ASX ANNOUNCEMENT 25 January 2022 # ASSAYS CONFIRM VERY HIGH GOLD GRADES – INCLUDING 1M OVER 100g/t Au – AT ABERCROMBY - BMG has received assay results for the 1m samples from the most recent RC drilling at Abercromby - A number of very wide intercepts have been highlighted, punctuated by some very high gold grades: - o 6m @ 19.8gpt from 83m (21ABRC007), incl 1m @ 100.39gpt from 83m - 34m @ 1.26gpt Au from 143m (21ABRC007) - o 5m @ 3.97gpt Au from 238m (21ABRC007) - o 60m @ 1.46gpt Au from 127m (21ABRC005), incl 19m @ 2.87gpt from 159m - o 50m @ 1.08gpt Au from 101m (21ABRC003), incl 4m @ 8.61gpt from 123m - o 33m @ 1.38gpt Au from 233m (21ABRC004), incl 12m @ 2.47gpt from 250m - o 35m @ 1.07gpt Au from 19m (21ABRC019), incl 13m @ 1.98gpt from 39m - o 2m @ 6.47gpt from 80m (21ABRC019) - o 25m @ 1.15gpt Au from 218m (21ABRC006), incl 9m @ 1.99gpt from 223m - The results are broadly consistent with and confirm the previously announced 4m composite sampling refer ASX announcement on 19 October 2021 - Extensional and infill diamond drilling at the Capital Prospect continues - Aircore drilling of high-priority sub-audio magnetic targets underway Western Australian gold explorer BMG Resources Limited (**ASX: BMG**) (**BMG** or the **Company**) is pleased to report that it has received all outstanding assay results for the reverse circulation (RC) drilling program which was completed in 2021 at its Abercromby Gold Project in the north-eastern Goldfields of WA. These new assays confirm and build upon results reported on 19 October 2021, when preliminary 4m composite results were made public. The 1m assay results are, however, more significant due to their higher level of sample quality and collection rigour, and are considered more definitive in assay determination for downhole sampling. The 1m assays illustrate wide, continuous zones of gold mineralisation at Abercromby, inclusive of extremely high grades. #### **BMG Managing Director Bruce McCracken said:** "The 1m results complete the story on the RC drilling completed in mid to late 2021 and supersede preliminary results of the 4m samples already announced. The 2021 RC program has succeeded in delivering some fantastic intercepts in what were gaps in the existing dataset. "As indicated previously, the RC drilling has identified a new eastern lode which has not been previously intersected by historical drilling. This is an exciting development that opens up an area for a sizeable extension of the potential resource envelope at Capital. "Step-out drilling to the north of the Capital Prospect continues to intersect gold mineralisation, which provides encouragement that the high-grade mineralisation at Capital extends continuously for a further 500m to the Capital North Prospect – potentially significantly increasing the strike of mineralisation and suggesting a much larger mineral system. "We are delighted by the increased resolution the 1m sampling has given, especially where individual assays of over 100qpt Au are returned. "We're excited by the results to date and the drilling programs underway, and look forward to pressing ahead in the coming year." #### **Significant Gold Intersections Confirmed** The previously announced laboratory assays for the RC drilling were on the basis of 4m composite samples, refer ASX release 19 October 2021. The 1m RC drill sample assays now received have confirmed the outstanding high-grade gold intercepts that were indicated by the 4m composite sampling and are set out below. For full details of the RC drill holes and assay results refer to the tables in Schedule 1. Selected results on a hole-by-hole basis for the returned assays from Abercromby are shown below: - 6m @ 19.8gpt from 83m (21ABRC007), incl 1m @ 100.39gpt from 83m - **34m @ 1.26gpt** Au from 143m (21ABRC007) - 5m @ 3.97gpt Au from 238m (21ABRC007) - 60m @ 1.46gpt Au from 127m (21ABRC005), incl 19m @ 2.87gpt from 159m - 50m @ 1.08gpt Au from 101m (21ABRC003), incl 4m @ 8.61gpt from 123m - 33m @ 1.38gpt Au from 233m (21ABRC004), incl 12m @ 2.47gpt from 250m - **35m @ 1.07gpt** Au from 19m (21ABRC019), incl **13m @ 1.98gpt** from 39m - **2m @ 6.47gpt** from 80m (21ABRC019) - 25m @ 1.15gpt Au from 218m (21ABRC006), incl 9m @ 1.99gpt from 223m While the current drilling program is ongoing with the diamond drilling (DD) phase yet to be completed, these RC results have confirmed extensions to multiple high-grade mineralised zones at the Capital Prospect – which was one of the primary goals for the current program. It is noted that a number of the RC holes did not reach target depths due to unfavourable ground conditions and will be completed as part of the current DD program. BMG's interpretation of mineralisation at the Capital Prospect is there are a number of north-west trending mineralised shear zones (lodes) that contain internal high-grade, plunging gold