	0.022	4.21	33500	10.2	0.16	115	2.35	0.87	8.6	3	90
CVAC047	CVM048	19	20	1.89	0.89	12.75	0.08	2	0.011	4.2	22800	5.3	0.05	185	1.5	1.34	6.7	11.4	80
CVAC048	CVM049	16	17	2.35	1.54	14.45	0.07	2.1	0.024	4.54	14000	13	0.16	286	2.75	0.6	8.1	12.1	30
CVAC049		20	21	2.46	1.73	16.05	0.09	2.3	0.021	4.12	44100	13.6	0.17	193	3.04	0.81	8.6	8.5	80
CVAC050		13	14	2.14	1.29	12.8	0.08	1.8	0.02	3.58	35200	9.8	0.14	210	2.99	0.99	7.5	7.9	70
CVAC051 CVAC052		17 27	18 28	2.48 21.2	1.5 6.59	16 22	0.07	2.3 1.4	0.018	4.58 4	22300 59800	14.3 56.1	0.21 3.5	154 1360	1.54 2.64	0.54	8.6	4.4	80 460
CVAC052 CVAC053		12	13	21.2	1.75	11.85	0.13	2.2	0.034	4.81	29500	9.6	0.12	1360	3.6	0.53	13.7 7.6	5.6	70
CVAC054		24	25	3.93	2.09	14.8	0.1	2.8	0.021	4.2	38900	14.5	0.31	331	3.51	1.11	9.5	8.3	280
CVAC055		11	12	2.35	1.72	13.55	0.09	2.4	0.018	4.26	32000	12.9	0.16	148	8.43	0.54	8	4.9	60
CVAC056	CVM057	17	18	2.76	1.41	14.25	0.11	2.4	0.019	4.54	42400	12.9	0.14	124	2.54	0.7	8.2	5.9	80
CVAC057		19	20	2.1	1.87	14.4	0.14	3	0.023	3.73	65300	15.7	0.16	226	1.95	0.82	9	6.1	110
CVAC058		23	24	1.66	1.75	15.25	0.19	4.3	0.036	4.4	67400	11	0.08	82	2.59	0.92	6.3	13.9	160
CVAC059		20	21	0.89	1.76	17.8	0.19	4.1	0.044	2.6	80300	8.7	0.05	116	5.81	0.94	7.6	11.8	200
CVAC060 CVAC061		26 35	27 36	1.52 6.37	1.77 3.02	16.45 19.95	0.21	4.2 4.2	0.033	2.98 4.1	79500 55800	8.8 21.1	0.11	143 448	1.95 19.75	1.73	5.1 9.8	8.2 7.9	180 190
CVAC061 CVAC062		39	40	9.21	4.7	23.8	0.10	4.2	0.052	4.1	42700	38.2	0.29	791	7.13	1.14	13.6	14.9	610
CVAC063		37	38	5.79	2.7	16.8	0.12	3.2	0.035	4.29	41900	19.7	0.35	395	5.78	0.93	8.9	7	160
CVAC064		41	42	10.65	5.78	20.4	0.16	2.1	0.047	3.47	36400	43.1	1.97	896	1.48	1.56	6.3	4.2	1930

