

ASX CODE: KFM

Shares on issue: 42,250,001 Cash: \$4.0M (30 September 2021) Debt: Nil

PROJECTS

Boolaloo: Copper-Gold Kingfisher: Rare Earth Elements Mick Well: Rare Earth Elements Arthur River: Copper

CORPORATE DIRECTORY

WARREN HALLAM Non-Executive Chairman

JAMES FARRELL Executive Director and CEO

ADAM SCHOFIELD Non-Executive Director

SCOTT HUFFADINE Non-Executive Director

STEPHEN BROCKHURST Company Secretary

MEDIA & INVESTOR ENQUIRIES

Peter Taylor, NWR Communications P: +61 412 036 231 E: peter@nwrcommunications.com.au

ABN: 96 629 675 216

P: +61 8 9481 0389 E: info@kingfishermining.com.au W: www.kingfishermining.com.au

Unit 2, 106 Robinson Avenue Belmont WA 6104 AUSTRALIA

GPO Box 2517 Perth WA 6831 AUSTRALIA

Copper and Gold Results Confirm Mineralisation Associated with Geophysical Targets at Boolaloo

- First drill hole from Green Hills Prospect returns 12m at 0.72% Cu and 0.14 g/t Au, including 4m at 1.16% Cu and 0.27 g/t Au.
- Drilling of the Erny Bore EM conductor intersects parallel mineralised zones with 2m at 0.95% Cu and 0.40 g/t Au, including 1m at 1.73% Cu and 0.78 g/t Au and a separate broad zone of 11m at 0.38% Cu.
- Significant potential across the tenements is highlighted by anomalous copper results that have now been returned from drilling at five of the Boolaloo prospects, K15, K16, Copper Strike, Erny Bore and Green Hills.
- Follow-up exploration planned, including on-going assessment of airborne electromagnetic targets that have been identified on recently granted tenements east of Copper Strike.

Kingfisher Mining Limited (**ASX:KFM**) ("**Kingfisher**" or the "**Company**") is pleased to provide drill results from the on-going exploration at its 100% owned Boolaloo Project in the Ashburton region of Western Australia.

The Company has received results from the reverse circulation (RC) drilling of the Green Hills, Erny Bore and EM1 targets at its Boolaloo Project. The results include:

Green Hills

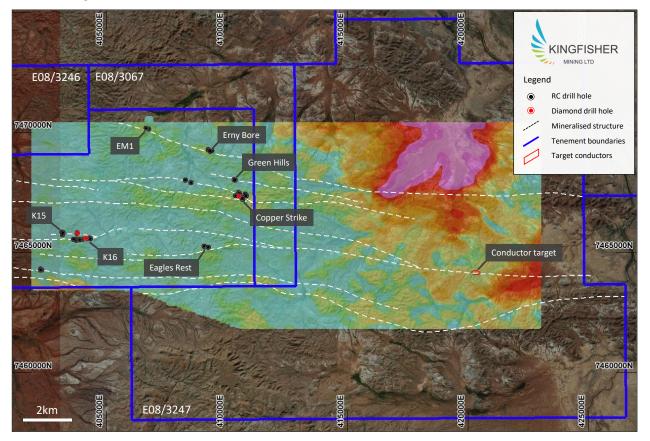
- BLRC002: 12m at 0.72% Cu and 0.14 g/t Au from surface, including 4m at 1.16% Cu and 0.27 g/t Au from 4m.
- BLRC001: 8m at 0.25% Cu from 20m.

Erny Bore

- BLRC009: 11m at 0.38% Cu from 79m.
- BLRC009: 2m at 0.95% Cu and 0.40g/t Au from 59m, including 1m at 1.73% Cu and 0.78g/t Au from 59m.
- BLRC008: 2m at 0.39% Cu from 45m.
- BLRC007: 6m at 0.24% Cu from 121m.
- BLRC006: 2m at 0.85% Cu from 28m, including 1m at 1.55% Cu from 29m.

Kingfisher's Executive Director and CEO James Farrell commented: "Drilling at Boolaloo has now returned copper and gold results from five prospects, K15, K16, Copper Strike, Erny Bore and the Green Hills Prospect, which was discovered by the Company last year.

The new results highlight the potential for the discovery of new mineralisation at surface associated with the mapped structures and laterally extensive alteration



corridors which, individually, extend for up to 12km and occur as multiple parallel zones in a mineralised corridor that extends for over 30km within the Company's tenure.

Our on-going exploration at Boolaloo will continue to define these new mineralisation zones, and in particular, we will be looking for opportunities laterally along strike and opportunities at depth. We will also focus on additional areas which includes a strong conductor from the recent VTEM survey on the recently granted exploration licence E08/3247.

Following the recent discovery of rare earth mineralisation at the Company's Mick Well Project, the Company has commenced a review of the exploration activities planned for 2022. The discovery intercept from Mick Well together with the identification of significant areas of carbonatite intrusions, which are associated with rare earth elements, has highlighted the significant potential of the project. Together with the on-going work at Boolaloo, the Company will also be focussing significant effort on rare earths exploration in the Gascoyne region during 2022."

The RC drilling program at Boolaloo has successfully tested three separate targets; Erny Bore, Green Hills and EM1 (Figure 1).

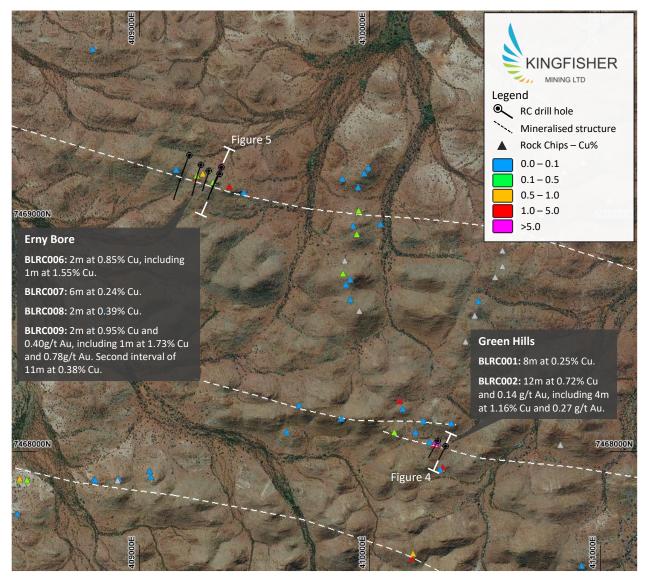
Figure 1: Boolaloo prospects and drill holes. The airborne electromagnetic survey (channel 30) results are shown, with a late-time conductor in the recently granted E08/3247.

