

HIGH GRADE RESULTS CONTINUE AT YAOURÉ GOLD MINE

Perseus Mining Limited (ASX/TSX: PRU) is pleased to report continued exploration success at its Yaouré Gold Mine in Côte d'Ivoire.

HIGHLIGHTS

- Recent results from Perseus's ongoing infill and down-dip extension drilling on the CMA structure at Yaouré confirm strong potential for further mineral resources beneath the CMA open pit ("CMA Underground prospect").
- Infill drilling of the Inferred resource continues to confirm gold mineralisation consistent with previous results from this area, with recent drill intercepts including:
 - YRC1881D: 10m @ 6.61 g/t Au from 236m
 - YRC1883D: 8.10m @ 7.27 g/t Au from 328.10m
 - YRC1903D: 10m @ 3.03 g/t Au from 337, including 3m @ 8.76 g/t Au from 337m
 - YRC1904D: 13m @ 3.77 g/t Au from 294m
 - YRC1905D: 9.8m @ 4.18 g/t Au from 245m
 - YRC1909D: 6m @ 7.57 g/t Au from 304m
 - YRC1911D: 8m @ 4.40 g/t Au from 227m
 - YRC1913D: 6.3m @ 4.52 g/t from 194.7 and 5.1m @ 6.12 g/t from 305.9m
 - YRC1915D: 10.60m @ 4.36 g/t from 271.4m
 - YRC1916D: 4m @ 4.93 g/t Au from 214.4m, 5.2m @ 2.69 g/t Au from 221.7m, 4m @ 4.21 g/t Au from 235m & 13.2m @ 1.31 g/t Au from 242m
 - YRC1947D: 16.2m @ 5.58 g/t Au from 270m
 - YRC2019D: 15m @ 3.49 g/t Au from 268m including 7m @ 4.91 g/t Au from 268m
- Results returned high-grade intersections in the CMA hanging-wall, reflecting either CMA splays or oblique Sstructures:
 - YRC1883D: 1.67m @ 62.29 g/t Au from 314.80m
 - YRC1897D: 4m @ 17.09 g/t Au from 64m
 - YRC1989D: 8m @ 11.42 g/t Au from 60m
 - YRC2047D: 16m @ 3.39 g/t Au from 56m including 4m @ 10.75 g/t Au from 68m
- Perseus will use results to upgrade the CMA Underground Inferred Mineral Resource estimate to Indicated status, enabling a Pre-Feasibility Study (PFS) for an underground mining operation to be completed by late June 2022, including an initial Ore Reserve estimate.

PERSEUS MINING LIMITED

Level 2, 437 Roberts Road, Subiaco WA 6008 ABN: 27 106 808 986

- Step-out drilling on the down-dip extensions of the CMA structure also returned encouraging results, including:
 - YRC1850AD: 5m @ 3.93 g/t Au from 605m and 4m @ 3.98 g/t Au from 628m
 - YRC1855D: 11.10m @ 3.39 g/t Au from 450.40m, including 5m @ 7.16 g/t Au from 452m.

Perseus's Managing Director and CEO Jeff Quartermaine said:

"With our three gold mines, Yaouré, Edikan and Sissingué, now producing gold at an annualised rate of over 500,000 ounces per year, Perseus's focus has turned to maintaining this level of production out to the end of the current decade and beyond.

"Our latest infill and step out drilling results from below Yaouré's CMA open pit confirm previous drill results that indicated that material quantities of additional Indicated Mineral Resources, capable of being economically mined using underground mining methods, may be delineated.

"We are aiming to complete a Preliminary Feasibility Study of this mining operation by the end of the June Quarter 2022, however, timing of the completion of this work will depend on the ultimate footprint size of the orebody as determined by the current drilling programme."

CMA UNDERGROUND RESOURCE DRILLING, YAOURÉ

Perseus focused recent exploration activities on the Yaouré permits at CMA Underground and CMA down-dip extensions within 2 kilometres of the Yaouré mill *(Appendix 1 - Figure 1.1).* Results continue to demonstrate the potential for the Company to materially grow its gold inventory at Yaouré organically, through further drilling success.

As noted in Perseus's ASX release "Positive Exploration Results at Perseus's Yaouré Mine" dated 14 October 2021, recent drilling at the CMA Underground prospect focused on infill drilling to firm up previously defined underground resources extending below the currently planned CMA pit. Perseus defined an Inferred Mineral Resource of 1.8 million tonnes grading 6.1 g/t Au, extending to a maximum 275 metre down dip beneath the open pit resource (refer Resources and Reserves ASX announcement 24 August 2021), with potential to extend mineralisation further down dip beyond this (*Appendix 1 – Figure 1.2*). Perseus has also completed a Scoping Study which identified the potential to mine the CMA structure using underground mining methods (refer to "Perseus Mining Completes Scoping Study for Potential Underground Mine at Yaouré" dated 5th November 2018).

Following completion of drilling within the cutback zone of the CMA South open pit, Perseus extended infill drilling north along the CMA structure where grades are generally higher than at the southern end. Drilling during the last quarter comprised 12,437 metres in 56 reverse circulation ("RC") pre-collared diamond ("DD") holes, infilling the existing 50 x 50 metres coverage to a nominal 25 x 25 metres pattern to allow conversion of the Inferred resource to Indicated. Results continued to provide encouragement, with intercepts generally consistent with those previously encountered in both thickness and grade *(Appendix 1 - Figures 1.3-1.4)*. Of note has been the presence of 2-3 stacked lodes in places, either as a result of anastomosing of the main lode or structural repetition. This feature has also been noted in the open pit workings, locally significantly increasing the ounces of gold per vertical metre.

The style of mineralisation remains consistent with that encountered previously, comprising pervasive, moderate to strong, pink-pale brown albite and carbonate alteration developed within a well-defined structure marked by quartz carbonate veins, fault veins, multi dilatant fault breccia, cataclasis and shearing.

Better intercepts from the CMA infill drilling are shown in **Table 1** below, with a complete summary of significant results included in **Appendix 2 – Table 2.1**.

CMA DOWN-DIP DRILLING, YAOURÉ

Perseus stepped up drilling to investigate the next 300 metre down-dip from the current CMA Underground resource, with 9,511 metres drilled in 18 RC pre-collared DD holes. This work focused within the "Magazine Zone" ahead of

stocking of the magazine with explosives. The step-out program is also guided by Perseus's early 2020 3D seismic survey that clearly identified the CMA structure extending to depth beyond the current drill coverage.

Perseus is undertaking drilling on an initial 100×200 metres pattern to better define the position of the CMA structure and the intensity of mineralisation. If results are encouraging, this will be infilled to 100×100 metres to allow an initial Inferred Mineral Resource Estimate.

Better intercepts from the Yaouré step out drilling are shown in *Table 1* below and in *Appendix 1 - Figures 1.5 & 1.6*, with a complete summary of significant results included in *Appendix 2 – Table 2.2*.

Hole ID	From (m)	To (m)	Gold Intercept	Comment
CMA Undergr	ound Resour	e Drilling		
YRC1874D	237.15	245	7.85m @ 3.51 g/t	CMA FW lode
YRC1876D	218	227	9m @ 2.63 g/t	CMA FW lode
YRC1877D	170.1	172	1.9m @ 3.23 g/t	CMA FW lode
YRC1877D	176	177.4	1.4m @ 4.13 g/t	CMA FW lode
YRC1878D	285.8	288	2.2m @ 2.84 g/t	CMA FW lode
YRC1878D	322	324	2m @ 2.9 g/t	CMA FW lode
YRC1878D	338	345	7m @ 2.27 g/t	CMA FW lode
YRC1879D	97	99	2m @ 2.27 g/t	CMA HW lode
YRC1879D	282.7	286	3.3m @ 1.4 g/t	CMA FW lode
YRC1880D	232	242	10m @ 3.71 g/t	CMA FW lode
YRC1881D	236	246	10m @ 6.61 g/t	CMA FW lode
YRC1882D	298	301	3m @ 3.86 g/t	CMA FW lode
YRC1883D	314.8	316.47	1.67m @ 62.29 g/t	S-structure
YRC1883D	328.1	336.2	8.1m @ 7.27 g/t	CMA FW lode
YRC1885D	282.3	285.3	3m @ 2.04 g/t	CMA FW lode
YRC1886D	279	293	14m @ 2.05 g/t	CMA FW lode
Including	279	283	4m @ 6.34 g/t	CMA FW lode
YRC1887D	297.7	298.8	1.1m @ 7.28 g/t	CMA FW lode
YRC1888D	237	241	4m @ 2.17 g/t	CMA FW lode
YRC1888D	282	287	5m @ 2.29 g/t	CMA FW lode
Including	284	286	2m @ 5.18 g/t	CMA FW lode
YRC1889D	283	286	3m @ 2.55 g/t	CMA FW lode
YRC1891D	277	291	14m @ 2.83 g/t	CMA FW lode
Including	277	286	9m @ 4.06 g/t	CMA FW lode
YRC1897D	64	68	4m @ 17.09 g/t	CMA HW Splay
YRC1899D	285	287	2m @ 8.58 g/t	CMA FW lode
YRC1899D	295	297	2m @ 4.15 g/t	CMA FW lode
YRC1900D	235	237	2m @ 2.48 g/t	CMA FW lode
YRC1902D	280	288	8m @ 4.24 g/t	CMA FW lode
YRC1903D	337	347	10m @ 3.03 g/t	CMA FW lode
Including	337	340	3m @ 8.76 g/t	CMA FW lode

