

# Nickel Prospective Tenement Granted to Riversgold

## **Highlights:**

- Tenement granted over 109km<sup>2</sup> in the heart of the Company's Kurnalpi Project
- Tenement is prospective for both gold and nickel
- 12km of interpreted ultramafic strike length with historical shallow drilling returning up to 3m at 0.2% Ni and 0.2% Cu at end of hole
- Never followed up nickel and copper sulphide intercepts described in historical reports
- Additional tenement applications within Kurnalpi Project still pending grant

**Riversgold Limited (ASX: RGL, "Riversgold"** or the **"Company"**) is pleased to announce that E28/3034 has now been granted following a successful negotiation of a heritage agreement with native title parties.

The newly granted tenement covers an area of 109km<sup>2</sup> and is located central to Riversgold's tenure at the Kurnalpi Project, located 50km east of Kalgoorlie-Boulder, Western Australia (Figure 1).

The Company has completed a comprehensive review of all available historical data which has confirmed prospectivity for both gold and nickel with previous shallow drilling returning results up to 3m at 0.2% nickel and 0.2% copper.

The regolith cover at E28/3034 is shallow with creek systems commonly exposing the underlying lithologies. The regional scale Emu Fault located on the western part of the tenement is confirmed as prospective for gold mineralisation elsewhere within the Kurnalpi Project. Significantly, outcropping and subcropping ultramafic rocks located along the eastern flank of the Emu Fault as well as on the eastern part of the tenement show strong prospectivity for magmatic nickel-copper mineralisation.

The easternmost ultramafic unit (Figure 2), despite returning lower nickel values than the one located along Emu Fault, presents a 1:1 anomalous ratio between nickel and copper with values reaching over 1500ppm Ni (0.15%) over 20m thickness and a best drill intercept of 3m at 0.2% nickel and 0.2% copper, from shallow RAB drilling completed in 2012. The high copper to nickel ratio underlines strong potential for magmatic nickel/copper sulphide mineralisation within that ultramafic sequence. This interpreted ultramafic unit covers an estimated 3km of strike length.



Overall, the newly granted E 28/3034 tenement offers significant new potentially mineralised targets for Riversgold to explore, not only for gold but also for nickel. The application of geophysical targeting tools, which are also being applied in other mafic/ultramafic intrusive systems such as Julimar (ASX: CHN), will help Riversgold quickly assess the prospectivity of this tenement.

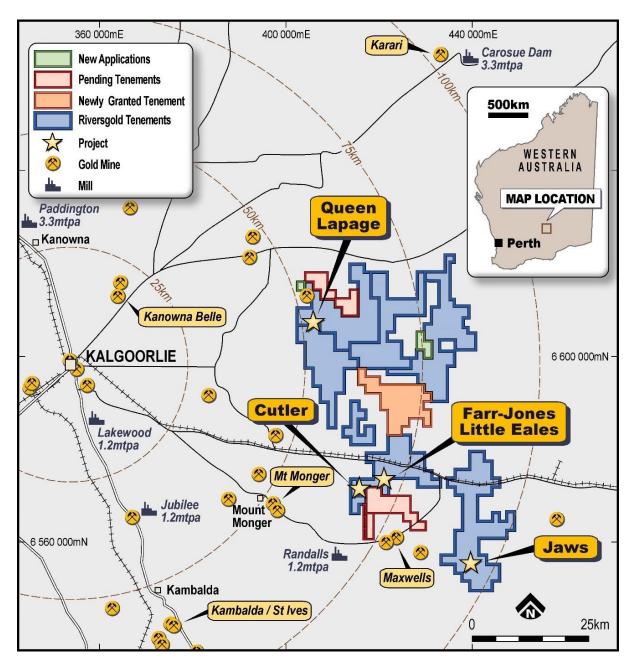



Figure 1: Location of new tenement E28/3034 at the centre of the Kurnalpi Project (orange) and pending applications (recent applications in green; older applications in red)