The Erny Bore Prospect appears as a series of shears and quartz veins and outcrops over a strike length of 150m. The prospect has been defined by historic rocks chip samples which include 8.06 g/t Au, 2.10 g/t Au, 1.81 g/t Au and 1.21 g/t Au¹ and is associated with a strong conductor, which lies approximately 100m along strike from the rock chip samples. The historic rock chips, together with the strong conductor and

interpreted airborne electromagnetic (EM) survey results suggest a potential target zone of over 1km at Erny Bore (see ASX announcement 21 July 2021).

Green Hills was identified as a potential target from the reprocessing of the airborne hyperspectral survey and the Company's structural interpretation, with first pass mapping and sampling in the area returning rock chip sample results with over 24% Cu and more than 1 g/t Au (Figure 2 and ASX announcements 17 February 2021 and 9 September 2021).

The third target tested during the Boolaloo RC drilling program was EM1, a bedrock conductor identified from the airborne EM survey which is approximately 3km west of Erny Bore and on the interpreted extensions of the Erny Bore structure.


Figure 2: Outcropping mineralisation at the newly discovered Green Hills Prospect and rock chip sample BLGS0240 which returned results of 24.30% Cu and 0.59 g/t Au.

The RC drilling completed at Boolaloo included nine holes for 1,483 metres. Drill holes BLRC001 and BLRC002 were completed at the Green Hills Prospect, with the most significant result returned from BLRC002 which included 12m at 0.72% Cu and 0.14 g/t Au from surface, including 4m at 1.16% Cu and 0.27 g/t Au from 4m downhole (Figure 3). Both of the Green Hills drill holes intersected the target structure, which remains open along strike and down-dip at depth (Figure 4).

The Erny Bore drilling included drill holes BLRC005 to BLRC009. All of the drill holes at Erny Bore intersected the target structure with the most significant results returned from BLRC009, which included 2m at 0.95% Cu and 0.40g/t Au from 59m, including 1m at 1.73% Cu and 0.78g/t Au from 59m downhole. A second interval in BLRC009 returned 11m at 0.38% Cu from 79m downhole. Drill hole BLRC009 was completed on the eastern-most section at Erny Bore and the mineralisation remains open to the east and at depth (Figure 5).

Drill holes BLRC003 and BLRC004 were completed at the EM1 target and did not return anomalous results. The target conductor from the VTEM[™] electromagnetic survey appears to be related to carbonaceous sediments.

Figure 3: Green Hills and Erny Bore RC drill hole locations and sample results. Results for previously announced rock chip samples are also shown.

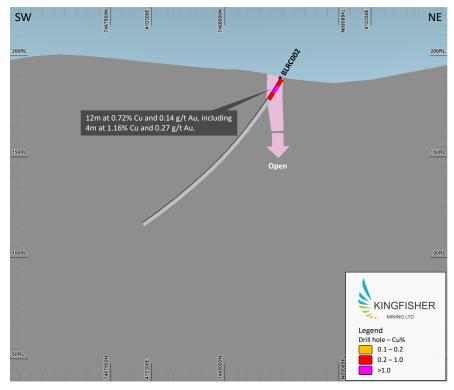
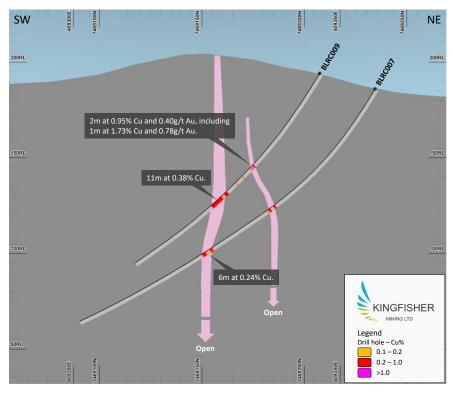
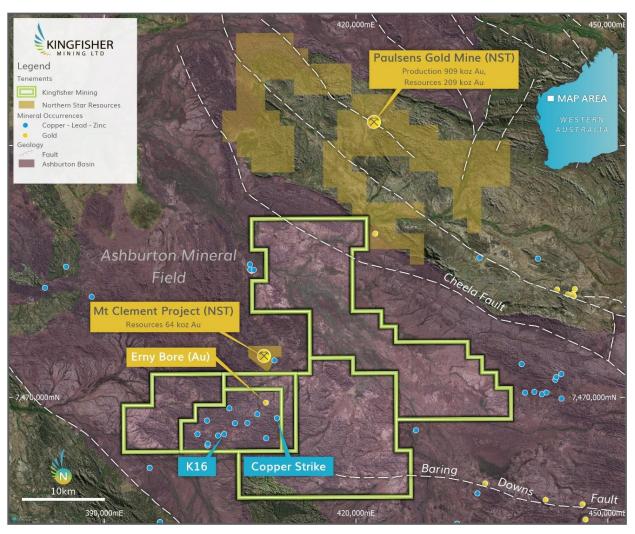




Figure 4: Cross-section showing BLRC002 at Green Hills. The section location is shown on Figure 3.

Figure 5: Cross-section showing BLRC007 and BLRC009 at Erny Bore. The section location is shown on Figure 3.

Figure 6: Location of the Boolaloo Project in the Ashburton Mineral Field showing the K16, Copper Strike and Erny Bore Prospects and the Company's tenure. Selected tenements of other companies active in the Ashburton Basin are also shown. Refer to the previous announcements section of this release for detailed information on past productionⁱ and resourcesⁱⁱ of the Paulsens Gold Mine and the Mt Clement Projectⁱⁱⁱ.

Upcoming News

- **February 2022:** Rock chips results from sighter and follow-up programs targeting carbonatites and rare earth elements.
- **February 2022:** Updated exploration strategy and program for 2022, building on the rare earths focus for the Gascoyne Mineral Field.

About the Boolaloo Project

The Boolaloo copper-gold and base metal project is located approximately 160km west of Paraburdoo and 35km southwest of the Paulsen's gold mine in the Ashburton region of Western Australia (Figure 3). The Company has granted exploration licences over the potential strike extents of the interpreted mineralised structures, giving a significant strategic holding in an emerging province and tenure which now covers more than 30km of strike of the interpreted mineralised structures.