Table 1: Intercepts from CMA Underground and CMA Down-dip Drilling

Hole ID	From (m)	To (m)	Gold Intercept	Comment				
YRC1904D	52	56	4m @ 8.14 g/t	CMA HW Splay				
YRC1904D	294	307	13m @ 3.77 g/t	CMA FW lode				
YRC1905D	245	254.8	9.8m @ 4.18 g/t	CMA FW lode				
YRC1906D	256	268	12m @ 3.16 g/t	CMA FW lode				
YRC1907D	255	262	7m @ 2.06 g/t	CMA FW lode				
Including	255	259	4m @ 3.48 g/t	CMA FW lode				
YRC1908D	289	291	2m @ 2.3 g/t	CMA FW lode				
YRC1909D	304	310	6m @ 7.57 g/t	CMA FW lode				
YRC1911D	227	235	8m @ 4.4 g/t	CMA FW lode				
YRC1912AD	240	244.3	4.3m @ 8.83 g/t	CMA FW lode				
YRC1913D	194	204	10m @ 2.95 g/t	CMA FW lode				
Including	194.7	201	6.3m @ 4.52 g/t	CMA FW lode				
YRC1913D	302	314	12m @ 2.82 g/t	CMA FW lode				
Including	305.9	311	5.1m @ 6.12 g/t	CMA FW lode				
YRC1914D	257	264	7m @ 4.82 g/t	CMA FW lode				
YRC1915D	165	167	2m @ 2.27 g/t	CMA HW Splay				
YRC1915D	271.4	282	10.6m @ 4.36 g/t	CMA FW lode				
YRC1916D	214.4	218.4	4m @ 4.93 g/t	CMA FW lode				
YRC1916D	221.7	226.9	5.2m @ 2.69 g/t	CMA FW lode				
YRC1916D	235	239	4m @ 4.21 g/t	CMA FW lode				
YRC1918D	261	263.1	2.1m @ 3.53 g/t	CMA FW lode				
YRC1921D	56	60	4m @ 2.67 g/t	CMA HW Splay				
YRC1922D	229	239.5	10.5m @ 4.36 g/t	CMA FW lode				
YRC1923D	258	267	9m @ 3.22 g/t	CMA FW lode				
YRC1929D	342.6	348	5.4m @ 2.16 g/t	CMA FW lode				
YRC1938D	281	286	5m @ 3.5 g/t	CMA FW lode				
YRC1939D	257	261	4m @ 2.1 g/t	CMA FW lode				
YRC1943D	314	320	6m @ 2.29 g/t	CMA FW lode				
YRC1943D	336.65	340	3.35m @ 5.87 g/t	CMA FW lode				
YRC1945D	305.8	312	6.2m @ 4.62 g/t	CMA FW lode				
YRC1945D	327	331.6	4.6m @ 3.64 g/t	CMA FW lode				
YRC1946D	267.6	270	2.4m @ 4.69 g/t	CMA FW lode				
YRC1946D	276	282	6m @ 5.26 g/t	CMA FW lode				
YRC1946D	285	288	3m @ 3.69 g/t	CMA FW lode				
YRC1947D	270	286.2	16.2m @ 5.58 g/t	CMA FW lode				
YRC1963D	290	296	6m @ 4.18 g/t	CMA FW lode				
YRC1989D	60	68	8m @ 11.42 g/t	CMA HW Splay				
YRC1990D	72	76	4m @ 3.75 g/t	CMA HW Splay				
YRC2005D	56	60	4m @ 3.08 g/t	CMA HW Splay				
YRC2019D	268	283	15m @ 3.49 g/t	CMA FW lode				
YRC2044D	278.4	284.6	6.2m @ 2.99 g/t	CMA FW lode				

Hole ID	From (m)	To (m)	Gold Intercept	Comment
YRC2045D	271	273	2m @ 4.36 g/t	CMA FW lode
YRC2045D	278	283	5m @ 3.44 g/t	CMA FW lode
YRC2047D	56	72	16m @ 3.39 g/t	CMA HW Splay
Including	68	72	4m @ 10.75 g/t	CMA HW Splay
YRC2047D	138.3	142	3.7m @ 3.11 g/t	CMA FW lode
CMA Down-di	p Drilling			
YRC1850AD	604	612	8m @ 2.64 g/t	CMA FW lode
Including	605	610	5m @ 3.93 g/t	CMA FW lode
YRC1850AD	625	632	7m @ 2.52 g/t	CMA FW lode
Including	628	632	4m @ 3.98 g/t	CMA FW lode
YRC1854D	193	196	3m @ 1.87 g/t	CMA HW Splay
Including	194	196	2m @ 2.59 g/t	CMA HW Splay
YRC1855AD	450.4	461.5	11.1m @ 3.39 g/t	CMA FW lode
Including	452	457	5m @ 7.16 g/t	CMA FW lode
YRC1857D	464	470	6m @ 2.32 g/t	CMA FW lode
YRC1858D	479	487	8m @ 2.22 g/t	CMA FW lode
Including	482	485	3m @ 5.07 g/t	CMA FW lode
YRC1859D	473	477	4m @ 2.2 g/t	CMA FW lode
YRC1861D	549	555	6m @ 2.48 g/t	CMA FW lode
Including	550	552	2m @ 6.9 g/t	CMA FW lode
YRC1871D	532	534	2m @ 6.32 g/t	CMA FW lode
YRC1871D	549	551	2m @ 2.66 g/t	CMA FW lode
YRC2033D	586	588	2m @ 2.13 g/t	CMA FW lode
YRC2043D	60	64	4m @ 3.8 g/t	CMA HW Splay

NEXT STEPS AT CMA

Perseus's ongoing exploration and study programmes at Yaouré will focus on:

 Continuation of drilling to convert the Inferred Resource at CMA to an Ore Reserve to be potentially exploited by underground mining methods and drilling down dip of the Inferred Resource to identify the potential for further resource extensions.

Perseus is completing drilling to convert the Inferred CMA resource to an Ore Reserve as the first part of a Pre-Feasibility Study (PFS). Geotechnical, hydrological, mining and metallurgical studies have commenced as drilling and assaying results become available. Target completion for the PFS remains the end of the June Quarter 2022, with timing dependent on the ultimate footprint size of the orebody.

- Continuation of drill testing of targets generated from the 3D seismic survey, with an initial focus on near-surface targets.
- Aircore drilling and augering at early-stage regional prospects such as Degbezere NE.

This announcement has been approved for release by Perseus's Managing Director and Chief Executive Officer, Jeff Quartermaine.

Competent Person Statement:

The information in this report and the attachments that relate to exploration drilling results at the Yaouré Project is based on, and fairly represents, information and supporting documentation prepared by Dr Douglas Jones, a Competent Person who is a Chartered Professional Geologist. Dr Jones is the Group General Manager Exploration of the Company. Dr Jones has sufficient experience, which is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken, to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves''') and to qualify as a "Qualified Person" under National Instrument 43-101 – Standards of Disclosure for Mineral Projects ("NI 43-101"). Dr Jones consents to the inclusion in this report of the matters based on his information in the form and context in which it appears.

Caution Regarding Forward Looking Information:

This report contains forward-looking information which is based on the assumptions, estimates, analysis and opinions of management made in light of its experience and its perception of trends, current conditions and expected developments, as well as other factors that management of the Company believes to be relevant and reasonable in the circumstances at the date that such statements are made, but which may prove to be incorrect. Assumptions have been made by the Company regarding, among other things: the price of gold, continuing commercial production at the Yaouré Gold Mine, the Edikan Gold Mine and the Sissingué Gold Mine without any major disruption due to the COVID-19 pandemic or otherwise, the receipt of required governmental approvals, the accuracy of capital and operating cost estimates, the ability of the Company to operate in a safe, efficient and effective manner and the ability of the Company to obtain financing as and when required and on reasonable terms. Readers are cautioned that the foregoing list is not exhaustive of all factors and assumptions which may have been used by the Company. Although management believes that the assumptions made by the Company and the expectations represented by such information are reasonable, there can be no assurance that the forward-looking information will prove to be accurate. Forward-looking information involves known and unknown risks, uncertainties, and other factors which may cause the actual results, performance or achievements of the Company to be materially different from any anticipated future results, performance or achievements expressed or implied by such forward-looking information. Such factors include, among others, the actual market price of gold, the actual results of current exploration, the actual results of future exploration, changes in project parameters as plans continue to be evaluated, as well as those factors disclosed in the Company's publicly filed documents. The Company believes that the assumptions and expectations reflected in the forward-looking information are reasonable. Assumptions have been made regarding, among other things, the Company's ability to carry on its exploration and development activities, the timely receipt of required approvals, the price of gold, the ability of the Company to operate in a safe, efficient and effective manner and the ability of the Company to obtain financing as and when required and on reasonable terms. Readers should not place undue reliance on forward-looking information. Perseus does not undertake to update any forward-looking information, except in accordance with applicable securities laws.

