ASX ANNOUNCEMENT

31 January 2022

DECEMBER 2021 QUARTERLY REPORT

HIGHLIGHTS

PRODUCTION

- 7,779 ounces of gold produced in the December 2021 quarter
- A record 215,675 dry tonnes milled in the December 2021 quarter
- Gold sales for the quarter were 9,157 ounces at an average sale price of \$2,455/oz for sale receipts of \$22.48 Million
- Cash costs (excluding royalties) of A\$782/oz (positively impacted by draw down of ore stocks)
- Beacon had cash of \$17.78 million and 1,077 ozs of bullion on hand/gold in transit at the end of the quarter
- Beacon poured its second tonne of gold in the December 2021 quarter

FINANCIAL AND CORPORATE

- The Company has no forward gold sales
- Finance facility entered into with low interest rates as Beacon moves to an owner operator model for open pit mining
- The owner operator model is expected to reduce cash operating costs by +\$70/oz with less than a 2 year pay back on the capital investment
- Cash at the end of the quarter was A\$17.78 million
- Capital expenditure for the quarter totalled A\$6.96 million which included capital works, plant and equipment purchases, the new Jaurdi TSF, exploration and Panel 4 pre-strip.

EXPLORATION

- During the quarter 288 holes for 6,328m of Aircore drilling and 34 holes for 2,038m of RC drilling was completed at the Jaurdi Gold Project.
- Best new intercepts from drilling include:

•	B21RC008	4 metres @ 3.35 g/t Au from 53 metres (Big Cat)
•	LS21RC002	1 metre @ 22.70 g/t Au from 97 metres (Lynx South)
•	LS21RC005	7 metres @ 2.21 g/t Au from 101 metres (Lynx South)
•	LDGC1109	5 metres @ 13.53g/t Au from 21 metres (Lost Dog Panel 4)
•	LDGC1079	7 metres @ 3.45g/t Au from 11 metres (Lost Dog Panel 4)
•	LDGC1020	3 metres @ 7.86 g/t Au from 11 metres (Lost Dog Panel 4)

Exploration field work has commenced at the MacPhersons Project

Website www.beaconminerals.com Phone 08 9093 2477

Beacon Minerals Limited (ASX: BCN) (Beacon or the Company) is pleased to present its Quarterly Activities Report for the period ended 31 December 2021.

Beacon's performance during the December quarter reflects the regular and consistent performance of the Jaurdi Gold Project, with record tonnes milled for the quarter.

Dry weather and continual refinement in ore blending ratios/sizing contributed to record through put for the quarter.

Figure 1: Jaurdi Gold Project 12 January 2022

Production Update for the December 2021 Quarter

- Due to delays in approvals a contractor was engaged (Hampton Mining & Civils) to supply a 100t wet hired fleet to accelerate the construction of the Jaurdi TSF.
- Ore mining was minimal for the quarter as mining waste material from Lost Dog Panel 4 was prioritised for the purpose of the TSF wall construction.
- The month of December saw 77,947 dmt milled which equates to an annualised milling rate of 900,000 dmt per annum.

Beacon is pleased to provide the production numbers for the last four quarters at Jaurdi.

On anation	11	Mar-21	Jun-21	Sep-21	Dec-21	Total VTD
Operation	Unit	Qtr	Qtr	Qtr	Qtr	Total YTD
Ore Mined	всм	78,000	127,000	61,000	2,000	268,000
Waste Mined	BCM	301,000	135,800	148,000	313,000	897,800
Ore milled	DMT	145,278	158,861	166,211	215,675	686,025
Head grade	gpt	1.94	1.57	1.62	1.28	1.55
Tails grade	gpt	0.24	0.23	0.24	0.16	0.19
Recovered grade	gpt	1.70	1.34	1.38	1.12	1.36
Gold Produced	oz	7,926	6,846	7,375	7,779	29,926
Gold Sold	oz	7,269	7,695	5,690	9,157	29,811
Average Gold Sales Price	A\$/oz	2,322	2,352	2,443	2,455	2,394
Cost Summary						
Cash cost	OZ	965	1,131	1,126	782	996
Royalties	\$/oz	138	139	101*	115	123
Non-cash Ore Stock & GIC movements	\$/oz	(183)	(336)	(67)	451	(24)
Sustaining costs (excl capital expenditure)	\$/oz	920	934	1,160	1,348	1,095

^{*}Restated from September 2021

Waste removal in Panel 4 totalled 313,000 BCM with 73% utilised as an external wall on the Jaurdi TSF, in addition 55,000 BCM were mined from within the TSF for the internal compacted wall of the TSF.

Construction of the Jaurdi TSF will be completed in the March quarter of 2022 and will have a capacity of 2 million dmt.

Beacon have now moved to an owner operator model for open pit mining, with the existing on hire mining fleet purchased from the supplier. This included 1 x 90 Excavator, 3 x 45t Articulated Dump Trucks, 1 x 40t Articulated Dump Truck and a Service Truck.

The owner operator model is expected to reduce cash operating costs by +\$70/oz with less than a 2 year pay back on the capital investment.

^{**}Rounding errors may occur

Figure 2: Jaurdi TSF 75% complete

Capital Update for the December 2021 quarter

Capital Expenditure for December 2021 Quarter	A\$'000
Capital Works	151
Plant and Equipment	2,366
Tailings Storage Facility (TSF)	2,940
Pre-Strip Panel 4	1,278
Exploration	228
Total	6,963

During the quarter the Company received approval with Caterpillar Finance for up to \$5.0 million at interest rates between 1.9% and 4.5%.

As at 31 December 2021 Beacon had drawn down \$578,000 of the facility with the purchase of a Caterpillar Excavator. Two further items of mobile plant will be financed from the facility and will be delivered in the March 2022 quarter.

Native Title Resolution

The Company would like to advise that a Native Title compensation agreement between the Marlinyu Ghoorlie Group and Beacon Mining Pty Ltd has been signed for tenement M16/561. Mining approvals for the Lost Dog Panel 3 (eastern panel) will now be advanced in the coming months.

Renewable Energy

Alongside Kalgoorlie based business partners Pacific Energy (KPS) Pty Ltd, Beacon Minerals is investigating ways to embrace renewable energy and reduce the carbon fuel sources at the Jaurdi Gold Project. A proposal has been submitted for the integration of a Solar Farm and Battery Energy Storage System (BESS) to the existing diesel power station.

COVID-19

Beacon has successfully implemented the Western Australian Government's mandatory COVID-19 vaccination for all workers and has measures in place to implement the booster mandate. Approximately 10% of the Jaurdi Gold Project workforce resigned following the vaccine mandate.

The Company continues to manage its operations in compliance with COVID-19 regulations issued by the State and Commonwealth authorities.

EXPLORATION UPDATE

Drilling during the quarter consisted of 288 holes for 6,328m of aircore drilling and 34 holes for 2,038m of RC drilling. Drilling during the quarter was focused on grade control for Lost Dog Panel 4, which was completed prior to mining. A second round of RC drilling was completed at the Lynx, Lynx South and Big Cat prospects.

Drilling completed during the quarter included:

Prospect	Drilling Type	Number of Holes	Total Metres
Lynx	RC	3	276
Lynx South	RC	5	630
Big Cat	RC	7	828
Lost Dog	Aircore	288	6,328
Lost Dog	RC	19	304
Total	-	322	8,366

Drilling at Lynx and Big Cat was focused on locating the primary mineralisation below the previously identified supergene enrichment zone below the palaeochannel. Drilling at these prospects included a total of 15 angled RC holes for 1,734m. Refer to Appendix A for a full list of drilling results.

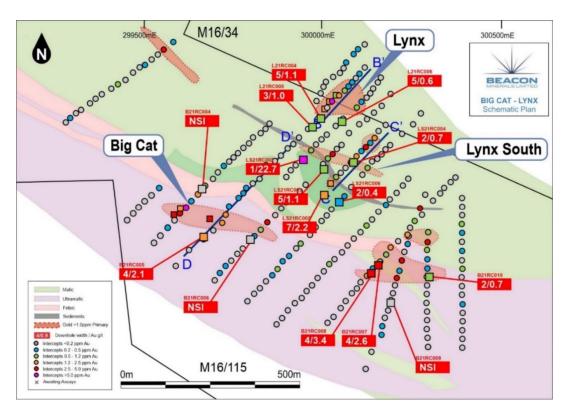


Figure 3: Schematic plan of Big Cat and Lynx prospect areas showing new drill holes.

Lynx

At Lynx, gold mineralisation is associated with a large, flat-lying quartz vein, with some likely supergene re-distribution. Gold is essentially only on one 50m-spaced drill section, closed off to the northwest and only partially open to the southeast. Holes L21RC004 and L21RC005 tested down dip of hole L21RC003 that intercepted 13m @ 2.4g/t Au. Both these holes intercepted low order mineralisation down dip within the fresh rock. Hole L21RC004 returned 5m @ 1.1g/t and hole L21RC005 returned 1m @ 1.5g/t. Hole L21RC006 tested the open strike extent to the east however only returned an intercept of 5m @ 0.6g/t within the partially weathered saprock.

Best intercepts at Lynx include:

- L21RC004 5 metres @ 1.06 g/t Au from 40 metres.
- L21RC005 3 metres @ 1.00 g/t Au from 47 metres.

