

ACN 107 244 039

ASX RDT

DATE 15 November 2021

ISSUED CAPITAL

Ordinary Shares: 147.4M

*not including \$15M of loan funds to be converted to 100M shares subject to shareholder approval

BOARD OF DIRECTORS

Matthew Boyes Chief Executive Office

Alex Hewlett Chairman

Brett Mitchell Non-Executive Director

James Croser Non-Executive Director

Nader El Sayed Non-Executive Director

COMPANY SECRETARY

Steven Wood

REGISTERED OFFICE

- A Emerald House, 1202 Hay Street, West Perth WA 6005
 P +61 8 6109 0104
- info@reddirtmetals.com.au
- W reddirtmetals.com.au

ASX ANNOUNCEMENT

Drilling Update Mt Ida

- The first 16 RC holes for 3,388m completed
- Pegmatite intersected in 14 of the first 16 holes
- Large tabular bodies with estimated true widths up to 25m intersected
- The Southern Pegmatite's current footprint is over an area of 500m x
 200m and open in all directions
- The Northern Pegmatite has now been tested in 2 new holes, and is situated 600m to the North of the Southern body. It is not yet known if these two occurrences are connected.
- Spodumene dominant logged Lithium mineral, mineral species correlating well with observed geology in IDDD002.
- Further occurrences mapped to the North are to be tested in coming weeks.

Red Dirt Metals Limited (ASX: RDT) ("Red Dirt" or the "Company") is pleased to report that the first 3,388 metres of its maiden drill programme at the Mt Ida Lithium-Copper-Gold project has been completed. Drilling is ongoing and second rig will be onsite within the next fortnight.

Figure 1; White Spodumene rich pegmatites in RC samples drilled from IDRC081 126m at the Mt Ida Project

CEO Matthew Boyes commented on the drilling completed to date,

"Although it's still early in the development of this new Lithium province, Red Dirt is very excited with the progress to date. Having the first 14 of 16 holes drilled so far intersecting the pegmatite bodies, demonstrates that these structures exhibit significant tonnage potential and continuity from depth through to surface. We look forward to increasing our drilling capacity with the second RC rig arriving within the fortnight, followed by a diamond rig later in December, to help unlock the true potential of this project. It has been a fantastic start to the program!"

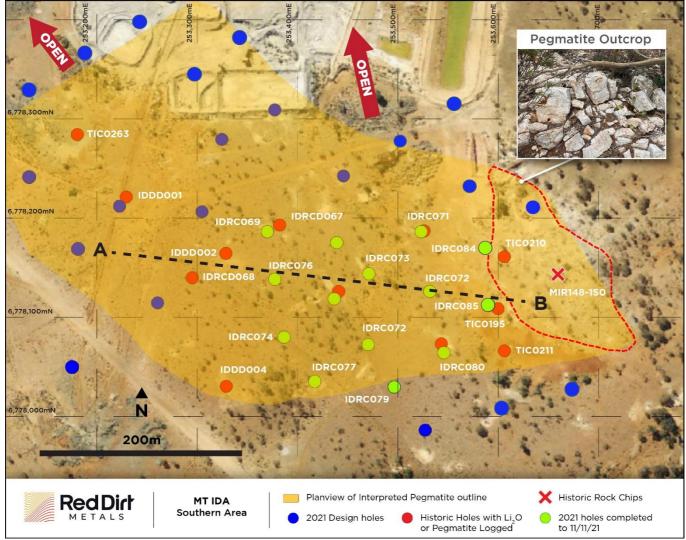


Figure 2; Planview of the Southern Pegmatite at Mt Ida showing new and existing drill collars, intercept widths in table 1 below

The first phase of the Mt Ida drilling programme commenced on the 21st of October 2021, primarily focused on delineating the extents and gaining an understanding the morphology of the Southern and Northern pegmatitic intrusives, about which we possessed the majority of our limited lithium information.

The programme has commenced extremely well, with 14 of the first 16 holes intersecting pegmatite with estimated true widths of up to 25 metres. The Southern Pegmatite is demonstrating excellent continuity from depth to the outcrop at surface. The intrusives have been offset by some post emplacement faulting as is the case with the associated gold-copper mineralisation at Mt Ida as the area. A better understanding of the structural controls is being developed and will assist in future targeting.

The logged mineralogy to date is in line with the results from the initial XRD study on hole IDDD002 (see ASX announcement 14th October 2021) with Spodumene evident as the dominant Lithium mineral in association with quartz, Albite, minor Tantalite, minor Lepidolite and other K-feldspars. Further detailed petrological work will commence once a more in depth understanding of the distribution of the grade and minerals species is developed. A diamond core rig is now scheduled to arrive on site in week 3 of December to assist with collection of core so as to commence metallurgical studies.