	lelD	5	0																			
Hole	<u>a</u>	L.	h_To	mqq	mqq	#	mqq	mqq	mqq	mqq	mqq	mqq	шd	mq	8	mqq	Ę	Ę	mqq	Ę	md	E.
	Sam	Depth_From	Depth	Rb_p	Re_p	S_pct	Sb_p	Sc_p	Sep	Sn_p	Sr_p	Ta_p	Te_ppm	Th_ppm	Ti_pct	Id I	Uppm	ndq_ V	Id M	γ_ppm	Zn_ppm	Zr_ppm
CVAC001 CV		20	21	216	0.001	0.79	0.59	9.7	1	1.6	43.6	0.92	0.025	7.62	0.548	1.63	2.4	64	31.2	6.1	45	63.1
CVAC002 CV		15	16	170	0.001	0.26	0.27	1.7	1	1.1	79.9	0.61	0.025	11	0.055	0.86	3.2	7	88	5.6	16	66.5
CVAC003 CV		30	31	198.5	0.001	0.1	0.21	2	0.5	1.4	96.4	0.96	0.025	16.4	0.083	0.95	3.9	7	2.4	7.9	27	63.5
CVAC003 CV		25	26	193.5	0.001	0.13	0.26	1.7	0.5	1.2	125	0.61	0.025	13.1	0.078	1.1	3.3	6	3.6	7.1	21	87.9
CVAC004 CVI CVAC005 CVI		33 29	34 30	227 240	0.001	0.26	0.13	2.4 2.6	0.5	1.6 1.7	72 85.7	0.87	0.025	13.3 15.6	0.09	1.28 1.31	3.7 3.4	9 11	2.9 4.2	8.3 11.1	25 18	72.5 84.2
CVAC005 CVI		33	34	202	0.001	0.22	0.28	3	0.5	1.7	59.5	0.93	0.025	17.55	0.033	0.97	3.9	10	2.3	9.8	21	89.4
CVAC007 CVI		33	34	9.1	0.01	6.59	0.5	8.4	2	1.2	38.7	0.42	0.025	10.1	0.246	0.12	5.4	59	1.1	6.2	33	62.7
CVAC008 CV		66	67	3.8	0.002	0.98	0.37	25.1	0.5	2.8	25.2	1.22	0.025	13.25	0.684	0.23	2.6	102	2.1	6.3	45	62.6
CVAC014 CV	M015	26	27	46.9	0.004	2.02	0.69	7.5	0.5	2	79.4	0.89	0.025	13.15	0.239	0.24	3.6	44	15.7	23.6	41	138.5
CVAC015 CV	M016	68	69	4.9	0.001	0.19	0.41	5.7	0.5	1.9	8.7	1.27	0.025	19.05	0.133	0.07	2.3	9	0.8	3.5	17	195.5
CVAC016 CV		55	56	9.9	0.002	1.31	0.29	7.2	0.5	2.3	24.5	1.21	0.025	16.85	0.245	0.32	3.2	35	0.9	5.1	23	169.5
CVAC017 CV		63	64	120	0.001	0.24	0.26	8.6	0.5	3.5	234	0.88	0.025	13.95	0.33	0.64	2.8	40	11.9	29.1	142	104.5
CVAC018 CV		87	88	95.3	0.001	0.17	0.28	10.9	0.5	1.2	206	0.3	0.025	2.79	0.222	0.45	0.9	58	1.5	11.1	68	76.8
CVAC019 CVI CVAC020 CVI		70 77	71 78	196 156	0.004	0.33	0.51	6.6 5	0.5	6.7 1.7	183.5 206	0.89	0.025	11.5 8.05	0.261	1.18 0.68	2.5 1.5	38 28	4.4	50.6 12.9	90 96	142.5 79.4
CVAC020 CVI		44	45	346	0.001	0.25	0.4	6.6	0.5	2.1	105.5	1.03	0.025	8.05	0.21	1.45	4.3	28 35	26.3	33.5	96 87	112.5
CVAC021 CVI		28	29	123.5	0.001	1.12	0.37	16.9	1	2.1	105.5	0.76	0.025	9.43	0.397	0.51	4.3	73	20.3	61.2	94	93.1
CVAC023 CV		40	41	102	0.001	0.28	0.21	5.8	0.5	1.6	124.5	0.84	0.025	11.5	0.202	0.62	4.1	33	7.8	88.6	45	121