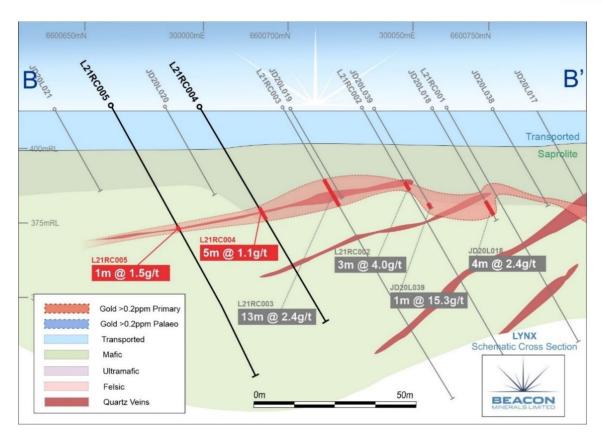


Figure 4: Cross Section B, through Lynx prospect

Lynx South

At Lynx South, gold mineralisation is associated with a black shale-gabbro/dolerite contact, generally, at the black shale footwall contact, which is silica-sericite-pyrite-altered. Extensive, but low tenor supergene gold anomalism has been identified within the saprolite and saprock parts of the regolith profile, but the best intercepts are from fresh black shale-gabbro/dolerite, with most mineralisation hosted by altered gabbro/dolerite. The best intercepts are on just one 50m-spaced section (Figure 5.) Hole LS21RC005 intercepted 6m @ 2.5g/t Au down dip from the previous best intercept of 11m @ 1.9g/t Au in hole LS21RC001. The fresh rock to the northwest and southeast of this traverse is poorly tested to date and further RC drilling is warranted to assist in determining the possible strike length of the identified mineralisation. The mineralised zone is also open down-dip.

Best intercepts at Lynx South include:

- LS21RC002 1 metre @ 22.70 g/t Au from 97 metres.
- LS21RC005 7 metres @ 2.21 g/t Au from 101 metres.

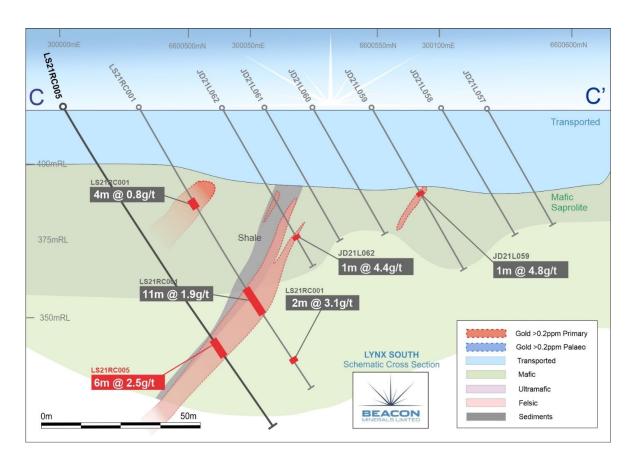


Figure 5: Cross Section C, through Lynx South prospect

Big Cat

Highly anomalous regolith-hosted gold has been identified over at least 900m and is open in both directions. Anomalous gold has been identified from both in situ (saprolite) and transported (palaeochannel) regolith and are closely related to each other in spatial distribution. The recent RC drilling has generated further such anomalous intercepts and has also added to the number of intercepts above 1g/t Au. Despite these ore-grade intersections from the saprolite part of the regolith profile, a fresh rock (hypogene) source is yet to be identified. The general area is covered by up to 55m of transported regolith, associated with the Black Cat-Lost Dog palaeodrainage system, which provides the biggest obstacle to identifying an economic gold-mineralised system.

Best intercepts at Big Cat include:

- B21RC007 4 metres @ 2.58 g/t Au from 70 metres.
- B21RC008 4 metres @ 3.35 q/t Au from 53 metres.

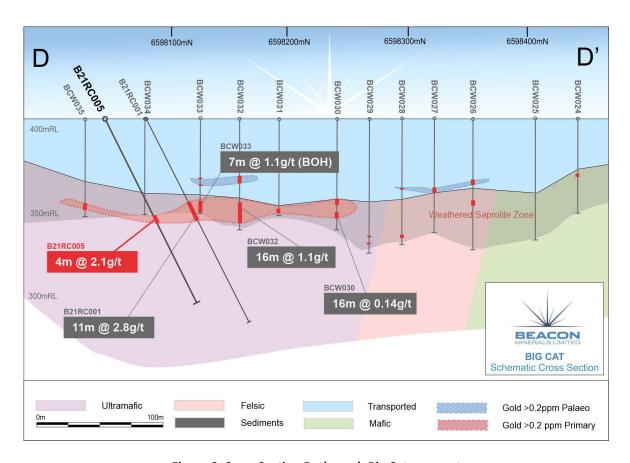


Figure 6: Cross Section D, through Big Cat prospect

Next Steps

Priority resource definition drilling will commence at Lost Dog Panel 3 in March 2022 followed by exploration aircore drilling at the Queenslander prospect.

Fieldwork and mapping have commenced at MacPhersons Reward Project and will continue throughout the March quarter prior to further drilling at MacPhersons in the June quarter.

Further drilling at Lynx South and Big Cat will be considered in the June quarter.

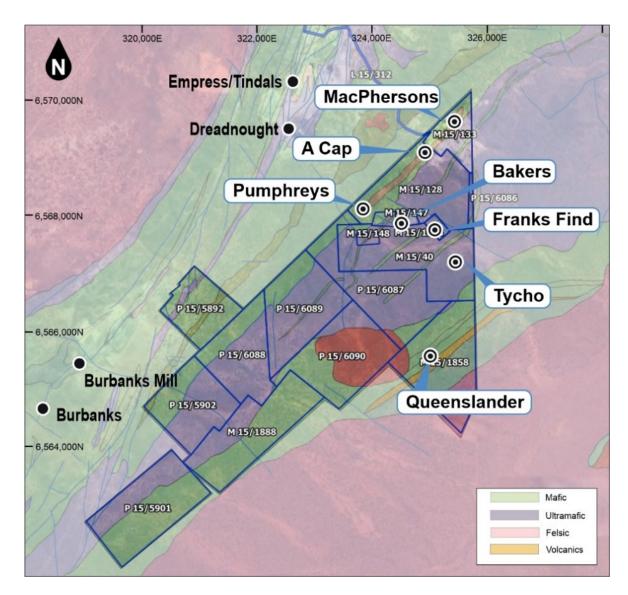


Figure 7: MacPhersons Project geology and prospect map.

TIMOR-LESTE

Beacon has established a presence in Dili, Timor-Leste, with the employment of a Dili based geologist. The Mineral Code was promulgated and socialisation of the code was well advanced at quarter end.

In December 2021 ANPM invited Beacon to submit new applications for exploration licenses and 8 applications were submitted on 4 January 2022. The areas applied for are prospective for copper and gold.

The applications will be reviewed by ANPM and the Minister responsible. There is no guarantee that any or all applications will be approved by the Timor-Leste government.

CORPORATE UPDATE

Bullion on hand and gold in transit totalled 1,077 ounces as at 31 December 2021.

Beacon has received approval with Caterpillar Finance for up to \$5.0 million at interest rates between 1.9% and 4.5%. As at 31 December 2021 Beacon had drawn down \$578,000 of the facility.

Beacon has no forward sales of gold as at the date of this report. The continuing strong spot gold price and the change in the forward curve back into contango (i.e., higher future prices than spot prices) management will review our forward position when prices exceed \$2,600 AUD per ounce.

On 5 October 2021 the Company paid a fully franked dividend of \$0.00125 per share.

MD/Chairman Graham McGarry commented:

"The payment of dividends of \$0.00825 per ordinary share totalling (\$29.5 million) in calendar year 2021 is a milestone for Beacon, we will continue to monitor returns to shareholders, balanced against growth opportunities that may emerge in calendar year 2022."

Ordinary Shares on issue	3,591,264,992
Listed Options on issue*	199,851,271
Unlisted Options on issue**	180,000,000
Market capitalisation	\$111.32 million (\$0.031 share price)
Cash on hand (31 December 2021)	\$17.78 million
Bullion on hand/In Transit (31 December 2021)	1,077 ozs
Finance Facility (31 December 2021)	\$5.0 million (with \$578k drawn down)
Final Dividend Paid 5 October 2021	\$0.00125 per share
Interim Dividend Paid (24 March 2021)	\$0.002 per share
Special Dividend Paid (24 March 2021)	\$0.005 per share

^{*}Exercisable at \$0.025 on or before 17 August 2022

Authorised for release by the Board of Beacon Minerals Limited.

For more information contact:

Graham McGarry Geoffrey Greenhill
Managing Director/Chairman Non-Executive Director

Beacon Minerals Ltd
M: 0459 240 379 Beacon Minerals Ltd
M: 0419 991 713

^{**} Exercisable at \$0.053 on or before 3 August 2023

JORC Compliance Statement

The information in this report relating to exploration results and targets has been compiled by Mr. Zane Padman B.Sc. MAusIMM. Mr. Padman has sufficient experience which is relevant to the styles of mineralisation and types of deposits under consideration and to the activities being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr. Padman consents to the inclusion in the report of the matters based on his information in the form and context in which it appears. Mr. Padman is a full-time employee of Beacon Minerals and is eligible to and may participate in short-term and long-term incentive plans of the Company as disclosed in its annual reports and disclosure documents.

The information in this report referring to the Jaurdi Gold Project Mineral Resource Estimates and Ore Reserves (Black Cat, Lost Dog and Stockpiles) is extracted from the report entitled:

- "June 2021 Quarterly Activities Report" released on the 30th July 2021.
- "Beacon Doubles Resource Inventory, Mine Life Extended" released on the 19th October 2021.

These are available to view on Beacon Minerals website at www.beaconminerals.com.au. The Company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcement. All material assumptions and technical parameters underpinning the estimates continue to apply and have not materially changed. The Company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcements.

Disclaimer

This ASX announcement (Announcement) has been prepared by Beacon Minerals Limited ("Beacon" or "the Company"). It should not be considered as an offer or invitation to subscribe for or purchase any securities in the Company or as an inducement to make an offer or invitation with respect to those securities. No agreement to subscribe for securities in the Company will be entered into on the basis of this Announcement.

This Announcement contains summary information about Beacon, its subsidiaries and their activities which is current as at the date of this Announcement. The information in this Announcement is of a general nature and does not purport to be complete nor does it contain all the information which a prospective investor may require in evaluating a possible investment in Beacon.