shoots. Encouragingly the latest drill results have further confirmed the two broadly defined steeply north-east dipping mineralised zones, the Western lode and Eastern lode, as well as the Flat Lode to the east. In addition, there are also indications that there may be further mineralised zones in the Capital area, both to the east and west of the main zones. Further information on the nature of the lodes is given in the ASX release dated 19 October 2021. Figure 1 – Plan view of current drill program at the Capital Prospect, showing drilled RC holes (green), with SAM survey 2VD conductivity image in the background over aerial photograph. #### **Further Work** Diamond drilling continues in 2022 to advance new holes, as well as those requiring diamond tails such as 21ABRC007, see ASX release 20 January 2022. To date, all diamond core sample results are pending with the first assays expected in February. Upon receipt of outstanding assays, the BMG geological team will assess grade distribution and patterns with a view to building a better understanding of the nature and extent of the gold mineralisation at Abercromby. In parallel and as they become available, results from the current generative c.12,000m aircore program, see ASX release 20 January 2022, will be interpreted with a view to the next round of RC drilling planned for later in the year. #### **About the Abercromby Project:** The Abercromby Project is located on the Wiluna Greenstone Belt, one of Western Australia's most significant gold-producing regions with a gold endowment of +40Moz Au – second only to Kalgoorlie globally in terms of historic production. The geology at Abercromby is very favourable for gold mineralisation, with historic drilling at Abercromby having intersected multiple thick intervals of high-grade gold mineralisation to confirm the presence of a large high-grade gold system. BMG holds 100% of Abercromby, which comprises the gold and other mineral rights (ex-uranium) of two granted mining leases (M53/1095 and M53/336). Figure 2 – Map showing the regional location of the Abercromby Gold Project with other major gold projects in the region also highlighted. This announcement has been authorised for release by Bruce McCracken, Managing Director of BMG Resources Limited. #### **Competent Person Statement** The information in this report that relates to Exploration Targets, Exploration Results, Mineral Resources or Ore Reserves is based on information compiled by Mr Ben Pollard, a Competent Person who is a Member of the Australian Institute of Mining and Metallurgy. Mr Pollard is the Principal of Cadre Geology and Mining Pty Ltd and has been retained to provide technical advice on mineral projects. Mr Pollard has sufficient experience that is relevant to the style of mineralisation and type of deposits under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Pollard consents to the inclusion in the report of the matters based on his information in the form and context in which it appears. #### Disclaimer Forward looking statements are statements that are not historical facts. Words such as "expects", "anticipates", "believes", "potential", "may" and similar expressions are intended to identify forward looking statements. These statements include, but are not limited to, statements regarding future production, resources and reserves and exploration results. All such statements are subject to risks and uncertainties many of which are difficult to predict and generally beyond the control of the Company, that could cause actual results to differ materially from those expressed in or implied by the forward looking statements. Investors should not construe forward looking statements as quarantees of future performance due to the inherent uncertainties therein. #### For further information, please contact: #### **Bruce McCracken** Managing Director BMG Resources Limited Phone: +61 8 9424 9390 Email: enquiry@bmgl.com.au **Fraser Beattie** Media and investor relations Cannings Purple Phone: +61 421 505 557 Email: fbeattie@canningspurple.com.au # Schedule 1 – JORC Disclosures Table 1 – Drill hole details for drill holes completed in the recent RC drilling campaign at Abercromby. | Hole ID | Prospect | East | North | RL | Depth | Azi | Dip | comment | |-----------|------------------|--------|---------|-----|-------|-----|-----|-------------------------| | 21ABDD001 | Capital | 234935 | 7030333 | 511 | 100 | 248 | -60 | Pre-collar | | 21ABDD002 | Capital | 234956 | 7030183 | 512 | 100 | 248 | -60 | Pre-collar | | 21ABDD003 | Capital | 235073 | 7030125 | 512 | 198 | 248 | -60 | Pre-collar | | 21ABDD004 | Capital | 235238 | 7029977 | 505 | 650 | 248 | -60 | Proposed | | 21ABRC001 | Capital | 234775 | 7030405 | 512 | 200 | 248 | -60 | | | 21ABRC002 | Capital | 234738 | 7030390 | 511 | 200 | 248 | -60 | | | 21ABRC003 | Capital | 234817 | 7030368 | 516 | 185 | 248 | -60 | Being completed with DD | | 21ABRC004 | Capital | 234979 | 7030298 | 512 | 299 | 248 | -60 | | | 21ABRC005 | Capital | 234897 | 7030292 | 513 | 233 | 248 | -60 | Being completed with DD | | 21ABRC006 | Capital | 234973 | 7030268 | 510 | 299 | 248 | -60 | | | 21ABRC007 | Capital | 234937 | 7030225 | 513 | 270 | 248 | -60 | Being completed with DD | | 21ABRC008 | Capital | 234992 | 7030223 | 511 | 203 | 248 | -60 | | | 21ABRC009 | Capital | 234910 | 7030164 | 510 | 251 | 248 | -60 | Being completed with DD | | 21ABRC010 | Capital | 234926 | 7030116 | 505 | 238 | 248 | -60 | | | 21ABRC012 | Capital