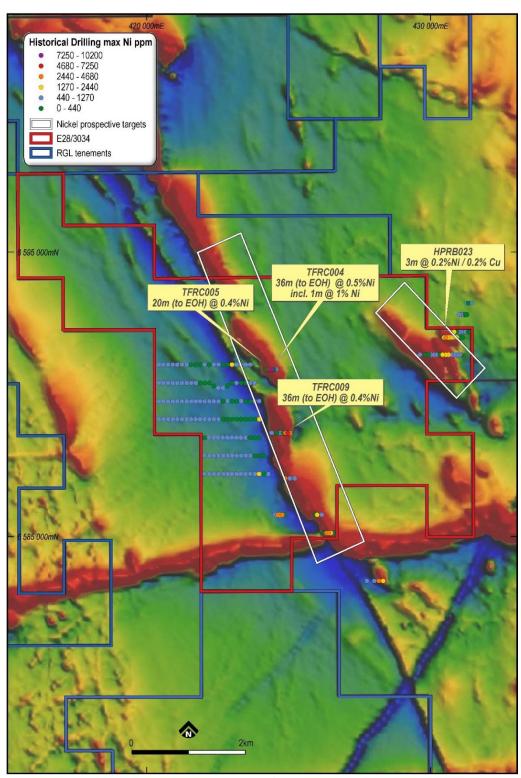



Figure 2: Geophysical image (TMI) of new tenement E28/3034 with historical drill collars and identified nickel prospectivity





11 January 2022

#### **Kurnalpi Project Area Consolidation**

In addition to the recent granting of E28/3034; Riversgold is also pleased to announce that it has been successful in its application for two additional tenements that recently lapsed with third parties (see Figure 1 "Newly Applied Tenements"). The Company now awaits the formal grant of these two tenements along with four other tenement areas applied for last year (see Figure 1 "Pending Tenements").

#### **About Riversgold**

The Company is an Australian gold explorer with a package of granted tenements – the Kurnalpi Project – covering 1,269km² underlain by Archean greenstones located in the Eastern Goldfields of Western Australia. The Project, located 50km east of Kalgoorlie, represents one of the largest single landholdings in the region which have been relatively under explored due to a large portion of the tenements being covered by transported overburden including extensive shallow salt lakes.

The Company is leveraging its unique association and commercial partnership with Quarterback Geological Services to execute an exploration strategy designed to target the most prospective bedrock and obtain rapid exploration results. The strategy is underpinned by access to a suite of leading-edge exploration techniques, which have successfully been developed and commercialized by the team at Quarterback.

The Company is currently advancing its Queen Lapage Prospect, a large geophysical and geochemistry anomaly, near the Randall Shear, a significant gold bearing shear zone.

This announcement has been authorised for release by the Board of Riversgold Ltd.

For further information, please contact:

Julian Ford Chief Executive Officer P: (08) 6143 6747

E: jford@riversgold.com.au





11 January 2022

#### **Competent Person's Statement**

The information in this document that relates to Exploration Results is based on information compiled by Mr Xavier Braud, a Competent Person who is a Member of The Australian Institute of Geoscientists (AIG). Mr Braud is Executive Director of Riversgold Ltd. and a consultant to the Company. Mr Braud holds shares and options in the Company. Mr Braud has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Braud consents to the inclusion in this announcement of the matters based on this information in the form and context in which it appears.