ASX/TSX CODE: PRU

REGISTERED OFFICE:

Level 2 437 Roberts Road Subiaco WA 6008

Telephone: +61 8 6144 1700 Email: IR@perseusmining.com

www.perseusmining.com

CONTACTS:

Jeff Quartermaine Managing Director & CEO

jeff.quartermaine@perseusmining.com

Nathan Ryan

Media Relations +61 4 20 582 887 nathan.ryan@nwrcommunications.com.au

Claire Hall

Corporate Communications claire.hall@perseusmining.com

APPENDIX 1 - FIGURES

Figure 1.2: CMA Underground Resource Drilling and Results Summary

Figure 1.3: CMA Underground Resource – Long Section

Figure 1.5: CMA Down-Dip Extensions Drilling & Results Summary

Figure 1.6: CMA Down-Dip Extensions Drilling – Drill Section 777435mN

APPENDIX 2 – SIGNIFICANT INTERCEPTS TABLES

Table 2.1: CMA Underground Resource Drilling - drill holes and significant assays

(Based on lower cut-off of 0.5 g/t Au with maximum 2m internal waste <0.5 g/t)

Hole ID	East	North	Drill Type	Azimuth	Dip	Depth	No of samples	From	То	Width	Grade
YRC1874D	221644.55	777035.52	RC_DD	270	-60	253.5	1	16	20	4	0.22
YRC1874D	221644.55	777035.52	RC_DD	270	-60	253.5	10	154.6	163	8.4	0.45
YRC1874D	221644.55	777035.52	RC_DD	270	-60	253.5	3	170.8	173	2.2	0.42
YRC1874D	221644.55	777035.52	RC_DD	270	-60	253.5	7	178	185	7	0.41
YRC1874D	221644.55	777035.52	RC_DD	270	-60	253.5	5	191.7	196	4.3	0.37
YRC1874D	221644.55	777035.52	RC_DD	270	-60	253.5	2	204	206	2	0.37
YRC1874D	221644.55	777035.52	RC_DD	270	-60	253.5	8	237.2	245	7.85	3.51
YRC1875D	221701.84	777035.19	RC_DD	270	-60	270.7	2	74	76	2	0.57
YRC1875D	221701.84	777035.19	RC_DD	270	-60	270.7	2	118	120	2	0.32
YRC1875D	221701.84	777035.19	RC_DD	270	-60	270.7	10	133	141.3	8.3	3.49
YRC1875D	221701.84	777035.19	RC_DD	270	-60	270.7	4	158	161.15	3.15	0.46
YRC1875D	221701.84	777035.19	RC_DD	270	-60	270.7	4	196	200	4	0.47
YRC1875D	221701.84	777035.19	RC_DD	270	-60	270.7	2	264	266	2	0.7
YRC1876D	221631.3	776985.27	RC_DD	270	-60	240.4	1	16	20	4	0.29
YRC1876D	221631.3	776985.27	RC_DD	270	-60	240.4	1	28	32	4	0.27
YRC1876D	221631.3	776985.27	RC_DD	270	-60	240.4	1	40	44	4	0.23
YRC1876D	221631.3	776985.27	RC_DD	270	-60	240.4	3	180	183	3	0.4
YRC1876D	221631.3	776985.27	RC_DD	270	-60	240.4	4	204	208	4	0.3
YRC1876D	221631.3	776985.27	RC_DD	270	-60	240.4	12	216	228	12	2.01
YRC1877D	221859.52	776985.28	RC_DD	270	-60	387.7	2	0	8	8	0.57
YRC1877D	221859.52	776985.28	RC_DD	270	-60	387.7	6	124	130	6	0.62
YRC1877D	221859.52	776985.28	RC_DD	270	-60	387.7	2	138	140	2	0.24
YRC1877D	221859.52	776985.28	RC_DD	270	-60	387.7	2	144	146	2	0.34
YRC1877D	221859.52	776985.28	RC_DD	270	-60	387.7	14	166	177.4	11.4	1.33
	Including						2	170.1	172	1.9	3.23
	Including						2	176	177.4	1.4	4.13
YRC1877D	221859.52	776985.28	RC_DD	270	-60	387.7	5	237	242	5	0.69
YRC1877D	221859.52	776985.28	RC_DD	270	-60	387.7	6	257	262	5	0.28
YRC1877D	221859.52	776985.28	RC_DD	270	-60	387.7	5	268.8	273	4.2	0.98
YRC1878D	221790.83	776984.8	RC_DD	270	-60	354.3	1	16	20	4	0.43
YRC1878D	221790.83	776984.8	RC_DD	270	-60	354.3	33	268.2	298	29.8	0.7
	Including							285.8	288	2.2	2.84
YRC1878D	221790.83	776984.8	RC_DD	270	-60	354.3	17	307	324	17	0.9
	Including							322	324	2	2.9
YRC1878D	221790.83	776984.8	RC_DD	270	-60	354.3	2	329	331	2	2.27
YRC1878D	221790.83	776984.8	RC_DD	270	-60	354.3	7	338	345	7	2.27

Hole ID	East	North	Drill Type	Azimuth	Dip	Depth	No of samples	From	То	Width	Grade
YRC1879D	221862.13	776984.86	RC DD	270	-60	396.7	1	0	4	4	0.4
YRC1879D	221862.13	776984.86	RC DD	270	-60	396.7	4	97	101	4	1.21
	Including						2	97	99	2	2.27
YRC1879D	221862.13	776984.86	RC DD	270	-60	396.7	2	137	139	2	0.85
YRC1879D	221862.13	776984.86	RC DD	270	-60	396.7	13	256	269	13	0.67
YRC1879D	221862.13	776984.86	RC_DD	270	-60	396.7	4	282.7	286	3.3	1.4
YRC1880D	221647.19	776934.85	RC_DD	270	-55	254.9	2	153	155	2	0.52
YRC1880D	221647.19	776934.85	RC_DD	270	-55	254.9	3	159	162	3	0.66
YRC1880D	221647.19	776934.85	RC_DD	270	-55	254.9	12	232	242	10	3.71
	Including						10	232	240	8	4.52
YRC1881D	221650.05	776935.02	RC_DD	270	-60	255.6	2	44	52	8	0.43
YRC1881D	221650.05	776935.02	RC_DD	270	-60	255.6	1	64	68	4	0.72
YRC1881D	221650.05	776935.02	RC_DD	270	-60	255.6	10	236	246	10	6.61
YRC1882D	221862.21	776935.01	RC_DD	270	-65	378.3	1	0	4	4	0.39
YRC1882D	221862.21	776935.01	RC_DD	270	-65	378.3	3	298	301	3	3.86
YRC1882D	221862.21	776935.01	RC_DD	270	-65	378.3	6	321	327	6	0.99
YRC1882D	221862.21	776935.01	RC_DD	270	-65	378.3	6	330	336	6	0.66
YRC1883D	221780.17	776884.96	RC_DD	270	-50	354.7	2	0	8	8	0.36
YRC1883D	221780.17	776884.96	RC_DD	270	-50	354.7	9	328.1	336.2	8.1	7.27
YRC1884D	221785.13	776884.89	RC_DD	270	-65	346.8	1	0	4	4	0.38
YRC1884D	221785.13	776884.89	RC_DD	270	-65	346.8	4	142.5	146.7	4.2	0.68
YRC1884D	221785.13	776884.89	RC_DD	270	-65	346.8	25	269	294	25	0.54
YRC1884D	221785.13	776884.89	RC_DD	270	-65	346.8	23	316.4	339	22.6	0.85
YRC1885D	221713.76	776835.11	RC_DD	270	-60	301.9	1	0	4	4	0.28
YRC1885D	221713.76	776835.11	RC_DD	270	-60	301.9	1	56	60	4	0.42
YRC1885D	221713.76	776835.11	RC_DD	270	-60	301.9	8	279	287.3	8.3	0.91
	Including							282.3	285.3	3	2.04
YRC1886D	221719.48	776785.18	RC_DD	270	-55	297	2	0	8	8	0.45
YRC1886D	221719.48	776785.18	RC_DD	270	-55	297	1	44	48	4	0.39
YRC1886D	221719.48	776785.18	RC_DD	270	-55	297	2	188	190	2	0.28
YRC1886D	221719.48	776785.18	RC_DD	270	-55	297	14	279	293	14	2.05
	Including						4	279	283	4	6.34
YRC1887D	221723.44	776785.23	RC_DD	270	-65	303.2	2	0	8	8	0.27
YRC1887D	221723.44	776785.23	RC_DD	270	-65	303.2	1	40	44	4	0.49
YRC1887D	221723.44	776785.23	RC_DD	270	-65	303.2	1	72	76	4	0.5
YRC1887D	221723.44	776785.23	RC_DD	270	-65	303.2	2	249.5	251.5	2	0.67
YRC1887D	221723.44	776785.23	RC_DD	270	-65	303.2	10	288.5	298.8	10.3	1.33
	Including							297.7	298.8	1.1	7.28
YRC1888D	221718.75	776735.16	RC_DD	270	-55	300.4	2	0	8	8	0.31
YRC1888D	221718.75	776735.16	RC_DD	270	-55	300.4	8	203	211	8	0.22