By its very nature exploration for minerals is a high risk business and is not suitable for certain investors. Beacon's securities are speculative. Potential investors should consult their stockbroker or financial advisor. There are a number of risks, both specific to Beacon and of a general nature which may affect the future operating and financial performance of Beacon and the value of an investment in Beacon including but not limited to economic conditions, stock market fluctuations, gold price movements, regional infrastructure constraints, timing of approvals from relevant authorities, regulatory risks, operational risks and reliance on key personnel.

Certain statements contained in this announcement, including information as to the future financial or operating performance of Beacon and its projects, are forward-looking statements that:

- may include, among other things, statements regarding targets, estimates and assumptions in respect
 of mineral reserves and mineral resources and anticipated grades and recovery rates, production and
 prices, recovery costs and results, capital expenditures, and are or may be based on assumptions and
 estimates related to future technical, economic, market, political, social and other conditions;
- are necessarily based upon a number of estimates and assumptions that, while considered reasonable by Beacon, are inherently subject to significant technical, business, economic, competitive, political and social uncertainties and contingencies; and,
- involve known and unknown risks and uncertainties that could cause actual events or results to differ materially from estimated or anticipated events or results reflected in such forward-looking statements.

Beacon disclaims any intent or obligation to update publicly any forward-looking statements, whether as a result of new information, future events or results or otherwise. The words 'believe', 'expect', 'anticipate', 'indicate',

'contemplate', 'target', 'plan', 'intends', 'continue', 'budget', 'estimate', 'may', 'will', 'schedule' and similar expressions identify forward-looking statements.

All forward looking statements made in this announcement are qualified by the foregoing cautionary statements. Investors are cautioned that forward-looking statements are not guarantees of future performance and accordingly investors are cautioned not to put undue reliance on forward-looking statements due to the inherent uncertainty therein.

No verification: Although all reasonable care has been undertaken to ensure that the facts and opinions given in this Announcement are accurate, the information provided in this Announcement has not been independently verified.

SCHEDULE OF MINERAL TENEMENT INTERESTS

Beacon Minerals Limited provides the following schedule of mineral tenement interests held by the Company for the quarter ended 31 December 2021 as required by ASX Listing Rule 5.3.

Beacon Minerals Limited Mineral Tenement interest as at 31 December 2021;

TENEMENT	PROJECT/LOCATION	INTEREST AT THE BEGINNING OF THE QUARTER	INTEREST AT THE END OF THE QUARTER
	Jaurdi Gold Project	QUARTER	QUARTER
N416/0520		100%	100%
M16/0529	Jaurdi, Coolgardie	100%	
M16/0034	Jaurdi, Coolgardie		100%
M16/0115	Jaurdi, Coolgardie	100%	100%
M16/0365	Jaurdi, Coolgardie	100%	100%
M16/0560	Jaurdi, Coolgardie	100%	100%
P16/2925	Jaurdi, Coolgardie	100%	100%
P16/2926	Jaurdi, Coolgardie	100%	100%
L16/0120	Jaurdi, Coolgardie	100%	100%
L16/0122	Jaurdi, Coolgardie	100%	100%
L16/0131	Jaurdi, Coolgardie	100%	100%
E16/0469	Jaurdi, Coolgardie	100%	100%
E15/1582	Jaurdi, Coolgardie	100%	100%
L15/0312	MacPhersons, Coolgardie	100%	100%
L15/0352	MacPhersons, Coolgardie	100%	100%
L15/0375	MacPhersons, Coolgardie	100%	100%
M15/0040	MacPhersons, Coolgardie	100%	100%
M15/0128	MacPhersons, Coolgardie	100%	100%
M15/0133	MacPhersons, Coolgardie	100%	100%
M15/0147	MacPhersons, Coolgardie	100%	100%
M15/0148	MacPhersons, Coolgardie	100%	100%
M15/1808	MacPhersons, Coolgardie	100%	100%
P15/5719	MacPhersons, Coolgardie	100%	100%
P15/5722	MacPhersons, Coolgardie	100%	100%
P15/5892	MacPhersons, Coolgardie	100%	100%
P15/5901	MacPhersons, Coolgardie	100%	100%
P15/5902	MacPhersons, Coolgardie	100%	100%
P15/6071	MacPhersons, Coolgardie	100%	100%
P15/6085	MacPhersons, Coolgardie	100%	100%
P15/6086	MacPhersons, Coolgardie	100%	100%
P15/6087	MacPhersons, Coolgardie	100%	100%
P15/6088	MacPhersons, Coolgardie	100%	100%
P15/6089	MacPhersons, Coolgardie	100%	100%
P15/6090	MacPhersons, Coolgardie	100%	100%

Appendix 1: Drilling details and significant Intercepts – Jaurdi Gold Project

Prospect	Hole ID	Hole Type	Easting	Northing	RL (m)	Dip	Azi	Max Depth	From (m)	To (m)	Interval (m)	Au	Intercept (Downhole Width)
Big Cat	B21RC004	RC	299671	6600479	415	-60	225	102	34	38	4	0.65	4m @ 0.65 Au ppm
	B21RC005	RC	299675	6600342	415	-60	45	120	53	57	4	2.08	4m @ 2.08 Au ppm
	including								54	55	1	5.75	1m @ 5.75 Au ppm
	B21RC006	RC	299809	6600335	415	-60	45	102	0	NSI	0	NSI	NSI
	B21RC007	RC	300160	6600261	415	-60	45	114	59	62	3	0.85	3m @ 0.85 Au ppm
	And								70	74	4	2.58	4m @ 2.58 Au ppm
	including								71	72	1	6.04	1m @ 6.04 Au ppm
	B21RC008	RC	300140	6600240	415	-60	45	132	53	57	4	3.35	4m @ 3.35 Au ppm
	including								53	55	2	5.51	2m @ 5.51 Au ppm
	B21RC009	RC	300198	6600156	415	-60	20	114	49	54	5	0.34	5m @ 0.34 Au ppm
	B21RC010	RC	300302	6600234	415	-60	360	144	110	112	2	0.73	2m @ 0.73 Au ppm
Lynx	L21RC004	RC	300001	6600677	420	-60	45	84	40	45	5	1.06	5m @ 1.06 Au ppm
	L21RC005	RC	299980	6600655	420	-60	45	102	47	50	3	1	3m @ 1 Au ppm
	L21RC006	RC	300063	6600671	420	-60	45	90	50	55	5	0.61	5m @ 0.61 Au ppm
Lynx South	LS21RC002	RC	299954	6600562	420	-60	45	108	66	68	2	0.6	2m @ 0.6 Au ppm
	And								97	98	1	22.7	1m @ 22.7 Au ppm
	LS21RC003	RC	300012	6600534	420	-60	45	132	53	58	5	1.13	5m @ 1.13 Au ppm
	LS21RC004	RC	300091	6600555	420	-60	45	132	60	62	2	0.74	2m @ 0.74 Au ppm
	LS21RC005	RC	300011	6600461	420	-60	45	144	37	40	3	0.32	3m @ 0.32 Au ppm
	And								101	108	7	2.21	7m @ 2.21 Au ppm
	LS21RC006	RC	300054	6600444	420	-60	45	114	66	68	2	0.38	2m @ 0.38 Au ppm
Lost Dog	LDGC1001	AC	302695	6598650	383	-90	0	27	12	14	2	3.64	2m @ 3.64 Au ppm
	And								18	20	2	1.36	2m @ 1.36 Au ppm
	LDGC1002	AC	302668	6598638	384.1	-90	0	25	NSI	0	NSI	NSI	NSI
	LDGC1003	AC	302682	6598637	383.9	-90	0	26	18	19	1	8.6	1m @ 8.60 Au ppm
	LDGC1004	AC	302693	6598638	383.9	-90	0	25	20	25	5	3.6	5m @ 3.60 Au ppm
	LDGC1005	AC	302706	6598637	384.3	-90	0	24	11	12	1	1.54	1m @ 1.54 Au ppm
	And								17	19	2	1.41	2m @ 1.41 Au ppm

Prospect	Hole ID	Hole Type	Easting	Northing	RL (m)	Dip	Azi	Max Depth	From (m)	To (m)	Interval (m)	Au	Intercept (Downhole Width)
Lost Dog	LDGC1006	AC	302719	6598638	384.1	-90	0	22	NSI	0	NSI	NSI	NSI
	LDGC1007	AC	302640	6598620	383.9	-90	0	27	22	23	1	1.07	1m @ 1.07 Au ppm
	LDGC1008	AC	302712	6598625	384.2	-90	0	30	9	10	1	1.69	1m @ 1.69 Au ppm
	And								15	16	1	1.28	1m @ 1.28 Au ppm
	LDGC1009	AC	302726	6598625	383.9	-90	0	30	10	11	1	1.11	1m @ 1.11 Au ppm
	LDGC1010	AC	302739	6598630	384	-90	0	30	NSI	0	NSI	NSI	NSI
	LDGC1011	AC	302752	6598630	383.4	-90	0	30	NSI	0	NSI	NSI	NSI
	LDGC1012	AC	302641	6598605	383.9	-90	0	27	22	23	1	2.89	1m @ 2.89 Au ppm
	LDGC1013	AC	302686	6598608	383	-90	0	25	NSI	0	NSI	NSI	NSI
	LDGC1014	AC	302710	6598614	384	-90	0	30	15	16	1	1.08	1m @ 1.08 Au ppm
	LDGC1015	AC	302721	6598613	384.2	-90	0	30	NSI	0	NSI	NSI	NSI
	LDGC1016	AC	302734	6598612	383.9	-90	0	30	NSI	0	NSI	NSI	NSI
	LDGC1017	AC	302748	6598617	383.5	-90	0	30	11	13	2	1.64	2m @ 1.64 Au ppm
	LDGC1018	AC	302642	6598585	384.2	-90	0	19	NSI	0	NSI	NSI	NSI
	LDGC1019	AC	302675	6598592	381.1	-90	0	21	16	20	4	3.94	4m @ 3.94 Au ppm
	LDGC1020	AC	302723	6598600	383.9	-60	270	25	11	14	3	7.86	3m @ 7.86 Au ppm
	LDGC1021	AC	302725	6598600	384.1	-90	0	30	15	16	1	3.49	1m @ 3.49 Au ppm
	LDGC1022	AC	302761	6598600	383.2	-90	0	20	16	18	2	1.67	2m @ 1.67 Au ppm
	LDGC1023	AC	302656	6598576	382.3	-90	0	18	11	12	1	1.08	1m @ 1.08 Au ppm
	LDGC1024	AC	302685	6598585	381.2	-90	0	25	1	2	1	1.36	1m @ 1.36 Au ppm
	LDGC1025	AC	302730	6598587	383.9	-60	270	30	17	18	1	2.96	1m @ 2.96 Au ppm
	And								22	23	1	1.26	1m @ 1.26 Au ppm
	LDGC1026	AC	302728	6598589	384	-90	0	22	NSI	0	NSI	NSI	NSI
	LDGC1027	AC	302743	6598587	384.2	-90	0	21	NSI	0	NSI	NSI	NSI
	LDGC1028	AC	302757	6598587	383.5	-90	0	20	NSI	0	NSI	NSI	NSI
	LDGC1029	AC	302769	6598588	383.5	-90	0	20	15	16	1	1.68	1m @ 1.68 Au ppm
	LDGC1030	AC	302688	6598569	381.6	-90	0	23	14	19	5	1.02	5m @ 1.02 Au ppm