Past exploration has established the potential for the discovery of copper mineralisation at the project, with previous reverse circulation (RC) and recent diamond drilling returning very encouraging results which include:

- 4m at 1.06% Cu and 1.40 g/t Au from 109m, including 1m at 1.41% Cu and 2.70 g/t Au from 110m (MIRC002)²;
- 3m at 1.83% Cu and 1.12 g/t Au from 96m, including 1m at 3.14% Cu and 1.38 g/t Au from 96m (MIRC004)²;
- 2m at 1.44% Cu and 1.36 g/t Au from 137m, including 1m at 2.28% Cu and 2.28 g/t Au from 138m (MIRC009)²;
- 3m at 3.05% Cu and 0.57 g/t Au from 63m, including 2m at 3.90% Cu and 0.77 g/t Au from 63m (MIRC013)¹; and
- 2m at 3.81% Cu and 0.62 g/t Au from 62m (MIRC027)³.
- 10.05m at 0.84% Cu and 0.11 g/t Au from 23.15m, including 2.7m at 1.45% Cu and 0.14 g/t Au from 23.15m and 0.85m at 2.68% Cu and 0.49 g/t Au from 32.35m (BLDD003)⁴.

Past exploration has also established significant mineralisation strike lengths at K15 and K16, with the K16 mineralised zone being intersected over a strike length of 1.5km.

This announcement has been authorised by the Board of Directors of the Company.

Ends

For further information, please contact:

Kingfisher Mining Limited

James Farrell, Executive Director Ph: +61 (08) 9481 0389 E: <u>info@kingfishermining.com.au</u>

Media & Investor Enquiries

Peter Taylor, NWR Communications Ph: +61 412 036 231 E: <u>peter@nwrcommunications.com.au</u>

About Kingfisher Mining Limited

Kingfisher Mining Limited (**ASX:KFM**) is a mineral exploration company committed to increasing value for shareholders through the acquisition, exploration and development of mineral resource projects throughout Western Australia. The Company's tenements and tenement applications cover 1,676km² in the underexplored Ashburton and Gascoyne Mineral Fields.

The Company has significant landholdings across the interpreted extensions of its target mineralised structures. This includes more than 50km of strike across the target geology that covers the Kingfisher and Mick Well Projects in the Gascoyne region where the Company has discovered rare earth element mineralisation associated with carbonatite intrusions. Kingfisher also holds more than 30km of strike across the Boolaloo Project in the Ashburton Basin where the Company has advanced copper and gold prospects.

To learn more please visit: www.kingfishermining.com.au

Previous ASX Announcements

ASX Announcement 'Reprocessed Airborne Survey Reveals Extensive Hydrothermal Alteration at Boolaloo Copper-Gold Project'. Kingfisher Mining Limited (ASX:KFM), 17 February 2021.

ASX Announcement 'Exciting Conductors Identified from Airborne Electromagnetic Survey at Boolaloo'. Kingfisher Mining Limited (ASX:KFM), 21 July 2021.

ASX Announcement 'New Copper and Gold Mineralisation Discovered from On-Going Exploration at Boolaloo'. Kingfisher Mining Limited (ASX:KFM), 9 September 2021.

- ¹ Kingfisher Mining Limited Prospectus, 9 November 2020 and WAMEX Reports a079570 and a076055.
- ² ASX Announcement 'Boolaloo Drill Results Confirm Copper-Gold Potential'. Jackson Gold Limited (ASX:JAK), 8 May 2007.
- ³ ASX Announcement 'Exploration Update Argentina and Australia'. Jackson Gold Limited (ASX:JAK), 27 August 2008.
- ⁴ ASX Announcement 'Maiden Diamond Drilling Results Confirm Multiple Copper Zones at Boolaloo'. Kingfisher Mining Limited (ASX:KFM), 12 August 2021.

Information Sources for Figure 6

- ^{1.} Paulsens Gold Mine past production: Northern Star Paulsens Gold Operations Fact Sheet dated July 2018: https://www.nsrltd.com/wp-content/uploads/2018/08/NSR-Paulsens-Operations-Fact-Sheet-July-2018.pdf
- ^{ii.} Paulsens Gold Mine resources: ASX Announcement "Production set to increase 30% over next two years and costs to fall 10%" released 13 August 2020. https://www.nsrltd.com/wpcontent/uploads/2020/08/Resources-and-Reserves-Production-and-Cost-Guidance-Update-ex-KCGM-13-08-2020.pdf
- ^{III.} Mt Clement resources: Artemis Resources Limited Annual Report to Shareholders for year ended 30 June 2019.

Forward-Looking Statements

This announcement may contain forward-looking statements which involve a number of risks and uncertainties. These forward-looking statements are expressed in good faith and believed to have a reasonable basis. These statements reflect current expectations, intentions or strategies regarding the future and assumptions based on currently available information. Should one or more of the risks or uncertainties materialise, or should underlying assumptions prove incorrect, actual results may vary from the expectations, intentions and strategies described in this announcement. No obligation is assumed to update forward looking statements if these beliefs, opinions, and estimates should change or to reflect other future developments.

Competent Persons Statements

The information in this report that relates to Exploration Results is based on information compiled by Mr James Farrell, a geologist and Executive Director / CEO employed by Kingfisher Mining Limited. Mr Farrell is a Member of the Australian Institute of Geoscientists and has sufficient experience that is relevant to this style of mineralisation and type of deposit under consideration and to the activity that is being reported on to qualify as a Competent Person as defined in the 2012 edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr Farrell consents to the inclusion in the report of the matters in the form and context in which it appears.

Annexure 1: Drill Hole Information

Collar and Survey

Target	Hole ID	Easting	Northing	Elevation	Depth	Azimuth	Dip
Green Hills	BLRC001	410295	7468046	189	130	205	-60
Green Hills	BLRC002	410330	7468024	189	100	205	-60
EM1	BLRC003	406632	7470149	174	173	180	-60
EIVIT	BLRC004	406735	7470128	172	180	180	-60
	BLRC005	409218	7469285	185	250	200	-60
	BLRC006	409268	7469244	188	180	200	-60
Erny Bore	BLRC007	409358	7469234	186	200	200	-60
	BLRC008	409303	7469218	195	130	200	-60
	BLRC009	409350	7469206	194	140	200	-60