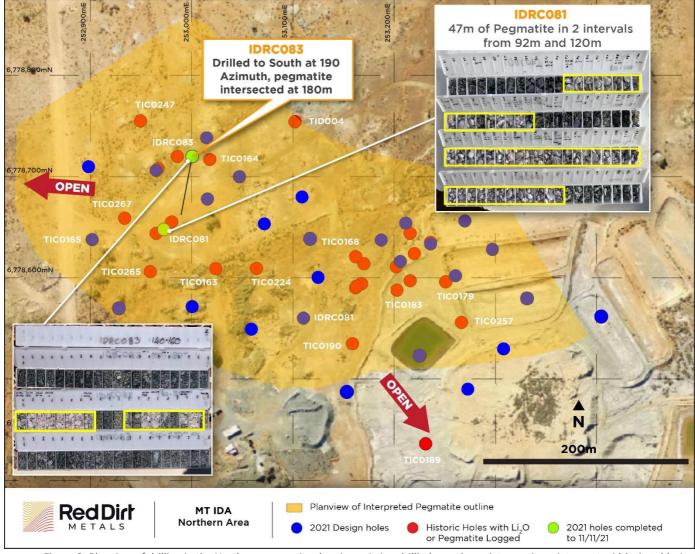


Figure 3; Planview of drilling in the Northern pegmatite showing existing drillholes and new intersections, intercept widths in table 1 below

Two new holes have now been completed in the Northern Pegmatite with IDRC081 intersecting 47m of Pegmatite downhole in 2 separate bodies although the interval is interpreted to have been drilled down dip of the intrusive. A second southern oriented hole IDRC083 was collared north of IDRC081 and intersected 13m of pegmatite from 180m downhole, which is approximately 100m downdip of the IDRC081 intersection and may represent the true width of the pegmatite at this point. Drilling will continue in the North both up dip and along strike from these intersections.

The first batch of samples will now be submitted to Nagrom laboratories for analysis and results will be reported as soon as available.

Table 1 shows the pegmatite intervals intersected to date in the current drill programme for both the Southern and Northern pegmatites. Only 2 holes have been completed into the Northern Pegmatite to date IDRC081 and IDRC083.

Red Dirt envisages that the majority of the historic intervals will require twining or re-drilling as the logging and assaying was not focused on lithium exploration

HoleID		From	То	Pegmatite Interval (m)	Total Pegmatite Interval (m)
IDRC069		257	262	5	5
IDRC070		162	185	23	23
IDRC071	no peg				
IDRC072		103	104	1	1
IDRC073		140	141	1	
	and	144	145	1	
	and	148	154	6	
	and	156	166	10	18
IDRC074		193	195	2	
	and	199	202	3	
	and	203	212	9	
	and	217	228	11	25
IDRC075		211	218	7	7
IDRC076		226	250	24	24
IDRC077		138	139	1	
	and	139	146	7	
	and	146	147	1	
	and	147	150	3	
	and	150	151	1	13
IDRC078		199	202	3	3
IDRC079	no peg			0	
IDRC080		80	83	3	3
IDRC081	Northern	92	103	11	
	and	104	108	4	
	and	119	152	33	48
IDRC082		111	112	1	1
IDRC083	Northern	89	90	1	
	and	180	188	8	
	and	193	195	2	
	and	197	200	3	13
IDRC084		58	63	5	
	and	74	82	8	13
IDRC085		60	70	10	10

Table 1; Logged pegmatite bearing intervals from first 16 completed holes of current drill programme