CVAC024 CV	M025	10	11	107	0.007	1.03	0.12	2.7	1	2.5	115	1.01	0.08	13.85	0.145	1.1	3.9	12	7.5	36.6	13	128
CVAC025 CV	M026	35	36	95.8	0.001	0.15	0.13	3	0.5	2.1	77.3	0.73	0.025	14.7	0.113	0.47	1.9	14	20.5	18	26	80.2
CVAC026 CV		13	14	43.2	0.002	1.38	0.48	16.5	1	2.3	154.5	0.57	0.05	21.9	0.891	0.92	10.1	166	3.9	11.3	7	101
CVAC027 CV		15	16	120.5	0.001	0.27	0.22	14.6	0.5	3	323	1.5	0.13	8.54	0.966	0.75	1.8	103	8.3	30.2	99	38
CVAC028 CV		27	28	31.2	0.012	1.11	0.33	18.7	1	2.5	9.2	1.01	0.025	7.14	0.615	2.02	16.7	117	2.2	6.2	65	157.5
CVAC029 CVI CVAC030 CVI		15	16	80.9	0.002	1.77	0.27	10.2	1	1.6	78.6	0.74	0.025	12.65	0.562	1.02	4.5	62	52.4	6.4	8	74.5
	M031	25 20	26 21	294 174	0.001	0.61	0.21	18.2 2	1	1.6 1.2	69.8 121.5	0.73	0.025	9.44 11.05	0.49	1.87 1.08	2.7	137 8	348 165	12.8 5.7	72 6	80.1 76.9
CVAC031 CVI		20	21	144.5	0.001	0.52	0.21	2.2	0.5	1.2	116.5	0.6	0.025	13.6	0.073	0.91	3.7	9	290	6.7	10	77.3
CVAC033 CVI		17	18	163.5	0.002	0.58	0.43	2.5	0.5	1.8	103.5	0.69	0.025	17.9	0.088	0.99	3.4	14	203	8.3	11	86.7
CVAC034 CV		37	38	70.8	0.001	0.33	0.27	18.7	0.5	1.1	379	0.6	0.025	4.95	0.647	0.31	2.6	188	2.6	21.4	89	41
CVAC035 CV	M036	23	24	104	0.002	1.22	0.15	9.6	0.5	2.7	80.8	0.91	0.025	13.45	0.277	0.75	3	51	3.4	88.2	134	194
CVAC036 CV	M037	45	46	68.1	0.001	1.98	0.14	6.6	0.5	3.1	20.2	1.04	0.025	34.7	0.155	0.32	3.8	31	36.9	24.6	40	299
CVAC037 CV		48	49	81.4	0.001	0.68	0.18	16.8	0.5	2.8	454	0.44	0.025	13.75	0.565	0.52	2.3	147	13.8	29.7	84	112.5
CVAC038 CV		56	57	54.1	0.001	0.17	0.09	9.4	0.5	0.7	493	0.25	0.025	10.2	0.231	0.22	1	63	3.2	16.2	44	62.9
CVAC039 CV		65	66	79.5	0.001	0.09	0.15	9	0.5	0.7	187	0.3	0.025	1.58	0.236	0.17	0.7	67	1.6	6.4	72	48.1
CVAC040 CV		20	21	240	0.001	0.71	0.64	2.7	1	1.5	68.2	0.87	0.025	21.8	0.086	1.16	3.2	12	3.3	9.3	17	72.3
CVAC041 CVI CVAC042 CVI		21 15	22 16	180.5 221	0.005	1.32	0.24	6.8 8	0.5	2.6 2.3	40 92	0.7	0.025	11.3 9.51	0.224	0.85	3.1 2.5	39 32	450 43.2	10.9 14.2	36 54	97.4 112.5
CVAC042 CVI		15	16	163.5	0.002	0.14	0.32	2.7	0.5	1.3	81.4	0.85	0.025	14.25	0.203	0.89	4.7	9	18.3	7.4	8	55.9
CVAC044 CVI		21	22	128	0.004	0.16	0.36	9.7	5	1.2	80.9	0.56	0.025	14.7	0.214	0.91	16.6	66	3.1	8.2	4	59.7