Analytical Data

DHID	From	То	Cu%	Au g/t
BLRC001	0	4	0.03	0.01
BLRC001	4	8	0.00	0.00
BLRC001	8	12	0.01	0.00
BLRC001	12	16	0.10	0.01
BLRC001	16	20	0.09	0.01
BLRC001	20	24	0.30	0.04
BLRC001	24	28	0.20	0.02
BLRC001	28	32	0.12	0.02
BLRC001	32	36	0.02	0.00
BLRC001	36	40	0.01	0.00
BLRC001	40	44	0.12	0.02
BLRC001	44	48	0.03	0.00
BLRC001	48	52	0.05	0.01
BLRC001	52	56	0.02	0.00
BLRC001	56	60	0.00	0.00
BLRC001	60	64	0.01	0.00
BLRC001	64	68	0.03	0.00
BLRC001	68	72	0.00	0.00
BLRC001	72	76	0.00	0.00
BLRC001	76	80	0.00	0.01
BLRC001	80	84	0.00	0.01
BLRC001	84	88	0.00	0.01
BLRC001	88	92	0.00	0.01
BLRC001	92	96	0.01	0.00
BLRC001	96	100	0.02	0.00
BLRC001	100	104	0.09	0.01
BLRC001	104	108	0.02	0.00
BLRC001	108	112	0.00	0.00
BLRC001	112	116	0.01	0.00
BLRC001	116	120	0.00	0.00
BLRC001	120	124	0.00	0.01
BLRC001	124	128	0.00	0.00
BLRC001	128	130	0.00	0.00
BLRC002	0	4	0.68	0.16
BLRC002	4	8	1.16	0.27
BLRC002	8	12	0.33	0.01
BLRC002	12	16	0.02	0.00
BLRC002	16	20	0.02	0.00
BLRC002	20	24	0.01	0.00
BLRC002	24	28	0.01	0.00
BLRC002	28	32	0.01	0.00
BLRC002	32	36	0.00	0.00

DHID	From	То	Cu%	Au g/t
BLRC002	36	40	0.01	0.00
BLRC002	40	44	0.01	0.00
BLRC002	44	48	0.01	0.00
BLRC002	48	52	0.00	0.00
BLRC002	52	56	0.00	0.00
BLRC002	56	60	0.00	0.00
BLRC002	60	64	0.00	0.00
BLRC002	64	68	0.00	0.00
BLRC002	68	72	0.00	0.00
BLRC002	72	76	0.00	0.00
BLRC002	76	80	0.00	0.00
BLRC002	80	84	0.04	0.00
BLRC002	84	88	0.01	0.00
BLRC002	88	92	0.01	0.01
BLRC002	92	96	0.00	0.00
BLRC002	96	100	0.00	0.00
BLRC003	0	4	0.01	0.00
BLRC003	4	8	0.00	0.00
BLRC003	8	12	0.00	0.00
BLRC003	12	16	0.00	0.00
BLRC003	16	20	0.00	0.00
BLRC003	20	24	0.00	0.00
BLRC003	24	28	0.00	0.00
BLRC003	28	32	0.00	0.00
BLRC003	32	36	0.00	0.00
BLRC003	36	40	0.00	0.00
BLRC003	40	44	0.00	0.00
BLRC003	44	48	0.00	0.00
BLRC003	48	52	0.00	0.00
BLRC003	52	56	0.00	0.00
BLRC003	56	60	0.00	0.00
BLRC003	60	64	0.00	0.00
BLRC003	64	68	0.00	0.00
BLRC003	68	72	0.00	0.00
BLRC003	72	76	0.00	0.00
BLRC003	76	80	0.00	0.00
BLRC003	80	84	0.00	0.00
BLRC003	84	88	0.00	0.00
BLRC003	88	92	0.00	0.00
BLRC003	92	96	0.00	0.00
BLRC003	96	100	0.00	0.00
BLRC003	100	104	0.01	0.00

DHID	From	То	Cu%	Au g/t
BLRC003	104	108	0.00	0.00
BLRC003	104	108	0.00	0.00
BLRC003	108	112	0.00	0.00
BLRC003	112	110	0.00	
BLRC003 BLRC003	116	120	0.00	0.00
BLRC003	124	128 132	0.00	0.00
BLRC003	128 132	132		0.00
BLRC003 BLRC003	132	136	0.00	0.00
BLRC003	130	140	0.00	0.00
BLRC003	140	144	0.00	
BLRC003	144	148	0.00	0.00
BLRC003	148	152	0.00	0.00
BLRC003	152	150	0.00	0.00
BLRC003 BLRC003	160 164	164 168	0.00	0.00
BLRC003 BLRC003	164 168	168	0.00	0.00
BLRC003 BLRC003	108	172	0.00	0.00
	1/2	1/3		0.00
BLRC004 BLRC004	4	8	0.00	0.00
		-		
BLRC004 BLRC004	8 12	12	0.00	0.00
		16	0.00	0.00
BLRC004	16	20	0.01	0.00
BLRC004	20	24	0.00	0.00
BLRC004	24	28	0.00	0.00
BLRC004	28	32	0.00	0.00
BLRC004	32	36	0.00	0.00
BLRC004	36	40	0.00	0.00
BLRC004	40	44	0.00	0.00
BLRC004	44	48	0.00	0.00
BLRC004	48	52	0.00	0.00
BLRC004	52	56	0.00	0.00
BLRC004	56	60	0.00	0.00
BLRC004	60	64	0.00	0.00
BLRC004	64	68	0.00	0.00
BLRC004	68	72	0.00	0.00
BLRC004	72	76	0.00	0.00
BLRC004	76	80	0.00	0.00
BLRC004	80	84	0.00	0.00
BLRC004	84	88	0.00	0.00
BLRC004	88	92	0.00	0.00
BLRC004	92	96	0.00	0.00
BLRC004	96	100	0.00	0.00
BLRC004	100	104	0.00	0.00
BLRC004	104	108	0.00	0.00
BLRC004	108	112	0.00	0.00
BLRC004	112	116	0.00	0.00
BLRC004	116	120	0.00	0.00
BLRC004	120	124	0.00	0.00
BLRC004	124	128	0.00	0.00
BLRC004	128	132	0.00	0.00
BLRC004	132	136	0.00	0.00
BLRC004	136	140	0.01	0.00
BLRC004	140	144	0.00	0.00
BLRC004	144	148	0.00	0.00
BLRC004	148	152	0.00	0.00
BLRC004	152	156	0.00	0.00