South | 235107 | 7029783 | 511 | 240 | 248 | -60 | | | 21ABRC014 | Capital | 234820 | 7030315 | 505 | 100 | 248 | -60 | | | 21ABRC015 | Capital | 234823 | 7030424 | 511 | 108 | 248 | -60 | | | 21ABRC016 | Capital | 234811 | 7030391 | 513 | 150 | 248 | -60 | | | 21ABRC017 | Capital | 234794 | 7030361 | 511 | 131 | 248 | -60 | | | 21ABRC018 | Capital | 234771 | 7030352 | 511 | 71 | 248 | -60 | | | 21ABRC019 | Capital | 234781 | 7030327 | 511 | 89 | 248 | -60 | | | 21ABRC020 | Capital | 234761 | 7030263 | 511 | 60 | 248 | -60 | | | 21ABRC021 | Capital | 234971 | 7030215 | 512 | 114 | 248 | -60 | | | 21ABRC022 | Capital | 234887 | 7030155 | 512 | 108 | 248 | -60 | | | 21ABRC023 | Capital | 234826 | 7030132 | 512 | 60 | 248 | -60 | | | 21ABRC024 | Capital | 234930 | 7030090 | 512 | 90 | 248 | -60 | | Table 2 - Compilation of Significant 2021 RC Drill Results | Hole | EOH
Depth | - | | | | Intercept | | | Comments | | |-----------|--------------|--------|--------|------|----------|-----------|--------|------|---|--| | | | Metres | Au g/t | From | | Metres | Au g/t | From | | | | 21ABRC001 | 200 | 32 | 0.56 | 71 | includes | 2 | 3.63 | 83 | Northern up-dip Extension of E
Lode | | | 21ABRC002 | 200 | 5 | 2.74 | 78 | includes | 3 | 4.36 | 78 | Northern up-dip Extension of W Lode | | | 21ABRC003 | 185 | 50 | 1.08 | 101 | includes | 4 | 8.61 | 123 | Northern up-dip Extension of E
Lode | | | 21ABRC004 | 299 | 33 | 1.38 | 233 | includes | 12 | 2.47 | 250 | # | | | 21ABRC005 | 233 | 60 | 1.46 | 127 | includes | 19 | 2.87 | 159 | # | | | 21ABRC006 | 299 | 25 | 1.15 | 218 | includes | 9 | 1.99 | 223 | # | | | 21ABRC007 | 270 | 6 | 19.8 | 83 | includes | 1 | 100.4 | 83 | Successfully confirmed down dip extension of E lode | | | | 270 | 34 | 1.26 | 143 | | | | | | | | | 270 | 5 | 3.97 | 238 | | | | | Part of Western Lode - 8m@5.3g/t in fresh rock | | | 21ABRC008 | 203 | 14 | 0.76 | 189 | | | | | Did not fully test target - further drilling required | | | 21ABRC009 | 251 | 30 | 0.63 | 49 | | | | | Confirmed up dip extension of
Eastern lode | | | 21ABRC010 | 238 | 4 | 0.70 | 186 | | | | | | | | 21ABRC012 | 238 | | | | | | | | All assays < 0.3g/t Au | | | 21ABRC014 | 100 | 5 | 1.06 | 90 | | | | | | | | 21ABRC015 | 108 | 3 | 1.46 | 97 | | | | | At EOH | | | 21ABRC016 | 150 | 16 | 0.54 | 99 | | | | | | | | 21ABRC017 | 131 | 5 | 1.19 | 111 | | | | | Confirmed northern up-dip extension of W Lode | | | 21ABRC018 | 71 | 2 | 2.38 | 54 | | | | | Northern up-dip extension of
Eastern Lode as seen in 21ABRC003 | | | 21ABRC019 | 89 | 35 | 1.07 | 19 | includes | 13 | 1.98 | 39 | As Above | | | | | 2 | 4.11 | 57 | | | | | | | | | | 2 | 6.46 | 80 | | | | | Partial test of W Lode | | | 21ABRC020 | | | | | | | | | All assays < 0.3g/t Au | | | 21ABRC021 | 114 | 5 | 3.15 | 102 | | | | | New lode east of Eastern Lode? | | | 21ABRC022 | 108 | 5 | 1.29 | 29 | | | | | Confirmed up-dip extension of E lode | | | 21ABRC023 | 95 | 5 | 1.06 | 90 | | | | | At EOH | | | 21ABRC024 | 90 | | | | | | | | All assays < 0.3g/t Au | | # Holes 21ABRC004 to 21ABRC006 successfully confirmed the down dip extension of the Eastern Lode in an area that had not been drill tested - to be further tested with 21ABD001 # Schedule 2 – JORC TABLE 1 Disclosures ### JORC TABLE 1 DISCLOSURES, ABERCROMBY PROJECT JORC Code, 2012 Edition – Table 1 # **Section 1: Sampling Techniques and Data** | Criteria | JORC 2012 Explanation | Comment | |---------------------|---|--| | Sampling techniques | Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g., 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g., submarine nodules) may warrant disclosure of detailed information. | Reverse Circulation (RC) was used to produce these samples. Samples in this announcement are 1m samples, generated directly from the rig's cone splitter. These intervals are delineated based on preliminary results returned from the 4m composites. Each sample selected is sent for analysis to Nagrom in Kelmscott, Perth. The sample is pulverised in the laboratory (total prep) to produce a sub sample for assaying. All sampling was conducted using BMG QAQC sampling protocols which are in accordance with industry best practice. All samples were prepared and assayed by an independent commercial laboratory whose