Prospect	Hole ID	Hole Type	Easting	Northing	RL (m)	Dip	Azi	Max Depth	From (m)	To (m)	Interval (m)	Au	Intercept (Downhole Width)
Lost Dog	LDGC1031	AC	302699	6598576	381.3	-90	0	27	NSI	0	NSI	NSI	NSI
	LDGC1032	AC	302709	6598575	380.8	-90	0	24	NSI	0	NSI	NSI	NSI
	LDGC1033	AC	302734	6598575	384	-90	0	21	12	15	3	3.13	3m @ 3.13 Au ppm
	LDGC1034	AC	302747	6598575	384.2	-90	0	22	13	19	6	0.75	6m @ 0.75 Au ppm
	LDGC1035	AC	302772	6598575	383.6	-90	0	19	14	15	1	8.29	1m @ 8.29 Au ppm
	LDGC1036	AC	302672	6598564	381.8	-90	0	30	20	21	1	2.51	1m @ 2.51 Au ppm
	LDGC1037	AC	302685	6598563	381.3	-90	0	23	NSI	0	NSI	NSI	NSI
	LDGC1038	AC	302716	6598565	380.3	-90	0	23	NSI	0	NSI	NSI	NSI
	LDGC1039	AC	302744	6598562	383.9	-90	0	22	NSI	0	NSI	NSI	NSI
	LDGC1040	AC	302756	6598562	384.3	-90	0	21	NSI	0	NSI	NSI	NSI
	LDGC1041	AC	302668	6598549	384.4	-90	0	25	13	16	3	1.51	3m @ 1.51 Au ppm
	LDGC1042	AC	302672	6598547	384.3	-90	0	25	NSI	0	NSI	NSI	NSI
	LDGC1043	AC	302690	6598549	381.3	-90	0	25	NSI	0	NSI	NSI	NSI
	LDGC1044	AC	302703	6598549	381.1	-90	0	25	13	14	1	2.77	1m @ 2.77 Au ppm
	And								19	21	2	4.42	2m @ 4.42 Au ppm
	LDGC1045	AC	302715	6598550	380.5	-90	0	26	NSI	0	NSI	NSI	NSI
	LDGC1046	AC	302745	6598550	383.8	-60	270	29	NSI	0	NSI	NSI	NSI
	LDGC1047	AC	302752	6598551	384	-90	0	57	NSI	0	NSI	NSI	NSI
	LDGC1048	AC	302763	6598550	384.1	-90	0	30	NSI	0	NSI	NSI	NSI
	LDGC1049	AC	302641	6598538	384.9	-90	0	30	NSI	0	NSI	NSI	NSI
	LDGC1050	AC	302663	6598538	384.4	-90	0	26	NSI	0	NSI	NSI	NSI
	LDGC1051	AC	302675	6598537	384.3	-90	0	27	14	15	1	1.41	1m @ 1.41 Au ppm
	LDGC1052	AC	302706	6598537	381.1	-90	0	25	NSI	0	NSI	NSI	NSI
	LDGC1053	AC	302720	6598537	380.4	-90	0	28	17	18	1	2.29	1m @ 2.29 Au ppm
	LDGC1054	AC	302751	6598538	383.5	-90	0	26	NSI	0	NSI	NSI	NSI
	LDGC1055	AC	302764	6598537	384.1	-90	0	26	13	14	1	1.22	1m @ 1.22 Au ppm
	LDGC1056	AC	302643	6598525	384.5	-90	0	20	NSI	0	NSI	NSI	NSI

Prospect	Hole ID	Hole Type	Easting	Northing	RL (m)	Dip	Azi	Max Depth	From (m)	To (m)	Interval (m)	Au	Intercept (Downhole Width)
Lost Dog	LDGC1057	AC	302655	6598525	384.4	-90	0	20	12	15	3	1.68	3m @ 1.68 Au ppm
	LDGC1058	AC	302706	6598525	381	-90	0	25	19	22	3	1.51	3m @ 1.51 Au ppm
	LDGC1059	AC	302718	6598525	380.7	-90	0	27	19	21	2	9.25	2m @ 9.25 Au ppm
	LDGC1060	AC	302731	6598525	380.4	-90	0	28	15	18	3	1.39	3m @ 1.39 Au ppm
	LDGC1061	AC	302738	6598522	380.6	-90	0	27	18	20	2	1.24	2m @ 1.24 Au ppm
	LDGC1062	AC	302755	6598526	383.6	-90	0	27	NSI	0	NSI	NSI	NSI
	LDGC1063	AC	302768	6598525	384.1	-90	0	28	19	20	1	2.07	1m @ 2.07 Au ppm
	LDGC1064	AC	302639	6598514	384.4	-90	0	20	17	18	1	1.31	1m @ 1.31 Au ppm
	LDGC1065	AC	302662	6598510	384.5	-90	0	22	NSI	0	NSI	NSI	NSI
	LDGC1066	AC	302681	6598513	384	-90	0	26	12	16	4	4.46	4m @ 4.46 Au ppm
	LDGC1067	AC	302696	6598513	381.4	-90	0	27	9	10	1	1.07	1m @ 1.07 Au ppm
	And								13	14	1	1.13	1m @ 1.13 Au ppm
	LDGC1068	AC	302769	6598513	383.8	-90	0	28	22	24	2	1.48	2m @ 1.48 Au ppm
	LDGC1069	AC	302781	6598513	383.6	-90	0	28	21	25	4	2.99	4m @ 2.99 Au ppm
	LDGC1070	AC	302831	6598513	382.6	-90	0	27	16	17	1	1.15	1m @ 1.15 Au ppm
	LDGC1071	AC	302638	6598492	384.3	-90	0	20	12	13	1	1.94	1m @ 1.94 Au ppm
	LDGC1072	AC	302652	6598492	384.5	-90	0	19	NSI	0	NSI	NSI	NSI
	LDGC1073	AC	302666	6598497	384.3	-90	0	23	14	15	1	1.84	1m @ 1.84 Au ppm
	LDGC1074	AC	302686	6598500	384	-90	0	28	14	16	2	3.48	2m @ 3.48 Au ppm
	And								22	23	1	1.89	1m @ 1.89 Au ppm
	LDGC1075	AC	302763	6598500	383.5	-90	0	28	23	24	1	1	1m @ 1 Au ppm
	LDGC1076	AC	302774	6598500	383.8	-90	0	29	NSI	0	NSI	NSI	NSI
	LDGC1077	AC	302787	6598500	383.2	-90	0	30	NSI	0	NSI	NSI	NSI
	LDGC1078	AC	302825	6598500	382.7	-90	0	27	NSI	0	NSI	NSI	NSI
	LDGC1079	AC	302674	6598487	384.5	-90	0	26	11	18	7	3.45	7m @ 3.45 Au ppm
	LDGC1080	AC	302686	6598488	384	-90	0	27	12	14	2	2.2	2m @ 2.20 Au ppm
	And								20	22	2	2.27	2m @ 2.27 Au ppm