DHID	From	То	Cu%	Au g/t
BLRC004	156	160	0.00	0.00
BLRC004	164	168	0.00	0.00
BLRC004	168	172	0.00	0.00
BLRC004	172	176	0.00	0.00
BLRC004	176	180	0.00	0.01
BLRC005	0	4	0.01	0.01
BLRC005	4	8	0.01	0.00
BLRC005	8	12	0.00	0.00
BLRC005	12	16	0.00	0.00
BLRC005	16	20	0.00	0.00
BLRC005	20	21	0.00	0.00
BLRC005	21	22	0.00	0.00
BLRC005	22	23	0.00	0.00
BLRC005	23	23	0.01	0.00
BLRC005	23	25	0.01	0.00
BLRC005	24	25	0.01	0.00
BLRC005	25	20	0.01	0.00
BLRC005	27	28	0.00	0.00
BLRC005	28	29	0.01	0.00
BLRC005	29	30	0.00	0.00
BLRC005	30	31	0.00	0.00
BLRC005	31	32	0.00	0.00
BLRC005	32	36	0.01	0.01
BLRC005	36	40	0.02	0.00
BLRC005	40	44	0.00	0.00
BLRC005	44	48	0.00	0.00
BLRC005	48	52	0.00	0.00
BLRC005	52	53	0.01	0.00
BLRC005	53	54	0.01	0.00
BLRC005	54	55	0.01	0.01
BLRC005	55	56	0.01	0.02
BLRC005	56	60	0.01	0.02
BLRC005	60	64	0.01	0.01
BLRC005	64	68	0.01	0.02
BLRC005	68	72	0.01	0.02
BLRC005	72	76	0.02	0.03
BLRC005	76	80	0.01	0.00
BLRC005	80	84	0.00	0.00
BLRC005	84	85	0.01	0.02
BLRC005	85	86	0.03	0.04
BLRC005	86	87	0.09	0.21
BLRC005	87	88	0.02	0.01
BLRC005	88	92	0.00	0.08
BLRC005	92	96	0.00	0.01
BLRC005	96	100	0.01	0.03
BLRC005	100	104	0.00	0.04
BLRC005	104	108	0.00	0.03
BLRC005	108	112	0.01	0.03
BLRC005	112	116	0.02	0.04
BLRC005	116	120	0.01	0.03
BLRC005	120	124	0.00	0.02
BLRC005	124	128	0.00	0.03
BLRC005	128	132	0.11	0.10
BLRC005	132	133	0.12	0.02
BLRC005	133	134	0.06	0.02
BLRC005	135	135	0.00	0.02
BLRC005	134	135	0.03	0.01
	100	200	0.01	0.01

DHID	From	То	Cu%	Au g/t
BLRC005	136	137	0.18	0.04
BLRC005	137	138	0.02	0.00
BLRC005	138	139	0.01	0.00
BLRC005	139	140	0.02	0.01
BLRC005	140	141	0.01	0.00
BLRC005	141	142	0.00	0.00
BLRC005	142	143	0.00	0.00
BLRC005	143	144	0.01	0.00
BLRC005	144	145	0.00	0.00
BLRC005	145	146	0.00	0.00
BLRC005	146	147	0.00	0.00
BLRC005	147	148	0.00	0.00
BLRC005	148	149	0.01	0.00
BLRC005	149	150	0.00	0.00
BLRC005	150	151	0.00	0.00
BLRC005	151	152	0.00	0.00
BLRC005	152	156	0.00	0.00
BLRC005	156	160	0.00	0.00
BLRC005	160	164	0.01	0.00
BLRC005	164	168	0.00	0.00
BLRC005	168	172	0.00	0.00
BLRC005	172	176	0.00	0.00
BLRC005	176	180	0.00	0.00
BLRC005	180	184	0.01	0.00
BLRC005	184	188	0.01	0.00
BLRC005	188	192	0.01	0.00
BLRC005	192	196	0.01	0.00
BLRC005	196	200	0.01	0.01
BLRC005	200	204	0.00	0.00
BLRC005	204	208	0.01	0.00
BLRC005	208	200	0.00	0.00
BLRC005	212	213	0.00	0.00
BLRC005	213	214	0.00	0.00
BLRC005	213	215	0.01	0.00
BLRC005	215	215	0.00	0.00
BLRC005	216	217	0.00	0.00
BLRC005	217	218	0.00	0.00
BLRC005	218	210	0.01	0.00
BLRC005	210	220	0.00	0.01
BLRC005	219	220	0.00	0.01
BLRC005	220	224	0.00	0.00
BLRC005	224	232	0.00	0.01
BLRC005	228	232	0.00	0.01
BLRC005	232	230	0.00	0.01
BLRC005	230	240	0.00	0.01
BLRC005	240	244	0.01	0.01
BLRC005	244	248	0.00	0.01
BLRC005 BLRC006	248	250	0.00	0.01
BLRC006	4	8	0.01	0.03
		8 12		
BLRC006	8 12		0.01	0.03
BLRC006		16	0.06	0.03
BLRC006	16	20	0.09	0.03
BLRC006	20	24	0.03	0.04
BLRC006	24	25	0.00	0.04
BLRC006	25	26	0.01	0.08
BLRC006	26	27	0.00	0.01
BLRC006	27	28	0.00	0.00

DHID	From	То	Cu%	Au g/t
BLRC006	28	29	0.16	0.04
BLRC006	20	30	1.55	0.15
BLRC006	30	31	0.01	0.00
BLRC006	31	32	0.01	0.00
BLRC006	32	36	0.00	0.00
	32	40		
BLRC006	30 40	40	0.00	0.00
BLRC006			0.00	0.01
BLRC006	44	45	0.00	0.01
BLRC006	45	46	0.00	0.59
BLRC006	46	47	0.01	0.57
BLRC006	47	48	0.01	0.04
BLRC006	48	52	0.01	0.04
BLRC006	52	56	0.00	0.02
BLRC006	56	60	0.00	0.01
BLRC006	60	64	0.06	0.07
BLRC006	64	68	0.00	0.01
BLRC006	68	72	0.01	0.01
BLRC006	72	76	0.00	0.01
BLRC006	76	80	0.01	0.03
BLRC006	80	84	0.01	0.03
BLRC006	84	88	0.01	0.02
BLRC006	88	92	0.01	0.12
BLRC006	92	96	0.10	0.08
BLRC006	96	100	0.00	0.00
BLRC006	100	104	0.00	0.00
BLRC006	104	108	0.01	0.00
BLRC006	108	112	0.00	0.01
BLRC006	112	116	0.00	0.00
BLRC006	116	120	0.01	0.00
BLRC006	120	124	0.01	0.03
BLRC006	124	128	0.00	0.01
BLRC006	128	129	0.02	0.00
BLRC006	129	130	0.03	0.00
BLRC006	130	131	0.01	0.01
BLRC006	131	132	0.01	0.00
BLRC006	132	136	0.01	0.00
BLRC006	136	140	0.00	0.00
BLRC006	140	144	0.00	0.00
BLRC006	144	145	0.00	0.01
BLRC006	145	146	0.00	0.01
BLRC006	146	147	0.00	0.01
BLRC006	147	148	0.00	0.01
BLRC006	148	149	0.00	0.00
BLRC006	149	150	0.00	0.00
BLRC006	150	150	0.00	0.01
BLRC006	150	151	0.01	0.01
BLRC006	151	152	0.00	0.00
BLRC006	152	155	0.00	0.00
BLRC006	155	154	0.00	0.00
BLRC006	155	155	0.00	0.00
BLRC006	155	150	0.00	0.00
BLRC006	150	160	0.00	0.00
BLRC006	164	165	0.00	0.00
BLRC006	165	166	0.00	0.00
BLRC006	166	167	0.00	0.00
BLRC006	167	168	0.08	0.00
BLRC006	168	169	0.02	0.00