CVAC045 CV		22	23	137.5	0.003	0.17	0.21	3	5	1.4	103.5	0.91	0.025	21.4	0.125	0.76	14.3	12	13.7	7.5	3	99.6
CVAC046 CV	M047	17	18	165	0.001	0.34	0.34	3	1	2.2	76.1	0.74	0.025	13.8	0.082	0.85	2.5	13	8.1	5.4	10	65.4
CVAC047 CV		19	20	190.5	0.001	0.3	0.19	3	0.5	1.2	102.5	0.58	0.025	13.15	0.09	1.32	18	11	17.8	5.5	4	76.7
CVAC048 CV		16	17	243	0.004	0.38	0.24	3	0.5	2	57.9	0.78	0.05	9.4	0.092	1.57	8.9	13	103.5	4.7	12	70.1
CVAC049 CV		20	21	192.5	0.002	0.39	0.29	3.1	1	2.1	52.9	0.84	0.025	19.8	0.123	1.29	6.9	18	112	8.9	13	81.8
CVAC050 CV		13	14	165.5	0.002	0.16	0.22	2.9	0.5	1.8	74.7	0.64	0.025	15.5	0.114	0.94	5.6	16	203	6.9	10	63.7
CVAC051 CVI CVAC052 CVI	M052	17 27	18 28	217	0.001	0.29	0.2	3.3	0.5	1.8 1.7	87.1	0.75	0.025	8.6 7.18	0.126	1.17 3.21	3.7 2.5	18 125	48.2 2.8	4.2	14 147	83.2 47
CVAC052 CVI		12	28 13	436 216	0.001	0.45	0.18	14.1 3.2	0.5	1.7	47.8 84	0.7	0.05	14.4	0.508	2.05	2.5	125	332	9.6 6	147	80.3
CVAC053 CVI		24	25	206	0.008	0.55	0.32	4.8	0.5	1.0	102	0.83	0.05	17.2	0.114	1.28	4.3	31	4.9	10	24	99.9
CVAC055 CVI		11	12	205	0.005	0.63	0.33	2.9	1	2.4	62	0.79	0.00	17.9	0.107	1.99	8.2	14	54.5	6.4	9	87.9
CVAC056 CV	M057	17	18	225	0.002	0.52	0.23	3.1	0.5	1.6	66	0.66	0.025	17.85	0.091	1.99	6.1	12	237	8.9	11	87.8
CVAC057 CV	M058	19	20	181.5	0.001	1.14	0.41	3.6	0.5	1.7	66.4	0.85	0.025	19.15	0.117	1.2	5.3	14	20.6	14.5	13	110.5
CVAC058 CV		23	24	173	0.002	1.26	0.28	5.5	0.5	2.3	83.6	0.45	0.06	16.85	0.124	1.31	7	18	27	17.7	87	164
CVAC059 CV		20	21	96	0.029	1.32	0.36	5.2	0.5	1.8	70.5	0.63	0.025	16.5	0.227	1.49	6.7	21	123.5	19.2	65	155
CVAC060 CV		26	27	113.5	0.001	1.31	0.23	4.6	0.5	1.5	98.3	0.44	0.025	19.4	0.15	1.46	5.4	18	24.6	22.8	38	150.5
CVAC061 CV		35	36	236	0.001	1.27	0.34	6.7	0.5	2.4	133	0.9	0.025	19.55	0.226	1.73	9.9	36	37.6	31.4	49	152
CVAC062 CV		39	40	279	0.001	1.01	0.32	12.7	0.5	2.5	101	0.92	0.025	20.9	0.458	1.93	8.2	63	14.4	26.1	79	173
CVAC063 CVI CVAC064 CVI		37 41	38 42	251 225	0.001	0.9	0.41	6.2 15.9	0.5	1.9	125.5 184.5	0.78	0.025	18.8 5.95	0.184	1.62 1.45	4.6 3.1	34 128	33.4 13.1	14.7 20.9	47 89	119 85.2
	COOINI	41	42	220	0.001	0.97	0.32	10.9	0.5	1.1	104.0	0.4	0.025	0.95	0.020	1.40	3.1	120	13.1	20.9	09	00.2