Prospect	Hole ID	Hole Type	Easting	Northing	RL (m)	Dip	Azi	Max Depth	From (m)	To (m)	Interval (m)	Au	Intercept (Downhole Width)
Lost Dog	LDGC1081	AC	302705	6598488	381.8	-90	0	27	19	22	3	4.48	3m @ 4.48 Au ppm
	LDGC1082	AC	302769	6598488	383.6	-90	0	28	16	17	1	1.01	1m @ 1.01 Au ppm
	LDGC1083	AC	302789	6598491	383.4	-90	0	28	18	20	2	4.17	2m @ 4.17 Au ppm
	LDGC1084	AC	302810	6598494	382.9	-90	0	28	NSI	0	NSI	NSI	NSI
	LDGC1085	AC	302836	6598486	382.6	-90	0	25	NSI	0	NSI	NSI	NSI
	LDGC1086	AC	302641	6598472	384.8	-90	0	19	13	15	2	9.29	2m @ 9.29 Au ppm
	LDGC1087	AC	302679	6598476	384.7	-90	0	22	13	14	1	1.23	1m @ 1.23 Au ppm
	LDGC1088	AC	302770	6598475	383.4	-90	0	29	22	23	1	1.74	1m @ 1.74 Au ppm
	LDGC1089	AC	302784	6598475	383.8	-90	0	28	27	28	1	3.83	1m @ 3.83 Au ppm
	LDGC1090	AC	302811	6598479	382.9	-90	0	27	NSI	0	NSI	NSI	NSI
	LDGC1091	AC	302825	6598474	382.7	-90	0	25	17	18	1	2.74	1m @ 2.74 Au ppm
	And								21	22	1	3.02	1m @ 3.02 Au ppm
	LDGC1092	AC	302643	6598463	384.9	-90	0	19	NSI	0	NSI	NSI	NSI
	LDGC1093	AC	302656	6598463	384.7	-90	0	18	12	15	3	4.5	3m @ 4.50 Au ppm
	LDGC1094	AC	302668	6598463	384.7	-90	0	18	12	16	4	1.23	4m @ 1.23 Au ppm
	LDGC1095	AC	302681	6598463	384.8	-90	0	60	9	11	2	1.77	2m @ 1.77 Au ppm
	And								15	16	1	1.43	1m @ 1.43 Au ppm
	LDGC1096	AC	302773	6598463	383.4	-90	0	28	NSI	0	NSI	NSI	NSI
	LDGC1097	AC	302782	6598462	383.6	-90	0	27	21	24	3	2.24	3m @ 2.24 Au ppm
	LDGC1098	AC	302794	6598463	383.8	-90	0	27	NSI	0	NSI	NSI	NSI
	LDGC1099	AC	302807	6598463	382.9	-90	0	32	NSI	0	NSI	NSI	NSI
	LDGC1100	AC	302819	6598462	382.9	-90	0	25	16	22	6	2.52	6m @ 2.52 Au ppm
	LDGC1101	AC	302832	6598463	382.8	-90	0	25	NSI	0	NSI	NSI	NSI
	LDGC1102	AC	302844	6598463	382.7	-90	0	25	NSI	0	NSI	NSI	NSI
	LDGC1103	AC	302869	6598463	382.5	-90	0	29	19	21	2	1.79	2m @ 1.79 Au ppm
	LDGC1104	AC	302663	6598451	384.8	-90	0	18	11	14	3	1.85	3m @ 1.85 Au ppm
	LDGC1105	AC	302693	6598448	384.9	-90	0	24	12	13	1	1.28	1m @ 1.28 Au ppm

Prospect	Hole ID	Hole Type	Easting	Northing	RL (m)	Dip	Azi	Max Depth	From (m)	To (m)	Interval (m)	Au	Intercept (Downhole Width)
Lost Dog	And								17	18	1	1.59	1m @ 1.59 Au ppm
	And								21	22	1	5.56	1m @ 5.56 Au ppm
	LDGC1106	AC	302777	6598454	383.4	-60	270	28	19	20	1	1.77	1m @ 1.77 Au ppm
	And								26	27	1	1.04	1m @ 1.04 Au ppm
	LDGC1107	AC	302779	6598451	383.5	-90	0	27	NSI	0	NSI	NSI	NSI
	LDGC1108	AC	302788	6598450	383.6	-90	0	26	NSI	0	NSI	NSI	NSI
	LDGC1109	AC	302798	6598450	383.7	-90	0	28	21	26	5	13.5	5m @ 13.53 Au ppm
	LDGC1110	AC	302812	6598450	382.9	-90	0	25	17	18	1	1.86	1m @ 1.86 Au ppm
	And								21	22	1	1.19	1m @ 1.19 Au ppm
	LDGC1111	AC	302825	6598450	382.8	-90	0	24	NSI	0	NSI	NSI	NSI
	LDGC1112	AC	302837	6598450	382.6	-90	0	24	NSI	0	NSI	NSI	NSI
	LDGC1113	AC	302850	6598451	382.7	-90	0	29	19	23	4	3.33	4m @ 3.33 Au ppm
	LDGC1114	AC	302875	6598451	382.5	-90	0	29	19	22	3	1.96	3m @ 1.96 Au ppm
	LDGC1115	AC	302896	6598449	382.7	-90	0	27	19	23	4	1.88	4m @ 1.88 Au ppm
	And								26	27	1	1.03	1m @ 1.03 Au ppm
	LDGC1116	AC	302657	6598438	384.8	-90	0	18	13	17	4	4.57	4m @ 4.57 Au ppm
	LDGC1117	AC	302681	6598442	384.8	-90	0	16	10	11	1	1.87	1m @ 1.87 Au ppm
	LDGC1118	AC	302692	6598438	384.9	-90	0	22	NSI	0	NSI	NSI	NSI
	LDGC1120	AC	302781	6598437	383.7	-90	0	26	12	13	1	1.49	1m @ 1.49 Au ppm
	And								17	18	1	1.35	1m @ 1.35 Au ppm
	And								23	24	1	1.23	1m @ 1.23 Au ppm
	LDGC1121	AC	302793	6598438	383.7	-90	0	25	NSI	0	NSI	NSI	NSI
	LDGC1122	AC	302807	6598438	383.2	-90	0	25	19	25	6	3.31	6m @ 3.31 Au ppm
	LDGC1123	AC	302836	6598438	382.7	-90	0	30	NSI	0	NSI	NSI	NSI
	LDGC1124	AC	302862	6598438	382.2	-90	0	28	20	22	2	2.66	2m @ 2.66 Au ppm
	LDGC1125	AC	302662	6598426	384.8	-90	0	22	11	12	1	1.48	1m @ 1.48 Au ppm
	LDGC1126	AC	302676	6598426	384.7	-90	0	21	11	12	1	1.19	1m @ 1.19 Au ppm

Prospect	Hole ID	Hole Type	Easting	Northing	RL (m)	Dip	Azi	Max Depth	From (m)	To (m)	Interval (m)	Au	Intercept (Downhole Width)
Lost Dog	LDGC1127	AC	302787	6598425	383.5	-90	0	28	NSI	0	NSI	NSI	NSI
	LDGC1127a	AC	302788	6598425	383.5	-90	0	28	23	24	1	1.59	1m @ 1.59 Au ppm
	LDGC1128	AC	302800	6598425	383.8	-90	0	26	12	16	4	1.26	4m @ 1.26 Au ppm
	And								23	24	1	1.59	1m @ 1.59 Au ppm
	LDGC1129	AC	302811	6598425	383.2	-90	0	25	13	15	2	1.54	2m @ 1.54 Au ppm
	And								21	22	1	4.67	1m @ 4.67 Au ppm
	LDGC1130	AC	302826	6598425	382.9	-90	0	30	6	9	3	1.75	3m @ 1.75 Au ppm
	And								12	13	1	3.43	1m @ 3.43 Au ppm
	And								19	24	5	2.39	5m @ 2.39 Au ppm
	LDGC1131	AC	302848	6598425	382.7	-90	0	28	8	9	1	1.89	1m @ 1.89 Au ppm
	And								18	19	1	2.22	1m @ 2.22 Au ppm
	And								22	23	1	4.3	1m @ 4.30 Au ppm
	LDGC1132	AC	302657	6598413	384.8	-90	0	17	11	12	1	1.07	1m @ 1.07 Au ppm
	LDGC1133	AC	302669	6598413	384.8	-90	0	18	10	11	1	1.72	1m @ 1.72 Au ppm
	LDGC1134	AC	302682	6598412	384.8	-90	0	21	9	12	3	1.2	3m @ 1.20 Au ppm
	LDGC1135	AC	302687	6598410	384.7	-90	0	24	9	11	2	1.57	2m @ 1.57 Au ppm
	And								15	16	1	1.3	1m @ 1.30 Au ppm
	LDGC1136	AC	302787	6598414	383.4	-90	0	27	NSI	0	NSI	NSI	NSI
	LDGC1136a	AC	302786	6598413	383.5	-90	0	27	12	16	4	1.85	4m @ 1.85 Au ppm
	LDGC1137	AC	302786	6598414	383.4	-60	270	27	NSI	0	NSI	NSI	NSI
	LDGC1137a	AC	302787	6598411	383.5	-60	270	27	13	22	9	1.63	9m @ 1.63 Au ppm
	And								26	27	1	3.12	1m @ 3.12 Au ppm
	LDGC1138	AC	302794	6598413	383.4	-90	0	24	NSI	0	NSI	NSI	NSI
	LDGC1138a	AC	302792	6598413	383.4	-90	0	25	8	11	3	1.14	3m @ 1.14 Au ppm
	LDGC1139	AC	302806	6598413	383.9	-90	0	24	12	16	4	1.97	4m @ 1.97 Au ppm
	LDGC1140	AC	302818	6598413	383.3	-90	0	22	NSI	0	NSI	NSI	NSI
	LDGC1140a	AC	302818	6598413	383.4	-90	0	22	14	21	7	1.34	7m @ 1.34 Au ppm

Prospect	Hole ID	Hole Type	Easting	Northing	RL (m)	Dip	Azi	Max Depth	From (m)	To (m)	Interval (m)	Au	Intercept (Downhole Width)
Lost Dog	LDGC1141	AC	302831	6598413	382.9	-90	0	28	NSI	0	NSI	NSI	NSI
	LDGC1141a	AC	302833	6598413	383	-90	0	28	12	13	1	1.77	1m @ 1.77 Au ppm
	And								19	22	3	2.61	3m @ 2.61 Au ppm
	LDGC1142	AC	302843	6598413	382.7	-90	0	28	17	23	6	2.84	6m @ 2.84 Au ppm
	LDGC1143	AC	302856	6598413	382.5	-90	0	28	16	17	1	1.36	1m @ 1.36 Au ppm
	And								20	24	4	2.37	4m @ 2.37 Au ppm
	LDGC1144	AC	302869	6598413	382.8	-90	0	28	9	10	1	3.87	1m @ 3.87 Au ppm
	And								15	23	8	1.6	8m @ 1.60 Au ppm
	LDGC1145	AC	302637	6598400	384.8	-90	0	18	12	15	3	3.48	3m @ 3.48 Au ppm
	LDGC1146	AC	302663	6598401	384.7	-90	0	24	13	16	3	1.1	3m @ 1.10 Au ppm
	LDGC1147	AC	302716	6598386	384	-60	0	30	NSI	0	NSI	NSI	NSI
	LDGC1148	AC	302738	6598387	383.8	-90	0	30	12	13	1	1.15	1m @ 1.15 Au ppm
	LDGC1149	AC	302760	6598387	383.7	-60	0	30	20	23	3	1.12	3m @ 1.12 Au ppm
	LDGC1150	AC	302787	6598400	383.3	-90	0	62	NSI	0	NSI	NSI	NSI
	LDGC1150a	AC	302787	6598398	383.4	-90	0	20	NSI	0	NSI	NSI	NSI
	LDGC1151	AC	302799	6598400	383.6	-90	0	23	NSI	0	NSI	NSI	NSI
	LDGC1151a	AC	302798	6598399	383.5	-90	0	23	11	15	4	1.2	4m @ 1.20 Au ppm
	And								21	23	2	2.54	2m @ 2.54 Au ppm
	LDGC1152	AC	302813	6598401	383.8	-90	0	28	9	12	3	1.68	3m @ 1.68 Au ppm
	And								19	22	3	1.61	3m @ 1.61 Au ppm
	LDGC1153	AC	302825	6598400	383	-90	0	28	10	11	1	1.06	1m @ 1.06 Au ppm
	LDGC1154	AC	302838	6598400	382.8	-90	0	28	10	11	1	2.07	1m @ 2.07 Au ppm
	And								21	22	1	1.29	1m @ 1.29 Au ppm
	LDGC1155	AC	302850	6598400	382.8	-90	0	27	12	23	11	1.45	11m @ 1.45 Au ppm
	LDGC1157	AC	302678	6598382	383.9	-90	0	20	10	11	1	2.96	1m @ 2.96 Au ppm
	LDGC1158	AC	302706	6598387	384.2	-90	0	27	NSI	0	NSI	NSI	NSI
	LDGC1159	AC	302764	6598388	383.5	-90	0	23	NSI	0	NSI	NSI	NSI