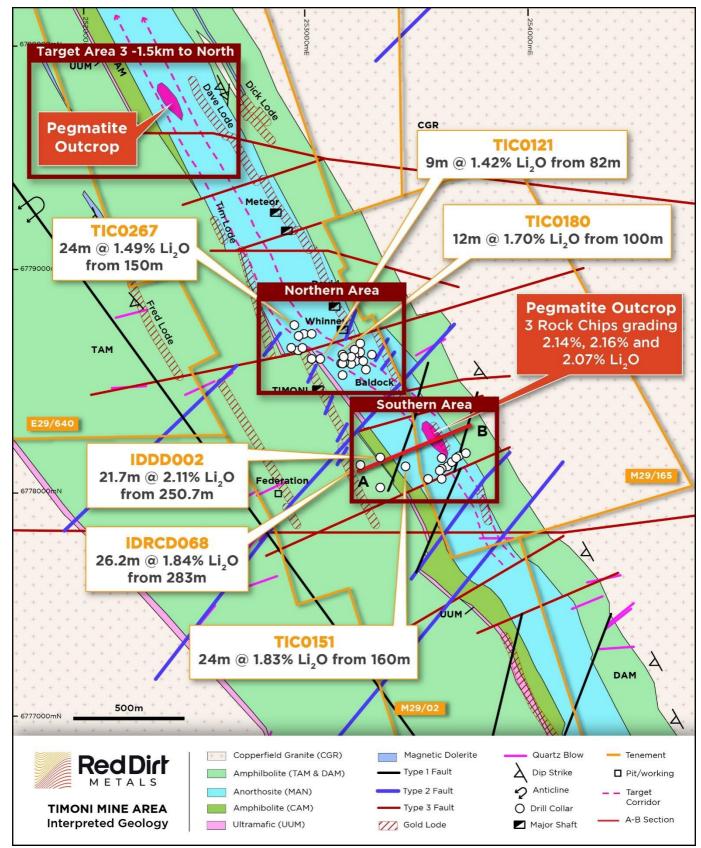


Figure 4; Location Geology map showing Northern-Southern and target area 3 within corridor

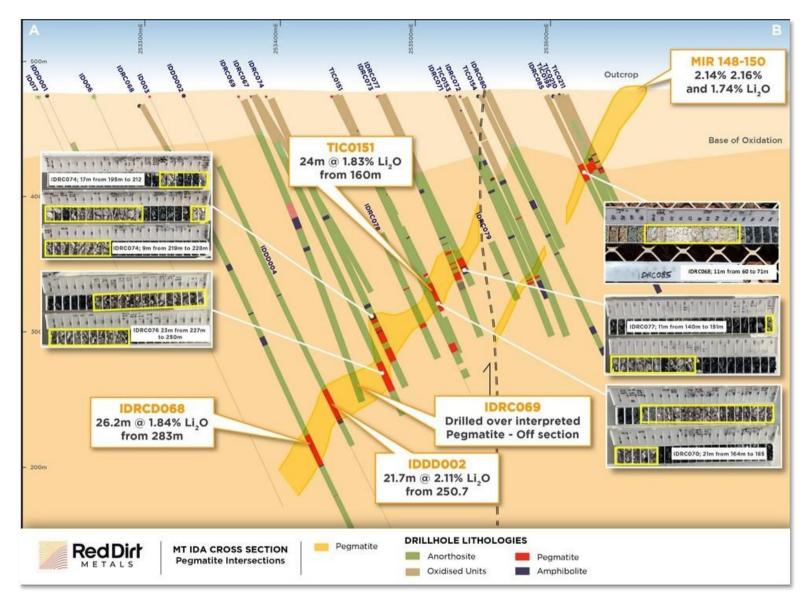


Figure 5; Cross section showing a 200m slice through the Southern Pegmatite body with existing assays plus pegmatite intervals in RC trays interval from current campaign

Drilled pegmatite intervals are not yet assayed and the Company cautions that visual estimates of pegmatite mineral abundance should never be considered a proxy or substitute for laboratory analysis. Laboratory assay results are required to determine the widths and grade of the visible mineralisation reported in preliminary geological logging .

Reids Ridge Drilling update

The Reids Ridge drill programme testing the GAIP anomaly has now been completed. Results were disappointing in that width and grade similar to hole RRRC0011 were not replicated. The best results returned from the drilling included;

- RRRC025; 4m @ 1.07g/t gold from 172m
- RRRC024; 15m @ 0.57g/t gold from 48m
- RRRC020; 3m @ 1.04 g/t gold from 99m and 5m @ 0.87 g/t gold from 179m
- RRRC015; 7m @ 0.41 g/t gold from 108m
- RRRC019; 1m @ 5.73 g/t gold from 178m
- RRRC024; 2m @ 3.22 g/t gold from 145m

Follow up work and interpretation work will continue at Reids Ridge as the felsic intrusive target and the Warriedar fault still represent a quality exploration target in the Company's opinion. The tenement package is relatively unexplored for gold and the system has demonstrated the potential to host high grade gold as seen in the Reids Ridge mine.