## Appendix 1: Drill Collar Table

| Hole ID  | Hole<br>Type | Grid     | Easting | Northing | Max<br>Depth<br>(m) | Azi | Dip | Max Ni<br>(ppm) |
|----------|--------------|----------|---------|----------|---------------------|-----|-----|-----------------|
| CORB076  | RAB          | AMG_84   | 435500  | 6584400  | 26                  | 0   | -90 | 2780            |
| CORB080  | RAB          | AMG_84   | 435100  | 6584400  | 36                  | 0   | -90 | 2280            |
| CORB081  | RAB          | AMG_84   | 435000  | 6584400  | 40                  | 0   | -90 | 3480            |
| CORB082  | RAB          | AMG_84   | 434900  | 6584400  | 42                  | 0   | -90 | 3270            |
| CORB083  | RAB          | AMG_84   | 434900  | 6584400  | 56                  | 0   | -90 | 3180            |
| CORB084  | RAB          | AMG_84   | 434704  | 6584410  | 28                  | 0   | -90 | 2040            |
| CORB092  | RAB          | AMG_84   | 436400  | 6582000  | 48                  | 0   | -90 | 2440            |
| GSAC017  | AC           | MGA94-51 | 422998  | 6591043  | 42                  | 0   | -90 | 2020            |
| HPRB020  | RAB          | MGA94_51 | 430800  | 6592200  | 16                  | 0   | -90 | 2303            |
| HPRB023  | RAB          | MGA94_51 | 430500  | 6591998  | 25                  | 0   | -90 | 2642            |
| HPRB025  | RAB          | MGA94_51 | 430600  | 6592000  | 21                  | 0   | -90 | 2055            |
| HPRB026  | RAB          | MGA94_51 | 430650  | 6592000  | 43                  | 0   | -90 | 2068            |
| HPRB028  | RAB          | MGA94_51 | 430750  | 6592002  | 48                  | 0   | -90 | 2103            |
| TFRC0004 | RC           | MGA94_51 | 424400  | 6590880  | 42                  | 0   | -90 | 10200           |
| TFRC0005 | RC           | MGA94_51 | 424320  | 6590880  | 36                  | 0   | -90 | 6720            |
| TFRC0008 | RC           | MGA94_51 | 425040  | 6588640  | 42                  | 0   | -90 | 3150            |
| TFRC0009 | RC           | MGA94_51 | 424960  | 6588640  | 36                  | 0   | -90 | 7250            |
| TFRC0010 | RC           | MGA94_51 | 424880  | 6588640  | 42                  | 0   | -90 | 4680            |
| TFRC0017 | RC           | MGA94_51 | 424880  | 6587040  | 60                  | 0   | -90 | 3190            |
| TFRC0019 | RC           | MGA94_51 | 424680  | 6585760  | 18                  | 0   | -90 | 2210            |
| TFRC0020 | RC           | MGA94_51 | 424600  | 6585760  | 36                  | 0   | -90 | 3140            |
| TFRC0022 | RC           | MGA94_51 | 424760  | 6585760  | 42                  | 0   | -90 | 3660            |
| TFRC0024 | RC           | MGA94_51 | 426000  | 6585760  | 60                  | 0   | -90 | 2290            |
| TFRC0028 | RC           | MGA94_51 | 426400  | 6585120  | 60                  | 0   | -90 | 3190            |
| TFRC0029 | RC           | MGA94_51 | 426320  | 6585120  | 60                  | 0   | -90 | 3840            |
| TFRC0032 | RC           | MGA94_51 | 428160  | 6583440  | 48                  | 0   | -90 | 4000            |



Appendix 2: Significant Nickel Intersections (reported at 0.02% Ni Cutoff allowing for 1m internal dilution)

| Hole ID  | From | То  | Interval length | Ni  | Comment |
|----------|------|-----|-----------------|-----|---------|
|          | (m)  | (m) | (m)             | (%) |         |
| CORB076  | 15   | 25  | 10              | 0.2 |         |
| CORB080  | 10   | 25  | 15              | 0.2 |         |
| CORB081  | 5    | 40  | 35              | 0.3 | To EOH  |
| CORB082  | 5    | 35  | 30              | 0.3 |         |
| CORB083  | 0    | 40  | 40              | 0.3 |         |
| CORB084  | 25   | 27  | 2               | 0.2 |         |
| CORB092  | 10   | 20  | 10              | 0.2 |         |
| CORB092  | 25   | 40  | 15              | 0.2 |         |
| GSAC017  | 28   | 32  | 4               | 0.2 |         |
| HPRB020  | 13   | 15  | 2               | 0.2 |         |
| HPRB023  | 11   | 15  | 2               | 0.2 | 0.2% Cu |
| HPRB025  | 1    | 2   | 1               | 0.2 |         |
| HPRB026  | 17   | 18  | 1               | 0.2 |         |
| HPRB028  | 15   | 19  | 4               | 0.2 |         |
| TFRC0004 | 6    | 42  | 36              | 0.5 | To EOH  |
| inc.     | 19   | 20  | 1               | 1   |         |
| TFRC0005 | 16   | 36  | 20              | 0.3 | To EOH  |
| TFRC0008 | 0    | 6   | 6               | 0.3 |         |
| TFRC0009 | 2    | 36  | 34              | 0.4 | To EOH  |
| TFRC0010 | 14   | 36  | 22              | 0.3 | To EOH  |
| TFRC0017 | 26   | 56  | 30              | 0.3 |         |
| TFRC0019 | 0    | 18  | 18              | 0.2 | To EOH  |
| TFRC0020 | 6    | 16  | 10              | 0.2 |         |
| TFRC0022 | 0    | 12  | 12              | 0.3 |         |
| TFRC0024 | 22   | 28  | 6               | 0.2 |         |
| TFRC0028 | 18   | 40  | 22              | 0.2 | To EOH  |
| TFRC0029 | 10   | 58  | 48              | 0.3 |         |
| TFRC0032 | 2    | 44  | 42              | 0.3 |         |