Hole ID	East	North	Drill Type	Azimuth	Dip	Depth	No of samples	From	То	Width	Grade
YRC1888D	221718.75	776735.16	RC_DD	270	-55	300.4	7	222	227	5	1.26
YRC1888D	221718.75	776735.16	RC_DD	270	-55	300.4	5	237	241	4	2.17
YRC1888D	221718.75	776735.16	RC_DD	270	-55	300.4	5	282	287	5	2.29
	Including							284	286	2	5.18
YRC1889D	221714.49	776735.05	RC_DD	270	-45	300.1	2	0	8	8	0.46
YRC1889D	221714.49	776735.05	RC_DD	270	-45	300.1	2	249	251	2	0.59
YRC1889D	221714.49	776735.05	RC_DD	270	-45	300.1	7	282	289	7	1.35
	Including							283	286	3	2.55
YRC1890D	221699.21	776685.04	RC_DD	270	-45	285	2	0	8	8	0.7
YRC1890D	221699.21	776685.04	RC_DD	270	-45	285	1	64	68	4	0.28
YRC1890D	221699.21	776685.04	RC_DD	270	-45	285	7	225	231	6	0.78
YRC1890D	221699.21	776685.04	RC_DD	270	-45	285	4	274	278	4	0.64
YRC1891D	221709.7	776834.9	RC_DD	270	-45	302.2	1	0	4	4	0.25
YRC1891D	221709.7	776834.9	RC_DD	270	-45	302.2	14	277	291	14	2.83
	Including							277	286	9	4.06
YRC1892D	221649.74	776584.57	RC_DD	270	-65	252.1	1	44	48	4	0.4
YRC1892D	221649.74	776584.57	RC_DD	270	-65	252.1	1	72	76	4	0.29
YRC1892D	221649.74	776584.57	RC_DD	270	-65	252.1	3	227	230	3	1.45
YRC1893D	221658.13	776534.89	RC_DD	270	-55	267.8	1	4	8	4	0.72
YRC1893D	221658.13	776534.89	RC_DD	270	-55	267.8	2	28	36	8	0.77
YRC1893D	221658.13	776534.89	RC_DD	270	-55	267.8	1	44	48	4	0.26
YRC1893D	221658.13	776534.89	RC_DD	270	-55	267.8	2	112	114	2	0.2
YRC1893D	221658.13	776534.89	RC_DD	270	-55	267.8	3	240	243	3	1.59
YRC1893D	221658.13	776534.89	RC_DD	270	-55	267.8	5	247	252	5	0.56
YRC1894D	221662.28	776534.95	RC_DD	270	-65	275.9	1	8	12	4	0.3
YRC1894D	221662.28	776534.95	RC_DD	270	-65	275.9	1	16	20	4	1.11
YRC1894D	221662.28	776534.95	RC_DD	270	-65	275.9	11	161	172	11	0.81
YRC1894D	221662.28	776534.95	RC_DD	270	-65	275.9	9	176	185	9	0.36
YRC1894D	221662.28	776534.95	RC_DD	270	-65	275.9	3	237	240	3	0.88
YRC1895D	221821.37	777036.08	RC_DD	270	-65	369.5	1	28	32	4	1.05
YRC1895D	221821.37	777036.08	RC_DD	270	-65	369.5	1	56	60	4	0.22
YRC1895D	221821.37	777036.08	RC_DD	270	-65	369.5	5	140	144	4	0.43
YRC1895D	221821.37	777036.08	RC_DD	270	-65	369.5	2	335	337	2	2.95
YRC1895D	221821.37	777036.08	RC_DD	270	-65	369.5	6	357	362	5	1.94
YRC1896D	221776.01	777035.1	RC_DD	270	-65	327.3	1	12	16	4	0.25
YRC1896D	221776.01	777035.1	RC_DD	270	-65	327.3	2	310	312	2	0.52
YRC1897D	221569.43	776484.82	RC_DD	270	-55	210.7	1	4	8	4	0.22
YRC1897D	221569.43	776484.82	RC_DD	270	-55	210.7	1	12	16	4	0.36
YRC1897D	221569.43	776484.82	RC_DD	270	-55	210.7	1	56	60	4	0.93
YRC1897D	221569.43	776484.82	RC_DD	270	-55	210.7	1	64	68	4	17.09

Hole ID	East	North	Drill Type	Azimuth	Dip	Depth	No of samples	From	То	Width	Grade
YRC1897D	221569.43	776484.82	RC_DD	270	-55	210.7	2	144	146	2	0.42
YRC1897D	221569.43	776484.82	RC_DD	270	-55	210.7	5	196	201	5	0.58
YRC1898D	221572.09	776484.99	RC_DD	270	-65	219.7	2	0	8	8	0.43
YRC1898D	221572.09	776484.99	RC_DD	270	-65	219.7	2	108	110	2	0.8
YRC1898D	221572.09	776484.99	RC_DD	270	-65	219.7	4	154	158	4	0.23
YRC1898D	221572.09	776484.99	RC_DD	270	-65	219.7	3	173.3	176	2.7	0.57
YRC1898D	221572.09	776484.99	RC_DD	270	-65	219.7	7	180	186	6	0.47
YRC1898D	221572.09	776484.99	RC_DD	270	-65	219.7	9	196	205	9	0.68
YRC1899D	221741.49	777135.16	RC_DD	270	-65	312.7	1	40	44	4	0.45
YRC1899D	221741.49	777135.16	RC_DD	270	-65	312.7	2	285	287	2	8.58
YRC1899D	221741.49	777135.16	RC_DD	270	-65	312.7	9	294	303	9	1.29
	Including							295	297	2	4.15
YRC1900D	221619.77	777184.91	RC_DD	270	-60	253.3	2	125	127	2	1.18
YRC1900D	221619.77	777184.91	RC_DD	270	-60	253.3	4	234	238	4	1.49
	Including							235	237	2	2.48
YRC1901AD	221657.27	777185.2	RC_DD	270	-60	271.2	4	105	108	3	1.03
YRC1901AD	221657.27	777185.2	RC_DD	270	-60	271.2	6	252	258	6	0.72
YRC1902D	221711.18	777084.89	RC_DD	270	-63	300	1	0	4	4	1.44
YRC1902D	221711.18	777084.89	RC_DD	270	-63	300	1	60	64	4	0.2
YRC1902D	221711.18	777084.89	RC_DD	270	-63	300	16	277	293	16	2.27
	Including							280	288	8	4.24
YRC1903D	221819.58	777084.87	RC_DD	270	-58	363.2	2	0	8	8	0.41
YRC1903D	221819.58	777084.87	RC_DD	270	-58	363.2	2	154	156	2	0.78
YRC1903D	221819.58	777084.87	RC_DD	270	-58	363.2	15	337	352	15	2.71
	Including							337	347	10	3.03
YRC1904D	221765.22	777185.04	RC_DD	270	-71	327.2	1	36	40	4	0.4
YRC1904D	221765.22	777185.04	RC_DD	270	-71	327.2	1	52	56	4	8.14
YRC1904D	221765.22	777185.04	RC_DD	270	-71	327.2	2	85	87	2	0.46
YRC1904D	221765.22	777185.04	RC_DD	270	-71	327.2	13	294	307	13	3.77
	Including							296	307	11	4.33
YRC1905D	221663.62	777285.32	RC_DD	270	-73	267.3	4	199	203	4	0.46
YRC1905D	221663.62	777285.32	RC_DD	270	-73	267.3	11	245	254.8	9.8	4.18
YRC1906D	221670.08	777334.56	RC_DD	270	-56	283.3	2	250	252	2	0.4
YRC1906D	221670.08	777334.56	RC_DD	270	-56	283.3	12	256	268	12	3.16
YRC1907D	221672.47	777334.47	RC_DD	270	-63	270.9	7	255	262	7	2.06
	Including							255	259	4	3.48
YRC1907D	221672.47	777334.47	RC_DD	270	-63	270.9	2	266	268	2	0.24
YRC1908D	221738.52	777334.39	RC_DD	270	-70	306.2	1	36	40	4	0.23
YRC1908D	221738.52	777334.39	RC_DD	270	-70	306.2	6	125	131	6	0.88
YRC1908D	221738.52	777334.39	RC_DD	270	-70	306.2	2	289	291	2	2.3