Table 4 – Tropicana Collar Table (as illustrated in Figure 3)

Hole_ID	Grid_ID	WorkNorth	WorkEast	WorkR	TotalDepth	UserHoleType	DrillDate	Dip	GridAzim
				L					
TPA0193	AMG51_84	6763160	650290	350	52	RAB	08:Mar:2003	-90	0
TPA0129	AMG51_84	6763130	650323	350	43	RAB	08:Mar:2003	-90	0
TPSL013	AMG51_84	6763105	650377	350	85	UNKN	30:Jun:2003	-60	315
TPA0192	AMG51_84	6763105	650377	350	46	RAB	08:Mar:2003	-90	0
TPSL005	AMG51_84	6763062.43	650391.99	350	100	UNKN	28:Jun:2003	-60	315
TPA0130	AMG51_84	6763059	650394	350	50	RAB	08:Mar:2003	-90	0
TPSL006	AMG51_84	6763019	650415	350	106	UNKN	28:Jun:2003	-60	315
TPA0133	AMG51_84	6763340	650538	350	46	RAB	09:Mar:2003	-90	0

JORC 2012 – TABLE 1: CIRCLE VALLEY

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

CRITERIA	JORC CODE EXPLANATION	COMMENTARY
Sampling techniques	• Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.	 The results detailed in this announcement come from an air core drill programme completed by Latitude in 2021. 64 AC holes were drilled on four lines, two lines on 20 m spacings and two lines on 200 m spacing. The closer spaced holes were drilled at 60 degrees inclination to the north with he wider spaced holes drilled vertically. The holes were drilled along the edge of paddocks.
	Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.	 Drill sampling was conducted on 4 m composite samples via fire-assay with bottom of hole metre sample sent for multielement analysis. No QC samples were included by the company in this programme, but the laboratory included their usual QC samples to monitor appropriate calibration of their instruments.
	• Aspects of the determination of mineralisation that are Material to the Public Report.	 Mineralisation determined qualitatively through logging: presence of sulphide and visible gold in quartz; internal structure (massive, brecciated, laminated) of quartz. Mineralisation determined quantitatively via fire assay and 4-acid digest multielement analysis.
	 In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information. 	 AC samples 4 m composites and 1 m samples analysed by 50g Fire Assay and AAS. Bottom of hole samples analysed by 4-acid digest and ICP-MS for multielement analysis.
Drilling techniques	Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is oriented and if so, by what method, etc).	 Air core drilling was used to drill a 3.5 inch diameter hole to bit refusal (usually saprock to fresh rock).

CRITERIA	JORC CODE EXPLANATION	COMMENTARY
Drill sample	Method of recording and assessing	Visual estimate of AC drill chip
recovery	core and chip sample recoveries and results assessed.	recovery recorded in database.
	Measures taken to maximise sample recovery and ensure representative nature of the samples.	 AC chip recoveries monitored in the field and documented. Minimal water used and wet drilling avoided as much as possible.
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	• As sample recoveries are generally very high, there is no known relationship between sample recovery and grade.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	 Holes logged to a level of detail to support mineral resource estimation: lithology; alteration; mineralization; geotechnical; structural. Qualitative: lithology, alteration, foliation. All holes chipped for the entire hole to preserve a chip tray record of all holes drilled.
	Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.	 Qualitative: lithology, alteration, foliation. Quantitative: vein percentage; mineralization (sulphide) percentage; RQD measurement; structural orientation angles; assayed for gold and multielement geochemistry elements listed below (ME-MS61); no density measurements taken Chip samples taken from every metre of every hole to maintain chiptray record. Ag 0.002-100 Cu 0.02-10,000 Na 0.001%-10% Sr 0.02-10,000 Al 0.01%-50% Fe 0.002%-50% Nb 0.0005-500 Ta 0.01-500 As 0.002-10,000 Ge 0.005-500 P 0.001%-1% Th 0.004-10,000 Be 0.02-10,000 Hf 0.004-500 Pb 0.01-10,000 Ti 0.001%-10% Bi 0.002-10,000 If 0.005-500 Rb 0.02-10,000 If 0.005-500 Ba 1-10,000 If 0.005-500 Rb 0.02-10,000 If 0.001%-10% Bi 0.002-10,000 If 0.005-500 Rb 0.02-10,000 If 0.001%-10% C 0.005-10,000 If 0.005-500 Ba 0.005-10,000 If 0.005-500 Ba 0.005-10,000 If 0.005-500 Ba 0.005-10,000 Be 0.002-10,000 If 0.005-500 Ba 0.005-10,000 If 0.005-500 Ba 0.005-10,000 If 0.005-500 Ba 0.001%-10% K 0.01%-10% S 0.001%-10% V 0.1-10,000 C 0.005-10,000 If 0.005-500 Ba 0.005-10,000 If 0.005-500 Ba 0.002-10,000 If 0.005-500 Ba 0.002-10,000 If 0.0005-500 Ba 0.002-10,000 If 0.005-500 If
	• The total length and percentage of the relevant intersections logged.	 All holes logged for entire length of hole.
Sub-sampling techniques	If core, whether cut or sawn and whether quarter, half or all core taken.	Not core
and sample preparation	 If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. 	AC sample were spear sampled in 4 m composite intervals. 1 m bottom of hole samples speared.
	• For all sample types, the nature, quality and appropriateness of the sample preparation technique.	 The entire ~3kg AC sample is pulverized to 75µm (85% passing) Gold analysis is determined by either 50g charge fire assay with an AAS finish (ALS 2021).
	Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.	No QC samples were included int his early-stage of sampling.

