

Large Bodies of Shallow Uranium Mineralisation Delineated at Koppies

Key Highlights:

- Resource definition drilling recently completed at Koppies has confirmed continuity of shallow, calcrete hosted uranium mineralisation.
- **558** holes for 4,701 metres drilled in Koppies resource program.
- Significant intersections include:

KR0234	8 m at 768 ppm eU_3O_8 from 4 m
KOR0200	6 m at 796 ppm eU₃O₅ from 6 m
KR0378	9 m at 415 ppm eU₃O₅ from 1 m
KR0386	11 m at 319 ppm eU₃O₅ from 1 m
KR0224	10 m at 319 ppm eU₃O₅ from 6 m

- Uranium mineralisation remains open to east and south.
- Program focused on drilling the Koppies I and II deposits at 100 m x 100 m to provide input for maiden Mineral Resource Estimates anticipated to be completed in the March Quarter 2022.

Elevate Uranium Limited ("Elevate Uranium", or the "Company") (ASX:EL8) (OTC:ELVUF) is pleased to announce results of the resource definition drilling program recently completed at the Koppies project in the Erongo Region of Namibia.

Elevate Uranium's Managing Director, Murray Hill, commented:

"The resource definition drilling program has confirmed continuity of shallow, calcrete hosted uranium mineralisation within broad palaeochannels. The drilling has produced excellent results and we look forward to reporting a maiden resource estimate, expected to be completed in the March Quarter 2022.

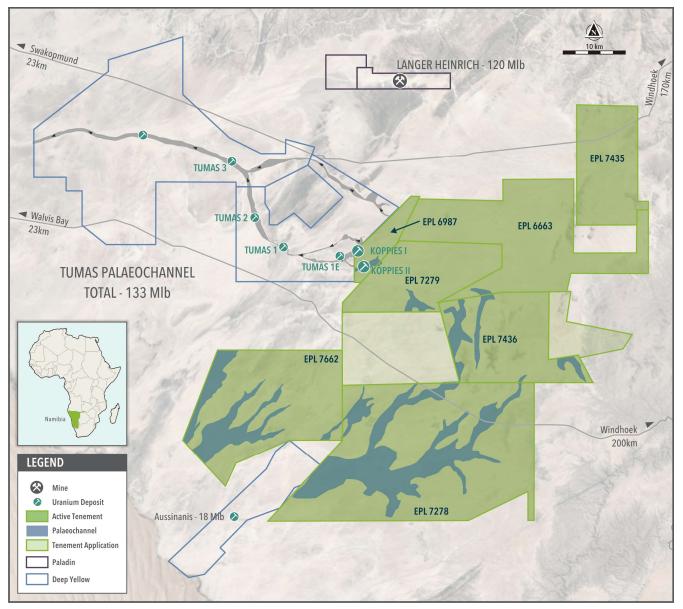
We continue to be excited about further extensions to the Koppies palaeochannels and potential for additional mineralisation."

RESOURCE DRILLING

The Koppies drilling program was designed to define, at a nominal hole spacing of 100 m x 100 m, uranium mineralisation previously discovered by Elevate Uranium.

Drilling with a reverse circulation rig operated by RC Drilling Namibia concluded in December 2021. In this latest program, 111 holes for 935 m were completed at Koppies I and 447 holes for 3,766 m at

Koppies II. Including the discovery drill holes, the aggregate number of holes drilled at Koppies I is 129 (1,153 m) and Koppies II 523 (4,590 m).


Downhole gamma logging was the principal means of grade estimation, with selected samples chemically assayed. Mineralised downhole gamma intersections greater than 100 ppm eU_3O_8 are summarised in Table 1. The composite values are based on a cut-off grade of 100 ppm eU_3O_8 with a maximum of 1 m internal waste. The details of all drill holes from the resource definition program are provided in Table 2.

The data from this program will be incorporated into a maiden mineral resource estimate, which is underway and expected to be completed in the March Quarter 2022.

DEPOSIT GEOLOGY

The Koppies I and Koppies II deposits are contained within the same palaeochannel system as Deep Yellow Ltd's Tumas 1 East deposit (Figures 1).

Figure 1 Location of the Koppies deposits with respect to Elevate Uranium's large tenement holding in the Namib Area.

Uranium mineralisation has been intersected over at least 3 km of the Koppies I palaeochannel which bifurcates into northern and southern segments, both of which remain open to the east. The palaeochannel is typically between 10 and 15 m deep. There are two, 4 to 5 m thick mineralised zones in the western part of the Koppies I deposit at depths of approximately 1 - 2 and 7 m below the surface

The much larger Koppies II deposit is situated 2 km south of Koppies I. The main part of the Koppies II palaeochannel system is quite shallow, less than 15 m generally, but has a cumulative extent of over 6.5 km and remains open to the east and south. Mineralisation forms a 6 - 7 m thick body, at a depth of 3 m below the surface (Figure 3). Some areas of the Koppies II palaeochannel have a distinct cover of 1 to 2 m of unconsolidated sand which is probably related to the current ephemeral drainage.

The uranium in both palaeochannels mainly occurs in calcrete and is expected to be amenable to processing with Elevate Uranium's **U-pgrade™** uranium beneficiation process.

Figure 2 Koppies I section 527800mE.

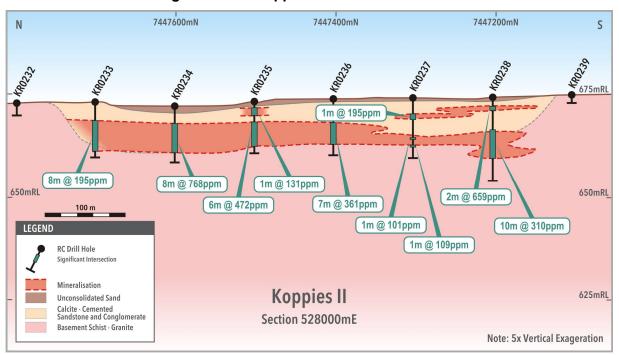


Figure 3 Koppies II section 528000mE.

Considerable exploration potential remains at the Koppies tenement, and it is planned to explore the prospective parts of the tenement with frequency-domain electromagnetic ground surveys and additional drilling in 2022.

Authorisation

Authorised for release by the Board of Elevate Uranium Ltd.

Contact: Managing Director – Murray Hill T: +61 8 6555 1816 E: <u>murray.hill@elevateuranium.com.au</u>

Competent Persons Statement – General Exploration Sign-Off

The information in this announcement as it relates to exploration results, interpretations and conclusions was compiled by Dr Andy Wilde. Dr Wilde is a Fellow of the Australasian Institute of Mining and Metallurgy and a Chartered Professional Geologist and a fellow of the AIG and registered professional geoscientist. Dr Wilde, who is an employee of the Company, has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking, to qualify as a Competent Person as defined in the 2012 edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (JORC 2012). Dr Wilde consents to the inclusion of the information in the form and context in which it appears.