instrumentation are regularly calibrated. | | Drilling Techniques | • Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). | Drilling is via RC. A Schramm drilling rig is used. RC drilling was with a 5^{1/4}" diameter face sampling hammer drilling bit. Onboard air utilised to yield 1000psi / 2200cfm. | | | | All holes were surveyed using a reflex Gyro north seeking gyroscopic instrument (or equivalent) to obtain accurate down-hole directional data where ground conditions allowed. | |---|--|--| | Drill sample recovery | Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias | Drilling recoveries are logged and recorded and captured within the project database. Core loss is noted where it occurs. Overall, recoveries are generally considered good and there has been no significant loss of sample material due to ground or drilling issues in the results reported in the RC. In the diamond drilling, some intervals of core loss exist in the regolith – where assays have been reported in these intervals, the missing interval has diluted the reported result (that is, it has been accounted for at zero g/t Au) Each individual sample is visually checked for recovery, moisture, and contamination. The style of expected mineralisation and the consistency of the mineralised intervals are expected to preclude any issue of sample bias due to material loss or gain. | | Logging | Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) The total length and percentage of the relevant intersections logged. | RC chips and core were geologically logged using predefined lithological, mineralogical, and physical characteristic (colour, weathering etc.) logging codes. RC logging was completed on one metre intervals at the rig by the geologist. A subsample of washed and sieved RC chips from each metre was collected and stored sequentially in numbered plastic chip trays. Logging was predominately qualitative in nature, although vein and sulphide percent was estimated visually. All new core has been photographed wet and dry. All holes are logged in full | | Sub-sampling
techniques and
sampling
preparation | If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the insitu material collected, including for instance results for field duplicate/second-half sampling Whether sample sizes are appropriate to the grain size of the material being sampled. | 1m composite samples are taken. BMG drilling utilizes QAQC regime consisting of certified reference material checks, blanks, and duplicates. Sample sizes are considered to be appropriate to correctly represent the geological model and the style of mineralisation. | | Quality of assay data
laboratory tests | The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. | QAQC protocols utilising Certified Reference Material (standards), blanks and duplicates were used. All checks passed quality test thresholds. All samples were prepared and assayed by an independent commercial laboratory whose instrumentation are regularly calibrated, utilising appropriate internal checks in QAQC. | | | Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. | | |---|--|--| | Verification of sampling and assaying | The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. | Data collected in the field on paper and or digital logs, then transferred to the project database once collated and checked. No twinned holes All data is validated by the supervising geologist and sent to the Perth office for further validation and integration into a <i>Microsoft Access</i> database. | | Location of data points | Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. | Drill holes were located using handheld GPS. Drill hole collar positions will be accurately surveyed utilising DGPS survey equipment to an accuracy of +/-0.01m. Down holes surveys were completed using gyro. The grid system used for locating the collar positions of drillholes is GDA2020. RL's referenced are AHDRL. | | Data spacing and distribution | Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. | Drilling has been completed on a variable grid drilled orthogonal to the mineralisation, generally toward 248° Data spacing and distribution is so far thought to be insufficient to establish the degree of geological and grade continuity appropriate for Mineral Resources – establishing it will be the primary goal of the next round. Raw samples have not been composited. | | Orientation of data in relation to geological structure | Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. | The drilling is predominantly conducted at -60 degrees orthogonal to strike and as such drill holes intersect the mineralisation close to perpendicular. As such, the orientation of drilling is not likely to introduce a sampling bias. | | Sample Security | The measures taken to ensure sample security. | Chain of custody protocols used for the new BMG drill samples ensures sample security and integrity. | | Audits and Reviews | The results of any audits or reviews of sampling techniques and data. | No audits or reviews of the sampling techniques and data have been undertaken to date. | # Section 2: Reporting of Exploration Results (Criteria listed in the preceding section also apply to this section.) | Criteria | JORC 2012 Explanation | Comment | |---|--|---| | Mineral tenement