Prospect	Hole ID	Hole Type	Easting	Northing	RL (m)	Dip	Azi	Max Depth	From (m)	To (m)	Interval (m)	Au	Intercept (Downhole Width)
Lost Dog	LDGC1160	AC	302776	6598388	383.4	-90	0	22	16	20	4	1.08	4m @ 1.08 Au ppm
	LDGC1161	AC	302789	6598388	383.3	-90	0	22	NSI	0	NSI	NSI	NSI
	LDGC1161a	AC	302788	6598387	383.4	-90	0	22	NSI	0	NSI	NSI	NSI
	LDGC1162	AC	302801	6598388	383.4	-90	0	28	NSI	0	NSI	NSI	NSI
	LDGC1162a	AC	302799	6598387	383.4	-90	0	28	20	21	1	1.53	1m @ 1.53 Au ppm
	LDGC1163	AC	302814	6598389	383.9	-90	0	28	11	13	2	1.62	2m @ 1.62 Au ppm
	and								17	25	8	2.07	8m @ 2.07 Au ppm
	LDGC1164	AC	302827	6598387	383.2	-90	0	27	10	12	2	1.89	2m @ 1.89 Au ppm
	and								15	16	1	1.59	1m @ 1.59 Au ppm
	LDGC1165	AC	302662	6598375	383.8	-90	0	18	10	11	1	1.16	1m @ 1.16 Au ppm
	LDGC1166	AC	302699	6598375	383.8	-90	0	22	NSI	0	NSI	NSI	NSI
	LDGC1167	AC	302712	6598375	383.8	-90	0	22	11	13	2	1.9	2m @ 1.90 Au ppm
	LDGC1168	AC	302724	6598376	383.7	-90	0	22	10	11	1	1.22	1m @ 1.22 Au ppm
	LDGC1169	AC	302737	6598375	383.6	-90	0	20	12	13	1	1.9	1m @ 1.90 Au ppm
	LDGC1170	AC	302750	6598375	383.6	-90	0	20	NSI	0	NSI	NSI	NSI
	LDGC1171	AC	302761	6598375	383.6	-90	0	21	12	15	3	1.56	3m @ 1.56 Au ppm
	LDGC1172	AC	302775	6598375	383.6	-90	0	20	10	12	2	1.55	2m @ 1.55 Au ppm
	LDGC1173	AC	302787	6598375	383.5	-90	0	20	10	12	2	1.39	2m @ 1.39 Au ppm
	LDGC1174	AC	302800	6598375	383.4	-90	0	27	NSI	0	NSI	NSI	NSI
	LDGC1175	AC	302825	6598377	383.4	-90	0	27	10	12	2	2.45	2m @ 2.45 Au ppm
	and								15	16	1	1.27	1m @ 1.27 Au ppm
	LDGC1176	AC	302657	6598363	383.8	-90	0	16	9	10	1	1.06	1m @ 1.06 Au ppm
	LDGC1177	AC	302688	6598363	383.8	-90	0	16	8	11	3	1.72	3m @ 1.72 Au ppm
	LDGC1178	AC	302719	6598362	383.3	-90	0	16	10	12	2	1.66	2m @ 1.66 Au ppm
	LDGC1179	AC	302732	6598362	383.3	-90	0	17	9	10	1	1.05	1m @ 1.05 Au ppm
	LDGC1180	AC	302744	6598363	383.3	-90	0	18	8	9	1	2.45	1m @ 2.45 Au ppm
	LDGC1181	AC	302756	6598363	383.2	-90	0	18	NSI	0	NSI	NSI	NSI

Prospect	Hole ID	Hole Type	Easting	Northing	RL (m)	Dip	Azi	Max Depth	From (m)	To (m)	Interval (m)	Au	Intercept (Downhole Width)
Lost Dog	LDGC1182	AC	302769	6598362	383.5	-90	0	18	NSI	0	NSI	NSI	NSI
	LDGC1183	AC	302782	6598362	383.6	-90	0	18	16	18	2	3.04	2m @ 3.04 Au ppm
	LDGC1184	AC	302794	6598362	383.7	-90	0	27	11	16	5	2.43	5m @ 2.43 Au ppm
	and								20	21	1	2.67	1m @ 2.67 Au ppm
	LDGC1185	AC	302807	6598362	383.6	-90	0	27	11	13	2	1.58	2m @ 1.58 Au ppm
	And								17	18	1	2.28	1m @ 2.28 Au ppm
	LDGC1186	AC	302820	6598363	383.7	-90	0	29	10	11	1	1.3	1m @ 1.30 Au ppm
	LDGC1187	AC	302832	6598363	383.7	-90	0	29	9	12	3	1.4	3m @ 1.40 Au ppm
	And								22	23	1	2.46	1m @ 2.46 Au ppm
	LDGC1188	AC	302843	6598363	383.6	-90	0	16	10	13	3	1.47	3m @ 1.47 Au ppm
	LDGC1188a	AC	302845	6598363	383.7	-90	0	29	10	11	1	3.76	1m @ 3.76 Au ppm
	And								20	23	3	1.73	3m @ 1.73 Au ppm
	LDGC1189	AC	302869	6598363	383.5	-90	0	29	NSI	0	NSI	NSI	NSI
	LDGC1190	AC	302661	6598353	383.9	-90	0	15	8	11	3	1.8	3m @ 1.80 Au ppm
	LDGC1191	AC	302687	6598350	383.6	-90	0	15	8	10	2	1.41	2m @ 1.41 Au ppm
	LDGC1192	AC	302712	6598350	383.3	-90	0	15	NSI	0	NSI	NSI	NSI
	LDGC1193	AC	302737	6598350	383.2	-90	0	15	NSI	0	NSI	NSI	NSI
	LDGC1194	AC	302762	6598350	383.1	-90	0	16	8	10	2	1.03	2m @ 1.03 Au ppm
	LDGC1195	AC	302787	6598350	383.4	-90	0	17	8	10	2	1.03	2m @ 1.03 Au ppm
	LDGC1196	AC	302812	6598351	383.4	-90	0	28	10	11	1	1.52	1m @ 1.52 Au ppm
	And								16	17	1	2.19	1m @ 2.19 Au ppm
	LDGC1196a	RC	302813	6598352	379.7	-90	0	25	5	6	1	1.02	1m @ 1.02 Au ppm
	LDGC1197	AC	302838	6598350	383.6	-90	0	30	8	11	3	3.19	3m @ 3.19 Au ppm
	LDGC1198	AC	302863	6598350	383.6	-90	0	27	9	11	2	1.83	2m @ 1.83 Au ppm
	LDGC1199	AC	302697	6598337	383.1	-90	0	15	7	10	3	2	3m @ 2 Au ppm
	LDGC1200	AC	302708	6598333	383.2	-90	0	16	8	9	1	6.63	1m @ 6.63 Au ppm
	LDGC1201	AC	302725	6598337	383.3	-90	0	15	5	7	2	1.65	2m @ 1.65 Au ppm