Drill Hole	From (m)	To (m)	Interval (m)	eU₃O₅ Grade (ppm)		
KOR0100	18	19	1	208		
KOR0181	2	6	4	180		
KOR0181	8	9	1	115		
KOR0187	6	10	4	254		
KOR0188	7	14	7	173		
KOR0189	2	3	1	217		
and	7	11	4	141		
KOR0193	3	8	5	154		
and	10	11	1	156		
KOR0194	1	5	4	137		
and	6	9	3	154		
KOR0195	4	6	2	181		
KOR0196	4	5	1	169		
and	8	9	1	225		
KOR0197	5	9	4	175		
KOR0199	3	4	1	144		
and	6	12	6	226		
KOR0200	6	12	6	796		
KOR0201	7	8	1	130		
and	11	13	2	111		
KOR0202	2	8	6	198		
KOR0247	1	3	2	152		
KOR0248	1	2	1	145		
KOR0249	2	4	2	120		
and	8	14	6	337		
KOR0250	7	14	7	425		
KOR0252	1	4	3	182		
KOR0255	10	17	7	212		
KOR0256	7	9	2	106		
KOR0260	12	15	3	309		
KOR0261	16	17	1	234		
KOR0302	5	6	1	167		
KOR0303	2	4	2	156		
KOR0310	1	8	7	207		
and	10	13	3	279		
KOR0327	5	6	1	113		
KOR0332	1	8	7	145		

Table 1 Significant Downhole Gamma Results

Drill Hole	From (m)	To (m)	Interval (m)	eU₃O₅ Grade (ppm)
KR0001	3	5	2	176
KR0002	1	7	6	156
and	9	14	5	247
KR0003	2	4	2	179
and	9	14	5	195
KR0004	1	5	4	141
KR0006	1	3	2	135
and	5	12	7	222
KR0007	1	5	4	172
and	9	14	5	305
KR0008	1	3	2	137
and	5	8	3	228
KR0009	1	3	2	159
and	6	13	7	263
KR0011	2	4	2	131
and	8	13	5	567
KR0013	1	2	1	407
and	6	13	7	286
KR0014	2	3	1	205
and	8	14	6	444
KR0015	1	3	2	178
and	7	13	6	288
KR0016	1	5	4	125
and	8	15	7	447
KR0017	1	5	4	119
and	9	14	5	421
KR0018	2	5	3	129
KR0019	3	5	2	122
and	8	12	4	525
KR0020	5	7	2	175
KR0021	7	12	5	400
KR0023	1	4	3	149
and	5	10	5	340
KR0024	1	5	4	153
and	6	11	5	348
KR0025	1	2	1	110
KR0026	2	5	3	229
and	8	14	6	299

Drill Hole	From (m)	To (m)	Interval (m)	eU₃O₅ Grade (ppm)
and	16	18	2	121
KR0030	7	14	7	239
KR0031	3	14	11	227
KR0036	9	16	7	267
KR0037	1	4	3	246
and	8	15	7	327
KR0043	4	5	1	666
and	7	9	2	282
and	10	18	8	193
KR0045	4	5	1	116
KR0049	11	18	7	214
KR0053	5	6	1	118
and	11	17	6	244
KR0054	4	5	1	106
KR0056	2	3	1	115
KR0063	11	18	7	261
KR0077	2	9	7	228
and	13	16	3	133
KR0078	9	13	4	219
KR0084	2	3	1	127
KR0091	3	5	2	290
KR0196	2	6	4	127
and	9	11	2	193
KR0197	2	4	2	202
and	8	11	3	227
KR0198	3	11	8	174
KR0199	3	11	8	137
KR0200	3	7	4	149
KR0201	1	6	5	142
KR0202	1	5	4	118
and	7	13	6	143
KR0203	6	12	6	136
KR0208	5	9	4	150
KR0209	3	8	5	265
KR0210	2	7	5	233
and	9	11	2	178
KR0211	4	10	6	205
KR0213	1	5	4	278

Drill Hole	From (m)	To (m)	Interval (m)	eU₃O₅ Grade (ppm)
and	8	9	1	122
KR0214	3	5	2	101
and	8	12	4	210
KR0215	10	13	3	351
KR0218	5	12	7	147
KR0219	3	8	5	119
and	10	13	3	224
KR0220	3	11	8	210
KR0221	1	2	1	119
and	6	8	2	323
KR0222	3	10	7	156
KR0223	5	12	7	159
and	15	16	1	184
KR0224	6	16	10	319
and	18	19	1	114
KR0225	9	16	7	208
KR0227	1	3	2	334
KR0233	5	13	8	195
KR0234	4	12	8	768
KR0235	2	3	1	131
and	5	11	6	472
KR0236	5	12	7	361
KR0237	4	5	1	195
and	7	8	1	101
and	11	12	1	109
KR0238	2	4	2	659
and	8	18	10	310
KR0248	6	7	1	104
KR0249	1	12	11	179
KR0250	4	7	3	200
KR0251	11	14	3	213
KR0252	4	6	2	264
and	11	12	1	106
KR0253	8	10	2	116
and	12	15	3	165
KR0254	8	16	8	211
KR0255	2	4	2	182
KR0258	3	4	1	180

Drill Hole	From (m)	To (m)	Interval (m)	eU₃O₅ Grade (ppm)
KR0264	6	10	4	185
and	13	15	2	140
KR0265	4	10	6	325
KR0266	5	8	3	141
and	11	13	2	120
KR0267	2	5	3	110
and	11	13	2	234
KR0268	9	13	4	194
KR0269	2	3	1	104
KR0270	1	2	1	126
and	13	14	1	131
KR0271	4	5	1	128
KR0272	9	12	3	191
and	14	15	1	113
KR0273	7	10	3	323
KR0278	4	11	7	155
KR0279	4	10	6	180
KR0280	3	13	10	295
KR0281	2	10	8	378
KR0282	1	5	4	253
KR0284	8	14	6	239
KR0285	3	4	1	107
and	9	10	1	152
and	12	14	2	332
KR0286	12	14	2	236
KR0287	9	12	3	267
KR0288	8	12	4	274
KR0289	1	3	2	162
and	7	13	6	304
KR0291	9	12	3	181
KR0292	2	4	2	130
KR0293	2	4	2	255
KR0295	2	4	2	116
KR0297	2	3	1	108
and	8	12	4	161
KR0298	3	6	3	483
and	13	15	2	104
KR0299	10	15	5	244

Drill Hole	From (m)	To (m)	Interval (m)	eU₃O₅ Grade (ppm)
KR0300	11	12	1	158
KR0301	7	14	7	193
KR0302	10	12	2	175
KR0306	8	12	4	212
and	14	15	1	118
KR0309	2	4	2	163
KR0310	2	9	7	167
KR0313	1	3	2	118
KR0314	2	3	1	216
and	7	13	6	252
KR0315	2	5	3	295
and	11	15	4	229
KR0316	3	6	3	269
and	11	15	4	185
KR0317	2	5	3	111
and	6	7	1	159
and	9	11	2	127
and	13	15	2	227
KR0318	9	12	3	297
KR0319	1	3	2	106
and	8	12	4	171
KR0324	1	5	4	579
and	8	11	3	166
KR0325	9	14	5	146
KR0331	1	3	2	141
and	4	14	10	185
KR0332	1	4	3	892
and	8	12	4	141
KR0333	5	11	6	157
KR0334	1	2	1	181
and	4	6	2	127
and	12	14	2	138
KR0335	8	10	2	123
KR0336	9	15	6	230
KR0337	2	4	2	190
and	9	14	5	153
KR0338	1	4	3	383
and	8	16	8	163

