ASX Code: AR3

Highest Koppamurra Grades Discovered and Trial Pit Planned

Highlights

- Koppamurra continues to deliver with results from 79 push tube core drillholes completed in the proposed Trial Pit test area adjacent to the Red Tail Resource, yielding the highest grades seen at Koppamurra to date.
 - Grades as high as 9,244ppm Total Rare Earth Oxides (TREO) have been identified in push tube core samples
 - 16 of the push tube core drillholes completed in the Trial Pit area are showing significant intersections with average TREO contents greater than 1,500ppm
- Assays received from air-core drilling in the Comaum area show potential for a 6km extension of the
 existing Red Tail resource to the North. Assays results received to date from the October to December
 2021 drilling programme have indicated 3 and 4m thickness with grades exceeding 1,000ppm TREO
 - KM0574, 3m @ 2,165ppm TREO from 6m with 22.9% combined Neodymium / Praseodymium (Nd/Pr) and 3.0% Dysprosium (Dy)
 - KM0655, 4m @ 1,166ppm TREO from 8m with 18.0% combined Nd/Pr and 2.6% Dy
 - KM0706, 3m @ 1,313ppm TREO from 1m with 20.0% combined Nd/Pr and 2.7% Dy
 - KM0718, 3m @ 1,576ppm TREO from 3m with 22.2% combined Nd/Pr and 2.7% Dy
 - KM0607, 4m @ 1,006ppm TREO from 8m with 24.7% combined Nd/Pr and 2.3% Dy
- Work completed on density determinations of push tube core material indicate dry bulk densities of mineralised material of 1.8 g/cm³, a ~30% increase on the density value used in the Red Tail and Yellow Tail Resource estimations (1.4 g/cm³).
- Resource Estimation consultants, IHC Mining, through their Geological Services division, have been engaged to undertake an update of the Red Tail and Yellow Tail Resource Estimate.
- Drilling has commenced on a further 10,000m programme aimed at continuing to build resources at Red Tail and Yellow Tail.

Phone: 1300 646 100

Australian Rare Earths Limited (ASX: AR3) ('AR3' or the Company) is pleased to announce the following update on exploration activities on its 100% owned, flagship Koppamurra Project, located in South Australia and Victoria.

Trial Pit

As part of AR3's development of the Koppamurra Project, a Trial Pit is in planning in an area of prospective mineralisation on private land adjacent the existing Red Tail resource area. The trial is expected to provide several beneficial outcomes in advancing the Project. It will,

- allow for significant bulk sample collection for larger scale metallurgical testwork;
- provide access to the mineralised zone over a wide area to progress AR3s understanding of the geological system at micro and macro scale; and
- allow AR3 to demonstrate the shallow nature of the deposit and the potential for rapid rehabilitation of disturbed areas to stakeholders and the broader community.

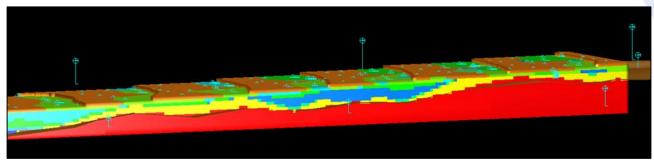


Figure 1 – Geology Model of Trial Pit Area, showing limestone base (red), silty clays (yellow), clayey sands (blue), clay (light blue), sandy clay (green), and topsoil (brown)

The location for the proposed Trial Pit was identified through a combination of access availability and previous drilling results. Two previous push tube core holes 180m apart pointed to the viability of this location for shallow, clay hosted rare earth mineralisation. These drill holes delivered the following previously reported results.

- KMC0114, 4.3m thick from 0.6m with an average grade of 824ppm TREO
- KMC0140, 1.5m thick from 1.3m with an average grade of 1,175ppm TREO

Phone: 1300 646 100

Email: hello@ar3.com.au

Website: www.ar3.com.au

Drilling on the proposed Pit area, roughly 200m long by 40m wide, using the push tube core method, on a nominally 10m x 10m grid, provided detailed geological input to the planning of the Trial Pit.

Assays from this targeted drilling generated 82 significant intersections, using a 350ppm TREO cut-off from 58 drillholes, with an average grade of 755ppm TREO, and an average thickness of 2.1m, which is consistent with the broader Red Tail resource. Importantly, this detailed drill spacing identified high-grade portions of the deposit with grades for individual intervals reaching as high as 9,244ppm TREO.

The following table highlights assays received from this drilling programme.

		Kc	ppamurr	a – Trial P	it – Drillir	ng Program	n Highligh	nts – Febru	ary 2022			
Drill Hole	Depth	Depth	Thick	TREO	Magnet Rare Earths							
					Praseo	dymium	Neod	lymium	Ter	bium	Dysprosium	
	From	То			Pr	5 O 11	N	d ₂ O ₃	TI	0407	Dy	y ₂ O ₃
	(m)	(m)	(m)	(ppm)	(ppm)	% TREO	(ppm)	% TREO	(ppm)	% TREO	(ppm)	% TREO
KMC0191	3.8	7	3.2	1499	68	4.3	271	16.9	9	0.6	52	3.4
Including	5.3	5.9	0.6	3332	178	5.3	705	21.1	20	0.6	123.0	3.7
KMC0213	5.3	7	1.7	4168	232	4.9	793	17.3	11	0.4	50	1.9
Including	5.9	6.5	0.6	9244	524	<i>5.7</i>	1773	19.2	21	0.2	88.6	1.0
KMC0233	2.7	5	2.3	1861	91	4.6	344	17.3	9	0.5	49	2.9
Including	3.3	4	0.7	3228	180	5.6	677	21.0	13	0.4	68.7	2.1
KMC0198	2.8	5	2.2	3253	188	5.3	754	21.2	16	0.5	83	3.0
Including	3.7	4.6	0.9	6230	361	5.8	1446	23.2	29	0.5	153.0	2.5
KMC0192	2.5	4.8	2.3	1663	74	4.4	297	17.6	9	0.5	48	2.9
KMC0204	1.3	2.2	0.9	1379	91	6.6	338	24.3	6	0.4	30	2.1
KMC0211	2.7	5	2.3	1549	77	4.7	304	18.7	9	0.6	48	3.2
KMC0218	1.3	1.9	0.6	1300	64	4.9	230	17.7	6	0.5	33	2.6
KMC0219	1.1	1.8	0.7	1125	59	5.2	201	17.8	5	0.5	27	2.4
KMC0221	1.2	3.6	2.4	1096	51	4.7	189	17.7	6	0.5	30	2.8
KMC0230	3	5	2	1401	62	4.4	223	16.2	6	0.5	33	2.8
KMC0233	2.7	5	2.3	1861	91	4.6	344	17.3	9	0.5	49	2.9
KMC0252	1.3	2.4	1.1	1744	90	4.9	319	17.7	8	0.5	44	2.6
KMC0253	1.6	2.4	0.8	1155	61	5.1	216	18.6	6	0.5	32	2.7
KMC0258	3.8	4.4	0.6	1205	49	4.1	208	17.2	8	0.6	45	3.8
KMC0259	2.2	3	0.8	1647	71	4.3	243	15.1	7	0.4	38	2.3

Table 1: A selection of results from Trial Pit – Push Tube Drilling EL6509 (Comaum) using downhole sample length weighted averages and a lower cut-off grade of 350 ppm TREO

During January 2022, contractor In-Depth Drilling completed a short program of Push Tube Core Drilling (drillholes KMC183 – KMC261 (79 holes,) over a four-day period focussing on the proposed Trial Pit area. The low cost and speed advantage of push tube drilling has proven to be highly effective and produces generally good quality core samples, representative of the intervals intersected. The target clay zone produced excellent samples and the push tube technique efficiently penetrated through unconsolidated and highly weathered intervals.

This drilling technique reaches a maximum depth of ~7m which occasionally intersected weathered limestone. Following the removal of each drill tube, samples were placed in core trays as shown in Figure 2. The core trays have five channels of 1m, representing individual metres from the drillhole. As such, each tray can accommodate a core capacity of up to 5m. Progressively smaller diameter drill tubes are used to push the drillhole to depth, resulting in a decreasing core diameter with downhole depth.

ASX Code: AR3

Phone: 1300 646 100

Email: hello@ar3.com.au

Website: www.ar3.com.au

Figure 2 – Push Tube Core drillhole KMC0192 (Trial Pit)

Resource Extension Drilling

Drilling has recently commenced on a second 10,000m drilling program aimed at the delineation of additional JORC compliant mineral resources adjacent to and extending from the existing Red Tail and Yellow Tail maiden resource announced in April 2021. The programme is a continuation of a similar size programme completed between October and December 2021, where promising assays were received, showing the potential for extensions to both Red Tail and Yellow Tail of shallow mineralised clay sediments with at least comparable TREO grades and thickness to existing resources, at ~6km along strike.

The location of drilling and the assays received are illustrated in Figure 3. A total of 285 drillholes and 2,823m was completed since the program commenced on 2 February 2022. The average depth for the drillholes is 9.9m.

This current drilling program is being undertaken predominantly on private land holdings where AR3 has negotiated access agreements. The location of the planned drilling is also illustrated in Figure 3.

Phone: 1300 646 100
Email: hello@ar3.com.au
Website: www.ar3.com.au

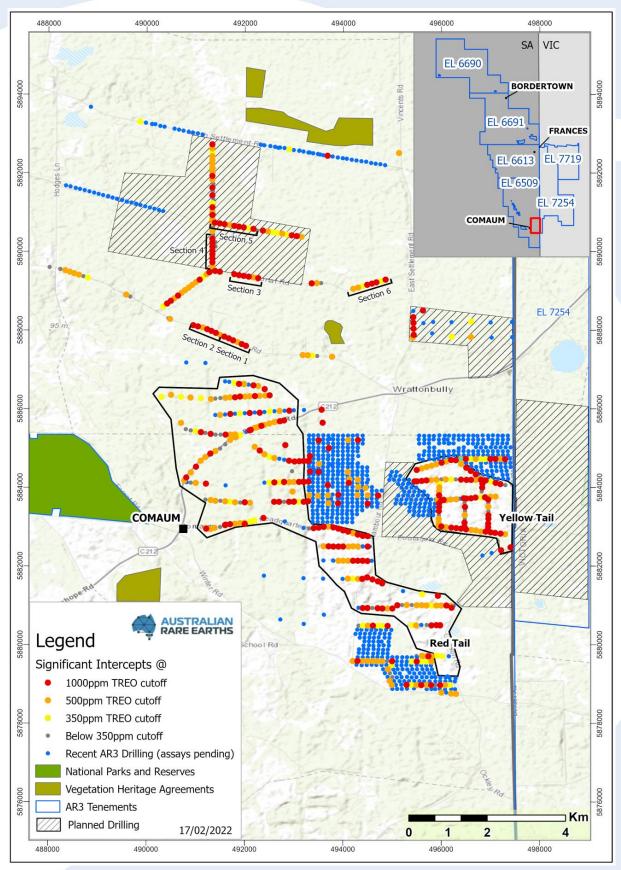


Figure 3 – Recent AR3 drillhole locations on EL6509 (Comaum)

From the recently received assay results north of the existing Red Tail and Yellow Tail resources, six cross sections have been produced that illustrate the shallow nature of the mineralisation. These cross sections demonstrate that Rare Earth Elements (REEs) are found accumulated in the clay sediments sitting atop the Gambier Limestone. Figure 3 shows the locations of the six cross sections with highlights of significant intersections detailed in Table 2.

The consistent shallow nature of the deposit is beneficial in several ways. Shallow deposits allow for the type of low-cost exploration drilling that the Company has successfully performed. This in turn leads to swift understanding of the deposit, and rapid delineation of additional JORC compliant mineral resources. Eventually this will allow for shallow production with less ground disturbance. It will also be supportive of progressive rehabilitation after mining that will be beneficial to land holders.