Prospect	Hole ID	Hole Type	Easting	Northing	RL (m)	Dip	Azi	Max Depth	From (m)	To (m)	Interval (m)	Au	Intercept (Downhole Width)
Lost Dog	LDGC1202	AC	302737	6598338	383.2	-90	0	16	8	10	2	1.15	2m @ 1.15 Au ppm
	LDGC1203	AC	302762	6598337	383.2	-90	0	15	8	10	2	1.35	2m @ 1.35 Au ppm
	LDGC1204	AC	302782	6598337	383.2	-90	0	17	NSI	0	NSI	NSI	NSI
	LDGC1205	AC	302794	6598338	383.3	-90	0	27	NSI	0	NSI	NSI	NSI
	LDGC1206a	RC	302807	6598340	379.9	-90	0	24	NSI	0	NSI	NSI	NSI
	LDGC1207	AC	302821	6598338	383.6	-90	0	27	NSI	0	NSI	NSI	NSI
	LDGC1208	AC	302834	6598338	383.6	-90	0	17	NSI	0	NSI	NSI	NSI
	LDGC1209	AC	302847	6598338	383.5	-90	0	18	8	11	3	1.27	3m @ 1.27 Au ppm
	LDGC1210	AC	302873	6598338	383.6	-90	0	18	12	13	1	1.63	1m @ 1.63 Au ppm
	LDGC1212	AC	302691	6598324	383.2	-90	0	15	NSI	0	NSI	NSI	NSI
	LDGC1213	AC	302739	6598325	383.3	-90	0	20	10	11	1	1.45	1m @ 1.45 Au ppm
	LDGC1214	AC	302750	6598325	383.3	-90	0	63	8	11	3	1.82	3m @ 1.82 Au ppm
	LDGC1215	AC	302763	6598325	383.2	-90	0	18	10	11	1	1.15	1m @ 1.15 Au ppm
	LDGC1216	AC	302775	6598325	383.3	-90	0	15	10	11	1	1.77	1m @ 1.77 Au ppm
	LDGC1217	AC	302800	6598325	383.4	-90	0	17	NSI	0	NSI	NSI	NSI
	LDGC1218	AC	302812	6598326	383.2	-90	0	18	9	11	2	1.79	2m @ 1.79 Au ppm
	LDGC1219	AC	302824	6598326	383.4	-90	0	17	9	13	4	1.17	4m @ 1.17 Au ppm
	LDGC1220	AC	302838	6598326	383.4	-90	0	25	10	14	4	0.94	4m @ 0.94 Au ppm
	LDGC1221	AC	302851	6598325	383	-90	0	26	19	20	1	1.2	1m @ 1.20 Au ppm
	LDGC1222	AC	302862	6598326	383.5	-90	0	18	10	12	2	2.73	2m @ 2.73 Au ppm
	LDGC1223	AC	302875	6598325	383.7	-90	0	16	14	15	1	1.15	1m @ 1.15 Au ppm
	LDGC1224	AC	302706	6598313	383	-90	0	16	7	8	1	1.38	1m @ 1.38 Au ppm
	LDGC1225	AC	302719	6598313	382.9	-90	0	17	7	8	1	1.47	1m @ 1.47 Au ppm
	LDGC1226	AC	302731	6598313	383	-90	0	16	9	11	2	1.23	2m @ 1.23 Au ppm
	LDGC1227	AC	302744	6598313	383.2	-90	0	16	NSI	0	NSI	NSI	NSI
	LDGC1228	AC	302757	6598313	383.3	-90	0	15	NSI	0	NSI	NSI	NSI
Lost Dog	LDGC1229	AC	302772	6598313	383.2	-90	0	15	8	12	4	0.93	4m @ 0.93 Au ppm

Prospect	Hole ID	Hole Type	Easting	Northing	RL (m)	Dip	Azi	Max Depth	From (m)	To (m)	Interval (m)	Au	Intercept (Downhole Width)
	LDGC1230	AC	302784	6598313	383.2	-90	0	17	NSI	0	NSI	NSI	NSI
	LDGC1231a	RC	302799	6598313	380.3	-90	0	17	7	8	1	1.53	1m @ 1.53 Au ppm
	LDGC1232	AC	302821	6598312	383.1	-90	0	17	8	11	3	1.28	3m @ 1.28 Au ppm
	LDGC1233	AC	302834	6598313	383.4	-90	0	17	8	10	2	2.62	2m @ 2.62 Au ppm
	LDGC1234	AC	302846	6598313	383.1	-90	0	17	10	11	1	1.08	1m @ 1.08 Au ppm
	LDGC1235	AC	302859	6598312	383.3	-90	0	17	10	11	1	1.61	1m @ 1.61 Au ppm
	LDGC1236	AC	302872	6598313	383.6	-90	0	16	12	13	1	1.25	1m @ 1.25 Au ppm
	LDGC1237	AC	302877	6598313	383.7	-60	90	19	11	13	2	1.3	2m @ 1.30 Au ppm
	LDGC1239	AC	302714	6598298	383	-90	0	14	7	8	1	1.24	1m @ 1.24 Au ppm
	LDGC1240	AC	302813	6598300	383.2	-90	0	17	NSI	0	NSI	NSI	NSI
	LDGC1241	AC	302826	6598300	383.3	-90	0	17	NSI	0	NSI	NSI	NSI
	LDGC1242	AC	302837	6598300	383.4	-90	0	18	10	11	1	1.41	1m @ 1.41 Au ppm
	LDGC1243	AC	302851	6598300	383.4	-90	0	17	7	11	4	1.34	4m @ 1.34 Au ppm
	LDGC1245a	RC	302724	6598287	382.9	-90	0	16	6	7	1	1.47	1m @ 1.47 Au ppm
	LDGC1246a	RC	302744	6598291	383.1	-90	0	15	6	7	1	1.08	1m @ 1.08 Au ppm
	LDGC1247	AC	302756	6598295	383.1	-90	0	15	NSI	0	NSI	NSI	NSI
	LDGC1247a	AC	302757	6598295	380.3	-90	0	13	5	6	1	1.28	1m @ 1.28 Au ppm
	LDGC1248	AC	302769	6598295	383.1	-90	0	15	NSI	0	NSI	NSI	NSI
	LDGC1248a	AC	302769	6598295	380.1	-90	0	13	3	6	3	2.19	3m @ 2.19 Au ppm
	LDGC1249	AC	302782	6598288	383.2	-90	0	15	NSI	0	NSI	NSI	NSI
	LDGC1249a	AC	302781	6598287	379.9	-90	0	15	NSI	0	NSI	NSI	NSI
	LDGC1250a	RC	302795	6598287	380	-90	0	14	NSI	0	NSI	NSI	NSI
Lost Dog	LDGC1251	AC	302807	6598288	383.2	-90	0	17	NSI	0	NSI	NSI	NSI
	LDGC1252	AC	302819	6598288	383.4	-90	0	17	NSI	0	NSI	NSI	NSI
	LDGC1253	AC	302831	6598287	383.3	-90	0	60	NSI	0	NSI	NSI	NSI
	LDGC1254	AC	302844	6598288	383.3	-90	0	18	11	12	1	1.53	1m @ 1.53 Au ppm
	LDGC1255	AC	302872	6598290	383.2	-90	0	17	NSI	0	NSI	NSI	NSI

Prospect	Hole ID	Hole Type	Easting	Northing	RL (m)	Dip	Azi	Max Depth	From (m)	To (m)	Interval (m)	Au	Intercept (Downhole Width)
	LDGC1256a	RC	302750	6598275	383.1	-90	0	14	NSI	0	NSI	NSI	NSI
	LDGC1257	AC	302775	6598274	382.9	-90	0	19	NSI	0	NSI	NSI	NSI
	LDGC1257a	AC	302775	6598275	380	-90	0	14	6	7	1	1.1	1m @ 1.10 Au ppm
	LDGC1258	AC	302787	6598274	383	-90	0	16	NSI	0	NSI	NSI	NSI
	LDGC1258a	AC	302788	6598275	379.7	-90	0	14	NSI	0	NSI	NSI	NSI
	LDGC1259a	RC	302800	6598275	380.1	-90	0	14	NSI	0	NSI	NSI	NSI
	LDGC1260a	RC	302812	6598275	380	-90	0	14	NSI	0	NSI	NSI	NSI
	LDGC1261a	RC	302825	6598275	379.9	-90	0	15	6	7	1	1.46	1m @ 1.46 Au ppm
	LDGC1262a	RC	302838	6598275	379.9	-90	0	16	NSI	0	NSI	NSI	NSI
	LDGC1263a	RC	302850	6598275	380	-90	0	16	6	9	3	4.36	3m @ 4.36 Au ppm
	LDGC1264a	RC	302863	6598275	380.1	-90	0	16	NSI	0	NSI	NSI	NSI
	LDGC1265	AC	302718	6598267	383	-90	0	15	NSI	0	NSI	NSI	NSI
	LDGC1266a	RC	302746	6598263	382.8	-90	0	14	NSI	0	NSI	NSI	NSI
	LDGC1267	AC	302763	6598262	382.7	-90	0	16	NSI	0	NSI	NSI	NSI
Lost Dog	LDGC1267a	AC	302761	6598262	380	-90	0	13	5	6	1	3.75	1m @ 3.75 Au ppm
	LDGC1268a	RC	302781	6598263	383.4	-90	0	14	9	10	1	1.54	1m @ 1.54 Au ppm
	LDGC1269a	RC	302797	6598263	380.3	-90	0	14	NSI	0	NSI	NSI	NSI
	LDGC1270a	RC	302818	6598263	380.2	-90	0	14	NSI	0	NSI	NSI	NSI
	LDGC1271a	RC	302844	6598263	380.1	-90	0	16	7	9	2	1.4	2m @ 1.40 Au ppm
	LDGC1272a	RC	302856	6598263	380.1	-90	0	16	NSI	0	NSI	NSI	NSI
	LDGC1273	AC	302761	6598251	382.6	-90	0	16	NSI	0	NSI	NSI	NSI
	LDGC1274	AC	302786	6598250	382.6	-90	0	16	8	11	3	1.54	3m @ 1.54 Au ppm
	LDGC1275	AC	302800	6598250	382.6	-90	0	17	9	13	4	1.59	4m @ 1.59 Au ppm

Appendix 2: JORC Code, 2012 Edition – Table 1 Report

Section 1 Sampling Techniques and Data (Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling	Nature and quality of sampling (eg cut channels, random chips, or	RC Drilling
techniques	specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.	Drill cuttings are extracted in one metre intervals from the RC return via cyclone, delivering approximately three kilograms of the recovered material into calico bags for analysis. Some early stage exploration The residual material is retained on the ground near the hole. Composite samples are obtained from the residue material for initial analysis, with the split samples remaining with the individual residual piles until required for re-split analysis or eventual disposal. Samples are collected to a nominal weight of 3-5kg and sent to the laboratory, split then pulverised to produce a 50-gram charge for analysis by fire assay.
		Aircore Drilling Residual material is collected in one metre intervals on the ground via bucket dumps. Composite samples are made up of combined scoops from bucket dumps. One metre split samples are taken from individual bucket dumps via scoop. Samples are collected to a nominal weight of 3-5kg and sent to the laboratory, split then pulverised to produce a 50-gram charge for analysis by fire assay.
		All geology input is logged and validated by geologists, incorporated into this is assessment of sample recovery. No defined relationship exists between sample recovery and grade. Nor has sample bias due to preferential loss or gain of fine or coarse material been noted.
	Include reference to measures taken to ensure sample representation and the appropriate calibration of any measurement tools or systems used.	For aircore, a single scoop sample is cut through the mound of sample collected on one metre intervals down hole to best represent the entire metre being sampled. Each one metre sample collected is placed in a calico bag. For RC, a cyclone cone splitter is used to split 1m regular cleaning of the cyclone to remove hung up clays.
	Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling	The composited aircore and RC samples were collected at a nominal 3 to 5 Kg weight. This sample was sent to the laboratory, split then pulverised to produce a 50-gram charge for analysis by fire assay.