Drill Hole	From (m)	To (m)	Interval (m)	eU₃O₅ Grade (ppm)
KR0339	7	12	5	220
KR0340	7	10	3	114
KR0343	6	10	4	147
KR0349	1	3	2	114
KR0350	1	2	1	259
KR0351	2	5	3	146
and	8	11	3	149
KR0352	1	3	2	118
KR0353	2	3	1	149
and	6	12	6	124
KR0354	1	6	5	216
and	12	13	1	160
KR0355	9	13	4	178
KR0357	9	12	3	138
KR0358	1	4	3	110
and	7	10	3	182
KR0360	8	9	1	108
KR0367	2	4	2	198
KR0368	2	4	2	124
KR0369	1	6	5	146
KR0370	1	5	4	130
and	7	13	6	190
KR0371	1	2	1	148
and	6	8	2	124
KR0372	2	6	4	214
and	8	11	3	272
KR0373	4	5	1	109
and	7	12	5	145
KR0374	9	12	3	292
KR0375	3	4	1	136
KR0377	10	13	3	163
KR0378	1	10	9	415
KR0379	2	3	1	130
KR0380	5	8	3	138
KR0385	1	6	5	324
KR0386	1	12	11	319
KR0387	2	4	2	103
and	9	12	3	153

Drill Hole	From (m)	To (m)	Interval (m)	eU₃O₅ Grade (ppm)
KR0388	5	10	5	197
KR0389	3	8	5	152
KR0391	2	6	4	237
and	8	12	4	154
KR0393	6	7	1	184
and	9	13	4	157
KR0394	8	10	2	196
KR0395	8	10	2	188
KR0396	8	10	2	117
KR0398	3	7	4	246
KR0401	7	8	1	115
KR0402	1	5	4	149
KR0404	3	4	1	143
KR0406	4	7	3	140
KR0407	4	5	1	191
and	6	10	4	128
KR0408	2	4	2	128
and	6	8	2	141
KR0410	3	6	3	110
KR0412	11	12	1	114
KR0413	5	6	1	107
KR0415	8	9	1	188
and	11	12	1	256
KR0416	1	3	2	303
and	5	10	5	139
KR0419	1	3	2	105
and	8	9	1	111
and	12	13	1	104
KR0425	1	7	6	120
KR0426	4	7	3	175
KR0427	1	2	1	111
and	5	10	5	254
KR0428	1	3	2	106
and	7	9	2	192
KR0439	1	5	4	136
KR0440	7	12	5	189
KR0441	2	6	4	141
KR0442	3	9	6	197

Drill Hole	From (m)	To (m)	Interval (m)	eU₃O₅ Grade (ppm)
KR0443	4	9	5	194
KR0444	4	8	4	187
KR0446	1	9	8	163
KR0450	6	7	1	140
KR0451	5	6	1	167
KR0456	1	5	4	151
KR0457	2	10	8	136
KR0458	4	5	1	104
and	7	8	1	210
KR0462	4	8	4	234
and	10	11	1	123
KR0463	3	8	5	173
KR0469	5	11	6	253
KR0470	4	8	4	173
and	10	14	4	122
KR0476	2	3	1	122
KR0477	5	7	2	119
KR0478	7	8	1	123
KR0479	7	8	1	174
KR0480	5	8	3	136
KR0481	4	8	4	152
KR0482	8	9	1	116
KR0483	1	3	2	119
KR0491	6	7	1	123
KR0493	7	9	2	151
and	12	18	6	295
KR0494	6	9	3	162
KR0495	7	9	2	179
KR0496	7	8	1	114
KR0498	4	9	5	149
KR0499	1	2	1	123
KR0501	3	4	1	141
and	6	7	1	100
KR0510	2	3	1	740
and	12	13	1	169
KR0516	9	12	3	130
KR0522	4	5	1	102
KR0523	10	11	1	137

Drill Hole	From (m)	To (m)	Interval (m)	eU₃O₅ Grade (ppm)
KR0529	13	15	2	171
KR0532	4	10	6	153

	I able	2 100				
Drill Hole	East	North	RL (m)	Hole Depth (m)	Azimuth	Dip
KOR0098	531100	7447450	709	20	0	-90
KOR0099	531100	7447375	709	18	0	-90
KOR0100	531200	7447400	711	21	0	-90
KOR0168	530900	7448700	705	2	0	-90
KOR0169	530900	7448800	705	4	0	-90
KOR0170	530100	7448200	698	4	0	-90
KOR0171	530100	7448400	697	2	0	-90
KOR0172	530100	7448500	696	2	0	-90
KOR0173	531300	7448400	712	2	0	-90
KOR0174	531300	7448500	712	8	0	-90
KOR0175	530500	7447700	703	15	0	-90
KOR0176	530900	7447800	709	2	0	-90
KOR0177	530900	7447700	710	2	0	-90
KOR0178	530900	7447600	709	16	0	-90
KOR0179	531300	7447800	714	2	0	-90
KOR0180	530100	7447800	700	4	0	-90
KOR0181	528500	7447900	679	10	0	-90
KOR0182	528500	7448000	680	10	0	-90
KOR0183	528900	7446300	687	2	0	-90
KOR0184	528900	7446400	688	7	0	-90
KOR0185	528900	7446500	687	6	0	-90
KOR0186	528900	7448100	685	3	0	-90
KOR0187	528900	7448200	684	12	0	-90
KOR0188	528900	7448300	684	16	0	-90
KOR0189	528900	7448400	683	12	0	-90
KOR0190	528900	7448500	683	2	0	-90
KOR0191	528900	7448600	682	2	0	-90
KOR0192	529300	7446300	693	10	0	-90
KOR0193	529300	7446400	693	14	0	-90
KOR0194	529300	7446500	692	10	0	-90
KOR0195	529300	7446600	691	10	0	-90
KOR0196	529300	7446700	690	9	0	-90
KOR0197	529300	7446800	690	12	0	-90
KOR0198	529300	7446900	691	6	0	-90
KOR0199	529700	7446700	694	12	0	-90
KOR0200	529700	7446800	695	15	0	-90
KOR0201	529700	7446900	696	18	0	-90

Table 2	Koppies Drill Hole Locations
Table 2	Koppies Drill Hole Locations

Drill Hole	East	North	RL (m)	Hole Depth (m)	Azimuth	Dip
KOR0202	529700	7447000	696	11	0	-90
KOR0203	530100	7447900	698	10	0	-90
KOR0204	530100	7448000	698	12	0	-90
KOR0205	530100	7448100	698	13	0	-90
KOR0206	530500	7448000	704	5	0	-90
KOR0207	530500	7448100	703	6	0	-90
KOR0208	530500	7448200	703	16	0	-90
KOR0209	530500	7448300	702	2	0	-90
KOR0210	530500	7448400	702	2	0	-90
KOR0211	530500	7448500	701	2	0	-90
KOR0212	530500	7448600	700	2	0	-90
KOR0213	530500	7448700	701	2	0	-90
KOR0214	530900	7448000	708	3	0	-90
KOR0215	530900	7448100	709	19	0	-90
KOR0216	530900	7448200	707	3	0	-90
KOR0217	530900	7448300	707	13	0	-90
KOR0218	530900	7448400	707	8	0	-90
KOR0220	530900	7449000	705	3	0	-90
KOR0221	531300	7447900	713	3	0	-90
KOR0222	531300	7448000	713	2	0	-90
KOR0223	531300	7448100	713	2	0	-90
KOR0224	531300	7448200	713	13	0	-90
KOR0225	531300	7448300	712	2	0	-90
KOR0226	531300	7448900	710	2	0	-90
KOR0227	531300	7449000	709	2	0	-90
KOR0247	527700	7449800	666	9	0	-90
KOR0248	527700	7449700	666	4	0	-90
KOR0249	527700	7449600	664	19	0	-90
KOR0250	527700	7449500	665	18	0	-90
KOR0252	528100	7450100	669	12	0	-90
KOR0253	528100	7450000	670	2	0	-90
KOR0254	528100	7449800	671	3	0	-90
KOR0255	528100	7449400	672	23	0	-90
KOR0256	528100	7449300	670	9	0	-90
KOR0257	528100	7449200	670	6	0	-90
KOR0258	528100	7447900	675	2	0	-90
KOR0259	528100	7447800	676	2	0	-90
KOR0260	528500	7449900	676	17	0	-90