EOH = End of hole



## Appendix 3: Assay Results (0.02%ppm Ni Cutoff)

| Hole ID  | Depth from (m) | Depth to<br>(m) | Sample ID | Cu (ppm) | Ni (ppm) |
|----------|----------------|-----------------|-----------|----------|----------|
| CORB076  | 15             | 20              | CWA616    |          | 2780     |
| CORB080  | 20             | 25              | CWA638    |          | 2280     |
| CORB081  | 10             | 15              | CWA644    |          | 2620     |
|          | 15             | 20              | CWA645    | 24       | 2960     |
|          | 20             | 25              | CWA647    | 13       | 3100     |
|          | 25             | 30              | CWA648    |          | 3240     |
|          | 30             | 35              | CWA649    | 8        | 3480     |
|          | 35             | 39              | CWA650    |          | 2330     |
|          | 39             | 40              | CWA651    | 4        | 2020     |
| CORB082  | 5              | 10              | CWA653    | 26       | 2240     |
|          | 10             | 15              | CWA654    |          | 2760     |
|          | 15             | 20              | CWA655    | 17       | 3270     |
|          | 20             | 25              | CWA656    |          | 3220     |
|          | 25             | 30              | CWA658    |          | 2960     |
|          | 30             | 35              | CWA659    | 30       | 2420     |
| CORB083  | 5              | 10              | CWA663    | 22       | 2520     |
|          | 10             | 15              | CWA664    |          | 2890     |
|          | 15             | 20              | CWA665    | 44       | 3060     |
|          | 20             | 25              | CWA666    |          | 3180     |
|          | 25             | 30              | CWA667    | 9        | 3010     |
|          | 30             | 35              | CWA668    |          | 2430     |
| CORB084  | 25             | 27              | CWA679    | 24       | 2040     |
| CORB092  | 10             | 15              | CWA751    | 27       | 2150     |
|          | 30             | 35              | CWA755    | 30       | 2440     |
|          | 35             | 40              | CWA756    |          | 2200     |
| GSAC017  | 28             | 32              | ND01212   | 100      | 2020     |
| HPRB020  | 13             | 14              | AG23842   | 55       | 2303     |
| HPRB023  | 11             | 12              | AG23913   | 3123     | 2642     |
|          | 12             | 13              | AG23914   | 2184     | 2061     |
| HPRB025  | 1              | 2               | AG23962   | 119      | 2055     |
| HPRB026  | 17             | 18              | AG23999   | 241      | 2068     |
| HPRB028  | 15             | 16              | AG24082   | 79       | 2053     |
|          | 16             | 17              | AG24083   | 132      | 2097     |
|          | 18             | 19              | AG24085   | 121      | 2103     |
|          | 19             | 20              | AG24086   | 89       | 2070     |
| TFRC0004 | 6              | 8               | H130072   | 65       | 2040     |
|          | 8              | 10              | H130073   | 60       | 4180     |
|          | 10             | 12              | H130075   | 45       | 3380     |
|          | 12             | 14              | H130076   | 60       | 4920     |
|          | 14             | 16              | H130077   | 35       | 6420     |
|          | 16             | 18              | H130078   | 35       | 5930     |
|          | 18             | 20              | H130079   | 50       | 5350     |
|          | 20             | 22              | H130080   | 85       | 10200    |
|          | 22             | 24              | H130081   | 65       | 6980     |