Hole ID	East	North	Drill Type	Azimuth	Dip	Depth	No of samples	From	То	Width	Grade
YRC1909D	221762	777385.29	RC_DD	270	-66	315.4	2	168	170	2	0.72
YRC1909D	221762	777385.29	RC_DD	270	-66	315.4	6	304	310	6	7.57
	Including							304	309	5	9.02
YRC1911D	221619.49	777434.94	RC_DD	270	-61	255.7	6	8	32	24	0.48
YRC1911D	221619.49	777434.94	RC_DD	270	-61	255.7	8	227	235	8	4.4
	Including							227	232	5	6.85
YRC1911D	221619.49	777434.94	RC_DD	270	-61	255.7	11	238	249.4	11.4	0.3
YRC1911D	221619.49	777434.94	RC_DD	270	-61	255.7	2	252.5	254.6	2.1	0.76
YRC1912AD	221650.57	777435.08	RC_DD	270	-62	267.3	1	20	24	4	0.29
YRC1912AD	221650.57	777435.08	RC_DD	270	-62	267.3	4	240	244.3	4.3	8.83
YRC1913D	221761.56	777434.93	RC_DD	270	-62	317.9	2	134	136	2	0.5
YRC1913D	221761.56	777434.93	RC_DD	270	-62	317.9	11	194	204	10	2.95
	Including							194.7	201	6.3	4.52
YRC1913D	221761.56	777434.93	RC_DD	270	-62	317.9	12	302	314	12	2.82
	Including							305.9	311	5.1	6.12
YRC1914D	221669.2	777485.08	RC_DD	270	-59	270.9	3	168	171	3	0.45
YRC1914D	221669.2	777485.08	RC_DD	270	-59	270.9	8	257	264	7	4.82
YRC1914D	221669.2	777485.08	RC_DD	270	-59	270.9	4	267	270.9	3.9	0.22
YRC1915D	221700.01	777484.96	RC_DD	270	-61	294.7	1	8	12	4	0.23
YRC1915D	221700.01	777484.96	RC_DD	270	-61	294.7	1	48	52	4	0.26
YRC1915D	221700.01	777484.96	RC_DD	270	-61	294.7	2	165	167	2	2.27
YRC1915D	221700.01	777484.96	RC_DD	270	-61	294.7	2	180	182	2	0.23
YRC1915D	221700.01	777484.96	RC_DD	270	-61	294.7	11	271.4	282	10.6	4.36
YRC1916D	221564.91	777535.38	RC_DD	270	-61	261.3	3	44	56	12	0.37
YRC1916D	221564.91	777535.38	RC_DD	270	-61	261.3	14	213.2	226.9	13.7	2.6
	Including							214.4	218.4	4	4.93
	Including							221.7	226.9	5.2	2.69
YRC1916D	221564.91	777535.38	RC_DD	270	-61	261.3	32	229	261.3	32.3	1.24
YRC1917AD	221679.78	776634.68	RC_DD	270	-59	267.7	1	0	4	4	0.2
YRC1917AD	221679.78	776634.68	RC_DD	270	-59	267.7	2	91	93	2	1.77
YRC1917AD	221679.78	776634.68	RC_DD	270	-59	267.7	2	252	254	2	0.73
YRC1918D	221709.67	777534.61	RC_DD	270	-70	272.2	1	0	4	4	0.37
YRC1918D	221709.67	777534.61	RC_DD	270	-70	272.2	2	68	76	8	0.95
YRC1918D	221709.67	777534.61	RC_DD	270	-70	272.2	3	107.4	110	2.6	1.3
YRC1918D	221709.67	777534.61	RC_DD	270	-70	272.2	8	257	263.1	6.1	1.61
	Including							261	263.1	2.1	3.53
YRC1922D	221639.72	777034.48	RC_DD	270	-60	249.2	1	4	8	4	0.2
YRC1922D	221639.72	777034.48	RC_DD	270	-60	249.2	5	177.2	181.9	4.7	0.33
YRC1922D	221639.72	777034.48	RC_DD	270	-60	249.2	3	216.2	219.2	3	0.55
YRC1922D	221639.72	777034.48	RC_DD	270	-60	249.2	21	225.7	246.2	20.5	2.56

Hole ID	East	North	Drill Type	Azimuth	Dip	Depth	No of samples	From	То	Width	Grade
	Including							220	220 5	10.5	1 26
VRC1923D	221699 12	777034 43	RC DD	270	-60	270 1	2	107	109.4	2.4	0.36
YRC1923D	221033.12	777034 43	RC DD	270	-60	270.1	4	112	116	4	0.30
YRC1923D	221699.12	777034.43	RC_DD	270	-60	270.1	3	119	121.4	2.4	0.31
YRC1923D	221699.12	777034.43	RC DD	270	-60	270.1	10	141	149	8	0.23
YRC1923D	221699.12	777034.43	RC DD	270	-60	270.1	7	155.3	162	6.75	0.34
YRC1923D	221699.12	777034.43	RC DD	270	-60	270.1	4	188	192	4	0.45
YRC1923D	221699.12	777034.43	RC DD	270	-60	270.1	4	197.7	201	3.3	1.48
YRC1923D	221699.12	777034.43	RC_DD	270	-60	270.1	7	204	211	7	0.34
YRC1923D	221699.12	777034.43	RC_DD	270	-60	270.1	10	258	267	9	3.22
YRC1925D	221859.83	776934.23	RC_DD	270	-67	377	1	0	4	4	0.45
YRC1925D	221859.83	776934.23	RC_DD	270	-67	377	32	316.9	347.2	30.3	0.8
YRC1925D	221859.83	776934.23	RC_DD	270	-67	377	4	355	359	4	0.5
YRC1926D	221712.03	776834.49	RC_DD	270	-58	297.3	2	0	8	8	0.27
YRC1926D	221712.03	776834.49	RC_DD	270	-58	297.3	4	141.4	144	2.6	1.43
YRC1926D	221712.03	776834.49	RC_DD	270	-58	297.3	5	265	270	5	1.3
YRC1926D	221712.03	776834.49	RC_DD	270	-58	297.3	12	277	288.2	11.2	0.81
YRC1926D	221712.03	776834.49	RC_DD	270	-58	297.3	8	291	297.3	6.3	0.77
YRC1927D	221716.46	776834.78	RC_DD	270	-68	303.3	1	0	4	4	0.39
YRC1927D	221716.46	776834.78	RC_DD	270	-68	303.3	2	260.3	262.5	2.2	0.76
YRC1927D	221716.46	776834.78	RC_DD	270	-68	303.3	2	277.7	279.7	2	0.53
YRC1927D	221716.46	776834.78	RC_DD	270	-68	303.3	7	284.9	291.3	6.4	1.18
YRC1928D	221789.84	776984.54	RC_DD	270	-59	342	1	68	72	4	0.21
YRC1928D	221789.84	776984.54	RC_DD	270	-59	342	3	335.6	338.1	2.5	2.34
YRC1929D	221793.3	776985.16	RC_DD	270	-68	360.1	1	12	16	4	0.53
YRC1929D	221793.3	776985.16	RC_DD	270	-68	360.1	6	238.9	243.5	4.65	1.02
YRC1929D	221793.3	776985.16	RC_DD	270	-68	360.1	4	245.6	248	2.4	0.9
YRC1929D	221793.3	776985.16	RC_DD	270	-68	360.1	9	261	268.9	7.9	0.49
YRC1929D	221793.3	776985.16	RC_DD	270	-68	360.1	2	328	330	2	2
YRC1929D	221793.3	776985.16	RC_DD	270	-68	360.1	12	337	348	11	1.21
	Including							342.6	348	5.4	2.16
YRC1929D	221793.3	776985.16	RC_DD	270	-68	360.1	3	353	355	2	1.97
YRC1938D	221721.76	776784.57	RC_DD	270	-63	297.5	2	0	8	8	0.38
YRC1938D	221721.76	776784.57	RC_DD	270	-63	297.5	1	44	48	4	0.75
YRC1938D	221721.76	776784.57	RC_DD	270	-63	297.5	1	64	68	4	0.43
YRC1938D	221721.76	776784.57	RC_DD	270	-63	297.5	5	281	286	5	3.5
YRC1939D	221716.49	776734.95	RC_DD	270	-55	296	2	0	8	8	0.29
YRC1939D	221716.49	776734.95	RC_DD	270	-55	296	4	257	261	4	2.1
YRC1939D	221716.49	776734.95	RC_DD	270	-55	296	5	285	290	5	0.35
YRC1940D	221701.83	776684.41	RC_DD	270	-66	288.4	2	0	8	8	0.48