Drill Hole	East	North	RL (m)	Hole Depth (m)	Azimuth	Dip
KOR0261	528500	7449800	677	20	0	-90
KOR0262	528500	7449700	676	2	0	-90
KOR0263	528500	7449500	677	2	0	-90
KOR0264	528500	7448100	679	3	0	-90
KOR0267	528900	7446600	685	6	0	-90
KOR0269	529300	7446200	694	2	0	-90
KOR0270	529300	7446100	694	7	0	-90
KOR0271	529300	7446000	694	4	0	-90
KOR0273	529700	7447300	696	2	0	-90
KOR0274	529700	7447200	696	2	0	-90
KOR0276	530100	7448300	698	2	0	-90
KOR0277	530100	7447700	699	2	0	-90
KOR0278	530100	7447600	698	17	0	-90
KOR0279	530100	7447400	701	2	0	-90
KOR0280	530100	7447300	701	6	0	-90
KOR0281	530100	7447200	702	2	0	-90
KOR0282	530500	7447900	704	8	0	-90
KOR0283	530500	7447800	705	3	0	-90
KOR0285	530900	7448600	706	2	0	-90
KOR0286	530900	7448500	706	3	0	-90
KOR0287	530900	7447900	709	7	0	-90
KOR0288	530900	7447400	709	8	0	-90
KOR0289	530900	7447300	710	7	0	-90
KOR0292	531300	7448600	712	2	0	-90
KOR0293	531300	7447700	714	3	0	-90
KOR0294	531300	7447600	715	4	0	-90
KOR0295	531300	7447500	715	12	0	-90
KOR0299	528100	7446700	676	2	0	-90
KOR0300	528100	7446600	676	4	0	-90
KOR0301	528500	7446600	680	2	0	-90
KOR0302	528500	7446700	681	6	0	-90
KOR0303	528100	7448000	674	6	0	-90
KOR0304	528900	7448000	684	2	0	-90
KOR0305	528900	7447900	684	2	0	-90
KOR0306	528900	7447800	684	2	0	-90
KOR0307	529700	7448000	693	3	0	-90
KOR0307A	529698	7448006	693	9	0	-90
KOR0308	527700	7449300	665	2	0	-90

Drill Hole	East	North	RL (m)	Hole Depth (m)	Azimuth	Dip
KOR0310	528100	7450200	670	15	0	-90
KOR0311	528100	7449700	669	2	0	-90
KOR0316	528100	7448100	674	4	0	-90
KOR0317	528100	7448200	673	4	0	-90
KOR0318	528100	7446500	676	4	0	-90
KOR0319	528100	7446400	676	4	0	-90
KOR0320	528100	7446300	677	4	0	-90
KOR0324	528500	7450000	675	4	0	-90
KOR0325	528500	7448200	678	4	0	-90
KOR0326	528500	7446500	681	4	0	-90
KOR0327	528500	7446400	682	9	0	-90
KOR0328	528500	7446300	682	4	0	-90
KOR0332	529700	7448100	693	14	0	-90
KOR0333	529700	7446600	694	4	0	-90
KR0001	527500	7449400	664	8	0	-90
KR0002	527500	7449500	663	19	0	-90
KR0003	527500	7449600	662	18	0	-90
KR0004	527500	7449700	663	9	0	-90
KR0005	527600	7449400	666	6	0	-90
KR0006	527600	7449500	664	19	0	-90
KR0007	527600	7449600	663	19	0	-90
KR0008	527600	7449700	664	10	0	-90
KR0009	527600	7449800	665	15	0	-90
KR0010	527700	7449400	667	3	0	-90
KR0011	527700	7449900	666	16	0	-90
KR0012	527800	7449300	666	3	0	-90
KR0013	527800	7449400	666	19	0	-90
KR0014	527800	7449500	667	16	0	-90
KR0015	527800	7449600	665	16	0	-90
KR0016	527800	7449700	667	18	0	-90
KR0017	527800	7449800	667	20	0	-90
KR0018	527800	7449900	667	6	0	-90
KR0019	527800	7450000	668	15	0	-90
KR0020	527900	7449300	667	9	0	-90
KR0021	527900	7449400	667	20	0	-90
KR0022	527900	7449500	668	4	0	-90
KR0023	527900	7449600	667	12	0	-90
KR0024	527900	7449700	668	12	0	-90

Drill Hole	East	North	RL (m)	Hole Depth (m)	Azimuth	Dip
KR0025	527900	7449800	669	4	0	-90
KR0026	527900	7449900	669	21	0	-90
KR0027	527900	7450000	668	4	0	-90
KR0028	527900	7450100	667	4	0	-90
KR0029	528000	7449200	669	4	0	-90
KR0030	528000	7449300	669	16	0	-90
KR0031	528000	7449400	669	19	0	-90
KR0032	528000	7449500	670	3	0	-90
KR0034	528000	7449700	668	4	0	-90
KR0035	528000	7449800	670	4	0	-90
KR0036	528000	7449900	670	19	0	-90
KR0037	528000	7450000	669	19	0	-90
KR0038	528000	7450100	668	4	0	-90
KR0039	528000	7450200	668	4	0	-90
KR0040	528100	7449100	672	3	0	-90
KR0041	528100	7449500	672	3	0	-90
KR0042	528100	7449600	669	3	0	-90
KR0043	528100	7449900	671	20	0	-90
KR0045	528100	7450300	670	6	0	-90
KR0046	528200	7449100	672	2	0	-90
KR0047	528200	7449200	671	3	0	-90
KR0048	528200	7449300	672	7	0	-90
KR0049	528200	7449400	674	24	0	-90
KR0050	528200	7449500	673	3	0	-90
KR0051	528200	7449600	672	3	0	-90
KR0052	528200	7449700	670	3	0	-90
KR0053	528200	7449800	673	20	0	-90
KR0054	528200	7449900	673	6	0	-90
KR0055	528200	7450000	671	4	0	-90
KR0056	528200	7450100	671	5	0	-90
KR0057	528200	7450200	671	4	0	-90
KR0058	528200	7450300	672	4	0	-90
KR0059	528300	7449000	675	3	0	-90
KR0060	528300	7449100	673	3	0	-90
KR0061	528300	7449200	673	3	0	-90
KR0062	528300	7449300	675	4	0	-90
KR0063	528300	7449400	675	21	0	-90
KR0064	528300	7449500	674	3	0	-90