DHID	From	То	Cu%	Au g/t
BLRC006	169	170	0.01	0.00
BLRC006	170	171	0.01	0.00
BLRC006	171	172	0.01	0.00
BLRC006	172	176	0.00	0.00
BLRC006	176	180	0.01	0.01
BLRC007	0	4	0.08	0.01
BLRC007	4	8	0.04	0.01
BLRC007	8	12	0.02	0.01
BLRC007	12	13	0.00	0.00
BLRC007	13	14	0.00	0.00
BLRC007	14	15	0.01	0.00
BLRC007	15	16	0.01	0.03
BLRC007	16	17	0.02	0.02
BLRC007	17	18	0.01	0.01
BLRC007	18	19	0.04	0.01
BLRC007	19	20	0.02	0.01
BLRC007	20	24	0.01	0.00
BLRC007	24	28	0.01	0.01
BLRC007	28	32	0.02	0.01
BLRC007	32	36	0.02	0.00
BLRC007	36	40	0.01	0.01
BLRC007	40	44	0.00	0.02
BLRC007	44	45	0.00	0.00
BLRC007	45	46	0.01	0.01
BLRC007	46	47	0.01	0.01
BLRC007	47	48	0.01	0.00
BLRC007	48	49	0.02	0.00
BLRC007	49	50	0.03	0.00
BLRC007	50	51	0.01	0.00
BLRC007	51	52	0.01	0.00
BLRC007	52	56	0.01	0.01
BLRC007	56	60	0.01	0.01
BLRC007	60	61	0.06	0.02
BLRC007	61	62	0.02	0.01
BLRC007	62	63	0.04	0.01
BLRC007	63	64	0.01	0.02
BLRC007	64	65	0.01	0.00
BLRC007	65	66	0.00	0.00
BLRC007	66	67	0.00	0.00
BLRC007	67	68	0.01	0.00
BLRC007	68	72	0.01	0.00
BLRC007	72	72	0.01	0.00
BLRC007	72	80	0.03	0.08
BLRC007	80	81	0.02	0.03
BLRC007	81	82	0.02	0.03
BLRC007	82	83	0.25	0.04
BLRC007	83	84	0.05	0.02
BLRC007	84	85	0.01	0.01
BLRC007	85	86	0.24	0.12
BLRC007	86	87	0.15	0.03
BLRC007 BLRC007	80	88	0.00	0.01
BLRC007 BLRC007	88	92	0.04	0.07
BLRC007	92	96	0.03	0.04
BLRC007 BLRC007	92	100	0.00	0.01
BLRC007 BLRC007	100	100	0.01	0.01
BLRC007 BLRC007	100	104	0.01	0.01
BLRC007 BLRC007	104	108	0.03	0.01
DENCOU/	100	112	0.01	0.01

DHID	From	То	Cu%	Au g/t
BLRC007	112	116	0.03	0.01
BLRC007	116	117	0.06	0.09
BLRC007	117	118	0.02	0.02
BLRC007	118	110	0.00	0.00
BLRC007	110	110	0.00	0.00
BLRC007	110	120	0.01	0.01
BLRC007 BLRC007	120	121		0.09
			0.39	
BLRC007	122	123	0.11	0.11
BLRC007	123	124	0.07	0.04
BLRC007	124	125	0.14	0.03
BLRC007	125	126	0.41	0.05
BLRC007	126	127	0.30	0.03
BLRC007	127	128	0.02	0.01
BLRC007	128	132	0.01	0.00
BLRC007	132	136	0.01	0.01
BLRC007	136	140	0.01	0.00
BLRC007	140	144	0.01	0.02
BLRC007	144	145	0.01	0.00
BLRC007	145	146	0.01	0.00
BLRC007	146	147	0.01	0.00
BLRC007	147	148	0.03	0.01
BLRC007	148	149	0.04	0.01
BLRC007	149	150	0.04	0.02
BLRC007	150	151	0.01	0.01
BLRC007	151	152	0.01	0.00
BLRC007	152	156	0.01	0.00
BLRC007	156	160	0.01	0.01
BLRC007	160	164	0.03	0.01
BLRC007	164	165	0.00	0.02
BLRC007	165	166	0.00	0.00
BLRC007	166	167	0.02	0.00
BLRC007	167	168	0.00	0.01
BLRC007	168	169	0.01	0.00
BLRC007	169	105	0.01	0.00
BLRC007	109	170	0.00	0.00
BLRC007	170	171	0.00	0.01
BLRC007	172	176	0.00	0.00
BLRC007	176	180	0.00	0.00
BLRC007	180	184	0.00	0.01
BLRC007	184	188	0.01	0.01
BLRC007	188	192	0.00	0.01
BLRC007	192	196	0.00	0.00
BLRC007	196	200	0.01	0.01
BLRC008	0	1	0.00	0.00
BLRC008	1	2	0.01	0.03
BLRC008	2	3	0.01	0.02
BLRC008	3	4	0.01	0.00
BLRC008	4	5	0.01	0.07
BLRC008	5	6	0.00	0.00
BLRC008	6	7	0.01	0.00
BLRC008	7	8	0.02	0.00
BLRC008	8	9	0.00	0.00
BLRC008	9	10	0.03	0.00
BLRC008	10	11	0.15	0.01
BLRC008	11	12	0.02	0.00
BLRC008	12	16	0.01	0.01
BLRC008	16	20	0.01	0.01