Hole ID	East	North	Drill Type	Azimuth	Dip	Depth	No of samples	From	То	Width	Grade
YRC1940D	221701.83	776684.41	RC_DD	270	-66	288.4	3	132	135	3	0.76
YRC1940D	221701.83	776684.41	RC_DD	270	-66	288.4	4	183	187	4	1.36
YRC1940D	221701.83	776684.41	RC_DD	270	-66	288.4	6	273	279	6	0.53
YRC1943D	221779.59	776934.95	RC_DD	270	-66	348.2	2	0	8	8	0.28
YRC1943D	221779.59	776934.95	RC_DD	270	-66	348.2	1	28	32	4	0.51
YRC1943D	221779.59	776934.95	RC_DD	270	-66	348.2	1	40	44	4	0.22
YRC1943D	221779.59	776934.95	RC_DD	270	-66	348.2	5	104.2	109	4.8	0.56
YRC1943D	221779.59	776934.95	RC_DD	270	-66	348.2	2	284	286	2	0.44
YRC1943D	221779.59	776934.95	RC_DD	270	-66	348.2	2	308	310	2	0.46
YRC1943D	221779.59	776934.95	RC_DD	270	-66	348.2	15	313.1	326.4	13.3	1.44
	Including							314	320	6	2.29
YRC1943D	221779.59	776934.95	RC_DD	270	-66	348.2	13	329	341	12	2.01
YRC1945D	221782.44	776884.65	RC_DD	270	-64	341.2	1	0	4	4	0.52
YRC1945D	221782.44	776884.65	RC_DD	270	-64	341.2	2	290	292	2	1.42
YRC1945D	221782.44	776884.65	RC_DD	270	-64	341.2	7	305.8	312	6.2	4.62
YRC1945D	221782.44	776884.65	RC_DD	270	-64	341.2	9	324.8	332.2	7.4	2.51
	Including							327	331.6	4.6	3.64
YRC1946D	221717.4	776934.99	RC_DD	270	-70	291.8	4	267.6	270	2.4	4.69
YRC1946D	221717.4	776934.99	RC_DD	270	-70	291.8	17	275	291.8	16.8	2.72
	Including							276	282	6	5.26
	Including							285	288	3	3.69
YRC1947D	221715.51	776934.8	RC_DD	270	-65	294.4	1	0	4	4	0.23
YRC1947D	221715.51	776934.8	RC_DD	270	-65	294.4	2	125	127	2	0.21
YRC1947D	221715.51	776934.8	RC_DD	270	-65	294.4	17	270	286.2	16.2	5.58
YRC1947D	221715.51	776934.8	RC_DD	270	-65	294.4	4	289	293	4	0.23
YRC1948D	221648.15	776584.97	RC_DD	270	-65	243.2	1	28	32	4	0.62
YRC1948D	221648.15	776584.97	RC_DD	270	-65	243.2	1	36	40	4	0.24
YRC1948D	221648.15	776584.97	RC_DD	270	-65	243.2	2	77.6	80	2.4	0.58
YRC1948D	221648.15	776584.97	RC_DD	270	-65	243.2	2	97	99	2	0.21
YRC1948D	221648.15	776584.97	RC_DD	270	-65	243.2	6	225	231	6	1.56
YRC1950D	221656.25	776535.11	RC_DD	270	-52	270.6	3	24	36	12	0.59
YRC1950D	221656.25	776535.11	RC_DD	270	-52	270.6	9	239.6	247.6	8	0.43
YRC1950D	221656.25	776535.11	RC_DD	270	-52	270.6	2	262	264	2	0.23
YRC1963D	221762.89	777285.22	RC_DD	270	-66	310.2	1	20	24	4	0.47
YRC1963D	221762.89	777285.22	RC_DD	270	-66	310.2	6	290	296	6	4.18
YRC1989D	221646.97	776560.28	RC_DD	270	-58	258	1	0	4	4	0.27
YRC1989D	221646.97	776560.28	RC_DD	270	-58	258	2	60	68	8	11.42
YRC1989D	221646.97	776560.28	RC_DD	270	-58	258	4	134	138	4	0.66
YRC2019D	221700	776910	RC_DD	270	-50	299.8	2	159	161	2	0.33
YRC2019D	221700	776910	RC_DD	270	-50	299.8	17	268	283	15	3.49

Hole ID	East	North	Drill Type	Azimuth	Dip	Depth	No of samples	From	То	Width	Grade
YRC2044D	221701.26	776910.13	RC_DD	270	-55	293.8	2	90	92	2	1.09
YRC2044D	221701.26	776910.13	RC_DD	270	-55	293.8	14	271	284.6	13.6	1.68
	Including							278.4	284.6	6.2	2.99
YRC2045D	221707.41	776857.18	RC_DD	270	-55	290.8	2	271	273	2	4.36
YRC2045D	221707.41	776857.18	RC_DD	270	-55	290.8	5	278	283	5	3.44
YRC2046D	221631.7	776509.84	RC_DD	270	-51	260.9	1	0	4	4	0.24
YRC2046D	221631.7	776509.84	RC_DD	270	-51	260.9	1	12	16	4	0.58
YRC2046D	221631.7	776509.84	RC_DD	270	-51	260.9	4	180.4	184.8	4.4	0.34
YRC2046D	221631.7	776509.84	RC_DD	270	-51	260.9	3	210.3	213	2.7	0.2
YRC2046D	221631.7	776509.84	RC_DD	270	-51	260.9	8	224	232	8	0.53
YRC2046D	221631.7	776509.84	RC_DD	270	-51	260.9	18	235	253	18	1.19
YRC2047D	221644.7	776559.8	RC_DD	270	-52	254.8	1	0	4	4	0.23
YRC2047D	221644.7	776559.8	RC_DD	270	-52	254.8	4	56	72	16	3.39
	Including							68	72	4	10.75
YRC2047D	221644.7	776559.8	RC_DD	270	-52	254.8	4	138.3	142	3.7	3.11
YRC2047D	221644.7	776559.8	RC_DD	270	-52	254.8	7	226	233	7	0.52
YRC2047D	221644.7	776559.8	RC_DD	270	-52	254.8	5	236	241	5	1.33

Table 2.2: CMA Down-Dip Extension - drill holes and significant assays

Hole ID	East	North	Drill Type	Azimuth	Dip	Depth	No of samples	From	То	Width	Grade
YRC1850AD	222234.5	777335.2	RC_DD	270	-60	678.4	2	0	8	8	0.93
YRC1850AD	222234.5	777335.2	RC_DD	270	-60	678.4	1	76	80	4	0.25
YRC1850AD	222234.5	777335.2	RC_DD	270	-60	678.4	9	604	612	8	2.64
	Including						6	605	610	5	3.93
YRC1850AD	222234.5	777335.2	RC_DD	270	-60	678.4	7	625	632	7	2.52
	Including						4	628	632	4	3.98
YRC1850AD	222234.5	777335.2	RC_DD	270	-60	678.4	6	635	641	6	0.44
YRC1850AD	222234.5	777335.2	RC_DD	270	-60	678.4	2	653	655	2	1.37
YRC1850AD	222234.5	777335.2	RC_DD	270	-60	678.4	9	661	668	7	0.52
YRC1852D	222180.68	777135.16	RC_DD	270	-60	633.9	1	24	28	4	0.38
YRC1852D	222180.68	777135.16	RC_DD	270	-60	633.9	1	96	100	4	0.29
YRC1854D	222102.52	776934.69	RC_DD	270	-55	541.7	1	0	4	4	0.29
YRC1854D	222102.52	776934.69	RC_DD	270	-55	541.7	1	16	20	4	0.32
YRC1854D	222102.52	776934.69	RC_DD	270	-55	541.7	1	24	28	4	0.22
YRC1854D	222102.52	776934.69	RC_DD	270	-55	541.7	1	32	36	4	0.26
YRC1854D	222102.52	776934.69	RC_DD	270	-55	541.7	2	177	179	2	0.51
YRC1854D	222102.52	776934.69	RC_DD	270	-55	541.7	3	193	196	3	1.87
YRC1854D	222102.52	776934.69	RC_DD	270	-55	541.7	2	231	233	2	0.3
YRC1854D	222102.52	776934.69	RC_DD	270	-55	541.7	4	247	251	4.05	0.22
YRC1854D	222102.52	776934.69	RC_DD	270	-55	541.7	6	264	270	6	0.4
YRC1854D	222102.52	776934.69	RC_DD	270	-55	541.7	2	347	349	2	0.32
YRC1854D	222102.52	776934.69	RC_DD	270	-55	541.7	4	356	360	4	0.88
YRC1854D	222102.52	776934.69	RC_DD	270	-55	541.7	4	489	493	4	0.69
YRC1855AD	221973.92	777435.47	RC_DD	270	-60	486.2	1	48	52	4	0.24
YRC1855AD	221973.92	777435.47	RC_DD	270	-60	486.2	3	442	445	3	0.31
YRC1855AD	221973.92	777435.47	RC_DD	270	-60	486.2	12	450.4	461. 5	11.1	3.39
	Including						5	452	457	5	7.16
YRC1857D	221987.23	777535.06	RC_DD	270	-60	502.5	2	434	436	2	0.89
YRC1857D	221987.23	777535.06	RC_DD	270	-60	502.5	11	464	475	11	1.44
	Including						6	464	470	6	2.32
YRC1858D	221978.02	777635.2	RC_DD	270	-60	528.1	3	473	476	3	1.17
YRC1858D	221978.02	777635.2	RC_DD	270	-60	528.1	11	479	487	8	2.22
	Including						4	482	485	3	5.07
YRC1859D	221919.44	777734.92	RC_DD	270	-60	489.6	4	473	477	4	2.2
YRC1860D	222061.08	777735.27	RC_DD	270	-60	564.5	2	92	100	8	0.65
YRC1860D	222061.08	777735.27	RC_DD	270	-60	564.5	3	552	555	3	0.57
YRC1861D	222131.66	777635.59	RC_DD	270	-60	611.5	3	506	509	3	0.51
YRC1861D	222131.66	777635.59	RC_DD	270	-60	611.5	6	549	555	6	2.48
	Including						2	550	552	2	6.9