Drill Hole	East	North	RL (m)	Hole Depth (m)	Azimuth	Dip
KR0065	528300	7449600	674	3	0	-90
KR0066	528300	7449700	672	4	0	-90
KR0067	528300	7449800	674	3	0	-90
KR0068	528300	7449900	674	3	0	-90
KR0069	528300	7450000	672	4	0	-90
KR0070	528300	7450100	672	4	0	-90
KR0071	528300	7450200	673	4	0	-90
KR0072	528300	7450300	674	4	0	-90
KR0073	528400	7449000	676	3	0	-90
KR0074	528400	7449100	674	3	0	-90
KR0075	528400	7449200	676	3	0	-90
KR0076	528400	7449300	676	3	0	-90
KR0077	528400	7449400	676	20	0	-90
KR0078	528400	7449500	675	15	0	-90
KR0079	528400	7449600	675	3	0	-90
KR0080	528400	7449700	673	18	0	-90
KR0081	528400	7449800	675	3	0	-90
KR0082	528400	7449900	675	3	0	-90
KR0083	528400	7450000	674	4	0	-90
KR0084	528400	7450100	673	6	0	-90
KR0085	528400	7450200	674	2	0	-90
KR0086	528500	7449000	677	3	0	-90
KR0087	528500	7449400	677	3	0	-90
KR0088	528500	7449600	677	7	0	-90
KR0089	528600	7449700	677	3	0	-90
KR0090	528600	7449800	678	3	0	-90
KR0091	528600	7449900	678	8	0	-90
KR0092	528600	7450000	677	2	0	-90
KR0093	528700	7449800	679	4	0	-90
KR0094	528700	7449900	679	4	0	-90
KR0095	527500	7449300	663	3	0	-90
KR0195	527600	7447901	668	3	0	-90
KR0196	527600	7447801	668	14	0	-90
KR0197	527600	7447701	669	13	0	-90
KR0198	527600	7447601	669	13	0	-90
KR0199	527600	7447501	670	13	0	-90
KR0200	527600	7447401	670	13	0	-90
KR0201	527600	7447301	670	9	0	-90

Drill Hole	East	North	RL (m)	Hole Depth (m)	Azimuth	Dip
KR0202	527600	7447201	670	16	0	-90
KR0203	527600	7447101	671	14	0	-90
KR0204	527700	7446699	671	5	0	-90
KR0205	527700	7446599	671	2	0	-90
KR0206	527700	7446500	671	1	0	-90
KR0207	527800	7447901	672	3	0	-90
KR0208	527800	7447801	673	11	0	-90
KR0209	527800	7447701	671	12	0	-90
KR0210	527800	7447601	672	14	0	-90
KR0211	527800	7447501	672	12	0	-90
KR0212	527800	7447401	673	6	0	-90
KR0213	527800	7447301	673	11	0	-90
KR0214	527800	7447201	673	16	0	-90
KR0215	527800	7447101	673	17	0	-90
KR0216	527900	7448001	672	2	0	-90
KR0217	527900	7447901	673	2	0	-90
KR0218	527900	7447801	674	16	0	-90
KR0219	527900	7447701	673	15	0	-90
KR0220	527900	7447601	672	13	0	-90
KR0221	527900	7447501	673	12	0	-90
KR0222	527900	7447401	674	12	0	-90
KR0223	527900	7447301	674	18	0	-90
KR0224	527900	7447201	674	26	0	-90
KR0225	527900	7447101	675	18	0	-90
KR0226	527900	7447001	674	7	0	-90
KR0227	527900	7446901	674	5	0	-90
KR0228	527900	7446801	675	2	0	-90
KR0229	528000	7448101	673	2	0	-90
KR0230	528000	7448001	673	2	0	-90
KR0231	528000	7447901	675	7	0	-90
KR0232	528000	7447801	675	3	0	-90
KR0233	528000	7447701	675	14	0	-90
KR0234	528000	7447601	674	14	0	-90
KR0235	528000	7447501	675	13	0	-90
KR0236	528000	7447401	675	15	0	-90
KR0237	528000	7447301	675	16	0	-90
KR0238	528000	7447201	675	22	0	-90
KR0239	528000	7447101	676	2	0	-90

Drill Hole	East	North	RL (m)	Hole Depth (m)	Azimuth	Dip
KR0240	528000	7447001	676	2	0	-90
KR0241	528000	7446901	676	3	0	-90
KR0242	528000	7446801	677	2	0	-90
KR0243	528200	7448200	675	2	0	-90
KR0244	528200	7448101	676	3	0	-90
KR0245	528200	7448001	675	2	0	-90
KR0246	528200	7447901	676	3	0	-90
KR0247	528200	7447801	676	2	0	-90
KR0248	528200	7447701	677	9	0	-90
KR0249	528200	7447601	676	14	0	-90
KR0250	528200	7447501	676	12	0	-90
KR0251	528200	7447401	678	16	0	-90
KR0252	528200	7447301	678	16	0	-90
KR0253	528200	7447201	678	17	0	-90
KR0254	528200	7447101	679	19	0	-90
KR0255	528200	7447001	679	10	0	-90
KR0256	528200	7446901	679	10	0	-90
KR0257	528200	7446801	678	2	0	-90
KR0258	528200	7446701	677	6	0	-90
KR0259	528300	7448200	676	3	0	-90
KR0260	528300	7448101	677	2	0	-90
KR0261	528300	7448001	677	4	0	-90
KR0262	528300	7447901	677	4	0	-90
KR0263	528300	7447801	677	6	0	-90
KR0264	528300	7447701	679	17	0	-90
KR0265	528300	7447601	677	14	0	-90
KR0266	528300	7447501	678	16	0	-90
KR0267	528300	7447401	679	15	0	-90
KR0268	528300	7447301	680	16	0	-90
KR0269	528300	7447201	680	15	0	-90
KR0270	528300	7447101	680	18	0	-90
KR0271	528300	7447001	680	11	0	-90
KR0272	528300	7446901	681	16	0	-90
KR0273	528300	7446801	679	15	0	-90
KR0274	528300	7446701	678	4	0	-90
KR0275	528400	7448200	677	2	0	-90
KR0276	528400	7448101	677	2	0	-90
KR0277	528400	7448001	678	4	0	-90