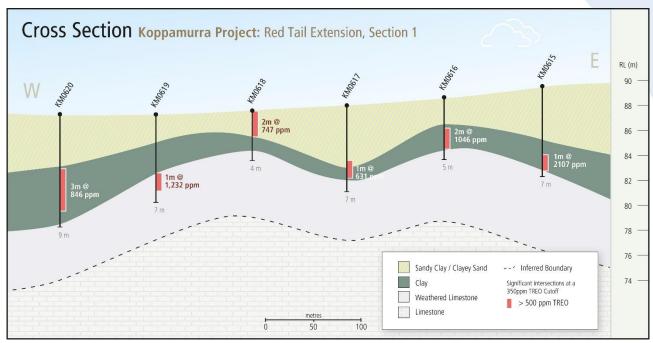


Figure 4 - Cross Section (1) Red Tail Extension

Level 10, 111 Gawler Place Adelaide, SA 5000 Phone: 1300 646 100
Email: hello@ar3.com.au

Website: www.ar3.com.au

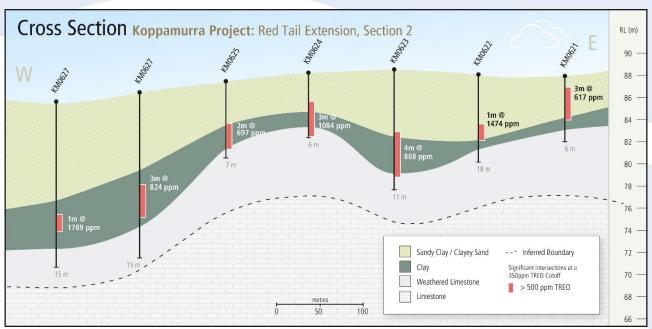


Figure 5 - Cross Section (2) Red Tail Extension



Figure 6 – Cross Section (3) Red Tail Extension

Phone: 1300 646 100

Email: hello@ar3.com.au
Website: www.ar3.com.au

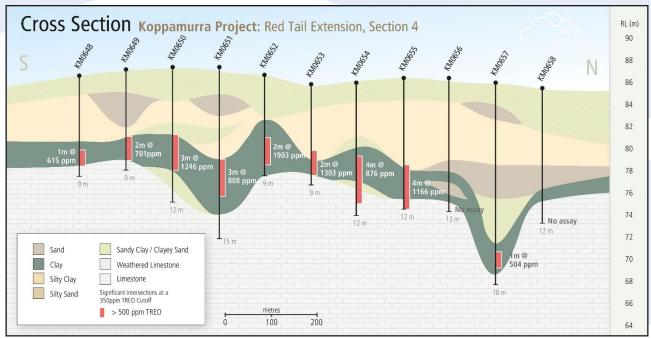


Figure 7 – Cross Section (4) Red Tail Extension

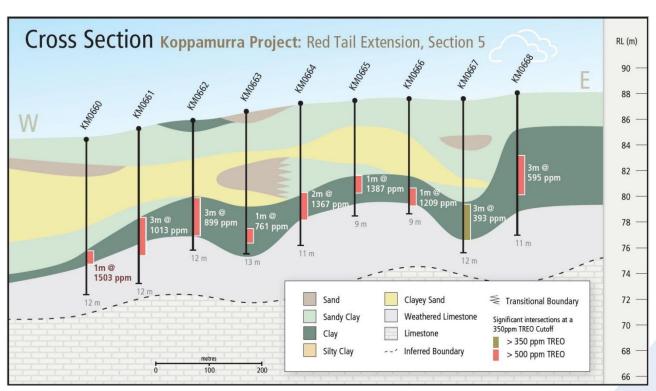


Figure 8 – Cross Section (5) Red Tail Extension

Email: hello@ar3.com.au
Website: www.ar3.com.au

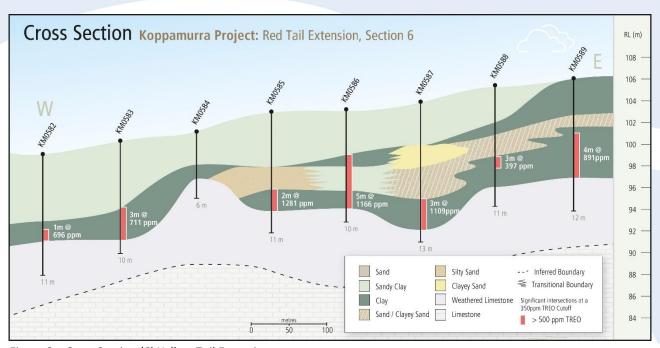


Figure 9 – Cross Section (6) Yellow Tail Extension

Drill Hole	Depth	Depth	Thick	TREO				Magnet	Rare Eart	hs		
					Prasec	dymium	Neod	lymium	Ter	bium	Dysp	rosium
	From	То			Pr	6 O 11	No	d₂O₃	Tk	0 ₄ O ₇	D	y ₂ O ₃
	(m)	(m)	(m)	(ppm)	(ppm)	% TREO	(ppm)	% TREO	(ppm)	% TREO	(ppm)	% TREO
KM0557	8	11	3	1381	69	4.9	316	22.4	5	0.4	23	1.7
KM0559	5	7	2	1104	44	4.1	198	18.2	4	0.4	22	2.1
KM0562	6	8	2	1051	37	3.6	168	16.7	4	0.4	22	2.2
KM0571	6	9	3	1057	45	3.7	212	17.6	5	0.5	28	2.6
KM0574	6	9	3	2165	103	4.7	403	18.2	12	0.5	65	3.0
KM0575	5	7	2	1039	44	4.5	172	17.5	5	0.5	27	2.7
KM0585	7	9	2	1281	61	4.7	225	17.5	6	0.4	31	2.4
KM0586	4	9	5	1166	48	4.1	186	15.8	6	0.5	34	3.0
KM0594	7	9	2	1561	83	4.9	310	19.0	6	0.5	33	2.6
KM0597	5	7	2	1314	62	4.4	237	17.1	6	0.5	31	2.7
KM0607	8	12	4	1006	56	5.2	208	19.5	4	0.4	23	2.3
KM0615	5	6	1	2107	119	5.6	404	19.2	8	0.4	36	1.7
KM0616	2	4	2	1046	49	4.6	177	16.9	5	0.5	27	2.7
KM0619	4	5	1	1232	44	3.6	166	13.4	5	0.4	24	1.9
KM0624	3	6	3	1084	48	4.3	170	16.1	5	0.5	29	3.1
KM0650	6	9	3	1246	62	4.8	226	16.8	6	0.5	33	2.8
KM0652	6	8	2	1903	75	4.0	287	15.1	7	0.4	39	2.0
KM0653	6	8	2	1303	78	5.9	296	22.4	7	0.5	37	2.8
KM0655	8	12	4	1166	45	3.7	166	14.3	4	0.4	25	2.6
KM0661	7	10	3	1013	57	5.4	205	19.3	4	0.4	21	2.1

KM0697	7	10	3	1053	48	4.4	187	17.2	5	0.5	29	3.1
KM0704	4	6	2	1110	49	4.5	192	17.7	5	0.5	29	2.7
KM0706	1	4	3	1313	58	4.1	223	15.9	6	0.5	35	2.7
KM0711	2	4	2	1773	89	5.0	335	19.1	7	0.4	36	2.0
KM0718	3	6	3	1576	75	4.6	283	17.6	6	0.5	34	2.7
KM0733	3	5	2	1500	79	5.0	311	19.9	7	0.5	35	2.7
KM0735	3	4	1	1503	58	3.9	219	14.6	8	0.5	46	3.1
KM0739	1	3	2	1076	47	4.4	184	17.3	4	0.4	23	2.2
KM0742	3	5	2	1016	44	4.3	170	16.9	5	0.4	26	2.4

Table 2: A selection of results from Red Tail / Yellow Tail – Extension Drilling EL6509 (Comaum) using downhole sample length weighted averages and a lower cut-off grade of 350 ppm TREO.

Bulk Density Testing

Density measurements were previously recorded for 'fresh' in-situ samples for the key lithological units associated with rare earth mineralisation in the Koppamurra Project area. These initial density measurements were generally within a range of 1.95 - 2.05 g/cm³. Follow up density readings on selected oven dried core segments reveal a dry density within the range of 1.80 - 1.90 g/cm³.

Push tube core drilling has proven to be an effective method of obtaining good quality core samples for density determinations, providing 'fresh' in-situ density values of the key lithological units encountered and follow up dry density readings of that material. Further push tube core drilling will be undertaken to collect additional material within the areas being drilled for Resource Definition, thereby providing a representative suite of density measurements to be applied in the Mineral Resource estimation update.

The previous density value applied to the Mineral Resource estimate for Red Tail and Yellow Tail, in the absence of having any directly measured material available, was a conservative figure of 1.40 g/cm³.

Mineral Resource Estimate Update

IHC Mining has been engaged to assess the significant programme of drilling, sampling, and assaying conducted last year and planned for this year to generate an update of the Red Tail / Yellow Tail Resources and their extensions.

IHC Mining is a multi-discipline technology business operating in Australia which specialises in providing integrated services to the mineral sands and alluvial mining industry in the key areas of geology resource evaluation, metallurgical testwork, mine design and engineering, and project delivery. Their geometallurgical team is experienced in providing geo-metallurgical delineation through to interpretation and assessment of all geological observations, primary assay and subsequent metallurgical testwork to complete key deliverables such as JORC reporting and sign-off of Mineral Resource and Ore Reserve Estimates, mine planning and scheduling and ore and mineral characterisation

Don Hyma, the Managing Director of AR3, said:

"It is becoming apparent from these recent high-grade results that the shallow nature of the Koppamurra deposit is consistent over a wide regional area. This is very exciting news for AR3 shareholders as we continue

ASX Code: AR3

Email: hello@ar3.com.au
Website: www.ar3.com.au

Phone: 1300 646 100

to explore the comprehensive tenement package that we have assembled. The appointment of IHC Mining to update the Mineral Resource Estimates at Red Tail and Yellow Tail is an exciting step for the Company on our journey. The combination of the nearby assay results at similar grade and the improved understanding of the density measurements strongly supports the planning and development of a shallow Trial Pit in close consultation with Landowners and the Community"

The Board of AR3 authorised this announcement to be given to ASX.

For further Information please contact:

Mr Don Hyma Managing Director Tel: 1300 646 100 E: hello@ar3.com.au

Mr Rick Pobjoy Technical Director Tel: 1300 646 100 E: hello@ar3.com.au

For Media and Broker queries contact:

Jonathan van Hazel Citadel-MAGNUS Tel: 0411 564 969

E: jvanhazel@citadelmagnus.com

Competent Person Statement

The information in this report that relates to Exploration results is based on information compiled by Australian Rare Earths Limited and reviewed by Mr. Rick Pobjoy who is the Technical Director of the Company and a member of the Australian Institute of Mining and Metallurgy (AusIMM). Mr. Pobjoy has sufficient experience that is relevant to the style of mineralisation, the type of deposit under consideration and to the activities undertaken to qualify as a Competent person as defined in the 2012 edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr. Pobjoy consents to the inclusion in this report of the matters based on this information in the form and context in which it appears.

The Company confirms that it is not aware of any new information or data that materially affects the information included in the relevant market announcement (Prospectus dated 7 May 2021) and that all material assumptions and technical parameters underpinning the estimates in the relevant market announcement (Prospectus dated 7 May 2021) continue to apply and have not materially changed. The company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcement (Prospectus dated 7 May 2021).

About Australian Rare Earths Limited

Australian Rare Earths (AR3) is committed to the timely exploration and development of its 100% owned, flagship Koppamurra Project, located in South Australia and Victoria. Koppamurra is a prospective ionic clay hosted rare earth element (REE) deposit; uniquely rich in all the REEs required in the manufacture of rare earth permanent magnets which are essential components in energy efficient motors.

The Company is focused on executing a growth strategy that will ensure AR3 is positioned to become an independent and sustainable source of REEs, playing a pivotal role in the global transition to a green economy.

ASX Code: AR3

Phone: 1300 646 100

Email: hello@ar3.com.au

Website: www.ar3.com.au

JORC Table 1

	Section 1 Sampling	Fechniques and Data
Criteria	Explanation	Comment
Sampling techniques	Nature and quality of sampling (e.g., cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or	RC Aircore drilling methods were used obtain samples from the October / December 2021 drilling programmes. The following information covers the sampling process: • All air core samples were collected from the rotary splitter rotary splitter mounted at the bottom of the cyclone using a pre-
	hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.	numbered calico bag. The samples were geologically logged at 1 m interval. The aircore sample averaged ~1.5 kg in mass. The samples were then placed in marked calico bags maintaining their appropriate depths
		 A handheld Olympus Delta XFR Analyser was used to assess the geochemistry of the core in field samples. The XRF analysis provided a full suite of mineral elements for characterising the lithological units.
		 XRF readings were downloaded from the XRF Analyser at the end of each day and saved onto an Excel spreadsheet.
	Aspects of the determination of mineralisation that are	 Field duplicates were taken at a rate of ~ 1:15 and inserted blindly into the sample batches
	Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g., 'reverse circulation drilling	 At the laboratory, the samples were oven dried at 105 degrees for a minimum of 24 hours and secondary crushed to 3 mm fraction and then pulverised to 90% passing 75 μm. Excess residue was maintained for storage while the rest of the sample placed
	was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be	in 8x4 packets and sent to the central weighing laboratory. The samples were submitted for analysis using the XRF-ICP- MS method (BV Adelaide) • A laboratory repeat was taken at ~ 1 in 20 samples.