Hole ID	East	North	Drill Type	Azimuth	Dip	Depth	No of samples	From	То	Width	Grade
YRC1862D	222021.17	777234.97	RC_DD	270	-60	510.1	1	40	44	4	0.31
YRC1862D	222021.17	777234.97	RC_DD	270	-60	510.1	7	460	467	7	0.35
YRC1871D	222133.11	777535.1	RC_DD	270	-60	588.5	1	36	40	4	0.2
YRC1871D	222133.11	777535.1	RC_DD	270	-60	588.5	1	88	92	4	0.52
YRC1871D	222133.11	777535.1	RC_DD	270	-60	588.5	2	525	527	2	0.3
YRC1871D	222133.11	777535.1	RC_DD	270	-60	588.5	2	532	534	2	6.32
YRC1871D	222133.11	777535.1	RC_DD	270	-60	588.5	5	546	551	5	1.25
YRC1871D	222133.11	777535.1	RC_DD	270	-60	588.5	4	554	558	4	0.53
YRC2033D	222145.53	777432.85	RC_DD	270	-60	603.3	1	4	8	4	0.32
YRC2033D	222145.53	777432.85	RC_DD	270	-60	603.3	4	24	40	16	0.28
YRC2033D	222145.53	777432.85	RC_DD	270	-60	603.3	5	48	68	20	0.39
YRC2033D	222145.53	777432.85	RC_DD	270	-60	603.3	2	72	80	8	0.42
YRC2033D	222145.53	777432.85	RC_DD	270	-60	603.3	2	84	90	6	0.24
YRC2033D	222145.53	777432.85	RC_DD	270	-60	603.3	2	545	547	2	0.34
YRC2033D	222145.53	777432.85	RC_DD	270	-60	603.3	3	569.5	572	2.5	1
YRC2033D	222145.53	777432.85	RC_DD	270	-60	603.3	2	586	588	2	2.13
YRC2036D	222203.35	777735.18	RC_DD	270	-60	619.5	3	76	88	12	0.57
YRC2036D	222203.35	777735.18	RC_DD	270	-60	619.5	1	92	96	4	0.3
YRC2037D	222210.18	777534.99	RC_DD	270	-60	648.2	2	0	8	8	0.43

APPENDIX 3 – JORC TABLE 1 – YAOURÉ EXPLORATION

JORC 2012 Table 1 – Section 1 sampling techniques and data

(Criteria in this section apply to all succeeding sections)

Criteria	JORC Code Explanation	Commentary		
Sampling techniques	Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement	Drilling to define underground resources at CMA Lode commenced in July 2021 and is ongoing at the date of the report to which this table refers. Drilling completed in the period to 8 January 2022 comprises:		
	tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.).	5,675 metres of RC drilling and 16,689 metres of core drilling in 78 completed pre-collared diamond core holes, and		
	These examples should not be taken as	6.997 metres of RC drilling in 95 pre-collars drilled ahead of core drilling.		
	Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.	Drilling to test down-dip of the CMA Lode Inferred resource commenced in August 2021. Drilling completed in the period to 8 January 2022 comprises:		
		1,551 metres of RC drilling and 6,655 metres of core drilling in 16 completed pre-collared diamond core holes, and		
	Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information.	1,622 metres of RC drilling in 18 pre-collars drilled ahead of core drilling.		
m R W Si U W M fi m C C P M m M C C P M m M C C P M M M S Si U W Si V W Si V W Si V W Si V W Si V W Si Si V W Si Si V W Si Si V W Si Si V W Si Si V W Si Si Si C M Si Si Si Si Si Si Si Si Si Si Si Si Si		RC drilling used face-sampling hammers with 136mm hole diameter. Samples were collected at one metre intervals and logged visually for recovery, sample condition (dry, damp, wet) and contamination. Sample recoveries were measured by weighing bulk recovered samples. RC samples from pre-collars where mineralisation is not expected were normally composited to 4m intervals for assaying.		
		Diamond drilling utilised HQ triple-tube (61.1mm Ø) drilling in weathered materials and NQ2 (50.6mm Ø) or NQ (47.6mm Ø) core in fresh rock.		
	Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.).	RC drilling used face-sampling hammers with 136mm hole diameter. Samples were collected at one metre intervals. RC samples from pre-collars where mineralisation is not expected were normally composited to 4m intervals for assaying. Diamond drilling utilised HQ triple-tube (61.1mm Ø) drilling in weathered materials and NQ2 (50.6mm Ø) or NQ (47.6mm Ø) core in fresh rock. Core in fresh rock was oriented using a MAGSHOT II (Wellforce) and an ORISHOT II (Reflex) device.		
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples	RC drill samples were logged visually for sample condition (dry, damp, wet) and contamination. Sample recoveries were measured by weighing bulk recovered samples. Preliminary evaluation indicates that RC sample recoveries have been satisfactory. There were no wet samples logged in the CMA UG RC pre-collar holes.		
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	Diamond core recoveries were measured linearly per drill run. Core recoveries average approximately 85% in weathered materials and 100% in fresh rock.		
		The Competent Person considers that there are presently insufficient data available to permit a meaningful examination of potential relationships between sample recovery and gold grade.		
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral	Geological logs are available for the entire lengths of all drill holes. The logging is qualitative in nature.		
	Resource estimation, mining studies and metallurgical studies.	Sieved samples of RC chips from each metre of drilling were logged for colour, rock type, alteration type and intensity, vein quartz content, sulphide mineralisation, weathering and oxidation. The chips are stored in plastic chip		
	Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography.	trays and the trays photographed. Diamond drill core was logged for geology, structure and geotechnical		
	The total length and percentage of the relevant intersections logged.	characteristics. Geological logging included colour, lithology, weathering, oxidation, vein type and vein volume percentage, sulphide species and their estimated percentage, alteration and alteration intensity. Structural logging included fault, fold, cleavage and joint orientation, lithological contacts and vein orientations. Drill core was photographed prior to cutting.		