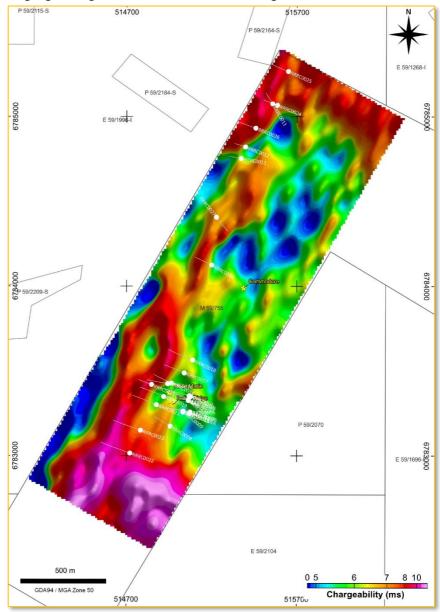


Figure 6; Reids Ridge new drill collars completed in August-September 2021 overlain on GAIP chargeability survey

Authorised for ASX lodgement by the Board.

Red Dirt Metals Limited Matthew Boyes Chief Executive Officer +61 8 6109 0104 info@reddirtmetals.com.au

Competent Persons Statement

Exploration information in this Announcement is based upon work undertaken by Mr Matthew Boyes who is a Fellow of the Australasian Institute of Mining and Metallurgy (AUSIMM). Mr Boyes has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a 'Competent Person' as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves' (JORC Code). Mr Boyes is an employee of Red Dirt Metals Pty Ltd and consents to the inclusion in the report of the matters based on their information in the form and context in which it appears.

			Pegmatite Logged				Ass	ayed Interv	/als	
Hole ID		From	То	Interval		From	То	Interval	Li2O %	Ta2O5 ppm
IDDD001		308.87	309.41	0.54	NA					
	and	310.22	310.88	0.66	NA					
	and	324.86	324.99	0.13	NA					
	and	337.41	342.7	5.29	NA					
	and	361.17	364.54	3.37						
IDDD002		250.22	273.52	23.3		250.7	272.4	21.7	2.11	302
IDDD004		257.9	259.65	1.75		257.92	259.68	1.76	2.08	NA
	and	263.25	264.15	0.9	NA					
IDRCD068		284	298.9	14.9		283	309.2	26.2	1.84	172
	and	298.9	309.2	10.3						
MIB428		42	49	7	NA					
MIB443		27	50	23	NA					
MIB446		10	32	22	NA					
TIC0121						80	95	15	0.88	103
TIC0151		160	184	24		160	184	24	1.84	287
TIC0154		130	131	1	NA					
TIC0156		47	51	4	NA					
	and	81	86	5	NA					
TIC0158		53	54	1	NA					
	and	57	66	9	NA					
	and	94	100	6	NA					
TIC0159		50	60	10		50	62	12	0.38	340
	and	85	86	1	NA					
	and	92	95	3	NA					
TIC0163		118	121	3	NA					
TIC0164		100	102	2	NA					

APPENDIX 1: SIGNIFICANT INTERSECTIONS FROM HISTORIC MT IDA DRILLING AND ROCK CHIPS

TIC0165		92	102	10	NA					
	and	118	124	6	NA					
TIC0166		70	80	10		70	79	9	0.49	232
	and	86	87	1		86	87	1	0.06	179
TIC0168		110	124	14		110	124	14	0.05	215
TIC0179		74	84	10		74	84	10	1.35	76
TIC0180		103	116	13		103	117	14	1.48	159
TIC0181		85	92	7	NA					
	and	127	132	5	NA					
TIC0183		77	82	5	NA					
	and	90	97	7		90	97	7	0.88	129
TIC0195		59	67	8	NA					
TIC0210		56	64	8	NA					
TIC0211		62	67	5	NA					
TIC0224		147	149	2	NA					
	and	163	165	2	NA					
TIC0247		141	143	2	NA					
TIC0257		17	28	11	NA					
		31	36	5	NA					
		40	51	11	NA					
TIC0259		137	153	16	NA					
	and	162	172	10	NA					
TIC0260		105	106	1	NA					
TIC0264		84	86	2	NA					
TIC0264		103	104	1	NA					
TIC0267		152	173	21		150	174	24	1.49	73
TID009		30	32	2	NA					
	and	34	39	5	NA					
	and	77	87	10	NA					
TID013		81	85	4	NA					
	and	112	121	9	NA					
	and	123	130	7	NA					

Rock Chips

Sample ID	TenID	Company	MGA_North	MGA_East	MGA_RL	Li2O_pct	Ta_ppm
MIR144	M29/165	IGL	6778140	253655	470	0.036	504.2
MIR145	M29/165	IGL	6778140	253655	470	0.048	302.1
MIR146	M29/165	IGL	6778140	253655	470	0.328	360
MIR147	M29/165	IGL	6778140	253655	470	2.066	329.8
MIR148	M29/165	IGL	6778140	253655	470	2.136	301.8
MIR149	M29/165	IGL	6778140	253655	470	2.159	171.8
MIR150	M29/165	IGL	6780320	252037	470	1.723	538