Phone: 1300 646 100

Email: hello@ar3.com.au

Website: www.ar3.com.au

Criteria	Explanation	Comment
	required, such as where there is coarse gold that has inherent sampling	 Commercially obtained standards were inserted by the laboratories at a rate of ~ 1 in 15 into the sample.
	problems. Unusual commodities or	Push Tube Core drilling methods were used obtain samples from the January 2022 drilling programme.
	mineralisation types (e.g., submarine nodules) may	The following information covers the sampling process:
	warrant disclosure of detailed information.	• This drilling technique reaches a maximum depth of ~7m which occasionally intersected weathered limestone. Following the removal of each drill tube, samples were placed in core trays. The core trays have five channels of 1m, representing individual metres from the drillhole. As such, each tray can accommodate a core capacity of up to 5m. Progressively smaller diameter drill tubes are used to push the drillhole to depth, resulting in a decreasing core diameter with downhole depth.
		 A handheld Olympus Delta XFR Analyser was used to assess the geochemistry of the core in field samples. The XRF analysis provided a full suite of mineral elements for characterising the lithological units.
		 XRF readings were downloaded from the XRF Analyser at the end of each day and saved onto an Excel spreadsheet.
		 Samples were taken by cutting the core in half along its length at intervals defined by geological continuity and assessment of handheld XRF data Duplicates (the other half of the core) were taken at a rate of ~ 1:25 and inserted blindly into the sample batches
Drilling techniques	Drill type (e.g., core, reverse circulation, openhole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g., core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or	 McLeod Drilling used a Toyota Land air core rig and support vehicle for the aircore drilling. Aircore drilling is a form of reverse circulation drilling where the sample is collected at the face and returned inside the inner tube. The drill cuttings are removed by injection of compressed air into the hole via the annular area between the inner tube and the drill rod. Aircore drill rods used were 3 m long.

Phone: 1300 646 100 Email: hello@ar3.com.au Website: www.ar3.com.au

Criteria	Explanation	Comment
	other type, whether core is oriented and if so, by what method, etc).	 NQ diameter (76 mm) drill bits and rods were used. All aircore drill holes were vertical with depths varying between 2 m and 30 m. In-Depth Drilling completed the Push Tube Core drilling. Push Tube Core drilling technique reaches a maximum depth of ~7m Each push tube core drillhole commenced with a short tube that is initially pushed into the ground. The tube is then removed and the sample collected removed from the tube and placed into the first metre channel of the core tray. A second longer drill tube of known length with a slightly smaller external diameter is then inserted into the drillhole and is pushed to further extend the drillhole. This second tube is removed and again the sample is deposited in its appropriate downhole depth position in the core tray. This procedure continues with progressively longer drill tubes utilised to extend the drillhole. Drilling in this manner was found to be quite effective producing generally good quality core samples which were representative of the intervals intersected. The clay target zone produced excellent samples and the push tube technique was quick pushing through unconsolidated and highly weathered intervals. Recoveries were generally very good
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples.	 Drill sample recovery for aircore is monitored by recording sample condition descriptions where 'Poor' to 'Very Poor' were used to identify any samples recovered which were potentially not representative of the interval drilled. A comment was included where water injection was required to recover the sample from a particular interval. The use of water injection can potentially bias a sample and very little
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to	 water injection was required during this drilling programme. No significant loses of samples were observed due to the shallow drilling depths (<30 m).

Criteria	Explanation	Comment
	preferential loss/gain of fine/coarse material.	 The rotary splitter was set to an approximate 20% split, which produced approximately 1.5 kg sample for each meter interval. The 1.5 kg sample was collected in a prenumbered calico bags and the remaining 80% (5 kg to 8 kg) was collected in plastic UV bags labelled with the hole number and sample interval. At the end of each drill rod, the drill string is cleaned by blowing down with air to remove any clay and silt potentially built up in the sample pipes and cyclone. No relationship exists between sample recovery and grade. Push Tube Core Drilling Recoveries were generally very good.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged.	 All aircore samples collected in calico bags were logged for lithology, colour, cement type, hardness, percentage rock estimate, sorting and any relevant comments such as moisture, sample condition, or vegetation. Geological logging data for all drill holes was qualitatively logged onto Microsoft Excel spreadsheet using a Panasonic Toughbook with validation rules built into the spreadsheet including specific drop-down menus for each variable or written into a notebook and later transferred to Excel. The data was uploaded to the Azure Data Studio database and subjected to numerous validation queries. Every drill hole was logged in full and logging was undertaken with reference to a Drilling template with codes prescribed and guidance to ensure consistent and systematic data collection

Email: hello@ar3.com.au

Website: www.ar3.com.au

Criteria	Explanation	Comment
Sub-sampling techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or all cores taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality, and appropriateness of the sample preparation technique. Quality control procedures adopted for all subsampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled.	 I m aircore sample interval were homogenised within the cyclone and the rotary splitter was set to an approximate 20% split producing around 1.5 kg sample for each metre interval. The 1.5 kg sample was collected in a pre-numbered calico bag and the 80% (5 kg to 8 kg) portion was collected in plastic UV bags labelled with hole identity and interval. Duplicates were generally taken within the clay lithologies above the basement as this is the likely zone of REE enrichment. These duplicate samples were normally collected by using a second calico bag and placing it under the rotary splitter collecting a 20% split but due to the difficulties of placing a second calico bag under the rotary splitter during sample collection, duplicates were collected by hand from the plastic UV bags which captured the other 80% of the material recovered from any interval. The moterial in the plastic UV bags was mixed up and every attempt to take as representative sample of the material as possible by hand was made and then placed in a pre-numbered calico bag. The 1.5 kg sample collected in the calico bag was logged by the geologist onsite. The logged samples were placed in polyweave bags and sent to Naracoorte base at the end of each day. The polyweave bags where then placed on pallets and dispatched to Bureau Veritas laboratories in Adelaide and Perth in Bulka Bags. The remaining 80% split from the aircore interval was stored for future reference only if it contained the clay component. Samples without the clay component were discarded at the drilled hole. Field duplicates of all the samples were inserted into the sample batches at a frequency of ~1 per 40 samples. Standard reference Material (SRM) samples were inserted into the sample batches at a frequency and a repeat sample was taken at a rate of ~1 per 20 samples. A geologist oversaw the sampling and logging process and selected samples for analysis based on the logging descriptions and handheld XRF response

Email: hello@ar3.com.au

Website: www.ar3.com.au

Criteria	Explanation	Comment
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g., standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e., lack of bias) and precision have been established.	 The detailed geological logging of samples provides lithology (clay component) and proximity to the limestone basement which is sufficient for the purpose of determining the potentially mineralised zone. The roughly 1.5 kg aircore samples were assayed by Bureau Veritas' laboratories in Wingfield, Adelaide, South Australia. The Push Tube core samples were also assayed by Bureau Veritas' laboratories in Wingfield, Adelaide, South Australia The samples were initially oven dried at 105 degrees Celsius for 24 hours. Samples were secondary crushed to 3 mm fraction and the weight recorded. The sample was then pulverised to 90% passing 75 µm. Excess residue was maintained for storage while the rest of the sample placed in 8x4 packets and sent to the central weighing laboratory. Samples were analysed using Multiple Elements Fusion/Mixed Acid Digest analytical method (Adelaide BV); ICP Scan (Mixed Acid Digest – Lithium Borate Fusion) Samples are digested using a mixed acid digest and fused with Lithium Borate to ensure all elements are brought into solution. The digests are then analysed for the following elements (detection Limits shown): Ag (0.1) Al (100) As (1) Ba (1) Be (0.5) Bi (0.1) Ca(100) Cd (0.5) Ce (0.1) Co (1) Cr (10) Cs (0.1) Cu (1) Dy(0.05) Er(0.05) Eu(0.05) Fe(100) Ga (0.2) Gd (0.2) Hf (0.2) Ho(0.02) In (0.05) K (100) Pb (1) Pr (0.2) Rb (0.2) Re (0.1) S (50) Sb (0.1) Sc (1) Se (5) Si (100) Sm(0.05) Nn (1) Sr (0.5) Ta (0.1) Tb (0.02) Te (0.2) Th (0.1) Ti (50) Tl (0.1) Tm (0.2) U (0.1) V (5) W (0.5) Y (0.1) Zn (2) Zr (1) Yb (0.05). Field duplicates were collected and submitted at a frequency of ~1 per 15 sample and a standard reference sample roughly every 15th sample prior to the results being released.

Email: hello@ar3.com.au

Website: www.ar3.com.au

Criteria	Explanation	Comment
		 Analysis of QA/QC samples show the laboratory data to be of acceptable accuracy and precision. No standards or blanks were submitted by Australian Rare Earths. The adopted QA/QC protocols are acceptable for this stage of test work. The sample preparation and assay techniques used are industry standard and provide a total analysis.
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data.	 All results are checked by the company's Technical Director. Field based geological logging for drill holes was entered directly into an Excel spreadsheet format with validation rules built into the spreadsheet including specific drop-down menus for each variable. This digital data was then uploaded directly to the database. Assay data was received in digital format from the laboratory and was uploaded directly to the database Field and laboratory duplicate data pairs of each batch are plotted to identify potential quality control issues. Standard Reference Material sample results are checked from each sample batch to ensure they are within tolerance (<3SD) and that there is no bias. Data validation criteria within the Australian Rare Earths Limited database are included to check for overlapping sample intervals, end of hole match between 'Lithology', 'Sample', 'Survey' files and other common errors. Assay data yielding elemental concentrations for rare earths (REE) within the sample are

Phone: 1300 646 100 Email: hello@ar3.com.au Website: www.ar3.com.au

Criteria	Explanation	Comment
		in a calculation performed within the database using the conversion factors in the below table.
		Rare earth oxide is the industry accepted form for reporting rare earths. The following calculations have been used for reporting throughout this report:
		Note that Y ₂ O ₃ is included in the TREO, HREO and
		CREO calculation.
		TREO = $La_2O_3 + CeO_2 + Pr_6O_{11} + Nd_2O_3 + Sm_2O_3 +$ $Eu_2O_3 + Gd_2O_3 + Tb_4O_7 + Dy_2O_3 + Ho_2O_3 +$
		$Er_2O_3 + Tm_2O_3 + Yb_2O_3 + Lu_2O_3 + Y_2O_3$
		CREO = $Nd_2O_3 + Eu_2O_3 + Tb_4O_7 + Dy_2O_3 + Y_2O_3$
		LREO = $La_2O_3 + CeO_2 + Pr_6O_{11} + Nd_2O_3$
		HREO = $Sm_2O_3 + Eu_2O_3 + Gd_2O_3 + Tb_4O_7 + Dy_2O_3 + Ho_2O_3 + Er_2O_3 + Tm_2O_3 + Yb_2O_3 + Lu_2O_3 + Y_2O_3$
		$Nd/Pr = Nd_2O_3 + Pr_6O_{11}$
		TREO-Ce = TREO - CeO ₂
		• % NdPr = NdPr/ TREO

Phone: 1300 646 100 Email: hello@ar3.com.au Website: www.ar3.com.au

Criteria	Explanation	Comment				
		Element	Element	Oxide		
		Name	Oxide	Factor		
		Ce	CeO2	1.2284		
		Dy	Dy2O3	1.1477		
		Er	Er2O3	1.1435		
		Eu	Eu2O3	1.1579		
		Gd	Gd2O3	1.1526		
		Но	Ho2O3	1.1455		
		La	La2O3	1.1728		
		Lu	Lu2O3	1.1371		
		Nd	Nd2O3	1.1664		
		Pr	Pr6O11	1.2082		
		Sc	Sc2O3	1.5338		
		Sm	Sm2O3	1.1596		
		Tb	Tb4O7	1.1762		
		Th	ThO2	1.1379		
		Tm	Tm2O3	1.1421		
		U	U3O8	1.1793		
		Υ	Y2O3	1.2699		
		Yb	Yb2O3	1.1387		
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control.	 Down hole surveys for shallow vertical aircore and push tube drillholes are not required. The drill hole collars were located using a GPS unit to identify the positions of the drill holes in the field. The handheld GPS has an accuracy of +/-5m in the horizontal. The Push Tube collars in the Trial Pit area, at a nominally 10m spacing, were surveyed by licenced professional surveyors to within cm accuracy. The datum used is GDA94/MGA Zone 54. Topographic data is derived from handheld GPS readings with limited accuracy. The accuracy of the locations is sufficient for this				
Data spacing and	Data spacing for reporting	stage of exploi		s were largely drilled at		
distribution	of Exploration Results.			400 m spacings along		
	Whether the data spacing, and distribution is sufficient to establish the degree of geological and grade continuity appropriate for	 accessible road verges and within paddocks of private land holdings. The push tube drillholes at the Trial Pit site were drilled at a nominal 10m pattern grid The drilling program of aircore holes was conducted to determine the regional 				

Phone: 1300 646 100 Email: hello@ar3.com.au

Website: www.ar3.com.au

Criteria	Explanation	Comment
	the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied.	prospectivity of the wider Koppamurra Project area, and to explore for extensions of the Red Tail and Yellow Tail Resource areas. No sample compositing has been applied.
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	 The Koppamurra mineralisation is interpreted to be hosted in shallow deposited clayey sediments that are horizontal. All drill holes are vertical which is appropriate for horizontal bedding and regolith profile. The Koppamurra drilling was oriented perpendicular to the strike of mineralisation defined by previous exploration and current geological interpretation. The strike of the mineralisation is roughly north south, and the high grades follow a northwest-southeast trend. All drill holes were vertical, and the orientation of the mineralisation is relatively horizontal. The orientation of the drilling is considered appropriate for testing the lateral and vertical extent of mineralisation without any bias.
Sample security	The measures taken to ensure sample security.	 After logging, the samples in calico bags were tied and placed into polyweave bags, labelled with the drill hole and sample numbers contained within the polyweave and transported to the base of operations, Naracoorte, at the end of each day. The samples were then placed on pallets ready for transport and remained in a secure compound until transport had been arranged. Pallets were labelled and then 'shrink-wrapped' by the transport contractor prior to departure from the Naracoorte base to the analytical laboratory. Samples for analysis were logged against pallet identifiers and a chain of custody form created.