CRITERIA	JORC CODE EXPLANATION	COMMENTARY
	Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.	 No QC samples were included in this early-stage of sampling.
	Whether sample sizes are appropriate to the grain size of the material being sampled.	Sample size appropriate for grain size of samples material.
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	 Fire assay, total technique, appropriate for gold 4-acid digest near complete digest with ICP-MS finish appropriate for whole rock geochemistry.
	• For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	No geophysical data reported here.
	 Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established. 	 No QC samples were included in this early-stage of sampling.
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel.	 All sampling is routinely inspected by senior geological staff (and in this conducted by the EM). No umpire samples have been submitted at this early stage of exploration.
	• The use of twinned holes.	 No twin holes yet drilled for QC purposes.
	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	 Data stored in Datashed database on consultant's server, logging performed on auto-validating excel spreadsheets and synchronised to Datashed database, data validated by database administrator, import validate protocols in place. Visual validation in Leapfrog by company geologists.
	• Discuss any adjustment to assay data.	No adjustments made to assay data.
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down- hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	 Collars: surveyed with Garmin 652 GPSMAP accurate to +/- 3m.
	 Specification of the grid system used. Quality and adequacy of topographic control. 	 MGA94 - Zone 51 Loose topographic control from geophysical data. Appropriate for this early stage exploration.
Data spacing and distribution	Data spacing for reporting of Exploration Results.	 Drill hole spacing varies from 20 m spaced holes along lines to 200 m spaced holes. Spacing appropriate for first pass reconnaissance drilling.

CRITERIA	JORC CODE EXPLANATION	COMMENTARY
	 Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. 	 The current drill spacing is not appropriate for use in resource estimation.
	Whether sample compositing has been applied.	 4 m composite assays reported. No further compositing applied.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 Drill holes oriented at right angles to strike of deposit, dip optimized for drillability and dip of orebody, sampling believed to be unbiased. Not Applicable
Sample security	The measures taken to ensure sample security.	 Samples were delivered from the company camp directly to the laboratory using a freight company in sealed bulka bags.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	No external QC reviews have been conducted on the project so far.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

CRITERIA	JORC CODE EXPLANATION	COMMENTARY
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The Circle Valley Project comprises a single granted Exploration Licence (EL), namely E63/2007 covering a land area of 167km2. Latitude Consolidated Holdings Pty Ltd is the current holder, having a 100% interest in the EL. The EL predominantly overlies freehold agricultural land used for crop and livestock farming. The eastern portion of the EL overlies vacant Crown land. Prior to conducting ground disturbing exploration on private land, a land access agreement must be signed between Latitude and the relevant landowner. Freehold land has extinguished native title. Native title exists over the vacant Crown land and heritage surveys may be required prior to ground disturbance activities. The tenement is in good standing. Land Access Agreements have been signed with a number of land holders with more pending finalisation.

CRITERIA	JORC CODE EXPLANATION	COMMENTARY
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 The Project has had limited exploration work completed over it. Exploration by previous operators included Pan Australian Exploration Pty Ltd, Toro Energy Limited and Spitfire Oil Limited, who focussed on uranium and lignite mineralisation within palaeochannels. Reconnaissance aircore (AC) drilling programs targeting the underlying greenstone belts for gold mineralisation has been completed by AngloGold Ashanti Australia Limited and Terrain Minerals Ltd. The historical data has been assessed and is of good quality.
Geology	Deposit type, geological setting and style of mineralisation.	 The Circle Valley Project lies within the Central Biranup Zone of the Proterozoic Albany Fraser Province. Lithologies of the Biranup Zone comprise paragneiss, or orthogneiss and meta-basic rocks. It is interpreted that there is a subordinate portion of reworked Archaean rocks within the package. Magnetics of the Project area displays strong deformation with complex folding, faulting and thrusting. The target type is Tropicana style gold mineralisation hosted in high grade metamorphic rocks of the Albany Fraser Mobile Belt.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	All drill data material to this announcement are included in the announcement. No data has been excluded.
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated.	 No top-cuts have been applied when reporting results. First assay from the interval in question is reported. Aggregate sample assays are calculated using a length-weighted.

CRITERIA	JORC CODE EXPLANATION	COMMENTARY
	 Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Significant intervals are based on the logged geological interval, with all internal dilution included at 0.1 g/t Au cut-off. No metal equivalent values are used for reporting exploration results.
Relationship between mineralisa-tion widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 Drill holes are oriented to drill perpendicular to the southerly dipping regional foliation mapped in outcrop exposed on the edges of various salt lakes in the area. To the Company's knowledge the drilling is oriented perpendicular to mineralisation although limited orientation data has been collected.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	 Drilling is presented in long-section and cross section as appropriate in the main body of this announcement.
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	All drillhole results have been reported including those drill holes where no significant intersection was recorded.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	 All meaningful and material data is reported.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Follow up reconnaissance air core drilling, deeper down-dip RC drilling and diamond drilling to better understand controls on mineralisation and lithology is planned.