DHID	From	То	Cu%	Au g/t
BLRC008	20	24	0.08	0.03
BLRC008	24	28	0.01	0.02
BLRC008	28	32	0.01	0.01
BLRC008	32	36	0.01	0.00
BLRC008	36	37	0.07	0.02
BLRC008	37	38	0.04	0.15
BLRC008	38	39	0.01	0.01
BLRC008	39	40	0.01	0.01
BLRC008	40	41	0.01	0.01
BLRC008	41	42	0.01	0.00
BLRC008	42	43	0.02	0.01
BLRC008	43	44	0.03	0.02
BLRC008	44	45	0.01	0.00
BLRC008	45	46	0.49	0.14
BLRC008	46	47	0.29	0.02
BLRC008	47	48	0.04	0.01
BLRC008	48	49	0.03	0.01
BLRC008	49	50	0.03	0.00
BLRC008	50	51	0.05	0.01
BLRC008	51	52	0.23	0.02
BLRC008	52	53	0.08	0.01
BLRC008	53	54	0.03	0.01
BLRC008	54	55	0.02	0.01
BLRC008	55	56	0.20	0.24
BLRC008	56	60	0.05	0.02
BLRC008	60	64	0.03	0.03
BLRC008	64	68	0.04	0.06
BLRC008	68	72	0.01	0.01
BLRC008	72	73	0.02	0.00
BLRC008	73	74	0.03	0.00
BLRC008	74	75	0.04	0.01
BLRC008	75	76	0.01	0.01
BLRC008	76	80	0.02	0.00
BLRC008	80	84	0.00	0.01
BLRC008	84	88	0.01	0.00
BLRC008	88	92	0.01	0.02
BLRC008	92	96	0.01	0.01
BLRC008	96	100	0.01	0.00
BLRC008	100	101	0.02	0.00
BLRC008	101	102	0.00	0.00
BLRC008	102	103	0.00	0.00
BLRC008	103	104	0.00	0.00
BLRC008	104	105	0.01	0.01
BLRC008	105	106	0.02	0.01
BLRC008	106	107	0.00	0.00
BLRC008	107	108	0.00	0.00
BLRC008	108	112	0.01	0.00
BLRC008	112	116	0.01	0.00
BLRC008	116	120	0.01	0.00
BLRC008	120	124	0.01	0.00
BLRC008	120	126	0.01	0.00
BLRC008	126	130	0.00	0.00
BLRC009	0	130	0.00	0.01
BLRC009	1	2	0.00	0.00
BLRC009	2	3	0.00	0.01
BLRC009	3	4	0.00	0.01
BLRC009	4	5	0.00	0.01
DERCOUS	+	J	0.00	0.01

DHID	From	То	Cu%	Au g/t
BLRC009	5	6	0.02	0.04
BLRC009	6	7	0.00	0.02
BLRC009	7	8	0.00	0.04
BLRC009	8	9	0.00	0.01
BLRC009	9	10	0.00	0.01
BLRC009	10	10	0.00	0.01
BLRC009 BLRC009	10	11	0.00	0.01
	11			
BLRC009 BLRC009		13	0.01	0.01
	13	14	0.01	0.01
BLRC009	14	15	0.01	0.00
BLRC009	15	16	0.03	0.01
BLRC009	16	17	0.07	0.01
BLRC009	17	18	0.10	0.12
BLRC009	18	19	0.04	0.01
BLRC009	19	20	0.05	0.06
BLRC009	20	21	0.01	0.01
BLRC009	21	22	0.01	0.01
BLRC009	22	23	0.00	0.01
BLRC009	23	24	0.00	0.01
BLRC009	24	25	0.01	0.01
BLRC009	25	26	0.02	0.01
BLRC009	26	27	0.01	0.01
BLRC009	27	28	0.01	0.02
BLRC009	28	29	0.01	0.01
BLRC009	29	30	0.00	0.01
BLRC009	30	31	0.00	0.01
BLRC009	31	32	0.01	0.00
BLRC009	32	33	0.01	0.01
BLRC009	33	34	0.01	0.01
BLRC009	34	35	0.01	0.01
BLRC009	35	36	0.01	0.01
BLRC009	36	37	0.01	0.00
BLRC009	37	38	0.01	0.00
BLRC009 BLRC009	37	39	0.01	0.01
BLRC009 BLRC009	38	40	0.08	0.03
BLRC009 BLRC009	39 40	40	0.03	0.02
	-			
BLRC009	41	42	0.01	0.01
BLRC009	42	43	0.00	0.01
BLRC009	43	44	0.01	0.01
BLRC009	44	45	0.00	0.01
BLRC009	45	46	0.00	0.01
BLRC009	46	47	0.00	0.01
BLRC009	47	48	0.01	0.01
BLRC009	48	49	0.00	0.00
BLRC009	49	50	0.00	0.00
BLRC009	50	51	0.02	0.03
BLRC009	51	52	0.01	0.01
BLRC009	52	53	0.00	0.00
BLRC009	53	54	0.02	0.05
BLRC009	54	55	0.00	0.01
BLRC009	55	56	0.02	0.02
BLRC009	56	57	0.01	0.02
BLRC009	57	58	0.01	0.01
BLRC009	58	59	0.03	0.03
BLRC009	59	60	1.73	0.78
BLRC009	60	61	0.18	0.02
BLRC009	61	62	0.13	0.02
DENCOUS	01	02	0.14	0.00

DHID	From	То	Cu%	Au g/t
BLRC009	62	63	0.03	0.01
BLRC009	63	64	0.09	0.10
BLRC009	64	65	0.02	0.02
BLRC009	65	66	0.02	0.01
BLRC009	66	67	0.06	0.09
BLRC009	67	68	0.11	0.06
BLRC009	68	69	0.03	0.02
BLRC009	69	70	0.01	0.01
BLRC009	70	71	0.01	0.01
BLRC009	71	72	0.02	0.02
BLRC009	72	73	0.18	0.06
BLRC009	73	74	0.06	0.01
BLRC009	74	75	0.03	0.01
BLRC009	75	76	0.07	0.01
BLRC009	76	77	0.02	0.00
BLRC009	77	78	0.03	0.01
BLRC009	78	70	0.03	0.01
BLRC009	70	80	0.24	0.04
BLRC009	80	81	0.21	0.03
BLRC009	81	82	0.10	0.02
BLRC009	82	83	0.13	0.03
BLRC009	83	84	0.61	0.11
BLRC009	84	85	0.46	0.07
BLRC009	85	86	0.37	0.19
BLRC009	86	87	0.68	0.07
BLRC009	87	88	0.27	0.11
BLRC009	88	89	0.70	0.04
BLRC009	89	90	0.46	0.01
BLRC009	90	91	0.02	0.01
BLRC009	91	92	0.01	0.00
BLRC009	92	93	0.00	0.00
BLRC009	93	94	0.01	0.00
BLRC009	94	95	0.01	0.00
BLRC009	95	96	0.01	0.00
BLRC009	96	97	0.01	0.00
BLRC009	97	98	0.01	0.00
BLRC009	98	99	0.02	0.01
BLRC009	99	100	0.01	0.01
BLRC009	100	101	0.01	0.01
BLRC009	100	101	0.01	0.01
BLRC009	101	102	0.01	0.00
BLRC009	102	103	0.01	0.00
BLRC009	105	104	0.01	0.00
BLRC009	104	105	0.01	0.00
BLRC009	105	100	0.01	0.00
BLRC009	100	107	0.01	0.00
BLRC009	107	108	0.01	0.00
BLRC009	108	109	0.01	0.00
BLRC009	110	110	0.01	0.00
BLRC009	110	111	0.01	0.00
BLRC009	111	112	0.01	0.01
BLRC009	112	113	0.03	0.01
BLRC009	113	114	0.01	0.01
BLRC009	114	115	0.01	0.00
DENCOUS	113	110	0.00	0.00