Email: hello@ar3.com.au

Website: www.ar3.com.au

Criteria	Explanation	Comment
		Transport to the analytical laboratory was undertaken by an agent for the TOLL Logistics Group, and consignment numbers were logged against the chain of custody forms.
		 The laboratory inspected the packages and did not report tampering of the samples.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	Internal reviews were undertaken by Aussie Geologic Pty Ltd during the drilling, sampling, and geological logging process and throughout the sample collection and dispatch process. A review of the database was also undertaken by Inception Group — Consulting Engineers.

Phone: 1300 646 100 Email: hello@ar3.com.au Website: www.ar3.com.au

	Section 2 Reporting of	of Exploration Results
Criteria	Explanation	Comment
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	 Koppamurra Project comprises of a granted South Australian Exploration Licenses (EL), EL6509, EL6613, EL6690, EL6691 and Victorian EL7254 covering a combined area of greater than 4,000 km² - which are in good standing. EL6509 is within 100m of a Glen Roy Conservation Park and the Naracoorte Caves National Park, the latter of which is excised from the tenement. The License area contains several small Extractive Mineral Leases (EML) held by others, Native Vegetation Heritage Agreement areas, as well as the Deadman's Swamp Wetlands which are wetlands of national importance. A Native Title Claim by the First Nations of the Southeast #1 has been registered but is yet to be determined. The claim area includes the areas covered by EL's 6509 and 6613. The exploration work was completed on the tenements (EL6509 and EL6613) in South Australia which are 100% owned by the company Australian Rare Earths Ltd. The Exploration License EL6509 original date of grant was 15/09/2020 with an expiry date of 14/09/2022. The Exploration License EL6613 original date of grant was 07/07/2021 with an expiry date of 06/07/2027. Details regarding royalties are discussed in chapter 3.4 of Australian Rare Earths Prospectus dated 7 May 2021.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 Exploration activities by other exploration companies in the area have not previously targeted or identified REE mineralisation. Historical exploration activities in the vicinity of Koppamurra include investigations for coal, gold and base metals, uranium, and heavy mineral sands. Historical exploration by other parties is detailed in Chapter Error! Reference source not found. of Australian Rare Earths Prospectus dated 7 May 2021.

Phone: 1300 646 100 Email: hello@ar3.com.au

Website: www.ar3.com.au

Criteria	Explanation	Comment
Geology	Deposit type, geological	The Koppamurra deposit is interpreted to contain
	setting, and style of mineralisation.	analogies to ion adsorption ionic clay REE deposits.
	mmeransation.	REE mineralisation at Koppamurra is hosted by
		clayey sediments interpreted to have been
		deposited onto a limestone base (Gambier
		Limestone) and accumulated in an interdunal,
		lagoonal or estuarine environment and the source
		of the REE at Koppamurra is most likely basalt
		associated alkali volcanics of the Newer Volcanics
		Province in south-eastern Australia. Mineralogy of the clay is indicative of formation under mildly
		alkaline conditions in a marine or coastal
		environment from fine-grained sediments either
		river transported or windblown thereby supporting
		this interpretation.
		Mineralogical test work conducted on clay sample
		from the project area established that the
		dominant clay minerals are smectite and kaolin,
		and the few REE-rich minerals detected during the
		SEM investigation are not considered inconsistent
		with the suggestion that a significant proportion of
		REE are distributed in the sample as adsorbed
		elements on clay and iron oxide surfaces.
		There are several known types of regolith hosted
		REE deposits including, ion adsorption clay
		deposits, alluvial and placer deposits. Whilst Koppamurra shares similarities with both ion
		adsorption clay deposits and volcanic ash fall placer
		deposits, there are also several differences,
		highlighting the need for further work before a
		genetic model for REE mineralisation at
		Koppamurra can be confirmed.
		The extensive drilling and geological work
		undertaken by AR3 to date in the region has not
		identified any geological disruptions, such as faults
		or dykes, that may cause variability in the
		mineralisation.

Email: hello@ar3.com.au

Website: www.ar3.com.au

Criteria	Explanation	Comment
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: • easting and northing of the drill hole collar • elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar • dip and azimuth of the hole • down hole length and interception depth • hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	The material information for drill holes relating to this report are contained within Appendices of this report.
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g., cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths	 Significant intercepts are calculated using downhole sample length weighted averages and a lower cut-off grade of 350 ppm TREO. A full list of drillholes with significant intercepts >350ppm TREO can be found in the body of this report.

Website: www.ar3.com.au

Criteria	Explanation	Comment
	of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	
	The assumptions used for any reporting of metal equivalent values should be clearly stated.	
Relationship between mineralisation widths and intercept lengths	These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g., 'down hole length, true width not known').	All intercepts reported are down hole lengths. The mineralisation is interpreted to be flat lying and drilling is vertical perpendicular to mineralisation. Any internal variations to REE distribution within the horizontal layering was not defined, therefore the true width is considered not known.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and	Diagrams are included in the body of this report.

Email: hello@ar3.com.au

Website: www.ar3.com.au

Criteria	Explanation	Comment
	appropriate sectional views.	
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced avoiding misleading reporting of Exploration Results.	This report contains all drilling results that are consistent with the JORC guidelines. Where data may have been excluded, it is considered not material.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	All known relevant exploration data has been reported in this report.
Further work	The nature and scale of planned further work (e.g., tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas,	The proposed ongoing exploration program is detailed in Chapter Error! Reference source not found. of Australian Rare Earths Prospectus dated 7 May 2021 and includes drilling, assay, ground based geophysical surveys and further metallurgical testwork.

Email: hello@ar3.com.au

Website: www.ar3.com.au

Criteria	Explanation	Comment
	provided this information is	
	not commercially sensitive.	

Phone: 1300 646 100 Email: hello@ar3.com.au Website: www.ar3.com.au

00 646 100 ASX Code: **AR3**

Appendix I: Drill Hole Collars

Hole ID	East (m)	North (m)	RL (m ASL)	Drill Method	Down Hole Width (mm)	Total Depth EOH (m)	Azimuth	Dip Direction
KM0517	490981	5927777	93.6	Aircore	76	12	0	-90
KM0518	478156	5921683	72.6	Aircore	76	27	0	-90
KM0519	473568	5938217	76.4	Aircore	76	18	0	-90
KM0520	474218	5938359	79.2	Aircore	76	24	0	-90
KM0521	474077	5938326	78.6	Aircore	76	21	0	-90
KM0522	474829	5938267	80	Aircore	76	6	0	-90
KM0523	474991	5938235	79.7	Aircore	76	15	0	-90
KM0524	497149	5934619	102	Aircore	76	22	0	-90
KM0525	496964	5934614	102	Aircore	76	21	0	-90
KM0526	496552	5934608	102	Aircore	76	19	0	-90
KM0527	496363	5934606	101	Aircore	76	21	0	-90
KM0528	496149	5934608	101	Aircore	76	22	0	-90
KM0529	495769	5934608	101	Aircore	76	14	0	-90
KM0530	495466	5934604	101	Aircore	76	18	0	-90
KM0531	495776	5937811	101	Aircore	76	21	0	-90
KM0532	495492	5937803	101	Aircore	76	18	0	-90
KM0533	495189	5937802	100	Aircore	76	13	0	-90
KM0534	494897	5937804	101	Aircore	76	19	0	-90
KM0535	494586	5937797	101	Aircore	76	15	0	-90
KM0536	494289	5937799	101	Aircore	76	18	0	-90
KM0537	482671	5937807	98.9	Aircore	76	18	0	-90
KM0538	482352	5937804	96.8	Aircore	76	18	0	-90
KM0539	482246	5937810	96.7	Aircore	76	19	0	-90
KM0540	481466	5934328	92.3	Aircore	76	12	0	-90
KM0541	480427	5932238	88.4	Aircore	76	10	0	-90
KM0542	480863	5930334	89.5	Aircore	76	12	0	-90
KM0543	481041	5929035	86	Aircore	76	27	0	-90
KM0544	480853	5926641	86.2	Aircore	76	9	0	-90
KM0545	479050	5918492	71.1	Aircore	76	15	0	-90
KM0546	479245	5918509	70.2	Aircore	76	9	0	-90
KM0547	479457	5918521	72	Aircore	76	6	0	-90
KM0548	479646	5918538	72.7	Aircore	76	9	0	-90
KM0549	479846	5918551	72.6	Aircore	76	10	0	-90
KM0550	480044	5918564	72.7	Aircore	76	15	0	-90
KM0551	480247	5918584	72.9	Aircore	76	8	0	-90
KM0552	480442	5918598	73.5	Aircore	76	8	0	-90

Level 10, 111 Gawler Place Adelaide, SA 5000 Phone: 1300 646 100 Email: hello@ar3.com.au ASX Code: AR3

Website: www.ar3.com.au

KM0553	480638	5918600	73	Aircore	76	9	0	-90
KM0554	480842	5918560	73	Aircore	76	8	0	-90
KM0555	481034	5918512	73.3	Aircore	76	8	0	-90
KM0556	481240	5918492	73.2	Aircore	76	9	0	-90
KM0557	481442	5918494	73.9	Aircore	76	12	0	-90
KM0558	490335	5888613	84	Aircore	76	7	0	-90
KM0559	490414	5888673	83.9	Aircore	76	8	0	-90
KM0560	490486	5888739	83.8	Aircore	76	13	0	-90
KM0561	490568	5888814	84.1	Aircore	76	10	0	-90
KM0562	490640	5888879	84.5	Aircore	76	9	0	-90
KM0563	490706	5888947	84.5	Aircore	76	9	0	-90
KM0564	490777	5889012	84.2	Aircore	76	12	0	-90
KM0565	490856	5889081	84.4	Aircore	76	7	0	-90
KM0566	490926	5889144	84.2	Aircore	76	10	0	-90
KM0567	491000	5889214	84.7	Aircore	76	8	0	-90
KM0568	491070	5889287	84.2	Aircore	76	5	0	-90
KM0569	491145	5889351	83.4	Aircore	76	10	0	-90
KM0570	491220	5889422	83.4	Aircore	76	9	0	-90
KM0571	491386	5889505	86.5	Aircore	76	11	0	-90
KM0572	491480	5889482	87.3	Aircore	76	9	0	-90
KM0573	491778	5889421	87.4	Aircore	76	12	0	-90
KM0574	491870	5889399	87.3	Aircore	76	10	0	-90
KM0575	491980	5889376	87.5	Aircore	76	9	0	-90
KM0576	492075	5889359	87.4	Aircore	76	9	0	-90
KM0577	492173	5889336	88.2	Aircore	76	12	0	-90
KM0578	492272	5889317	89	Aircore	76	12	0	-90
KM0579	493356	5889190	95.2	Aircore	76	6	0	-90
KM0580	493461	5889192	95.9	Aircore	76	8	0	-90
KM0581	493549	5889196	96.3	Aircore	76	6	0	-90
KM0582	494214	5889060	98.7	Aircore	76	11	0	-90
KM0583	494296	5889087	99.9	Aircore	76	10	0	-90
KM0584	494390	5889125	101	Aircore	76	6	0	-90
KM0585	494490	5889154	103	Aircore	76	11	0	-90
KM0586	494583	5889185	103	Aircore	76	10	0	-90
KM0587	494686	5889228	104	Aircore	76	13	0	-90
KM0588	494761	5889247	105	Aircore	76	11	0	-90
KM0589	494863	5889281	106	Aircore	76	12	0	-90
KM0590	480814	5930499	89.4	Aircore	76	12	0	-90
KM0591	480836	5930408	89.6	Aircore	76	27	0	-90
KM0592	480884	5930236	89.7	Aircore	76	21	0	-90
KM0593	480909	5930142	89.7	Aircore	76	11	0	-90
KM0594	480931	5930054	89.7	Aircore	76	11	0	-90