HoleID	MGA_North	MGA_East	MGA_RL	MGA_Azi	Dip	Depth
IDDD001	6778221.429	253229.338	475.523	61.1	-61.66	400.08
IDDD002	6778164.374	253328.455	475.675	59.4	-61.75	298.03
IDDD004	6778030.456	253329.06	477.631	53.85	-60.85	392.98
IDRCD068	6778140	253295	468	56	-55	381.5
MIB428	6778800	257865	470	270	-60	49
MIB443	6778500	257890	470	270	-60	50
MIB446	6778500	257965	470	270	-60	36
TIB0145	6778186.995	253711.072	476.091	55	-60	60
TIB0146	6778168.601	253686.241	476.728	55	-60	42
TIB0147	6778164.547	253681.816	476.787	55	-60	60
TIB0148	6778145.601	253656.063	476.482	55	-60	60
TIB0149	6778129.05	253630.188	475.76	55	-60	60
TIB0150	6778114.386	253608.271	475.505	55	-60	60
TIC0058	6778625	253292	472	55	-60	124
TIC0121	6778635	253236	471	55	-60	196
TIC0151	6778126	253441	475	55	-60	184
TIC0154	6778073.201	253543.336	475.497	55	-60	223
TIC0156	6778590	253162	471	55	-60	324
TIC0158	6778594	253168	472	55	-56	120
TIC0159	6778592	253163	472	55	-60	318
TIC0163	6778609	253024	472	51	-60	294
TIC0164	6778717	253018	472	55	-60	148
TIC0165	6778644	252965	472	55	-60	298
TIC0166	6778624	253220	471	55	-60	214
TIC0168	6778621	253162	471	55	-60	292
TIC0179	6778596	253251	474	55	-60	188
TIC0180	6778644	253216	470	55	-60	212
TIC0181	6778614	253170	471	58	-60	295
TIC0183	6778597	253216	473	55	-60	240
TIC0190	6778535	253159	472	55	-58	340
TIC0195	6778108.565	253599.955	475.387	55	-60	156
TIC0210	6778161	253606	476	55	-60	126
TIC0211	6778066.195	253606.171	475.458	55	-60	170
TIC0224	6778609.36	253063.974	472.606	56	-60	258
TIC0247	6778754.86	252949.548	472.061	55	-59	258
TIC0257	6778555.704	253266.628	477.108	52	-60	204
TIC0259	6778655.098	252980.429	473.213	55	-60	294
TIC0260	6778720.045	252985.865	472.488	55	-60	234
TIC0264	6778708	252967	470	54	-58	246
TIC0267	6778659	252934	470	54	-58	258
TID009	6778588	253203	472	56	-59	287.96
TID013	6778611	253202	471	55	-60	240.4

APPENDIX 2: HISTORIC DRILL HOLE COLLAR COORDINATES FOR LITHIUM-PEGMATITE BEARING DRILL HOLES MT IDA

APPENDIX 3: HISTORIC ROCK CHIP LOCATION COORDINATES AND ASSAY MT IDA

SampleID	MGA_North	MGA_East	MGA_RL	Au_ppm	Li2O_pct	Ta_ppm
MIR144	6778140	253655	470	-0.01	0.04	504.2
MIR145	6778140	253655	470	-0.01	0.05	302.1
MIR146	6778140	253655	470	-0.01	0.33	360
MIR147	6778140	253655	470	-0.01	2.07	329.8
MIR148	6778140	253655	470	-0.01	2.14	301.8
MIR149	6778140	253655	470	-0.01	2.16	171.8
MIR150	6780320	252037	470	-0.01	1.72	538

APPENDIX 4: NEW DRILLHOLE COLLAR LOCATION REIDS RIDGE

Hole ID	Easting	Northing	RL	Dip	Azimuth	Depth
RRRC014	514960.1	6783430.7	344.3	-60.52	294.99	256
RRRC015	514843.2	6783420.6	348.5	-58.95	292.55	162
RRRC016	514939.0	6783427.8	347.6	-54.54	278.81	221
RRRC017	515035.8	6783491.2	342.6	-54.83	291.95	250
RRRC018	515086.3	6783563.7	343.6	-55.22	294.13	305
RRRC019	514914.6	6783352.8	349.5	-55.14	293.73	310
RRRC020	515198.5	6784124.0	348.1	-53.05	299.19	187
RRRC021	514872.0	6783304.1	346.8	-57.19	291.98	298
RRRC022	514715.9	6783017.9	350.6	-52.77	289.08	298
RRRC023	514777.8	6783152.7	348.8	-49.11	289.66	286
RRRC024	515586.2	6785064.2	340.7	-60.61	290.89	190
RRRC025	515649.9	6785264.0	335.0	-55.24	293.15	196
RRRC026	515458.6	6784930.0	344.7	-55.98	291.46	202
RRRC027	515226.1	6784406.5	350.2	-55.86	141.81	202
WTRC0001	520246.9	6779955.2	308.9	-55.73	260	100
WTRC0002	520249.9	6779999.4	307.7	-55.92	262.73	124
WTRC0003	520219.7	6780050.2	306.3	-54.5	260.24	112