| Hole ID  | Depth from (m) | Depth to<br>(m) | Sample ID | Cu (ppm) | Ni (ppm) |
|----------|----------------|-----------------|-----------|----------|----------|
|          | 24             | 26              | H130082   | 70       | 5320     |
|          | 26             | 28              | H130083   | 65       | 5730     |
|          | 28             | 30              | H130085   | 75       | 6300     |
|          | 30             | 32              | H130086   | 55       | 5430     |
|          | 32             | 34              | H130087   | 55       | 5660     |
|          | 34             | 36              | H130088   | 55       | 4700     |
|          | 36             | 38              | H130089   | 60       | 5440     |
|          | 38             | 40              | H130090   | 65       | 5420     |
|          | 40             | 42              | H130091   | 70       | 5250     |
| TFRC0005 | 18             | 20              | H130102   | 75       | 2270     |
|          | 20             | 22              | H130103   | 70       | 2920     |
|          | 22             | 24              | H130105   | 55       | 4520     |
|          | 24             | 26              | H130106   | 110      | 6720     |
|          | 26             | 28              | H130107   | 35       | 6230     |
|          | 28             | 30              | H130108   | 90       | 4190     |
|          | 30             | 32              | H130109   | 80       | 4020     |
|          | 32             | 34              | H130110   | 35       | 3440     |
|          | 34             | 36              | H130111   | 30       | 3280     |
| TFRC0008 | 0              | 2               | H130166   | 45       | 3150     |
|          | 2              | 4               | H130167   | 40       | 2710     |
| TFRC0009 | 2              | 4               | H130190   | 75       | 2250     |
|          | 4              | 6               | H130191   | 35       | 6260     |
|          | 6              | 8               | H130192   | 80       | 5730     |
|          | 8              | 10              | H130193   | 40       | 3680     |
|          | 10             | 12              | H130195   | 35       | 2490     |
|          | 12             | 14              | H130196   | 40       | 3400     |
|          | 14             | 16              | H130197   | 55       | 3820     |
|          | 16             | 18              | H130198   | 55       | 4640     |
|          | 18             | 20              | H130199   | 65       | 6140     |
|          | 20             | 22              | H130200   | 60       | 7250     |
|          | 22             | 24              | H130201   | 40       | 4640     |
|          | 24             | 26              | H130202   | 45       | 4180     |
|          | 26             | 28              | H130203   | 20       | 3760     |
|          | 28             | 30              | H130205   | 25       | 3490     |
|          | 30             | 32              | H130206   | 25       | 3250     |
|          | 32             | 34              | H130207   | 25       | 3170     |
|          | 34             | 36              | H130208   | 35       | 2860     |
| TFRC0010 | 16             | 18              | H130218   | 40       | 2640     |
|          | 18             | 20              | H130219   | 60       | 2980     |
|          | 26             | 28              | H130223   | 85       | 2320     |
|          | 28             | 30              | H130225   | 85       | 3280     |
|          | 30             | 32              | H130226   | 80       | 4680     |
|          | 32             | 34              | H130227   | 55       | 4090     |
|          | 34             | 36              | H130228   | 40       | 2970     |
|          | 36             | 38              | H130229   | 35       | 2310     |
|          | 38             | 40              | H130230   | 20       | 2180     |





| Hole ID  | Depth from (m) | Depth to<br>(m) | Sample ID | Cu (ppm) | Ni (ppm) |
|----------|----------------|-----------------|-----------|----------|----------|
|          | 40             | 42              | H130231   | 20       | 2020     |
| TFRC0017 | 28             | 30              | H130405   | 35       | 2760     |
|          | 30             | 32              | H130406   | 45       | 2950     |
|          | 32             | 34              | H130407   | 15       | 3190     |
|          | 34             | 36              | H130408   | 10       | 3070     |
|          | 36             | 38              | H130409   | 10       | 2960     |
|          | 38             | 40              | H130410   | 55       | 2700     |
|          | 40             | 42              | H130411   | 15       | 2680     |
|          | 42             | 44              | H130412   | 65       | 2730     |
|          | 44             | 46              | H130413   | 60       | 2460     |
|          | 46             | 48              | H130415   | 60       | 2630     |
|          | 48             | 50              | H130416   | 50       | 2740     |
|          | 50             | 52              | H130417   | 55       | 2870     |
|          | 52             | 54              | H130418   | 25       | 2200     |
| TFRC0019 | 2              | 4               | H130453   | 35       | 2050     |
|          | 4              | 6               | H130455   | 15       | 2030     |
|          | 8              | 10              | H130457   | 20       | 2070     |
|          | 10             | 12              | H130458   | 25       | 2120     |
|          | 12             | 14              | H130459   | 65       | 2180     |
|          | 14             | 16              | H130460   | 10       | 2180     |
|          | 16             | 18              | H130461   | 25       | 2210     |
| TFRC0020 | 8              | 10              | H130466   | 50       | 2470     |
|          | 10             | 12              | H130468   | 60       | 3140     |
|          | 12             | 14              | H130469   | 60       | 2890     |
| TFRC0022 | 0              | 2               | H130502   | 40       | 2790     |
|          | 2              | 4               | H130503   | 45       | 3660     |
|          | 4              | 6               | H130505   | 45       | 2810     |
|          | 8              | 10              | H130507   | 40       | 3050     |
| TFRC0024 | 22             | 24              | H130565   | 40       | 2290     |
|          | 24             | 26              | H130566   | 70       | 2100     |
| TFRC0028 | 20             | 22              | H130683   | 60       | 2560     |
|          | 22             | 24              | H130685   | 30       | 2270     |
|          | 24             | 26              | H130686   | 85       | 3190     |
|          | 26             | 28              | H130687   | 35       | 2990     |
|          | 28             | 30              | H130688   | 55       | 3070     |
|          | 30             | 32              | H130689   | 35       | 2940     |
|          | 32             | 34              | H130690   | 50       | 2280     |
|          | 34             | 36              | H130691   | 45       | 2280     |
|          | 36             | 38              | H130692   | 40       | 2140     |
| TFRC0029 | 10             | 12              | H130711   | 55       | 2140     |
| <u> </u> | 12             | 14              | H130712   | 45       | 2120     |
|          | 14             | 16              | H130713   | 40       | 2330     |
|          | 16             | 18              | H130715   | 65       | 2740     |
|          | 18             | 20              | H130716   | 65       | 3310     |
|          | 20             | 22              | H130717   | 40       | 3260     |
|          | 22             | 24              | H130718   | 35       | 3840     |