and land tenure
status | Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. | The gold and other mineral rights (ex uranium and thorium) hosting the Abercromby deposit are owned 100% by BMG. No material issues exist with the underlying tenure. The tenements are in good standing. | | Exploration done by other parties. | Acknowledgment and appraisal of exploration by other parties. | Gold exploration at the Project area has been carried out by three previous explorers – CRA in 1995/97, Outokumpu in 2001 and Perilya in 2004. CRA initially identified gold mineralisation at Abercromby in 1995. They completed 84 drill holes – 82 reverse circulation (RC)/Percussion and 2 RC/diamond in the Capital area. Holes were initially drilled on 200m, and some infill 100m, spaced traverses. Holes were generally 60m and lesser 120m apart. All bar 6 of the RC holes drilled to the west at -60 degrees. Final hole depths varied from 75m to 183m deep. The remaining 6 RC holes were drilled vertically. Though CRA located and drilled tested the gold mineralisation the hole spacing is relatively broad and considered ineffective to test potential continuity between holes. Outokumpu completed a small number of drill holes. It is believed the company did not pursue the gold opportunity but instead focused on nickel exploration at Honeymoon Well which was their priority target. Perilya was the last dedicated gold explorer at the Project under a joint venture earn-in arrangement. Whilst further work was planned to follow-up on initial gold intersections, Perilya elected to pursue other 100% owned exploration opportunities in its portfolio. Norilsk Nickel completed some drilling on the project in 2007/2008 but mostly to satisfy expenditure commitments. | | Geology | Deposit type, geological setting and style of mineralisation. | Abercromby is a lode hosted orogenic gold deposit typical in type to much of the gold occurrences in Western Australia's Eastern Goldfields. The lode is developed amongst Archaean mafic rocks and gold is generally hosted by the sheared and quartz veined host. | | Drill hole
Information | A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar | The details of drill holes material to the exploration results/mineral resource are presented in Table 2 of the text in the main document. | | | dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. | | |--|---|---| | Data aggregation methods | In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. | Length weighted averaging of the drill hole intercepts are applied. No maximum or minimum grade truncations are used in the calculations. The reported assays have been length weighted averages. A lower arbitrary cut off is not applied, rather, intervals are selected based on continuous anomalism, with no top cut applied. High grade intercepts internal to broader zones of mineralisation are reported as included intervals. If an interval includes core loss, the lost interval is accounted for at zero g/t Au. No metal equivalents have been used. | | Relationship
between
mineralisation
widths and intercept
lengths | These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known'). | Drill hole intersections may not be true widths – but generally thought to be around 90% of true width. The gold mineralisation identified to date at Abercromby consists of a number of interpreted mineralised lodes striking approximately 340° and dipping steeply (80°-85°) to the east. Drilling is predominantly conducted at -60 degrees orthogonal to strike and as such drill holes intersect the mineralisation as close to perpendicular as possible. | | Diagrams | Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. | Refer to Figures in the text. | | Balanced reporting | Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. | All significant results are reported. | | Other substantive exploration data | Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. | All significant results are reported. | | Further work • The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). • Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. | Exploration within the Abercromby Project is ongoing. BMG Resources is focusing on staged development drilling at Abercromby in addition to mine planning, metallurgical studies and development studies as required. Exploration drilling at priority targets over the next 12 months is planned. Future exploration programs may change depending on results and strategy. | |---|---| |---|---|