APPENDIX 5: REIDS RIDGE ASSAY SIGNIFICANT INTERVAL TABLE

Hole ID	Depth From	Depth to		Interval	Au ppm
RRRC014	40	41		1	0.88
	94	97	and	3	0.48
	108	109	and	1	0.26
	194	202	and	8	0.23
	214	215	and	1	0.91
RRRC015	102	104		2	0.37
	108	115	and	7	0.41
	133	134	and	1	0.49
RRRC016	124	125		1	0.92
	208	209	and	1	1.93
RRRC017	29	30		1	1.30
	118	119	and	1	0.35
	244	248	and	4	0.32
RRRC018	32	34		2	1.59

	72	73	and	1	0.41
	296	297	and	1	0.60
RRRC019	89	90		1	1.06
	178	179	and	1	5.73
	236	237	and	1	0.24
RRRC020	84	86		1	0.24
	99	102	and	3	1.04
	127	129	and	2	0.74
	132	136	and	4	0.24
	172	174	and	2	0.48
	179	184	and	5	0.87
RRRC021	26	27		1	0.20
	209	212	and	3	0.57
	217	220	and	3	0.42
RRRC022	66	67		1	0.21
	79	88	and	9	0.40
RRRC023	198	199		1	0.60
	211	212	and	1	0.76
RRRC024	1	3		2	0.69
	14	15	and	1	0.22
	31	32	and	1	1.00
	48	63	and	15	0.57
	108	109	and	1	0.23
	110	111	and	1	0.22
	145	147	and	2	3.22
	163	164	and	1	0.31
	169	170	and	1	0.52
	177	178	and	1	0.22
RRRC025	121	124		3	0.68
RRRC025	172	176	and	4	1.07
RRRC026	0	2		2	0.83
	19	20	and	1	0.36
	54	55	and	1	0.23
	125	126	and	1	0.41
	136	137	and	1	0.22
	170	172	and	2	0.87
	182	186	and	2	0.63
	201	202	and	1	0.49
RRRC027	29	36		7	0.46
	105	106	and	1	0.23
	111	112	and	1	0.31
	170	171	and	1	0.45
WTRC0001	52	54		2	0.25
WTRC0002	74	75		1	0.45
WTRC0003	52	55		3	0.99

JORC Code, 2012 Edition – Table 1- Mt Ida

Section 1 Sampling Techniques and Data

Critoria	
Criteria	Commentary
Sampling techniques	 Red Dirt Metals have commenced RC drilling at Mt Ida, other sampling activities carried out by Red Dirt Metals have included core sampling of one historic drillhole, with assaying, petrological and XRD analysis completed Limited historical data has been supplied, historic sampling referenced has been carried out by Hammill Resources, International Goldfields, LaMancha Resources, Eastern Goldfields and Ora Banda Mining, and has included reverse circulation (RC) and Diamond (DD) drilling Sampling of historic RC chips has been carried out via riffle split for 1m sampling, and scoop or spear sampling for 4m composites. Historic core has been cut and sampled to geological intervals These methods of sampling are considered to be appropriate for this style of exploration
Drilling techniques	 Current drilling is being carried out by Orlando Drilling with an Explorac 220RC rig utilising a 141mm face sampling hammer bit. Historic drilling has been completed by various companies utilising purpose-built RC and DD rigs as well as combination rigs. Historic DD drilling was NQ sized core It is assumed industry standard drilling methods and equipment were utilised for all drilling
Drill sample recovery	 Sample condition is recorded for every metre including noting the presence of water or minimal sample return Limited sample recovery and condition information has been found
Logging	 Geological logging of drillholes adheres to company policy and includes lithology, mineralogy, alteration, veining and weathering All chip trays are photographed A complete logging suite was supplied for historic drilling It is unknown if historic core was oriented, some geotechnical logging has been supplied No historic core photography has been supplied Logging is suitable to support Mineral resource estimates and subsequent mining studies
Sub-sampling techniques and sample preparation	 Samples are collected from a static cone splitter mounted directly below the cyclone on the rig. They will be processed by Nagrom, with results released in due course Historic core samples were collected for ICPMS analysis via selection from NQ half and quarter core, and submitted to Nagrom Samples were dried, crushed and pulverised to 80% passing 75 microns before undergoing a peroxide fusion digest with ICP finish Semi-Quantitative XRD analysis was carried out by Microanalysis Australia using a representative sub-sample that was lightly ground such that 90% was passing 20 µm to eliminate preferred orientation Historic sampling methods include single metre riffle split and 4m composites that were either scoop or spear sampled. Historic samples were analysed at LLAS, Genalysis and unspecified laboratories. Au analysis techniques included aqua regia and fire assaying Multielement analysis was carried with mixed acid digest and ICP-MS determination Standards and duplicate samples are inserted at a rate of 1 in 20 No standards were used by Red Dirt Metals in the ICP analysis or XRD