Drill Hole	East	North	RL (m)	Hole Depth (m)	Azimuth	Dip
KR0278	528400	7447901	678	13	0	-90
KR0279	528400	7447801	678	13	0	-90
KR0280	528400	7447701	679	16	0	-90
KR0281	528400	7447601	678	12	0	-90
KR0282	528400	7447501	679	9	0	-90
KR0283	528400	7447401	680	9	0	-90
KR0284	528400	7447301	681	18	0	-90
KR0285	528400	7447201	681	22	0	-90
KR0286	528400	7447101	681	16	0	-90
KR0287	528400	7447001	682	16	0	-90
KR0288	528400	7446901	682	14	0	-90
KR0289	528400	7446801	680	16	0	-90
KR0290	528400	7446701	680	4	0	-90
KR0291	528600	7448101	681	16	0	-90
KR0292	528600	7448001	681	6	0	-90
KR0293	528600	7447901	680	5	0	-90
KR0294	528600	7447801	680	2	0	-90
KR0295	528600	7447701	681	6	0	-90
KR0296	528600	7447601	681	2	0	-90
KR0297	528600	7447401	682	14	0	-90
KR0298	528600	7447301	683	16	0	-90
KR0299	528600	7447201	683	18	0	-90
KR0300	528600	7447101	684	16	0	-90
KR0301	528600	7447001	684	16	0	-90
KR0302	528600	7446901	684	16	0	-90
KR0303	528600	7446801	682	4	0	-90
KR0304	528600	7446701	682	4	0	-90
KR0305	528700	7448301	681	2	0	-90
KR0306	528700	7448201	681	15	0	-90
KR0307	528700	7448101	682	4	0	-90
KR0308	528700	7448001	682	2	0	-90
KR0309	528700	7447901	681	7	0	-90
KR0310	528700	7447801	682	10	0	-90
KR0311	528700	7447701	682	4	0	-90
KR0312	528700	7447601	682	4	0	-90
KR0313	528700	7447501	682	5	0	-90
KR0314	528700	7447401	683	19	0	-90
KR0315	528700	7447301	685	17	0	-90

Drill Hole	East	North	RL (m)	Hole Depth (m)	Azimuth	Dip
KR0316	528700	7447201	685	18	0	-90
KR0317	528700	7447101	685	18	0	-90
KR0318	528700	7447001	685	18	0	-90
KR0319	528700	7446901	684	16	0	-90
KR0320	528700	7446801	683	11	0	-90
KR0321	528700	7446701	683	4	0	-90
KR0322	528800	7448501	682	2	0	-90
KR0323	528800	7448401	682	2	0	-90
KR0324	528800	7448301	683	14	0	-90
KR0325	528800	7448201	682	14	0	-90
KR0326	528800	7448101	683	3	0	-90
KR0327	528800	7448001	684	3	0	-90
KR0328	528800	7447901	682	2	0	-90
KR0329	528800	7447801	682	2	0	-90
KR0330	528800	7447701	683	2	0	-90
KR0331	528800	7447601	683	14	0	-90
KR0332	528800	7447501	683	14	0	-90
KR0333	528800	7447401	684	13	0	-90
KR0334	528800	7447301	685	17	0	-90
KR0335	528800	7447201	686	10	0	-90
KR0336	528800	7447101	686	17	0	-90
KR0337	528800	7447001	686	16	0	-90
KR0338	528800	7446901	685	19	0	-90
KR0339	528800	7446801	684	15	0	-90
KR0340	528800	7446701	684	12	0	-90
KR0341	529000	7448601	684	2	0	-90
KR0342	529000	7448501	684	2	0	-90
KR0343	529000	7448401	684	13	0	-90
KR0344	529000	7448301	684	2	0	-90
KR0345	529000	7448201	685	2	0	-90
KR0346	529000	7448101	686	2	0	-90
KR0347	529000	7448001	686	2	0	-90
KR0348	529000	7447901	685	2	0	-90
KR0349	529000	7447801	685	6	0	-90
KR0350	529000	7447701	685	6	0	-90
KR0351	529000	7447601	686	14	0	-90
KR0352	529000	7447501	686	7	0	-90
KR0353	529000	7447401	686	15	0	-90

Drill Hole	East	North	RL (m)	Hole Depth (m)	Azimuth	Dip
KR0354	529000	7447301	687	15	0	-90
KR0355	529000	7447201	688	16	0	-90
KR0356	529000	7447101	688	10	0	-90
KR0357	529000	7447001	688	15	0	-90
KR0358	529000	7446901	686	15	0	-90
KR0359	529000	7446801	687	15	0	-90
KR0360	529000	7446701	687	12	0	-90
KR0361	529100	7448601	685	2	0	-90
KR0362	529100	7448501	685	2	0	-90
KR0363	529100	7448401	685	7	0	-90
KR0364	529100	7448301	685	2	0	-90
KR0365	529100	7448201	686	2	0	-90
KR0366	529100	7448101	687	4	0	-90
KR0367	529100	7448001	687	6	0	-90
KR0368	529100	7447901	686	6	0	-90
KR0369	529100	7447801	686	8	0	-90
KR0370	529100	7447701	686	15	0	-90
KR0371	529100	7447601	687	14	0	-90
KR0372	529100	7447501	687	14	0	-90
KR0373	529100	7447401	687	15	0	-90
KR0374	529100	7447301	688	14	0	-90
KR0375	529100	7447201	689	10	0	-90
KR0376	529100	7447101	690	4	0	-90
KR0377	529100	7447001	689	16	0	-90
KR0378	529100	7446901	687	16	0	-90
KR0379	529100	7446801	688	9	0	-90
KR0380	529100	7446701	688	10	0	-90
KR0381	529100	7446601	688	3	0	-90
KR0382	529100	7446501	690	2	0	-90
KR0383	529100	7446401	690	3	0	-90
KR0384	529200	7447901	688	3	0	-90
KR0385	529200	7447801	688	9	0	-90
KR0386	529200	7447701	688	14	0	-90
KR0387	529200	7447601	688	14	0	-90
KR0388	529200	7447501	688	13	0	-90
KR0389	529200	7447401	689	11	0	-90
KR0390	529200	7447301	689	4	0	-90
KR0391	529200	7447201	689	15	0	-90

Drill Hole	East	North	RL (m)	Hole Depth (m)	Azimuth	Dip
KR0392	529200	7447101	691	3	0	-90
KR0393	529200	7447001	691	16	0	-90
KR0394	529200	7446901	689	16	0	-90
KR0395	529200	7446801	689	14	0	-90
KR0396	529200	7446701	689	16	0	-90
KR0397	529200	7446601	689	4	0	-90
KR0398	529200	7446501	691	10	0	-90
KR0399	529200	7446401	691	4	0	-90
KR0400	529200	7446301	692	4	0	-90
KR0401	529200	7446201	692	10	0	-90
KR0402	529400	7448001	690	6	0	-90
KR0403	529400	7447901	691	2	0	-90
KR0404	529400	7447801	691	8	0	-90
KR0405	529400	7447701	690	2	0	-90
KR0406	529400	7447601	690	14	0	-90
KR0407	529400	7447501	691	15	0	-90
KR0408	529400	7447401	691	14	0	-90
KR0409	529400	7447301	692	2	0	-90
KR0410	529400	7447201	692	8	0	-90
KR0411	529400	7447101	693	2	0	-90
KR0412	529400	7447001	694	13	0	-90
KR0413	529400	7446901	692	7	0	-90
KR0414	529400	7446801	691	9	0	-90
KR0415	529400	7446701	691	16	0	-90
KR0416	529400	7446601	692	17	0	-90
KR0417	529400	7446501	693	4	0	-90
KR0418	529400	7446401	695	2	0	-90
KR0419	529400	7446301	695	16	0	-90
KR0420	529400	7446201	696	3	0	-90
KR0421	529500	7448101	690	2	0	-90
KR0422	529500	7448001	690	2	0	-90
KR0423	529500	7447901	692	4	0	-90
KR0424	529500	7447801	692	2	0	-90
KR0425	529500	7447701	692	15	0	-90
KR0426	529500	7447601	691	14	0	-90
KR0427	529500	7447501	691	11	0	-90
KR0428	529500	7447401	692	11	0	-90
KR0429	529500	7447301	693	2	0	-90