Phone: 1300 646 100 Email: hello@ar3.com.au Website: www.ar3.com.au

00 646 100 ASX Code: **AR3**

KM0595 481019 5928156 88 Aircore 76 12 0 KM0596 481019 5928050 87.7 Aircore 76 9 0 KM0597 481011 5927840 88.8 Aircore 76 8 0 KM0598 481014 5927946 88.5 Aircore 76 8 0 KM0599 479349 5918514 70.4 Aircore 76 12 0 KM0600 479549 5918527 72.7 Aircore 76 9 0 KM0601 479747 5918540 72.7 Aircore 76 9 0 KM0602 479946 5918552 72.8 Aircore 76 9 0 KM0603 480163 5918571 72.9 Aircore 76 9 0 KM0604 483106 5918810 79.8 Aircore 76 10 0 KM0605 483966 5919	-90 -90 -90 -90 -90 -90 -90 -90 -90 -90
KM0597 481011 5927840 88.8 Aircore 76 8 0 KM0598 481014 5927946 88.5 Aircore 76 8 0 KM0599 479349 5918514 70.4 Aircore 76 12 0 KM0600 479549 5918527 72.7 Aircore 76 9 0 KM0601 479747 5918540 72.7 Aircore 76 9 0 KM0602 479946 5918552 72.8 Aircore 76 9 0 KM0603 480163 5918571 72.9 Aircore 76 9 0 KM0604 483106 5918810 79.8 Aircore 76 10 0 KM0605 483907 5919659 80.5 Aircore 76 6 0 KM0606 483966 5919751 80.4 Aircore 76 21 0	-90 -90 -90 -90 -90 -90 -90 -90
KM0598 481014 5927946 88.5 Aircore 76 8 0 KM0599 479349 5918514 70.4 Aircore 76 12 0 KM0600 479549 5918527 72.7 Aircore 76 9 0 KM0601 479747 5918540 72.7 Aircore 76 9 0 KM0602 479946 5918552 72.8 Aircore 76 9 0 KM0603 480163 5918571 72.9 Aircore 76 9 0 KM0604 483106 5918810 79.8 Aircore 76 10 0 KM0605 483907 5919659 80.5 Aircore 76 6 0 KM0606 483966 5919751 80.4 Aircore 76 21 0	-90 -90 -90 -90 -90 -90 -90
KM0599 479349 5918514 70.4 Aircore 76 12 0 KM0600 479549 5918527 72.7 Aircore 76 9 0 KM0601 479747 5918540 72.7 Aircore 76 9 0 KM0602 479946 5918552 72.8 Aircore 76 9 0 KM0603 480163 5918571 72.9 Aircore 76 9 0 KM0604 483106 5918810 79.8 Aircore 76 10 0 KM0605 483907 5919659 80.5 Aircore 76 6 0 KM0606 483966 5919751 80.4 Aircore 76 21 0	-90 -90 -90 -90 -90 -90
KM0600 479549 5918527 72.7 Aircore 76 9 0 KM0601 479747 5918540 72.7 Aircore 76 9 0 KM0602 479946 5918552 72.8 Aircore 76 9 0 KM0603 480163 5918571 72.9 Aircore 76 9 0 KM0604 483106 5918810 79.8 Aircore 76 10 0 KM0605 483907 5919659 80.5 Aircore 76 6 0 KM0606 483966 5919751 80.4 Aircore 76 21 0	-90 -90 -90 -90 -90
KM0601 479747 5918540 72.7 Aircore 76 9 0 KM0602 479946 5918552 72.8 Aircore 76 9 0 KM0603 480163 5918571 72.9 Aircore 76 9 0 KM0604 483106 5918810 79.8 Aircore 76 10 0 KM0605 483907 5919659 80.5 Aircore 76 6 0 KM0606 483966 5919751 80.4 Aircore 76 21 0	-90 -90 -90 -90
KM0602 479946 5918552 72.8 Aircore 76 9 0 KM0603 480163 5918571 72.9 Aircore 76 9 0 KM0604 483106 5918810 79.8 Aircore 76 10 0 KM0605 483907 5919659 80.5 Aircore 76 6 0 KM0606 483966 5919751 80.4 Aircore 76 21 0	-90 -90 -90
KM0603 480163 5918571 72.9 Aircore 76 9 0 KM0604 483106 5918810 79.8 Aircore 76 10 0 KM0605 483907 5919659 80.5 Aircore 76 6 0 KM0606 483966 5919751 80.4 Aircore 76 21 0	-90 -90 -90
KM0604 483106 5918810 79.8 Aircore 76 10 0 KM0605 483907 5919659 80.5 Aircore 76 6 0 KM0606 483966 5919751 80.4 Aircore 76 21 0	-90 -90
KM0605 483907 5919659 80.5 Aircore 76 6 0 KM0606 483966 5919751 80.4 Aircore 76 21 0	-90
KM0606 483966 5919751 80.4 Aircore 76 21 0	
	-90
KM0607 484547 5919909 81 Aircore 76 12 0	
KNOOO TOTOT SOLOOO OI ANCOIC 10 12 0	-90
KM0608 484744 5919959 81 Aircore 76 12 0	-90
KM0609 484939 5920007 80.9 Aircore 76 24 0	-90
KM0610 493780 5887317 101 Aircore 76 4 0	-90
KM0611 493471 5887343 90.3 Aircore 76 18 0	-90
KM0612 493385 5887348 89.5 Aircore 76 12 0	-90
KM0613 493283 5887356 91.6 Aircore 76 6 0	-90
KM0614 493170 5887359 92 Aircore 76 4 0	-90
KM0615 492022 5887597 89.4 Aircore 76 7 0	-90
KM0616 491930 5887645 88.6 Aircore 76 5 0	-90
KM0617 491830 5887695 87.9 Aircore 76 7 0	-90
KM0618 491754 5887738 87.6 Aircore 76 4 0	-90
KM0619 491666 5887784 87.2 Aircore 76 7 0	-90
KM0620 491577 5887826 87.3 Aircore 76 9 0	-90
KM0621 491486 5887878 87.8 Aircore 76 6 0	-90
KM0622 491398 5887928 88 Aircore 76 8 0	-90
KM0623 491307 5887982 88.2 Aircore 76 11 0	-90
KM0624 491226 5888019 88.2 Aircore 76 6 0	-90
KM0625 491133 5888060 87.4 Aircore 76 7 0	-90
KM0626 490949 5888116 85 Aircore 76 15 0	-90
KM0627 491037 5888092 86.1 Aircore 76 15 0	-90
KM0628 490442 5888299 84.4 Aircore 76 9 0	-90
KM0629 489662 5888850 77.2 Aircore 76 6 0	-90
KM0630 489593 5888891 76.4 Aircore 76 9 0	-90
KM0631 488799 5889329 77.8 Aircore 76 10 0	-90
KM0632 488709 5889367 78 Aircore 76 21 0	-90
KM0633 488613 5889403 78.2 Aircore 76 12 0	-90
KM0634 488523 5889438 78.1 Aircore 76 11 0	-90
KM0635 488429 5889478 78.1 Aircore 76 9 0	-90
KM0636 488339 5889512 77.4 Aircore 76 12 0	-90

Phone: 1300 646 100 Email: hello@ar3.com.au Website: www.ar3.com.au

		1					ı	Γ
KM0637	488240	5889550	78.1	Aircore	76	3	0	-90
KM0638	488022	5889602	76.8	Aircore	76	3	0	-90
KM0639	487363	5889784	89.7	Aircore	76	3	0	-90
KM0640	487028	5889991	75.7	Aircore	76	3	0	-90
KM0641	486772	5890078	67.9	Aircore	76	15	0	-90
KM0642	486654	5890102	67.2	Aircore	76	18	0	-90
KM0643	486574	5890133	66.8	Aircore	76	18	0	-90
KM0644	486467	5890150	66.3	Aircore	76	15	0	-90
KM0645	486272	5890186	65.8	Aircore	76	12	0	-90
KM0646	485974	5890198	64.4	Aircore	76	8	0	-90
KM0647	485765	5890200	64.2	Aircore	76	12	0	-90
KM0648	491342	5889627	86.6	Aircore	76	9	0	-90
KM0649	491342	5889727	87	Aircore	76	9	0	-90
KM0650	491347	5889831	87.2	Aircore	76	12	0	-90
KM0651	491343	5889920	86.9	Aircore	76	15	0	-90
KM0652	491345	5890014	86.6	Aircore	76	9	0	-90
KM0653	491398	5890128	85.7	Aircore	76	9	0	-90
KM0654	491398	5890239	86.1	Aircore	76	12	0	-90
KM0655	491347	5890326	86.4	Aircore	76	12	0	-90
KM0656	491348	5890420	86.2	Aircore	76	12	0	-90
KM0657	491352	5890520	85.8	Aircore	76	18	0	-90
KM0658	491350	5890623	85.4	Aircore	76	12	0	-90
KM0659	491356	5890727	84.6	Aircore	76	9	0	-90
KM0660	491384	5890732	84.6	Aircore	76	12	0	-90
KM0661	491482	5890713	85.3	Aircore	76	12	0	-90
KM0662	491578	5890692	85.9	Aircore	76	10	0	-90
KM0663	491679	5890678	86.5	Aircore	76	13	0	-90
KM0664	491779	5890652	87.1	Aircore	76	11	0	-90
KM0665	491876	5890629	87.5	Aircore	76	9	0	-90
KM0666	491977	5890610	87.7	Aircore	76	9	0	-90
KM0667	492074	5890590	87.7	Aircore	76	12	0	-90
KM0668	492170	5890570	87.9	Aircore	76	11	0	-90
KM0669	492359	5890537	88.5	Aircore	76	9	0	-90
KM0670	492460	5890508	89	Aircore	76	9	0	-90
KM0671	492565	5890490	89.5	Aircore	76	10	0	-90
KM0672	492677	5890464	90	Aircore	76	10	0	-90
KM0673	492757	5890452	90.2	Aircore	76	10	0	-90
KM0674	492859	5890432	90.3	Aircore	76	9	0	-90
KM0675	492954	5890414	90.6	Aircore	76	12	0	-90
KM0676	493056	5890388	91	Aircore	76	12	0	-90
KM0677	493133	5890371	91.1	Aircore	76	14	0	-90
KM0678	491353	5890828	84.7	Aircore	76	11	0	-90

Phone: 1300 646 100 Email: hello@ar3.com.au Website: www.ar3.com.au

KM0679	491372	5890933	85.1	Aircore	76	11	0	-90
KM0680	491354	5891025	85.2	Aircore	76	9	0	-90
KM0681	491357	5891205	84.6	Aircore	76	14	0	-90
KM0682	491351	5891127	84.9	Aircore	76	9	0	-90
KM0683	491355	5891323	83.8	Aircore	76	12	0	-90
KM0684	491353	5891427	83	Aircore	76	12	0	-90
KM0685	491343	5891538	82.8	Aircore	76	20	0	-90
KM0686	491352	5891628	82.8	Aircore	76	13	0	-90
KM0687	491354	5891721	83.1	Aircore	76	14	0	-90
KM0688	491353	5891820	83.2	Aircore	76	10	0	-90
KM0689	491354	5891929	83.1	Aircore	76	9	0	-90
KM0690	491356	5892022	83.4	Aircore	76	9	0	-90
KM0691	491357	5892120	82.9	Aircore	76	9	0	-90
KM0692	491350	5892228	82.6	Aircore	76	10	0	-90
KM0693	491355	5892321	82.7	Aircore	76	12	0	-90
KM0694	491354	5892420	82.7	Aircore	76	12	0	-90
KM0695	491355	5892519	83.4	Aircore	76	11	0	-90
KM0696	491352	5892628	84.5	Aircore	76	5	0	-90
KM0697	492245	5890534	88.2	Aircore	76	12	0	-90
KM0698	496293	5878748	109	Aircore	76	6	0	-90
KM0699	496205	5878764	108	Aircore	76	10	0	-90
KM0700	496098	5878780	104	Aircore	76	5	0	-90
KM0701	496003	5878783	106	Aircore	76	6	0	-90
KM0702	496179	5878969	107	Aircore	76	6	0	-90
KM0703	496074	5878974	107	Aircore	76	5	0	-90
KM0704	495983	5878973	107	Aircore	76	9	0	-90
KM0705	495878	5878974	107	Aircore	76	6	0	-90
KM0706	495790	5878972	107	Aircore	76	5	0	-90
KM0707	495694	5878969	104	Aircore	76	3	0	-90
KM0708	495597	5878970	105	Aircore	76	9	0	-90
KM0709	495496	5878972	106	Aircore	76	4	0	-90
KM0710	495399	5878973	104	Aircore	76	5	0	-90
KM0711	495296	5878978	101	Aircore	76	6	0	-90
KM0712	494992	5878976	105	Aircore	76	6	0	-90
KM0713	494946	5879077	104	Aircore	76	3	0	-90
KM0714	495003	5879171	104	Aircore	76	21	0	-90
KM0715	494956	5879274	105	Aircore	76	15	0	-90
KM0716	494918	5879378	106	Aircore	76	5	0	-90
KM0717	494989	5879476	107	Aircore	76	4	0	-90
KM0718	494998	5879575	105	Aircore	76	6	0	-90
KM0719	494898	5879586	106	Aircore	76	3	0	-90
KM0720	494795	5879582	103	Aircore	76	24	0	-90