Criteria	Commentary
	 quantification process. Internal duplicate and repeat analyses were carried out as part of the assay process by Nagrom, as well as internal standard analysis. All QAQC analyses were within tolerance Limited historic QAQC data has been supplied, industry standard best practice is assumed
Quality of assay data and laboratory tests	 Samples from current drilling have not yet been assayed The assay method utilised for historic core by Nagrom allows for total dissolution of the sample A standard mica phases was used for the XRD analysis. It is possible that a lithium bearing mica such as lepidolite is present. A subsequent analysis technique would be required for confirmation All historic samples are assumed to have been prepared and assayed by industry standard techniques and methods
Verification of sampling and assaying	 Significant intercepts have been verified No adjustments to assay data other than conversion from Li to Li20 and Ta to Ta2o5
Location of data points	 MGA94 zone 51 grid coordinate system is used Current drilling collars have been pegged using hand held GPS unit, all collars will be surveyed upon program completion by an independent third party Collars are recorded as being picked up by DGPS Surveys are completed by Orlando using a north seeking gyro instrument Historic downhole surveys were completed by Eastman single shot and multi shot downhole camera
Data spacing and distribution	 Drill hole spacing is variable throughout the programme Spacing is considered appropriate for this style of exploration and development drilling
Orientation of data in relation to geological structure	 Drill holes are orientated perpendicular to the regional trend of the mineralisation previously drilled at the project; drill hole orientation is not considered to have introduced any bias to sampling techniques utilised
Sample security	Samples will be transported by Red Dirt Metals staff directly to Nagrom
Audits or reviews	None carried out

Section 2 Reporting of Exploration Results

Criteria	Commentary
Mineral tenement and land tenure status	Drilling has been carried on M29/2The tenement is in good standing
Exploration done by other parties	 The area has a long history of gold and base metals exploration and mining, with gold being discovered in the district in the 1890s. Numerous generations of exploration have been completed including activities such as drilling, geophysics and geochemical sampling Targeted Li assaying was first carried out in the early 2000s by La Mancha Resources and more recently in 2020 Lithium assays were completed by Ora Banda in 2019

Criteria	Commentary
Geology	 The Mt Ida project is located within the Eastern Goldfields region of Western Australia within the Mt Ida/Ularring greenstone belt Locally The Kurrajong Antiform dominates the regional structure at Mount Ida, a south-southeast trending, tight isoclinal fold that plunges at a low angle to the south. The Antiform is comprised of a layered greenstone sequence of mafic and ultramafic rocks. Late stage granitoids and pegmatites intrude the sequence.
Drill hole Information	 A list of the drill hole coordinates, orientations and metrics are provided as an appended table
Data aggregation methods	No metal equivalents are used
Relationship between mineralisation widths and intercept lengths	 The geometry of the mineralisation is currently unknown although preliminary interpretation suggests the Pegmatite intrusive sills and bodies are orientated sub-parallel to the Mt Ida Granitic intrusion and the northwest trending Amphibolite mafic units which bound the western and eastern limbs of the intrusive
Diagrams	Figures have been included in the announcement
Balanced reporting	 It is not practical to report all historical exploration results from the Mount Ida Project. Relevant collars are details are contained within the body of the announcement
Other substantive exploration data	None completed at this time
Further work	 Drilling has commenced at Mt Ida with an initial 25,000m programme consisting of a mix of RC and diamond drilling underway Aircore and geochemical drilling will also be commenced along strike from the Mt Ida central area with the objective of targeting the pegmatite outcrops located in the mafic sequence sitting to the west of the Mt Ida granitic complex