Drill Hole	East	North	RL (m)	Hole Depth (m)	Azimuth	Dip
KR0430	529500	7447201	693	3	0	-90
KR0431	529500	7447101	693	4	0	-90
KR0432	529500	7447001	695	7	0	-90
KR0433	529500	7446901	694	8	0	-90
KR0434	529500	7446801	692	16	0	-90
KR0435	529500	7446701	692	9	0	-90
KR0436	529600	7448201	691	3	0	-90
KR0437	529600	7448101	691	2	0	-90
KR0438	529600	7448001	691	2	0	-90
KR0439	529600	7447901	693	8	0	-90
KR0440	529600	7447801	693	15	0	-90
KR0441	529600	7447701	693	14	0	-90
KR0442	529600	7447601	692	15	0	-90
KR0443	529600	7447501	692	15	0	-90
KR0444	529600	7447401	693	12	0	-90
KR0445	529600	7447301	695	2	0	-90
KR0446	529600	7447201	694	13	0	-90
KR0447	529600	7447101	694	4	0	-90
KR0448	529600	7447001	695	8	0	-90
KR0449	529600	7446901	695	4	0	-90
KR0450	529600	7446801	693	16	0	-90
KR0451	529600	7446701	693	12	0	-90
KR0452	529600	7446601	694	2	0	-90
KR0453	529700	7448300	692	2	0	-90
KR0454	529700	7448201	693	3	0	-90
KR0455	529700	7447100	696	2	0	-90
KR0456	529800	7448300	693	7	0	-90
KR0457	529800	7448201	694	12	0	-90
KR0458	529800	7448101	694	11	0	-90
KR0459	529800	7448001	694	12	0	-90
KR0460	529800	7447901	694	13	0	-90
KR0461	529800	7447801	696	16	0	-90
KR0462	529800	7447701	696	17	0	-90
KR0463	529800	7447601	694	16	0	-90
KR0464	529800	7447501	696	2	0	-90
KR0465	529800	7447401	696	4	0	-90
KR0466	529800	7447301	697	2	0	-90
KR0467	529800	7447201	698	2	0	-90

Drill Hole	East	North	RL (m)	Hole Depth (m)	Azimuth	Dip
KR0468	529800	7447101	697	3	0	-90
KR0469	529800	7447001	697	13	0	-90
KR0470	529800	7446901	698	15	0	-90
KR0471	529800	7446801	697	3	0	-90
KR0472	529800	7446701	697	4	0	-90
KR0473	529800	7446601	696	7	0	-90
KR0474	529900	7448300	695	2	0	-90
KR0475	529900	7448201	695	2	0	-90
KR0476	529900	7448101	695	5	0	-90
KR0477	529900	7448001	695	10	0	-90
KR0478	529900	7447901	695	12	0	-90
KR0479	529900	7447801	697	13	0	-90
KR0480	529900	7447701	697	15	0	-90
KR0481	529900	7447601	696	16	0	-90
KR0482	529900	7447501	697	15	0	-90
KR0483	529900	7447401	697	12	0	-90
KR0484	529900	7447301	699	2	0	-90
KR0485	529900	7447101	698	4	0	-90
KR0486	529900	7447001	699	12	0	-90
KR0487	529900	7446901	700	3	0	-90
KR0488	529900	7446801	700	2	0	-90
KR0489	529900	7446701	699	2	0	-90
KR0490	529900	7446601	697	4	0	-90
KR0491	530000	7448300	696	9	0	-90
KR0492	530000	7448199	697	2	0	-90
KR0493	530000	7448100	697	18	0	-90
KR0494	530000	7448001	697	11	0	-90
KR0495	530000	7447901	697	11	0	-90
KR0496	530000	7447801	698	11	0	-90
KR0497	530000	7447701	698	2	0	-90
KR0498	530000	7447601	696	16	0	-90
KR0499	530000	7447501	698	16	0	-90
KR0500	530000	7447401	699	2	0	-90
KR0501	530000	7447301	699	8	0	-90
KR0502	530000	7447101	700	2	0	-90
KR0503	530000	7447001	700	2	0	-90
KR0504	530000	7446901	701	2	0	-90
KR0505	530000	7446801	701	2	0	-90

Drill Hole	East	North	RL (m)	Hole Depth (m)	Azimuth	Dip
KR0506	530000	7446701	700	2	0	-90
KR0507	530000	7446601	699	2	0	-90
KR0508	530200	7447801	701	2	0	-90
KR0509	530200	7447701	700	2	0	-90
KR0510	530200	7447601	699	19	0	-90
KR0511	530200	7447501	701	2	0	-90
KR0512	530200	7447401	702	2	0	-90
KR0513	530200	7447301	703	3	0	-90
KR0514	530300	7447801	702	7	0	-90
KR0515	530300	7447701	700	15	0	-90
KR0516	530300	7447601	701	18	0	-90
KR0517	530300	7447501	702	6	0	-90
KR0518	530300	7447401	704	3	0	-90
KR0519	530300	7447301	705	2	0	-90
KR0520	530400	7447801	704	2	0	-90
KR0521	530400	7447701	702	15	0	-90
KR0522	530400	7447601	702	16	0	-90
KR0523	530400	7447501	702	18	0	-90
KR0524	530400	7447401	704	8	0	-90
KR0525	530400	7447301	706	2	0	-90
KR0526	530600	7447801	706	2	0	-90
KR0527	530600	7447701	705	2	0	-90
KR0528	530600	7447601	703	7	0	-90
KR0529	530600	7447501	705	20	0	-90
KR0530	530600	7447401	706	3	0	-90
KR0531	530600	7447301	708	2	0	-90
KR0532	528600	7448201	680	12	0	-90

JORC Code, 2012 Edition – Table 1

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. 	 In most holes uranium grade was estimated using downhole gamma probes. Some early holes used wet chemical analysis at a commercial laboratory and wet chemical analysis was used throughout to check the downhole gamma grades.
	• Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.	• Gamma probes provide an estimate of uranium grade in a volume extending approximately 1 m from the hole and thus provide much greater representivity than wet chemical samples which represent a much smaller fraction of this volume. Gamma probes were calibrated at the Pelindaba facility in South Africa and at the Husab mine in Namibia.
	• Aspects of the determination of mineralisation that are Material to the Public Report.	 Gamma data (as counts per second) from calibrated probes are converted into equivalent uranium values (eU₃O₈) using appropriate calibration and casing factors. Gamma probes can overestimate uranium grade if high thorium is present or if disequilibrium exists between uranium and its daughters. Neither is thought to be an issue here, although samples will be submitted for analysis of disequilibrium.
	 In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	
Drilling techniques	• Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	 Reverse circulation percussion (RC) is the main drilling technique used. Hole diameter is approximately 70 mm. Holes are relatively shallow (generally <20 m) and vertical, therefore downhole dip and azimuth were not recorded. Early holes (prefix "KP") used the rotary