Phone: 1300 646 100 Email: hello@ar3.com.au Website: www.ar3.com.au

KM0721	494694	5879588	101	Aircore	76	15	0	-90
KM0722	494597	5879585	103	Aircore	76	9	0	-90
KM0723	494501	5879578	103	Aircore	76	6	0	-90
KM0724	494397	5879581	98.8	Aircore	76	9	0	-90
KM0725	494301	5879589	97.3	Aircore	76	21	0	-90
KM0726	494209	5879587	98.8	Aircore	76	6	0	-90
KM0727	494710	5880486	99.1	Aircore	76	3	0	-90
KM0728	494604	5880480	100	Aircore	76	4	0	-90
KM0729	494509	5880479	103	Aircore	76	6	0	-90
KM0730	494413	5880486	103	Aircore	76	6	0	-90
KM0731	494313	5880485	104	Aircore	76	3	0	-90
KM0732	494815	5880487	95.1	Aircore	76	14	0	-90
KM0733	494913	5880479	102	Aircore	76	6	0	-90
KM0734	495402	5879572	102	Aircore	76	21	0	-90
KM0735	495501	5879586	100	Aircore	76	6	0	-90
KM0736	495608	5879582	104	Aircore	76	9	0	-90
KM0737	495701	5879575	104	Aircore	76	3	0	-90
KM0738	495783	5879571	104	Aircore	76	6	0	-90
KM0739	497293	5884718	117	Aircore	76	5	0	-90
KM0740	497196	5884725	115	Aircore	76	11	0	-90
KM0741	497092	5884722	112	Aircore	76	5	0	-90
KM0742	496996	5884718	112	Aircore	76	6	0	-90
KM0743	496893	5884731	111	Aircore	76	6	0	-90
KM0744	496799	5884727	111	Aircore	76	9	0	-90
KM0745	496696	5884724	113	Aircore	76	3	0	-90
KM0746	496583	5884728	113	Aircore	76	7	0	-90
KM0747	496489	5884727	112	Aircore	76	6	0	-90
KM0748	496394	5884724	112	Aircore	76	15	0	-90
Hole ID	East (m)	North (m)	RL (m ASL)	Drill Method	Down Hole Width (mm)	Total Depth EOH (m)	Azimuth	Dip Direction
KMC0183	493310	5884435	89.8	Push Tube	9 38	6.2	0	-90
KMC0184	493319	5884436	90	Push Tube	9 38	6.95	0	-90
KMC0185	493329	5884436	90.2	Push Tube	9 38	6.6	0	-90
KMC0186	493340	5884436	90.4	Push Tube	9 38	6.9	0	-90
KMC0187	493349	5884436	90.7	Push Tube	9 38	7	0	-90
KMC0188	493359	5884435	91	Push Tube	9 38	5.7	0	-90
KMC0189	493369	5884435	91.4	Push Tube	9 38	7	0	-90
KMC0190	493379	5884435	91.7	Push Tube	9 38	5.1	0	-90
KMC0191	493389	5884435	91.9	Push Tube	9 38	7	0	-90
KMC0192	493398	5884434	92.3	Push Tube	38	6.5	0	-90

Phone: 1300 646 100 Email: hello@ar3.com.au Website: www.ar3.com.au

		1					1	1
KMC0194	493418	5884434	92.8	Push Tube	38	5	0	-90
KMC0195	493428	5884434	93.2	Push Tube	38	5.7	0	-90
KMC0196	493438	5884434	93.6	Push Tube	38	6.7	0	-90
KMC0197	493448	5884434	93.8	Push Tube	38	7	0	-90
KMC0198	493458	5884434	94.2	Push Tube	38	5	0	-90
KMC0199	493468	5884434	94.5	Push Tube	38	3.6	0	-90
KMC0200	493478	5884434	94.8	Push Tube	38	3.2	0	-90
KMC0201	493488	5884434	95.2	Push Tube	38	3	0	-90
KMC0202	493498	5884434	95.4	Push Tube	38	3	0	-90
KMC0203	493508	5884435	95.7	Push Tube	38	3	0	-90
KMC0204	493518	5884435	96	Push Tube	38	3.8	0	-90
KMC0205	493528	5884434	96.4	Push Tube	38	3	0	-90
KMC0206	493528	5884424	96.4	Push Tube	38	3	0	-90
KMC0207	493509	5884424	95.8	Push Tube	38	3.8	0	-90
KMC0208	493488	5884424	95.3	Push Tube	38	4	0	-90
KMC0209	493468	5884423	94.5	Push Tube	38	3	0	-90
KMC0210	493448	5884424	94	Push Tube	38	7	0	-90
KMC0211	493428	5884424	93.3	Push Tube	38	5	0	-90
KMC0212	493409	5884424	92.6	Push Tube	38	3.6	0	-90
KMC0213	493389	5884424	92	Push Tube	38	7	0	-90
KMC0214	493369	5884424	91.3	Push Tube	38	7.5	0	-90
KMC0215	493349	5884424	90.6	Push Tube	38	6.4	0	-90
KMC0216	493329	5884424	90	Push Tube	38	6	0	-90
KMC0217	493309	5884424	89.6	Push Tube	38	7	0	-90
KMC0218	493528	5884413	96.4	Push Tube	38	3	0	-90
KMC0219	493509	5884413	95.8	Push Tube	38	4.6	0	-90
KMC0220	493489	5884413	95.3	Push Tube	38	3.3	0	-90
KMC0221	493469	5884413	94.6	Push Tube	38	3.6	0	-90
KMC0222	493449	5884413	94	Push Tube	38	7.5	0	-90
KMC0223	493429	5884413	93.4	Push Tube	38	7.5	0	-90
KMC0224	493409	5884413	92.8	Push Tube	38	5	0	-90
KMC0225	493389	5884413	92.1	Push Tube	38	7.5	0	-90
KMC0226	493369	5884413	91.5	Push Tube	38	7.2	0	-90
KMC0227	493349	5884413	90.9	Push Tube	38	6.5	0	-90
KMC0228	493330	5884414	90.2	Push Tube	38	7	0	-90
KMC0229	493309	5884413	89.6	Push Tube	38	5.5	0	-90
KMC0230	493529	5884402	96.5	Push Tube	38	5	0	-90
KMC0231	493510	5884402	95.9	Push Tube	38	5	0	-90
KMC0232	493490	5884402	95.4	Push Tube	38	4.8	0	-90
KMC0233	493470	5884402	94.8	Push Tube	38	5	0	-90
KMC0234	493449	5884402	94.2	Push Tube	38	7.5	0	-90
KMC0235	493429	5884402	93.6	Push Tube	38	6	0	-90

Email: hello@ar3.com.au

Website: www.ar3.com.au

KMC0236	493409	5884402	93	Push Tube	38	7.5	0	-90
KMC0237	493389	5884402	92.1	Push Tube	38	7	0	-90
KMC0238	493369	5884402	91.7	Push Tube	38	6.5	0	-90
KMC0239	493349	5884402	90.9	Push Tube	38	3.7	0	-90
KMC0240	493329	5884403	90.3	Push Tube	38	5	0	-90
KMC0241	493310	5884403	89.6	Push Tube	38	7	0	-90
KMC0242	493518	5884424	93.1	Push Tube	38	2.5	0	-90
KMC0243	493479	5884423	94.9	Push Tube	38	4	0	-90
KMC0244	493439	5884424	93.6	Push Tube	38	7	0	-90
KMC0245	493399	5884424	92.3	Push Tube	38	7	0	-90
KMC0246	493359	5884424	91.1	Push Tube	38	7	0	-90
KMC0247	493499	5884413	95.5	Push Tube	38	3.3	0	-90
KMC0248	493459	5884413	94.4	Push Tube	38	5	0	-90
KMC0249	493419	5884413	93	Push Tube	38	6	0	-90
KMC0250	493379	5884413	91.8	Push Tube	38	7	0	-90
KMC0251	493519	5884402	96.2	Push Tube	38	5.6	0	-90
KMC0252	493500	5884402	95.7	Push Tube	38	3.5	0	-90
KMC0253	493480	5884402	95.1	Push Tube	38	4	0	-90
KMC0254	493459	5884402	94.5	Push Tube	38	5.7	0	-90
KMC0255	493439	5884402	93.9	Push Tube	38	6.5	0	-90
KMC0256	493419	5884402	93.3	Push Tube	38	7	0	-90
KMC0257	493498	5884424	95.5	Push Tube	38	3	0	-90
KMC0258	493458	5884423	94.3	Push Tube	38	4.4	0	-90
KMC0259	493519	5884413	96.1	Push Tube	38	3	0	-90
KMC0260	493479	5884413	95	Push Tube	38	5	0	-90
KMC0261	493439	5884413	93.7	Push Tube	38	7	0	-90

Email: hello@ar3.com.au

Website: www.ar3.com.au

Appendix II: Significant Intersections at a 350ppm TREO cut-off

Hole ID	Depth	Depth	Thickness	TREO	Pr	6O ₁₁	No	d ₂ O ₃	TI	0407	D	y ₂ O ₃
	From	То	m	ppm	ppm	% TREO	ppm	% TREO	ppm	% TREO	ppm	% TREO
KM0517	5	9	4	490	23.4	4.74	94.7	19.3	2.69	0.549	14.6	2.98
KM0518	22	23	1	694	33.1	4.77	120	17.3	3.81	0.549	21.7	3.12
KM0525	17	18	1	350	11.7	3.33	47	13.4	2.14	0.611	13.2	3.77
KM0527	1	2	1	381	18.4	4.83	70	18.4	1.88	0.494	10.2	2.68
KM0528	1	2	1	428	15.1	3.53	57	13.3	1.6	0.373	8.72	2.04
KM0537	14	15	1	375	14.1	3.77	58.9	15.7	2.09	0.559	12.9	3.43
KM0538	16	17	1	718	33.8	4.71	134	18.7	3.39	0.472	19.6	2.73
KM0539	15	16	1	802	37.8	4.71	145	18	3.34	0.416	19.2	2.39
KM0540	8	10	2	607	25.5	4.15	95.7	15.6	2.38	0.39	13.6	2.24
KM0541	7	8	1	912	41.2	4.52	161	17.6	4.28	0.469	25	2.74
KM0542	7	10	3	831	36.7	4.22	142	16.2	4.52	0.515	26.8	3.1
KM0543	22	23	1	585	26.2	4.48	103	17.5	2.63	0.45	14.2	2.43
KM0544	6	7	1	1156	47.7	4.13	189	16.4	6.05	0.523	36.3	3.14
KM0544	8	9	1	579	26.9	4.65	106	18.3	2.68	0.463	15.5	2.67
KM0548	5	9	4	665	32.8	4.79	127	18.7	3.78	0.586	21.9	3.45
KM0549	6	9	3	741	31.3	4.13	121	16.8	3.08	0.433	17.5	2.44
KM0550	10	11	1	764	31.3	4.1	148	19.4	3.48	0.456	18.6	2.43
KM0551	5	6	1	720	29.1	4.04	135	18.8	3.13	0.434	16.2	2.25
KM0552	4	5	1	399	17.9	4.49	69.8	17.5	1.6	0.401	8.67	2.17
KM0554	4	7	3	490	21.7	4.48	92.9	19	1.47	0.294	7.75	1.54
KM0555	4	6	2	410	17.9	4.38	81.9	20	1.59	0.387	8.38	2.04
KM0556	7	9	2	499	21.1	4.11	96.5	18.9	2.18	0.433	11.7	2.34
KM0557	8	11	3	1381	69.3	4.89	316	22.4	4.81	0.353	23	1.72
KM0558	3	5	2	451	15.8	3.52	78.2	17.3	2.31	0.514	13.4	2.99
KM0559	5	7	2	1104	44.2	4.05	198	18.2	4.02	0.387	21.5	2.08
KM0560	8	10	2	961	36.9	3.81	170	17.6	3.69	0.387	19.9	2.09
KM0561	5	6	1	615	24.9	4.05	115	18.7	2.23	0.364	11.8	1.92
KM0562	6	8	2	1051	36.5	3.56	168	16.7	3.96	0.398	21.9	2.21
KM0563	5	7	2	486	16.7	3.42	81.4	16.6	2.34	0.485	13.4	2.78
KM0564	6	8	2	519	14.9	2.86	73.3	14.1	2.43	0.469	14.1	2.71
KM0564	9	10	1	413	14.1	3.42	69.3	16.8	1.98	0.478	11.2	2.72
KM0565	4	5	1	931	23.3	2.5	113	12.1	3.39	0.364	19.6	2.11
KM0566	7	8	1	959	34.7	3.62	168	17.5	4.19	0.437	23.4	2.44
KM0567	3	6	3	763	29.8	3.98	141	19	3.46	0.452	19.2	2.51
KM0568	2	4	2	860	32.6	3.63	148	16.5	3.29	0.369	17.9	2
KM0569	7	8	1	369	14.6	3.96	65.8	17.8	1.39	0.376	7.8	2.11