| Hole ID  | Depth from (m) | Depth to<br>(m) | Sample ID | Cu (ppm) | Ni (ppm) |
|----------|----------------|-----------------|-----------|----------|----------|
|          | 24             | 26              | H130719   | 35       | 3770     |
|          | 26             | 28              | H130720   | 35       | 3290     |
|          | 28             | 30              | H130721   | 50       | 3310     |
|          | 30             | 32              | H130722   | 50       | 2630     |
|          | 32             | 34              | H130723   | 40       | 2690     |
|          | 34             | 36              | H130725   | 40       | 2810     |
|          | 36             | 38              | H130726   | 45       | 2910     |
|          | 38             | 40              | H130727   | 35       | 2940     |
|          | 40             | 42              | H130728   | 30       | 2640     |
|          | 42             | 44              | H130729   | 70       | 2400     |
|          | 44             | 46              | H130730   | 35       | 2460     |
|          | 46             | 48              | H130731   | 25       | 2390     |
|          | 48             | 50              | H130732   | 45       | 2390     |
|          | 50             | 52              | H130733   | 45       | 2320     |
|          | 52             | 54              | H130735   | 25       | 2260     |
|          | 54             | 56              | H130736   | 95       | 2090     |
| TFRC0032 | 4              | 6               | H130801   | 70       | 2660     |
|          | 6              | 8               | H130802   | 55       | 2940     |
|          | 8              | 10              | H130803   | 55       | 2690     |
|          | 10             | 12              | H130805   | 70       | 3110     |
|          | 12             | 14              | H130806   | 75       | 3150     |
|          | 14             | 16              | H130807   | 65       | 3120     |
|          | 16             | 18              | H130808   | 85       | 3030     |
|          | 18             | 20              | H130809   | 80       | 2920     |
|          | 20             | 22              | H130810   | 95       | 2910     |
|          | 22             | 24              | H130811   | 60       | 2930     |
|          | 24             | 26              | H130812   | 100      | 3690     |
|          | 26             | 28              | H130813   | 50       | 3070     |
|          | 28             | 30              | H130815   | 80       | 2710     |
|          | 30             | 32              | H130816   | 40       | 4000     |
|          | 32             | 34              | H130817   | 45       | 3740     |
|          | 34             | 36              | H130818   | 65       | 3720     |
|          | 36             | 38              | H130819   | 40       | 3790     |
|          | 38             | 40              | H130820   | 45       | 3210     |
|          | 40             | 42              | H130821   | 65       | 2790     |
|          | 42             | 44              | H130822   | 35       | 2090     |







#### **Appendix 4: JORC Tables**

## **Section 1 Sampling Techniques and Data**

(Criteria in this section apply to all succeeding sections.)