Criteria	JORC Code explanation	Commentary
	problems. Unusual commodities or mineralisation types (eg	
5.98	submarine nodules) may warrant disclosure of detailed information.	At a second all the second and the s
Drilling	Drill type (eg core, reverse circulation, open-hole hammer, rotary air	Aircore drilling was completed using an 89mm face sampling bit. RC drilling was
techniques	blast, auger, banka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	completed using 4.5" RC hammer bit.
Drill sample	Method of recording and assessing core and chip sample recoveries	Sample recoveries are recorded visually by the geologist. No significant sample recovery
recovery	and results assessed.	issues were encountered. Generally sample recoveries can be affected within the palaeochannel.
	Measures taken to maximise sample recovery and ensure representative nature of the samples.	When poor sample recovery is encountered, the geologist and driller endeavoured to rectify the problem to ensure maximum sample recovery.
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	None noted.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	Each one metre interval was logged for all drilling. All end of aircore hole chip samples were collected with the aim of developing a geological map of the base of oxidation geology. All RC chips were collected in 1m intervals to be retained for further evaluation if required.
	Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.	All logging is qualitative in nature.
	The total length and percentage of the relevant intersections logged	Each one metre sample interval was logged in detail for geology, veining, alteration, mineralisation for the entire hole.
Sub-sampling techniques	If core, whether cut or sawn and whether quarter, half or all core taken.	No core drilling has been completed.
and sample preparation	If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.	Each AC sample was scoop sampled. Each RC sample was collected via cyclone cone splitter. All sampling was dry in nature.
	For all sample types, the nature, quality, and appropriateness of the sample preparation technique.	Sample preparation follows industry best practice standards and is conducted by internationally recognised laboratories; i.e. ALS Global
	Quality control procedures adopted for all sub-sampling stages to maximise representation of samples.	For composite and AC sampling, care is taken in the field to scoop a representative sample of the one metre sample which forms part of the composited sample. ALS Global have laboratory standard procedures for sub sampling of the composites sent for

Registered Address 144 Vivian Street, Boulder, WA 6432 Website www.beaconminerals.com Phone 08 9093 2477

	analysis. One metre RC samples are collected by industry standard techniques, split					
	samples are separated from the larger sample using a cyclone splitter					
Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling.	Duplicate sampling was taken in the field and results were deemed adequate.					
Whether sample sizes are appropriate to the grain size of the material being sampled.	Sample sizes are deemed appropriate for the grain size of the material being sampled.					
The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	ALS Laboratory (Kalgoorlie) was used for Au analysis carried out on the samples. The laboratory techniques below are for all samples submitted to ALS and are considered appropriate for the style of mineralisation. Au-AS26 – 50g fire assay The QA/QC data includes standards, duplicates, and laboratory checks. In-house QA/QC					
	tests are conducted by the lab on each batch of samples.					
For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	No geophysical tools were used.					
Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.	Beacon Minerals submitted standards, duplicates, and blanks as part of their QA/QC regime which has been deemed to demonstrate acceptable levels of accuracy and precision for the sample types employed.					
The verification of significant intersections by either independent or alternative company personnel.	All geological logging and sampling were completed in spreadsheets, which were then transferred to a database for validation and compilation. Electronic copies of all information are periodically backed up. BCN management have reviewed this data and are satisfied with the efficacy of the data collected by field geologists.					
The use of twinned holes.	No holes in this programme were twinned.					
Documentation of primary data, data entry procedures, data	Data is entered into Excel spreadsheets, validated, and loaded into a Microsoft Access					
verification, data storage (physical and electronic) protocols.	database. Data was exported from Microsoft Access for processing and visual verification in Surpac. All electronic data is routinely backed up.					
Discuss any adjustment to assay data.	No adjustments of assay data were considered necessary.					
	in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.					

Registered Address 144 Vivian Street, Boulder, WA 6432 Website www.beaconminerals.com Phone 08 9093 2477

Criteria	JORC Code explanation	Commentary
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	Collars are picked up after using a RTK GPS.
	Specification of the grid system used.	Grid system used is MGA94 (Zone 51).
	Quality and adequacy of topographic control.	Collars are picked up after using a RTK GPS.
Data spacing and distribution	Data spacing for reporting of Exploration Results.	Data spacing is variable dependent upon the individual orebody under consideration. A lengthy history of mining has shown that this approach is appropriate for the Mineral Resource.
	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	The data spacing for this early stage of exploration is considered appropriate to achieve total coverage across a defined drill line and adequate to determine the presence of gold mineralisation. The objective of this drilling is to ascertain the presence of mineralisation and there is no consideration for resource estimation at this early stage.
	Whether sample compositing has been applied.	Samples were composited typically on four metre intervals but may have been on three to five metre intervals depending on the end of hole depth.
Orientation of data in relation to	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	Sample orientation was appropriate for the early stage of exploration and the perceived strike of the structure which potentially hosts gold mineralisation.
geological structure	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	The exact nature of the gold mineralisation at this early stage is not yet understood. The relationship between drill orientation and the perceived mineralised structure will not introduce any bias.
Sample security	The measures taken to ensure sample security.	The chain of custody is managed by the project geologist who placed the calico sample bags in polyweave sacks. Up to 5 calico sample bags were placed in each sack. Each sack was clearly marked.
		Detailed records were kept of all samples dispatched including the chain of custody.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	Data is validated when loading into the database. Site geologists update all data into the Jaurdi database and there is nothing perceived to be erroneous with the data capture.

Section 2 Reporting of Exploration Results
(Criteria listed in the preceding section also apply to this section)
BEACON MINERALS LIMITED ACN 119 611 559
Registered Address 144 Vivian Street, Boulder, WA 6432
Website www.beaconminerals.com Phone 08 9093 2477

Criteria	JORC Code explanation	Commentary
Mineral tenement and	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint	Several third-party royalties exist across various tenements JGP, over and above the state government royalty.
land tenure	ventures, partnerships, overriding royalties, native title interests,	JGP tenure is currently in good standing. There are no known issues regarding security of
status	historical sites, wilderness or national park and environmental settings.	tenure. There are no known impediments to continued operation. Beacon operates in accordance with all environmental conditions set down as conditions for grant of the leases.
	The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	The tenements are in good standing with the WA DMIRS.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	There have been several campaigns of drilling undertaken on the leases by third parties; BHP – Utah Minerals International – (1989) Coolgardie Gold NL (1991-1997) Coronet Resources (2007) – Lost Dog Kinver Mining NL/Toro Mining Pty Ltd (1998-2013) A group of "prospectors" (2009) Fenton and Martin Mining Developments (2015). Beacon has completed multiple drilling programmes at Jaurdi Gold Project during its period of ownership.
Geology	Deposit type, geological setting and style of mineralisation.	The Jaurdi Gold Project is located in the Eastern Goldfields Superterrane of the Yilgarn Craton. It is located in the western-most parts of the regionally extensive Norseman-Wiluna greenstone belt and this portion of the belt forms part of the Coolgardie Domain, itself the western-most part of the Kalgoorlie Terrane. The project tenure overlies parts of the Jaurdi Hills-Dunnsville greenstone sequence where it occurs to the immediate northwest of the Bali Monzogranite and to the immediate southwest of the Doyle Dam Granodiorite. The Jaurdi Gold Project also overlies a portion of the Bali Monzogranite. The Bali Monzogranite is poorly exposed. The greenstone-granite contact is foliated where exposed. Shear zones developed locally within the adjacent greenstones, may continue within the granite. Gold mineralised palaeochannel are known in the Jaurdi area. The Bali Monzogranite and Dunnsville Granodiorite to the north, together occupy the core of the gently north plunging anticline. The tenements making up the project are located to the west of the anticlinal axis and immediately adjacent to the granite-greenstone contact.

Registered Address 144 Vivian Street, Boulder, WA 6432 Website www.beaconminerals.com Phone 08 9093 2477

Criteria	JORC Code explanation	Commentary
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all material drill holes: easting and northing of the drill hole collar 	All holes and significant assays are reported in Appendix 1.
	 elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar 	
	dip and azimuth of the hole	
	 down hole length and intercept depth 	
	■ hole length.	
	If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated.	Grades are reported as down-hole length-weighted averages of grades above approximately 0.5 g/t Au. No top cuts have been applied to the reporting of the assay results. Intercepts averaging values significantly less than 0.5 g/t Au were assigned the text "NSI" (No Significant Intercept).
	Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	Higher grade intervals are included in the reported grade intervals.
	The assumptions used for any reporting of metal equivalent values should be clearly stated.	No metal equivalent values are used.

Criteria	JORC Code explanation	Commentary
Relationship between mineralisation widths and intercept lengths	These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').	The geometry of the mineralisation within the palaeo system has been well established by the recent drilling and mining of the Lost Dog pit. There is no ambiguity with the geometry of this relatively simple alluvial system. Black Cat South mineralisation dips at 40 degrees to the SW, drilling is designed to intercept the ore as close to 90 degrees as practical. If the geometry of mineralisation is known in respect to drill hole angles, then its nature has been reported. Mineralisation in early stage aircore drilling has been assumed to be supergene in nature.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Refer to Figures in the body of text.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	No misleading results have been presented in this announcement. Complete results are contained in this announcement including holes with 'no significant intercepts.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	There is nothing to report relevant to this drilling.
Further work	The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	Further exploration work is currently under consideration, the details of which are included in this release in brief. Further details will be released in due course.