Phone: 1300 646 100

Email: hello@ar3.com.au
Website: www.ar3.com.au

KM0570	7	9	2	478	17.8	3.68	84	17.4	1.85	0.383	10.3	2.13
KM0571	6	9	3	1057	44.5	3.67	212	17.6	5.03	0.462	27.7	2.6
KM0572	2	6	4	922	32.8	3.58	150	16.6	4.62	0.501	25.5	2.77
KM0573	5	9	4	779	27.1	3.46	136	17.6	4.22	0.58	23.4	3.23
KM0574	6	9	3	2165	103	4.68	403	18.2	11.5	0.526	64.6	2.95
KM0575	5	7	2	1039	44.2	4.51	172	17.5	4.74	0.479	26.9	2.7
KM0576	6	9	3	766	34.6	4.28	129	16.2	3.38	0.468	19.7	2.78
KM0577	7	10	3	553	25	4.42	94.7	16.8	3.21	0.584	19.3	3.54
KM0578	9	12	3	767	43.7	5.34	156	19.2	3.55	0.434	18.5	2.28
KM0579	2	5	3	801	34.5	4.18	136	16.5	4.04	0.504	22.4	2.84
KM0580	5	7	2	696	38.6	5.11	141	18.9	3.08	0.445	16.8	2.44
KM0582	7	8	1	696	24	3.45	92.5	13.3	3.2	0.459	19.4	2.79
KM0583	6	9	3	711	32.9	4.59	126	17.6	3.56	0.494	19.8	2.74
KM0584	0	2	2	423	20.5	4.84	77.1	18.3	2	0.476	11.2	2.66
KM0585	7	9	2	1281	60.5	4.72	225	17.5	5.56	0.434	31	2.42
KM0586	4	9	5	1166	47.7	4.07	186	15.8	5.88	0.514	33.9	2.98
KM0587	9	12	3	1109	50	4.54	186	16.8	4.74	0.421	25.9	2.29
KM0588	6	7	1	397	15.3	3.86	57	14.4	1.76	0.444	10.1	2.54
KM0589	5	9	4	891	44.6	4.65	165	17.5	3.75	0.455	20.5	2.57
KM0590	10	11	1	641	29.7	4.64	110	17.1	3.15	0.492	17.1	2.67
KM0591	23	26	3	985	49.8	4.98	200	20	5.29	0.533	27.5	2.75
KM0593	8	11	3	999	49.8	4.94	196	19.4	4.73	0.476	24.8	2.51
KM0594	7	9	2	1561	83.1	4.91	310	19	6.36	0.476	33.1	2.63
KM0595	8	9	1	1002	45.2	4.51	175	17.5	4.52	0.451	24.9	2.49
KM0596	6	7	1	566	23	4.06	88.5	15.7	3.34	0.59	19.1	3.37
KM0597	5	7	2	1314	62.3	4.37	237	17.1	5.78	0.477	30.9	2.65
KM0598	6	7	1	663	27.2	4.1	107	16.2	3.41	0.515	19.1	2.87
KM0600	5	7	2	561	34.6	6.11	121	21.4	2.2	0.395	11.8	2.13
KM0601	5	6	1	720	35.3	4.9	133	18.5	3.55	0.493	19.1	2.65
KM0602	5	7	2	885	39.2	4.22	142	15.6	3.32	0.392	17.8	2.16
KM0603	5	6	1	810	33.7	4.16	122	15.1	3.69	0.456	20.4	2.52
KM0607	8	12	4	1006	56.2	5.23	208	19.5	4.39	0.433	22.9	2.31
KM0608	7	10	3	835	31.3	3.98	120	15.3	3.98	0.481	22.8	2.76
KM0609	14	16	2	457	22	4.76	82.2	17.9	2.01	0.445	10.9	2.43
KM0610	0	2	2	582	23.5	3.85	90	14.8	2.51	0.426	12.7	2.17
KM0612	1	4	3	476	23.4	4.93	89.4	18.8	2.26	0.476	10.7	2.25
KM0613	0	1	1	739	37.1	5.02	142	19.3	3.6	0.487	17.6	2.38
KM0614	1	2	1	526	24.2	4.59	95.8	18.2	2.78	0.528	13.8	2.62
KM0615	5	6	1	2107	119	5.64	404	19.2	8.14	0.386	36.4	1.73
KM0616	2	4	2	1046	48.8	4.59	177	16.9	5.35	0.53	27.3	2.72
KM0617	5	6	1	631	28.4	4.5	110	17.4	3.06	0.485	14.9	2.37
KM0618	0	2	2	747	32.9	4.17	127	16.1	4.06	0.548	19.8	2.7

Email: hello@ar3.com.au

Website: www.ar3.com.au

KM0619	4	5	1	1232	44.3	3.6	166	13.4	4.75	0.386	23.9	1.94
KM0620	4	7	3	846	31.1	3.7	121	14.4	4.07	0.493	23.5	2.87
KM0621	1	4	3	617	20.1	3.3	77.4	12.7	2.85	0.465	16.4	2.67
KM0622	5	6	1	1474	73.3	4.97	264	17.9	6.7	0.455	35.8	2.43
KM0623	6	10	4	868	35.7	3.98	135	15.3	4.39	0.518	24.1	2.87
KM0624	3	6	3	1084	47.8	4.29	170	16.1	5.25	0.543	29.3	3.1
KM0625	4	6	2	697	22.8	3.23	94	13.3	4.08	0.583	24	3.44
KM0626	10	11	1	1789	83.8	4.69	306	17.1	8.75	0.489	47.7	2.67
KM0627	8	11	3	824	38.4	4.36	140	16.5	3.74	0.483	20.3	2.67
KM0628	4	6	2	540	22	4.09	88.4	16.5	2.96	0.565	16.9	3.23
KM0630	4	6	2	578	23.7	4.06	91.5	15.8	2.56	0.484	14.5	2.75
KM0631	7	8	1	419	11.1	2.64	46.2	11	2.21	0.527	13.4	3.2
KM0633	9	10	1	668	26.7	4	104	15.6	3.03	0.454	16.9	2.52
KM0634	8	10	2	778	34.7	4.5	132	17	3.45	0.432	19.1	2.39
KM0635	7	8	1	947	24	2.54	93	9.81	3.03	0.32	17.7	1.87
KM0636	9	10	1	516	18.2	3.54	73.7	14.3	2.42	0.47	14.3	2.78
KM0640	1	2	1	382	16.7	4.37	64.5	16.9	1.91	0.499	10.8	2.84
KM0648	7	8	1	615	32.3	5.24	108	17.5	2.52	0.409	13.9	2.26
KM0649	6	8	2	701	37.8	4.54	136	16.7	3.01	0.434	15.5	2.34
KM0650	6	9	3	1246	62.1	4.77	226	16.8	6.13	0.51	33.2	2.84
KM0651	8	11	3	808	37.6	4.3	132	14.9	3.1	0.392	17.3	2.21
KM0652	6	8	2	1903	75.1	3.96	287	15.1	7.12	0.374	38.8	2.04
KM0653	6	8	2	1303	77.7	5.92	296	22.4	6.89	0.511	36.8	2.75
KM0654	7	11	4	876	52.9	5.47	186	19	4.45	0.513	24.6	2.89
KM0655	8	12	4	1166	44.8	3.72	166	14.3	4.41	0.449	25.3	2.61
KM0657	15	16	1	504	26.5	5.25	96.9	19.3	2.31	0.458	12.9	2.55
KM0659	6	8	2	666	30.9	4.32	116	16.4	3.02	0.464	16.7	2.6
KM0660	9	10	1	1503	77.6	5.16	287	19.1	6.96	0.463	38.7	2.57
KM0661	7	10	3	1013	57	5.36	205	19.3	4.01	0.389	21	2.06
KM0662	6	9	3	899	42.9	4.17	163	16.4	4.63	0.565	27	3.33
KM0663	11	12	1	761	32	4.21	121	16	4.23	0.557	25	3.29
KM0664	7	9	2	1367	71.2	5.12	276	19.7	6.27	0.457	32.8	2.42
KM0665	6	7	1	1387	71.2	5.13	278	20	6.94	0.5	37.2	2.68
KM0666	7	8	1	1209	46.9	3.88	182	15.1	6.02	0.498	34.3	2.84
KM0667	8	11	3	393	14.1	3.58	57.6	14.7	2.05	0.522	11.6	2.97
KM0668	5	8	3	595	24.7	4.06	94.4	15.7	3.07	0.523	17.3	2.98
KM0669	6	9	3	655	30.5	4.38	115	17	2.95	0.541	15.9	2.98
KM0670	4	5	1	455	17.9	3.93	68.8	15.1	2.23	0.491	12.5	2.75
KM0670	7	8	1	670	34	5.07	116	17.4	2.45	0.365	12.7	1.9
KM0671	7	8	1	474	23.4	4.94	87.1	18.4	2	0.422	10.8	2.27
KM0672	5	8	3	408	15.8	3.87	61.2	15	2.02	0.495	11.4	2.8
KM0673	5	7	2	596	26.1	4.37	99.2	16.6	3.55	0.577	20	3.24

Email: hello@ar3.com.au

Website: www.ar3.com.au

KM0674	4	5	1	460	18.4	3.99	67.8	14.7	1.95	0.424	10.8	2.34
KM0675	7	10	3	851	38.3	4.37	140	16.1	3.81	0.46	20.7	2.52
KM0676	10	12	2	695	26.8	3.74	96.8	13.8	3.18	0.453	18	2.57
KM0677	10	12	2	743	37.6	5.17	132	18	3.26	0.438	17	2.3
KM0678	7	9	2	562	22.8	3.89	83.9	14.5	2.85	0.507	16	2.85
KM0679	7	9	2	802	37.5	4.24	143	16.4	3.46	0.464	18.9	2.63
KM0680	4	6	2	594	28.5	4.58	102	16.5	2.56	0.431	13.5	2.29
KM0681	12	13	1	363	11.7	3.23	48.8	13.4	1.79	0.492	10.7	2.94
KM0682	6	7	1	1019	50.7	4.98	176	17.3	3.95	0.388	19.9	1.95
KM0684	9	10	1	1467	75.5	5.15	282	19.2	6.61	0.451	32.6	2.22
KM0686	9	11	2	1040	46.3	4.83	157	16.4	4.32	0.447	23.2	2.38
KM0688	7	9	2	439	16.2	3.74	61.8	14.3	1.93	0.439	10.4	2.37
KM0689	7	8	1	1375	79.7	5.8	292	21.2	6.19	0.45	30.3	2.2
KM0690	7	8	1	627	24.2	3.85	97.6	15.6	3.34	0.532	18.9	3.02
KM0691	3	6	3	664	23.7	3.59	96.5	14.6	3.34	0.502	19.3	2.9
KM0691	7	8	1	350	18	5.14	68.8	19.6	1.46	0.416	7.98	2.28
KM0692	7	9	2	507	18.7	3.62	72.8	14.1	2.27	0.458	12.8	2.59
KM0693	7	10	3	522	21.7	3.98	78.1	14.6	2.33	0.453	12.9	2.52
KM0694	7	8	1	601	19.9	3.32	77.9	13	2.78	0.462	16.5	2.75
KM0695	6	8	2	408	19.4	4.8	74.1	18.3	2.16	0.53	12.1	2.96
KM0696	3	5	2	630	28.2	4.71	102	17.4	3.23	0.507	18.4	2.88
KM0697	7	10	3	1053	48.2	4.38	187	17.2	5.2	0.545	29	3.12
KM0697	11	12	1	369	15.3	4.16	60.7	16.4	2.05	0.554	11.5	3.11
KM0698	1	2	1	557	23.4	4.21	92.5	16.6	2.8	0.503	16	2.87
KM0699	2	3	1	557	24	4.32	93	16.7	3.13	0.562	17.2	3.09
KM0701	3	4	1	681	23.4	3.44	93.1	13.7	3.01	0.442	17.1	2.51
KM0702	3	4	1	496	19.2	3.87	75.6	15.2	2.19	0.441	12.4	2.5
KM0703	0	2	2	632	29.8	4.72	116	18.5	3.52	0.555	20	3.15
KM0704	4	6	2	1110	48.8	4.51	192	17.7	5.38	0.488	29.3	2.68
KM0706	1	4	3	1313	58.3	4.09	223	15.9	6.35	0.485	34.9	2.73
KM0707	0	1	1	565	24	4.26	95.1	16.8	2.78	0.491	15.8	2.8
KM0708	5	9	4	669	27.5	4.16	107	16.4	3.45	0.53	20	3.07
KM0709	0	2	2	498	17.8	3.54	72.3	14.4	2.68	0.539	15.8	3.2
KM0710	0	1	1	484	21.4	4.42	83.8	17.3	2.45	0.506	14.1	2.92
KM0711	2	4	2	1773	88.6	5.03	335	19.1	6.74	0.382	35.8	2.03
KM0712	0	1	1	446	19.8	4.44	78.6	17.6	2.05	0.459	11.2	2.51
KM0712	3	5	2	494	22	4.57	90.7	18.8	3.05	0.604	17.1	3.38
KM0713	0	2	2	518	22.1	4.26	89.8	17.3	2.73	0.527	15.3	2.96
KM0716	0	2	2	467	20.5	4.42	79.3	17.1	2.23	0.482	12.6	2.71
KM0717	1	2	1	386	18.4	4.76	71.6	18.6	1.72	0.445	9.41	2.44
KM0718	3	6	3	1576	74.8	4.56	283	17.6	6.34	0.478	34.2	2.65
KM0720	19	21	2	446	19.5	4.38	78.3	17.6	2.68	0.606	14.9	3.38