Criteria	JORC Code explanation	Commentary
		air blast (RAB) technique.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. 	 Bags containing 1 m of chip samples were weighed at the rig and weights recorded. The nominal weight of a 1 m sample is 25 kg and recovery is assessed using the ratio of actual to ideal sample weight. None.
	• Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	• In most cases grade is derived from gamma measurement and sample bias is not an issue. There is a possibility that some very fine uranium is lost during drilling, and this will be investigated by twinning some RC holes with diamond holes in a later campaign.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. 	 Chip samples are visually logged to a basic level of detail. Parameters recorded include lithology, colour, sample condition (i.e. wet or dry) and total gamma count using a handheld scintillometer. This level of detail is suitable for a mineral resource estimate which will differentiate between palaeochannel and basement-hosted mineralisation.
	 Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. 	Logging is qualitative. No photographs are taken.
	The total length and percentage of the relevant intersections logged.	All samples were logged.
Sub- sampling	 If core, whether cut or sawn and whether quarter, half or all core taken. 	 No core was obtained for this drilling program.
techniques and sample preparation	 If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. 	• 1 m RC chips were subsampled to approximately 1 kg using a 3-way riffle splitter mounted on the RC rig. A second 1 kg sample was collected as a field duplicate and reference sample. Nearly all samples were dry.
	 For all sample types, the nature, quality and appropriateness of the sample preparation technique. 	 Samples for geochemical analysis were shipped to Intertek's preparation laboratory at Tschudi for crushing and grinding.
	 Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. 	 Certified reference material, duplicate samples and blank samples were submitted at a rate of 1 per 20.
	 Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. 	 Comparison of analyses of 1 kg field duplicate samples suggests that the mineralisation is somewhat nuggetty, however this is overcome by the use of gamma logging which measures a significantly larger volume.
	• Whether sample sizes are appropriate to the grain size of the material being sampled.	
Quality of assay data and	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. 	 Samples were analysed at Intertek's state of the art facility in Perth, Australia using a sodium hydroxide fusion and ICP-MS finish which measures total uranium content of the samples. This method produces precise and accurate data and has no known issues with

Criteria	JORC Code explanation	Commentary
laboratory		respect to uranium analysis.
tests	 For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 The gamma probes used were checked against assays by logging drill holes at the nearby Hirabeb project for which the Company has geochemical assays. The correlation between assays and derived equivalent uranium values is considered to be acceptable. Review of the company's QA/QC sampling and analysis confirms that the analytical program has provided data with good analytical precision and accuracy. No external laboratory (i.e. umpire) checks have been undertaken.
Verification of sampling and	 The verification of significant intersections by either independent or alternative company personnel. 	 Comparison of downhole gamma and wet chemical grades has confirmed significant intersections. No external verification has been undertaken to date.
assaying	The use of twinned holes.	Twinned holes were not used.
	 Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. 	• Downhole gamma data are provided as LAS files by the company's geophysical logging contractor which are imported into the company's hosted Datashed 5 database where eU_3O_8 is calculated automatically. Data are stored on a secure server maintained by the database consultants, with data made available online.
	 Discuss any adjustment to assay data. 	No adjustment undertaken.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. 	 Most collar locations were fixed using a handheld GPS unit. The KP series holes were surveyed using a differential GPS system. RL's were based on a Worldview 3 DEM and are accurate to better than 50 cm. No downhole surveys were undertaken.
	Specification of the grid system used.	• The grid system is Universal transverse mercator, zone 33S (WGS 84 datum).
	Quality and adequacy of topographic control.	 Topographic control is provided by a digital elevation model derived from Worldview 3 imagery and is accurate to approximately 50 cm.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. 	• The early stages of this program were exploratory in nature and used a variety of drill spacings. In the latter stages holes were drilled on a consistent 100 m x 100 m grid.
	• Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	 A 100 m spacing is sufficient to demonstrate continuity of mineralisation.
	Whether sample compositing has been applied.	• Gamma measurements are taken every 10 cm downhole. These 10 cm measurements are composited to 1 m intervals.
Orientation of data in	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering 	 Uranium mineralisation is distributed in moderately continuous horizontal layers. Holes are drilled vertically.

Criteria	JORC Code explanation	Commentary
relation to geological structure	 the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	
Sample security	The measures taken to ensure sample security.	 Samples at the drill rig are placed into plastic bags and transported from the drill site to a contract transport company in Swakopmund for transfer to the Genalysis Intertek sample preparation facility in Tschudi. A second split (field duplicate) is placed into plastic bags and transported to Elevate's storage shed in Swakopmund by company personnel where it is kept under lock and key. Upon completion of the preparation work the remainder of the drill chip sample bags for each hole are packed into crates and then stored in Elevate's dedicated sample storage shed in Swakopmund. Upon completion of the assay work the remainder of the drill chip sample bags for each hole will be packed back into crates and then stored in Elevate's dedicated sample storage shed in Swakopmund.
Audits or reviews	• The results of any audits or reviews of sampling techniques and data.	No audits have been undertaken.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
<i>Mineral tenement and land tenure status</i>	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. 	• The Exploration Results relate to exclusive prospecting licence EPL6987 "Koppies" owned 100% by the company and granted on 10 April 2019. The EPL is located within the Namib Naukluft National Park in Namibia. There are no known impediments to the project.
	• The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	• The EPL was granted to Manmar Investments One Eight Two (Pty) Ltd on 16 May 2019, but subsequently transferred to Marenica Ventures Pty Ltd a 100%-owned subsidiary company of Elevate Uranium. The EPL is due for renewal on 6 April 2022. A renewal application has been lodged.
Exploration done by other parties	 Acknowledgment and appraisal of exploration by other parties. 	 General Mining is known to have previously explored the area covered by the tenement in the late 1970's, however the results of this work are poorly documented but did include completion of a small number of drillholes.
Geology	Deposit type, geological setting and style of mineralisation.	Uranium mineralisation occurs as secondary carnotite enrichment in

Criteria	JORC Code explanation	Commentary
		calcretised palaeochannel and sheet wash sediments and adjacent weathered bedrock. Uranium mineralisation is surficial, strata bound and hosted by Cenozoic and possibly Tertiary sediments, which include from top to bottom scree sand, gypcrete, calcareous sand and calcrete. The majority of the mineralisation is hosted in calcrete. Locally, the underlying weathered Proterozoic bedrock is occasionally also mineralised.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	 558 holes for a total of 4,701 m have been drilled at Koppies I and II. All holes were drilled vertically and intersections measured present true thicknesses. Table 2 lists all the drill hole locations. Table 1 lists intersections greater than 100 ppm eU₃O₈ over 1 m.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. 	The reported grades have not been cut.
	 Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. 	 All grade intervals are arithmetic averages over the stated interval. Stated intersections in Table 1 can include up to 1 m of internal waste.
	 The assumptions used for any reporting of metal equivalent values should be clearly stated. 	Not relevant.
Relationship between mineralisatio n widths and	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. 	 The mineralisation is sub-horizontal and all drilling vertical, therefore, mineralised intercepts are considered to represent true widths.
intercept lengths	 If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	Not relevant.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of 	 Maps and sections are included in the text.

Criteria	JORC Code explanation	Commentary
	drill hole collar locations and appropriate sectional views.	
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	 Comprehensive reporting of all Exploration Results from this drilling program are detailed in this announcement.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	 Previous HLEM and Airborne EM survey results have been reported. No other work has been completed on the tenement by the Company Previous HLEM and Airborne EM survey results have been reported.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Mineral resource estimate and further exploration involving ground geophysics and drilling. See text.