JORC Code, 2012 Edition – Table 1- Reids Ridge

Section 1 Sampling Techniques and Data

Criteria	Commentary
Sampling techniques	 All samples were collected from a static cone splitter mounted directly below the cyclone on rig. Samples were taken as 1m splits or 4m composites utilizing by scoop sampling directly after collection or a composite collected by addition of 4 individual 1m splits This method of sampling is considered to be appropriate for this style of exploration
Drilling techniques	 All recent drilling was completed by Orlando Drilling with an Explorac 220RC drill rig utilising a 141mm face sampling hammer bit, with previous programs carried out by Three Rivers Drilling Drilling Industry standard drilling methods and equipment was utilised
Drill sample recovery	 No sample recovery was calculated or recorded for this programme Sample condition was recorded for every metre including noting presence of water or minimal sample return

Criteria	Commentary
Logging	 Geological logging of all drillholes followed standard company procedures. Qualitive logging of samples includes lithology, mineralogy, alteration, veining and weathering. All chip trays are photographed and every metre is logged sieved and securely stored Logging is suitable to support Mineral resource estimates and subsequent mining studies
Sub-sampling techniques and sample preparation	 Im cyclone splits through a static splitter mounted directly beneath the cyclone and 4m composite samples were taken in the field. 4m composites were either scoop sampled from bagged samples or taken from 1m splits pre-sampled. Samples were analysed at Bureau Veritas Minerals Pty Ltd in Perth. Samples were pulverized so that each sample had a nominal 85% passing 75 microns. A 40g allotment was then analysed by fire assay method FA001 with AAS finish. All sample weights were recorded and reported. Multielement analysis was previously carried on 148 samples with mixed acid digest and a ICP-MS determination All batches sent to lab included duplicate and industry standard CRM's inserted at suitable frequency within the sample batches
Quality of assay data and laboratory tests	 All samples were prepared and assayed by industry standard techniques and methods
Verification of sampling and assaying	 Certified reference material and duplicates were inserted at approximately every 20 samples A third party independent database consultant has processed and verified the QAQC data and sampling interval data
Location of data points	 Drillhole collars were designed and then pegged using a handheld GPS unit, all completed holes have been surveyed by an independent third party using a Trimble R10 GNSS RTK system with an accuracy of approximately +/- 30mm, Locations are recorded in UTM coordinates Downhole surveys were completed by Orlando drilling using a north seeking Gyro instrument
Data spacing and distribution	 Drillhole spacing is variable throughout the programme Spacing is considered appropriate for this style of exploration and development drilling
Orientation of data in relation to geological structure	• Drillholes are orientated perpendicular to the regional trend of the mineralisation previously drilled at the project, drillhole orientation does is not considered to have introduced any bias to sampling techniques utilised
Sample security	 All samples were collected, processed and delivered directly to Bureau Veritas Laboratories in Perth by Red Dirt Metals staff
Audits or reviews	None carried out

Section 2 Reporting of Exploration Results

Criteria	Commentary
Mineral tenement and land tenure status	 Drilling has been carried on 1 tenement M59/755 The tenement is in good standing
Exploration done by other parties	• Limited exploration has been carried out since the 1990's with drilling located close to existing underground workings completed by Norwest in 2018 with the objective of following the existing mineralisation down dip
Geology	 The Warriedar Project and Reids Ridge mine are hosted within a series of mafic greenstone units in conjunction with multiple East West trending banded iron formation and granodioritic intrusives postdating the greenstone units The Warriedar Fold Belt is a greenstone sequence with an approximate thickness of 10 km and encompassed by granitoid plutons. Metamorphic grade is largely high greenschist to amphibolite facies demonstrated by the development of andalusite in pelitic sedimentary rocks.
Drill hole Information	 A list of the drill hole coordinates, orientations and metrics are provided as an appended table
Data aggregation methods	• No grade truncations were applied to these exploration results. A weighted average calculation was used to allow for bottom of hole composites that were less than the standard 4m. No metal equivalents are used
Relationship between mineralisation widths and intercept lengths	• The geometry of the mineralisation is currently unknown although the granodiorite intrusive is considered to be North-Easterly trending running roughly parallel to the Warriedar fault with an orientation of 025. The lower contact of the granodiorite intrusive is considered to be subvertical although the relationship of this contact with the orientation of the mineralisation is not fully understood as yet
Diagrams	Figures have been included in the announcement
Balanced reporting	 It is not practical to report all historical exploration results from the Reids Ridge Project
Other substantive exploration data	• Exploration at the Reids Ridge mine project area project was previously carried out by Norwest Minerals during 2018-2019, results of this work have been previously released including a resource estimate and updated economic assessment
Further work	 Further exploration and development drilling will be designed once a geophysical appraisal and interpretation in conjunction with petrological and geochemical surface work programmes Images included identify areas of potential future targets, further work is discussed in the announcement