Email: hello@ar3.com.au

Website: www.ar3.com.au

KM0721	5	10	5	469	19.3	4.11	76.5	16.3	2.47	0.531	13.8	2.98
KM0722	0	1	1	378	15.8	4.19	63	16.7	1.86	0.492	10.8	2.87
KM0722	2	6	4	520	15.5	3.13	62.3	12.5	2.24	0.434	12.8	2.48
KM0723	3	5	2	772	37.4	4.69	136	17.2	3.8	0.486	21.5	2.76
KM0724	5	7	2	823	30.7	3.77	124	15.2	3.96	0.482	22.5	2.73
KM0725	3	9	6	720	29.1	4.16	113	16.3	3.49	0.488	19.8	2.76
KM0725	12	14	2	634	28.2	4.4	110	17.2	2.88	0.455	16.1	2.54
KM0725	15	16	1	395	15.9	4.04	63.2	16	2.05	0.519	11.7	2.97
KM0726	2	6	4	505	18.3	3.71	73.1	14.8	2.49	0.488	14.3	2.79
KM0727	0	1	1	370	17.8	4.8	70.2	19	1.76	0.476	9.98	2.7
KM0728	1	4	3	858	37.9	4.02	140	15.5	4.09	0.475	23	2.73
KM0729	1	2	1	999	32.4	3.24	131	13.1	4.26	0.426	24.9	2.49
KM0730	3	5	2	454	18.1	3.97	75.9	16.6	2.87	0.634	16.2	3.58
KM0732	9	11	2	428	18.1	4.24	70.5	16.5	1.92	0.448	10.7	2.49
KM0733	3	5	2	1500	78.8	4.97	311	19.9	6.65	0.486	35.1	2.67
KM0734	13	14	1	461	16.2	3.51	68.7	14.9	2.92	0.633	17.3	3.76
KM0735	3	4	1	1503	58.1	3.87	219	14.6	7.9	0.526	45.8	3.05
KM0736	5	6	1	370	16.9	4.57	64.6	17.5	1.6	0.432	8.55	2.31
KM0737	0	1	1	386	11	2.85	44.8	11.6	1.67	0.432	9.7	2.51
KM0738	3	4	1	671	22	3.28	88.2	13.1	3.25	0.484	18.5	2.76
KM0739	1	3	2	1076	47	4.43	184	17.3	4.45	0.417	23.1	2.16
KM0740	9	10	1	827	38.3	4.63	152	18.3	3.58	0.432	18.1	2.19
KM0741	2	5	3	807	39.2	4.69	151	18.3	4.05	0.508	21.8	2.79
KM0742	3	5	2	1016	44	4.34	170	16.9	4.68	0.432	26.3	2.37
KM0743	3	4	1	437	12.8	2.93	49.6	11.3	1.98	0.452	11	2.51
KM0744	4	6	2	433	17.1	3.95	68	15.7	2.06	0.473	11.5	2.63
KM0745	0	2	2	553	22.3	4.02	90	16.3	3.05	0.554	17.2	3.12
KM0746	4	5	1	458	21.3	4.65	88.1	19.2	3.01	0.658	15.5	3.38
KM0747	3	4	1	1051	43	4.09	174	16.5	5.18	0.492	27.1	2.58
KM0748	10	14	4	660	24.5	3.87	103	16.4	4.18	0.648	24.8	3.83
Hole ID	Depth	Depth	Thickness	TREO	Pr	₆ O ₁₁	N	d ₂ O ₃	TI	0407	D	y ₂ O ₃
	From	То	m	ppm	ppm	% TREO	ppm	% TREO	ppm	% TREO	ppm	% TREO
KMC0183	3.2	5.3	2.1	428	16.2	3.83	69.2	16.3	2.24	0.529	13	3.08
KMC0184	2	2.5	0.5	420	9.97	2.38	39.7	9.45	1.2	0.286	6.71	1.6
KMC0184	3.2	4.1	0.9	513	23	4.43	89.7	17.4	2.93	0.579	16.8	3.32
KMC0185	5.5	6.4	0.9	373	13.7	3.66	59.6	16	2.16	0.58	13	3.48
KMC0186	5.6	6.4	0.8	415	17.3	4.28	68.7	16.8	2.53	0.61	15.1	3.64
KMC0191	3.8	7	3.2	1499	67.9	4.3	271	16.9	8.81	0.584	52	3.39
KMC0192	2.5	6.5	4	1144	49.7	4.16	200	16.7	5.92	0.533	33.2	3.01
KMC0193	2.5	6.5	4	677	32.1	4.68	124	18.3	3.51	0.539	19.8	3.08
KMC0194	1.4	5	3.6	714	33.7	4.7	129	17.8	3.64	0.514	20.6	2.91

Phone: 1300 646 100 Email: hello@ar3.com.au Website: www.ar3.com.au

		1		ı	1		1		1	1	1	- 1
KMC0195	3.6	4	0.4	369	12.4	3.37	56.9	15.4	2.28	0.618	13.5	3.67
KMC0195	4.9	5.7	0.8	677	26.5	3.91	108	15.9	4.21	0.622	25.1	3.71
KMC0196	1	1.7	0.7	418	18.2	4.37	74.2	17.8	2.23	0.535	13	3.1
KMC0196	4.5	6.7	2.2	669	25.9	3.89	103	15.4	3.82	0.567	22.4	3.33
KMC0197	6	7	1	826	27.3	3.31	111	13.5	4.63	0.561	27.8	3.36
KMC0198	0.5	0.8	0.3	427	8.82	2.07	38.3	8.96	1.51	0.353	9.41	2.2
KMC0198	2.8	5	2.2	3253	188	5.27	754	21.2	15.5	0.535	82.8	2.98
KMC0200	0.5	1	0.5	407	15	3.68	64.7	15.9	2.07	0.508	12.3	3.01
KMC0201	0.4	2.3	1.9	629	29.3	4.3	117	17.6	3.05	0.5	17.7	2.97
KMC0202	1	3	2	527	23.4	4.3	92.9	17.3	2.92	0.551	17.2	3.25
KMC0203	0.9	2.2	1.3	847	37	4.06	154	16.7	4.23	0.457	24.4	2.64
KMC0204	1.3	2.2	0.9	1379	91.3	6.58	338	24.3	5.53	0.388	30.3	2.12
KMC0205	0.3	2.1	1.8	610	23.4	3.5	100	15.2	3.25	0.518	19.4	3.12
KMC0206	1.3	1.9	0.6	581	30	5.15	110	19	3.13	0.538	18.7	3.22
KMC0207	0.1	2	1.9	637	29.8	4.38	117	17.4	2.92	0.476	16.7	2.76
KMC0208	0.4	2.6	2.2	694	31.3	4.26	126	17.2	3.34	0.482	19.1	2.82
KMC0209	0.5	2.25	1.75	578	25	4.06	97.4	15.8	2.93	0.499	17	2.9
KMC0209	2.7	3	0.3	640	37.7	5.89	134	21	3.06	0.478	15.8	2.47
KMC0210	0.75	1.4	0.65	399	9.91	2.48	40.2	10.1	1.65	0.413	9.07	2.27
KMC0210	1.7	2.2	0.5	430	23.9	5.56	87.6	20.4	2.16	0.503	10.7	2.48
KMC0211	2.1	5	2.9	1308	64.3	4.7	255	18.5	7.72	0.603	40.1	3.17
KMC0212	2	3.6	1.6	663	29.3	4.39	103	15.6	3.39	0.513	17.7	2.69
KMC0213	5.3	7	1.7	4168	232	4.89	793	17.3	11.1	0.384	49.6	1.89
KMC0214	1.5	2.3	0.8	432	19.8	4.59	71.7	16.6	1.51	0.348	7.17	1.66
KMC0216	1	2	1	417	16.4	3.94	62.4	15	1.93	0.462	10.4	2.49
KMC0217	4.2	7	2.8	745	35.7	4.65	126	16.5	3.73	0.486	19.4	2.54
KMC0218	1.3	1.9	0.6	1300	64	4.93	230	17.7	6.45	0.496	33.3	2.56
KMC0219	1.1	2.5	1.4	750	37.1	4.69	132	17.3	3.62	0.489	18.8	2.59
KMC0220	1.6	2.1	0.5	773	40.7	5.27	145	18.7	3.9	0.505	20.3	2.63
KMC0221	0.4	3.6	3.2	937	42.1	4.44	159	16.9	5.01	0.547	26.1	2.87
KMC0222	6.4	7.5	1.1	741	25.6	3.46	110	14.8	4.94	0.667	26.7	3.61
KMC0223	1.3	7.5	6.2	785	30.3	3.79	115	14.6	3.91	0.49	20.7	2.6
KMC0224	2.2	5	2.8	921	49.9	5.3	170	18.6	3.7	0.433	18	2.14
KMC0225	5.8	7.5	1.7	436	16.9	3.87	67.6	15.5	2.3	0.534	11.9	2.78
KMC0226	0.8	1.8	1	388	17.1	4.4	70.2	18.1	2.6	0.669	13.8	3.56
KMC0227	1.4	2.1	0.7	353	13.8	3.9	56.7	16	2.05	0.579	11.2	3.17
KMC0227	6.2	6.5	0.3	791	22.2	2.81	93.8	11.8	3.76	0.476	20.4	2.58
KMC0228	1	4	3	443	17.6	3.94	70.8	15.8	2.42	0.545	13.2	2.97
KMC0228	5.75	7	1.25	414	16.5	3.99	62.3	15.1	2.01	0.492	10.7	2.62
KMC0229	1	3.2	2.2	633	29.3	4.39	108	16.5	2.9	0.463	15.2	2.43
KMC0230	3	5	2	1401	62.1	4.35	223	16.2	6.18	0.506	33.1	2.75
KMC0231	1.6	3.6	2	593	23.4	3.9	92.2	15.5	3.14	0.545	17.7	3.1

Phone: 1300 646 100 Email: hello@ar3.com.au Website: www.ar3.com.au

KMC0232	1.3	1.9	0.6	1382	80.3	5.54	283	19.5	4.7	0.354	24.6	1.88
KMC0232	2.8	4.1	1.3	413	15.9	3.81	62.5	15	2.06	0.501	11.8	2.87
KMC0233	1.2	5	3.8	1418	69.9	4.62	261	17.2	7.09	0.549	39.9	3.12
KMC0234	7	7.5	0.5	398	15.3	3.86	64.3	16.2	2.21	0.556	12.9	3.23
KMC0237	2.2	4.9	2.7	639	26.9	4.31	109	17.4	3.34	0.52	17.8	2.76
KMC0238	1.1	2.2	1.1	553	20.2	3.66	81.2	14.7	2.54	0.459	14	2.53
KMC0238	3.2	6.5	3.3	873	35.7	4.12	142	16.5	4.47	0.509	23.6	2.69
KMC0239	0.3	2.7	2.4	466	19.4	4.12	78.7	16.7	2.31	0.495	12.6	2.71
KMC0240	0.2	5	4.8	519	22.9	4.12	88.9	16.4	2.5	0.489	13.7	2.69
KMC0241	1	6.25	5.25	526	21.8	4.14	88.6	16.8	2.53	0.477	14	2.65
KMC0242	0.85	2	1.15	600	34.5	5.31	122	19.5	2.77	0.488	14.9	2.65
KMC0243	0.55	4	3.45	1063	56.5	5.06	214	19.5	5.18	0.475	28.1	2.58
KMC0244	3.75	5	1.25	412	17.1	4.15	68.3	16.5	2.32	0.561	13	3.14
KMC0244	5.6	7	1.4	455	18.3	4.02	75.1	16.5	2.2	0.484	12.5	2.74
KMC0245	3.6	7	3.4	533	23.2	4.31	95.1	17.6	3.05	0.558	16.6	3.04
KMC0246	6.2	6.6	0.4	406	14.1	3.48	56.6	13.9	2.05	0.503	11.5	2.82
KMC0247	1.1	2.6	1.5	712	37.4	5.3	148	20.9	3.47	0.491	18.7	2.66
KMC0248	1.4	2.2	0.8	374	16.2	4.32	65.9	17.6	2.07	0.553	11.6	3.1
KMC0249	1.9	6	4.1	574	21.9	3.9	89.4	15.9	2.74	0.481	15.1	2.64
KMC0250	5.7	6.6	0.9	401	17.4	4.35	74	18.4	2.85	0.707	15.6	3.87
KMC0251	2.9	5.6	2.7	835	38.4	4.29	143	16.6	4.54	0.563	25.5	3.2
KMC0252	1.3	3	1.7	1288	66.3	4.95	238	18.4	6.17	0.475	32.7	2.56
KMC0253	0.65	1.3	0.65	355	12.4	3.51	49.7	14	1.67	0.471	9.53	2.69
KMC0253	1.6	2.9	1.3	880	43.4	4.56	157	17	4.46	0.498	24.1	2.73
KMC0255	4.9	6.5	1.6	437	18.1	4.13	71.4	16.3	2.42	0.557	14	3.22
KMC0256	4.3	7	2.7	803	31.2	3.78	119	14.7	3.87	0.507	22.3	2.94
KMC0257	1	2.5	1.5	902	38.7	4.26	140	15.4	3.55	0.382	19.8	2.12
KMC0258	2.8	4.4	1.6	679	26.3	3.72	109	15.1	4.12	0.573	24.1	3.38
KMC0259	1.35	3	1.65	1025	41.7	3.8	147	14	4.48	0.468	25.4	2.7
KMC0260	0.3	2.4	2.1	603	25.1	4.08	104	16.8	3.31	0.543	18.6	3.07
KMC0261	4.1	7	2.9	826	40.7	4.73	158	18.7	4.24	0.511	24.1	2.91

Email: hello@ar3.com.au

Website: www.ar3.com.au