NEWS RELEASE | HIGH GRADE RESULTS CONTINUE AT YAOURÉ GOLD MINE

Criteria	JORC Code Explanation	Commentary		
Sub- sampling techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or	RC drill samples were collected at drill sites over one metre intervals and manually split using multi-stage riffle splitters to produce assay sub-samples averaging around 3kg. All RC holes have been assayed in entirety. RC samples from pre-collars where mineralisation is not expected were normally composited to 4m intervals for assaying. In weathered materials, diamond core was halved using spatulas or knives. In		
	dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique.	fresh rock, core was sawn in half using a diamond blade saw, with one half sent for assaying and the other half stored in core trays for reference. Samples were normally taken at 1 metre intervals. For CMA underground resource definition holes, only core intervals with visible alteration and mineralisation plus approximately 10m up- and down-hole were sampled. For exploration		
	sub-sampling stages to maximise representivity of samples.	All sample preparation has been undertaken at Perseus's Yaouré sample		
	Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled.	Preparation of core and RC samples followed a standard path of drying at 105 degrees C for at least 12 hours, crushing the entire sample to 85% passing - 2mm and grinding a 1.5kg split to 85% passing 75 microns. 300g pulp subsamples are selected by multiple scoop passes.		
		Quality control measures adopted to confirm the representivity of samples from RC and diamond drilling include:		
		• Field re-splits of RC samples at an average frequency of around one duplicate per 20 primary samples respectively.		
		 Submission of coarse blanks at an average of around 1 blank per 20 primary samples 		
		• Use of quartz wash between every sample in crushing and pulverising equipment		
		• Screening of approximately 1:20 pulp samples to check grind size		
		Sample preparation techniques are considered appropriate to the style of mineralisation. Available information indicates that sample sizes are appropriate to the grain size of the material being sampled.		
Quality of assay data and laboratory	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	All RC and diamond core samples have been assayed by 50g fire assay with AAS determination by Intertek Testing Services Ghana at their Tarkwa assay laboratory or by Bureau Veritas at their Abidjan laboratory. The technique is considered a total extraction technique.		
tests	For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model,	Quality control procedures include submission of coarse blanks (1:20) and certified reference standards (1:20). The available information indicates that the assaying of RC and core samples is free from any similiant biases and is of accentable accuracy.		
	reading times, calibrations factors applied and their derivation, etc.			
	Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.			
Verification of sampling and	The verification of significant intersections by either independent or alternative company personnel.	Numerous significant mineralised intersections have been checked against visual alteration and sulphide mineralisation in drill chips and core.		
ana assaying	The use of twinned holes.	None of the holes in the report to which this table relates have been deliberately twinned.		
	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	Geology, structure and geotechnical logs are paper based. Sample intervals are recorded in pre-numbered sample ticket books. All logging, sample interval and survey data are manually entered to digital form on site and stored in an acQuire relational database. Data exports are pormally in the		
	Discuss any adjustment to assay data.	form of MS Access files.		
		Data verification procedures include automated checks to:		
		prevent repetition of sample numbers		
		• prevent overlap of from-to intervals in logging and sample interval data		
		• ensure that total hole depths in collar, assay and geology tables match		

Criteria	JORC Code Explanation	Commentary		
		 ensure that drill collar coordinates are within the project's geographic limits 		
		Down-hole survey data are examined for large deviations in dip or azimuth that may represent erroneous data or data entry errors and corrected on a case-by-case basis including estimates of dips and azimuths where the original data appear to be in error.		
		Additional data checks include viewing drill hole traces, geological logging and assays in plan and section views.		
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	Drill hole collars have been surveyed by qualified mine surveyors using differential GPS equipment with coordinates recorded in UTM grid, WGS84 Zone 30N datum. All RC and diamond core holes have been surveyed at 12m depth and at		
	Specification of the grid system used.	A topographic surface has been established by a LiDAR suprov conducted in		
	Quality and adequacy of topographic control.	2017. The topographic surface is reliable to +/- 0.2m.		
		Topographic control is adequate for the current work being undertaken at Yaouré.		
Data spacing	Data spacing for reporting of Exploration Results.	The CMA Lode is delineated by regular drilling at 50mN x 25mE spaced holes to between 150 and 200 metres below natural surface. Partial coverage at		
and distribution	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	Holes have generally been drilled dipping at -55 to -75 degrees toward 270 degrees (UTM grid) azimuth.		
	Whether sample compositing has been applied.			
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	Drill holes are oriented approximately orthogonal to the dip and strike of the CMA Lode. Drill intercept lengths closely approximate true widths of mineralisation. The relationship between drill intercept lengths and true widths of mineralisation in the CMA East Seismic Target area is not known at the time of this report.		
	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.			
Sample security	The measures taken to ensure sample security.	RC and core samples were delivered to the secure core yard compound at Yaouré mine by Perseus personnel. RC field sample splits and samples of half diamond core were placed in numbered bags and those bags, in turn, placed into polywoven sacks that were closed with plastic cable ties prior to transport to the Yaouré sample preparation facility by Perseus personnel. Security guards were employed at drilling sites, the core yard compound and the sample preparation facility on a 24 hour per day basis.		
		Results of field duplicates along with the general consistency of assay results between neighbouring drill holes and drilling methods provide confidence in the general reliability of the assay data.		
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	The Yaouré sample preparation facility has previously been subject to formal audit, the last being in 2017. Standard operating procedures have not changed materially since that audit.		
		The Competent Person has reviewed the available sampling and assaying quality control data and found no errors or bias likely to significantly affect the reliability of the exploration data. These reviews included review of database consistency, comparisons between database records and laboratory source files, and review of QAQC information.		
		The Competent Person considers that the sample preparation, security and analytical procedures adopted for the CMA resource drilling provide an adequate basis for the reporting of Exploration Results.		

JORC 2012 Table 1 – Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section)

Criteria	JORC Code explanation	Commentary				
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	The drill holes discussed in the report to which this table relates are located within the Yaouré exploitation permit (PE50). The permit has an expiry date of 23 April 2030. The permit is held by Perseus's subsidiary Perseus Mining Yaouré SA in which the government of Côte d'Ivoire holds 10% free carried interest. Additionally, the Government of Côte d'Ivoire is entitled to a royalty on nett revenue (revenue minus transport and refining costs) as follows:				
		Spot price per ounce - London PM Fix	Royalty Rate			
		Less than or equal to US\$1,000	3%			
		Higher than US\$1,000 and less than or equal to US\$1,300	3.5%			
		Higher than US\$1,300 and less than or equal to US\$1,600	4%			
		Higher than US\$1,600 and less than or equal to US\$2,000	5%			
		Higher than US\$2,000	6%			
		A further 0.5% of nett revenue is required to be paid to a local codevelopment fund.	ommunity			
		The reported exploration areas have no known exploratio environmental liabilities.	on-specific			
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	Exploration geochemical sampling, trenching and exploration and definition drilling have previously been carried out by BRGM, Cluff ar Drill hole data deriving from work by Cluff and Amara are considered	resource nd Amara. d reliable.			
Geology Deposit type, geological setting and sty of mineralisation.		Yaouré may be described as orogenic lode-style gold mineralisa Yaouré project comprises two adjacent deposits, Yaouré and CMA, t near the south-eastern flank of the Bouaflé greenstone belt in cer d'Ivoire. Mineralisation is hosted by Paleoproterozoic aged metaba felsic intrusive rocks of the Birimian Supergroup. The r metamorphosed to lower greenschist facies and only locally penetrative deformation fabrics.	tion. The that occur ntral Côte asalts and ocks are y feature			
		In both deposits, gold is associated with disseminated pyrite. At CMA deposit, mineralisation is associated with quartz-albite-carbonate veining in reverse fault structures that dip at 25 to 35 degrees to the east. Yaouré deposit comprises several mineralisation styles controlled by east-dipping structures, similar to CMA, in addition to mineralisation associated with quartz-tourmaline-chlorite-carbonate veining controlled by NE and NW striking, subvertical faults and also stockwork quartz veins with associated alteration selvages hosted by a granodiorite intrusive body.				
		The combined deposits extend over an area around 1.4 km east we km north-south.	est by 2.1			

NEWS RELEASE | HIGH GRADE RESULTS CONTINUE AT YAOURÉ GOLD MINE

Criteria	JORC Code explanation	Commentary
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	A table of drill hole and intercept details is included in the report to which this table relates.
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated.	The cut-off grade, minimum down-hole length and maximum included internal waste are clearly stated in the report to which this table relates. Higher-grade "included" intercepts are clearly reported. Drill hole intercepts have not been reported as metal equivalents.
Relationship between mineralization widths and intercept lengths Diagrams	These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known'). Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	The geometry of the CMA Lode has been clearly demonstrated by previous drilling. The lengths of drill intercepts of that structure in the report to which this table relates closely approximate true widths. The relationship between drill intercept lengths and true widths of mineralisation in the CMA East Seismic Target is not known at the time of this report . Appropriate plans and sections are included in the report to which this table relates.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	Holes that did not intercept significant mineralisation are shown on plans and cross-sections and "NSI" holes are included in tables of intercepts.

NEWS RELEASE | HIGH GRADE RESULTS CONTINUE AT YAOURÉ GOLD MINE

Criteria	JORC Code explanation	Commentary				
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	 The Yaouré property has been subject to extensive exploration, including: Soil sampling, surface mapping Approximately 300,000 metres of drilling Previous mining by <i>Compagnie Miniere d'Afrique</i> (CMA) and Cluff Mining Airborne EM, gravity, radiometrics and magnetic surveys 2D & 3D seismic surveys. The CMA Lode is presently being exploited by open pit mining.				
Further work	The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	Perseus intends to continue drilling at CMA to delineate an Indicated Mineral Resource and to undertake such studies as are required to complete an economic evaluation of material that may be exploited by underground mining.				