| Criteria               | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sampling<br>techniques | <ul> <li>Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.</li> <li>Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.</li> <li>Aspects of the determination of mineralisation that are Material to the Public Report.</li> <li>In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.</li> </ul> | <ul> <li>Results in this release are from historical data extracted from publicly available reports (Croesus Mining 2000; Heron Resources 2007; Aruma Resources 2012 and Alliance Resources 2018).</li> <li>RAB drilling for hole HPRB023</li> <li>1m samples generated using a PVC spear</li> <li>Samples submitted for ICP multielements analysis (unknown laboratory)</li> <li>RC drilling for TFRC holes</li> <li>2m composite samples (unknown generation process)</li> <li>Samples submitted for XRF multielements analysis at Ultratrace for nickel and base metal content.</li> </ul> |
| Drilling<br>techniques | <ul> <li>Drill type (eg core, reverse circulation,<br/>open-hole hammer, rotary air blast,<br/>auger, Bangka, sonic, etc) and details (eg<br/>core diameter, triple or standard tube,<br/>depth of diamond tails, face-sampling bit<br/>or other type, whether core is oriented<br/>and if so, by what method, etc).</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Reverse circulation drilling and rotary air blast drilling (RAB)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |





| Drill sample<br>recovery                                    | <ul> <li>Method of recording and assessing core and chip sample recoveries and results assessed.</li> <li>Measures taken to maximise sample recovery and ensure representative nature of the samples.</li> <li>Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.</li> </ul>                                                                                                                                                                                                                                                                                                                       | • Unknown                                                                                                                                                                                                          |
|-------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Logging                                                     | <ul> <li>Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.</li> <li>Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.</li> <li>The total length and percentage of the relevant intersections logged.</li> </ul>                                                                                                                                                                                                                                                                                             | <ul> <li>RC chips were logged for geology, alteration, structures, relative abundance of minerals species, mineralization as per available public data.</li> <li>This logging is qualitative in nature.</li> </ul> |
| Sub-<br>sampling<br>techniques<br>and sample<br>preparation | <ul> <li>If core, whether cut or sawn and whether quarter, half or all core taken.</li> <li>If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.</li> <li>For all sample types, the nature, quality and appropriateness of the sample preparation technique.</li> <li>Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.</li> <li>Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.</li> <li>Whether sample sizes are appropriate to the grain size of the material being sampled.</li> </ul> | <ul> <li>Reports mentions that RAB drilling was sampled using 1m samples generated by spearing. (Tube sampling)</li> <li>2m composite samples using unknown methodology for RC.</li> </ul>                         |
| Quality of<br>assay data<br>and                             | <ul> <li>The nature, quality and appropriateness<br/>of the assaying and laboratory<br/>procedures used and whether the</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ICP multi-element conducted for RAB drilling and XRF assays conducted in laboratory for RC.                                                                                                                        |





| laboratory<br>tests                         | technique is considered partial or total.  For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.  Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. | Those methods are appropriate and typical for the industry for Nickel and base metal assays.                                                                                                                                                                                                                                                             |
|---------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Verification<br>of sampling<br>and assaying | <ul> <li>The verification of significant intersections by either independent or alternative company personnel.</li> <li>The use of twinned holes.</li> <li>Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.</li> <li>Discuss any adjustment to assay data.</li> </ul>                                                                                                                                           | <ul> <li>No verification of significant intersections could be conducted by Riversgold as all data reported in this release is from historical data reported by previous explorers.</li> <li>It is unknown whether previous explorers adjusted to assay data however assay data adjustment is not common practice in early stage exploration.</li> </ul> |
| Location of<br>data points                  | <ul> <li>Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.</li> <li>Specification of the grid system used.</li> <li>Quality and adequacy of topographic control.</li> </ul>                                                                                                                                                                                     | <ul> <li>All coordinates used by the company are based on MGA zone 51 reference grid based on geodetical datum GDA94.</li> <li>Accuracy of historical drilling location is unknown.</li> </ul>                                                                                                                                                           |
| Data spacing<br>and<br>distribution         | <ul> <li>Data spacing for reporting of Exploration<br/>Results.</li> <li>Whether the data spacing, and<br/>distribution is sufficient to establish the<br/>degree of geological and grade<br/>continuity appropriate for the Mineral<br/>Resource and Ore Reserve estimation<br/>procedure(s) and classifications applied.</li> <li>Whether sample compositing has been<br/>applied.</li> </ul>                                                                                           | Drillholes were not spaced on a regular pattern.                                                                                                                                                                                                                                                                                                         |
| Orientation<br>of data in<br>relation to    | <ul> <li>Whether the orientation of sampling<br/>achieves unbiased sampling of possible<br/>structures and the extent to which this is</li> </ul>                                                                                                                                                                                                                                                                                                                                         | <ul> <li>Holes were reportedly drilled vertically.</li> <li>Mineralisation true width unknown.</li> </ul>                                                                                                                                                                                                                                                |