DHID	From	То	Cu%	Au g/t
BLRC009	116	117	0.00	0.00
BLRC009	117	118	0.00	0.00
BLRC009	118	119	0.00	0.00
BLRC009	119	120	0.01	0.01
BLRC009	120	121	0.02	0.00
BLRC009	121	122	0.02	0.01
BLRC009	122	123	0.02	0.02
BLRC009	123	124	0.01	0.01
BLRC009	124	125	0.01	0.00
BLRC009	125	126	0.01	0.01
BLRC009	126	127	0.01	0.01
BLRC009	127	128	0.02	0.00
BLRC009	128	129	0.01	0.01
BLRC009	129	130	0.01	0.00
BLRC009	130	131	0.01	0.00
BLRC009	131	132	0.01	0.00
BLRC009	132	133	0.01	0.00
BLRC009	133	134	0.00	0.01
BLRC009	134	135	0.00	0.01
BLRC009	135	136	0.01	0.01
BLRC009	136	137	0.01	0.01
BLRC009	137	138	0.00	0.00
BLRC009	138	139	0.00	0.01
BLRC009	139	140	0.00	0.01

The results were reported using a cut-off grade of 0.2% Cu and a minimum interval length of 2m. Higher grade 'included' results were reported using a cut-off grade of 1.0% Cu.

Attachment 1: JORC Code, 2012 Edition – Table 1

Section 1 Sampling Techniques and Data

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 RC drill samples were collected at 1m intervals and composited to 4m lengths for analysis. The 4m composite or 1m sample (where submitted) were crushed and a sub-fraction obtained for pulverisation. Rock chip samples were taken as individual rocks representing an outcrop to give an indication of possible grades and widths that can be expected from drilling. Individual rock samples can be biased towards higher grade mineralisation.
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 Drilling was completed using a Schramm T450 reverse circulation drill rig. The reverse circulation drilling used a face-sampling hammer.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Drill sample recovery was monitored by Kingfisher's exploration team during drilling. Sample recoveries were consistently satisfactory and of a high standard throughout the 2021 RC drill program.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 Chip samples were logged for geology, alteration and mineralisation at the drill rig by the Company's geological personnel. Drill logs were verified by the Company's geologists on submission of the samples for laboratory analysis and were checked following receipt of the analytical data.

Criteria	JORC Code explanation	Commentary
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 RC samples were collected from the drill rig splitter in calico bags. The RC samples were generally dry. The 1m samples were composited to 4m intervals on site by the Company's geologists. The original 1m samples were submitted for analysis for downhole intervals with anomalous analytical results. The results for the 1m samples are pending. A sub-fraction was obtained for pulverisation from the crushed RC samples using a riffle splitter. The entire rock chip sample was submitted for analysis. The samples were crushed and pulverised to -105 micron.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	• Samples were analysed by Bureau Veritas Minerals Pty Ltd in Perth using Laser Ablation Inductively Coupled Plasma Mass Spectrometry and Inductively Coupled Plasma (ICP) Optical Emission Spectrometry. Laboratory repeats were completed at a rate of 1:25 and laboratory standards were analysed at a rate of 1:25 for QAQC.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Independent checks or field duplicates were not conducted for and were not considered necessary for this early stage of exploration. Selected original 1m samples were submitted for analysis to with the 4m composite samples. The results from 1m samples are included in this report.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Drill hole locations were surveyed using a handheld GPS using the UTM coordinate system, with an accuracy of +/-5m. Downhole surveys were completed using a north-seeking gyroscopic survey tool and were reported in 30 m intervals. Rock chip sample locations were surveyed using a handheld GPS using the UTM coordinate system, with an accuracy of +/-5m.

Criteria	JORC Code explanation	Commentary
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Collar spacings are 40m to 100m along the strike of each target. Only one section has multiple drill holes, with the drill holes on that section spaced at a 30m interval. Intervals have been composited for values above the reporting cut-off grades.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 Drill holes were drilled approximately perpendicular to the strike of the mineralisation which was identified from surface mapping and rock chip sampling. Rock chip samples were selected to target specific geology, alteration and mineralisation. The samples were collected to assist the Company in developing its understanding of the geology and exploration potential of its tenure.
Sample security	• The measures taken to ensure sample security.	 Samples were given individual samples numbers for tracking. The sample chain of custody was overseen by the Company's geologists. Samples were transported to Perth in a sealed bulka bag and subsequently to the laboratory.
Audits or reviews	• The results of any audits or reviews of sampling techniques and data.	 The sampling techniques and analytical data are monitored by the Company's geologists. External audits of the data have not been completed.

Section 2 Reporting of Exploration Results

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The Boolaloo copper-gold and base metal project is located approximately 160km west of Paraburdoo in the Ashburton region of Western Australia. The project includes granted Exploration Licences E08/2945 and E08/3067, E08/3246, E08/3247 and E08/3317. The tenements are controlled by Kingfisher Mining Ltd. The tenements lie within Native Title Determined Areas of the Thudgari People, combined Thiin-Mah, Warriyangka, Tharrkari and Jiwarli People and the Jurruru People. All the tenements are in good standing with no known impediments.

Criteria	JORC Code explanation	Commentary
Exploration done by other parties	• Acknowledgment and appraisal of exploration by other parties.	• The majority of the previous work undertaken was by Jackson Gold Ltd between 2006 and 2011.
Geology	• Deposit type, geological setting and style of mineralisation.	• The Boolaloo area is prospective for sediment-hosted and shear-associated Cu, Cu-Au and Au mineralisation.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	 Location, orientation, depth and sample data were tabulated and were included in this announcement for all new drill hole information received at the date of the report. No information has been excluded.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Intervals that comprise more than one sample have been reported using averages. Length-weighting was not necessary as all reported averages were from samples of equal length. A cut-off grade of 0.2% Cu and a minimum length of 2m has been used for the reported intervals. Higher grade intervals with mineralisation above the reporting cut-off grade were reported using a cut-off grade of 1.0% Cu. Metal equivalents have not been used in this report.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	• The drill holes were drilled perpendicular to the mineralisation and are close to the true width of the mineralisation.
Diagrams	• Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should	 A map and cross-sections showing relevant data has been included in the report along with documentation.

Criteria	JORC Code explanation	Commentary
	include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	
Balanced reporting	• Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	 All of the current drilling is included in this report. All historic drill hole information was previously reported by Jackson Gold Limited and subsequently by Kingfisher.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	• All drill hole information was previously reported by Jackson Gold Limited and subsequently by Kingfisher.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 On-going exploration in the area will assess targets on the newly granted tenements, including a conductor from the airborne electromagnetic survey on tenement E08/3317.