## 11 January 2022

| geological<br>structure | known, considering the deposit type.  If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. |                                                                                                                   |
|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| Sample<br>security      | <ul> <li>The measures taken to ensure sample<br/>security.</li> </ul>                                                                                                                                                                            | Unknown (historic data).                                                                                          |
| Audits or reviews       | The results of any audits or reviews of sampling techniques and data.                                                                                                                                                                            | <ul> <li>No external audits or reviews of the<br/>sampling techniques and data has been<br/>conducted.</li> </ul> |

## **Section 2 Reporting of Exploration Results**

(Criteria listed in the preceding section also apply to this section.)

| Criteria                                         | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                              | Commentary                                                                                                                                                                                                                                                                                                                                                                                      |
|--------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mineral<br>tenement<br>and land<br>tenure status | <ul> <li>Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.</li> <li>The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.</li> </ul> | <ul> <li>The Kurnalpi Project includes exploration leases: E25/538, E25/541, E25/550, E25/583, E28/2580, E28/2665, E28/2599 and E28/3034</li> <li>Results in this announcement are historical in nature and relate to E28/3034 which was recently granted 100% to Riversgold (Australia) Pty Ltd, a wholly owned subsidiary of Riversgold Limited. The tenement is in good standing.</li> </ul> |
| Exploration done by other parties                | Acknowledgment and appraisal of exploration by other parties.                                                                                                                                                                                                                                                                                                                                                                                      | <ul> <li>Previous exploration was completed by<br/>multiple companies, work included soil<br/>sampling, Aircore, RAB drilling and<br/>limited RC drilling.</li> </ul>                                                                                                                                                                                                                           |
| Geology                                          | Deposit type, geological setting and style of mineralisation.                                                                                                                                                                                                                                                                                                                                                                                      | <ul> <li>Greenstone hosted Archean Lode Gold.</li> <li>Ultramafic hosted nickel/copper sulphide mineralisation.</li> <li>Magmatic nickel/copper/PGE mineralisation.</li> </ul>                                                                                                                                                                                                                  |





| Drill hole<br>Information                                                        | <ul> <li>A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:         <ul> <li>easting and northing of the drill hole collar</li> <li>elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar</li> <li>dip and azimuth of the hole</li> <li>down hole length and interception depth</li> <li>hole length.</li> </ul> </li> <li>If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.</li> </ul> | Relevant drill hole information is set out in the tables in Appendices 1-3 of this announcement. |
|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| Data<br>aggregation<br>methods                                                   | <ul> <li>In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated.</li> <li>Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.</li> <li>The assumptions used for any reporting of metal equivalent values should be clearly stated.</li> </ul>                                                                                                                                                       | Result reported are from historical open data.                                                   |
| Relationship<br>between<br>mineralisatio<br>n widths and<br>intercept<br>lengths | <ul> <li>These relationships are particularly important in the reporting of Exploration Results.</li> <li>If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.</li> <li>If it is not known and only the down hole lengths are reported, there should be a</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                 | Mineralisation true width cannot be interpretated from the data available.                       |





|                                             | clear statement to this effect (eg 'down hole length, true width not known').                                                                                                                                                                                                                                                                                                         |                                                              |
|---------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|
| Diagrams                                    | <ul> <li>Appropriate maps and sections (with<br/>scales) and tabulations of intercepts<br/>should be included for any significant<br/>discovery being reported These should<br/>include, but not be limited to a plan view<br/>of drill hole collar locations and<br/>appropriate sectional views.</li> </ul>                                                                         | Diagrams have been incorporated in the body of this release. |
| Balanced<br>reporting                       | Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.                                                                                                                                                             | All exploration results to date have been reported.          |
| Other<br>substantive<br>exploration<br>data | Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples — size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. | No other substantive exploration data to<br>be reported.     |
| Further work                                | <ul> <li>The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling).</li> <li>Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.</li> </ul>                   | Further work still to be determined.                         |