

ASX Announcement (ASX : OBM)

Operational and Exploration Update

- > 5,185 oz gold produced in January
- Mining at Sand King commenced
- Company guidance range for FY22 gold production updated from "low end" of prior range (70,000 – 75,000 oz) to 62,000 oz – 68,000 oz
- Lithium results highlight pervasive lithium mineralisation
- Grass roots exploration programs continue to deliver positive results. Significant highlights from first pass air core drilling include:
 - 4.0m @ 2.64 g/t Au from surface (Greater Pacific)
 - 8.0m @ 0.87 g/t Au from 32 m (Greater Pacific)
 - 4.0m @ 3.80 g/t Au from 56m (Sunraysia North)
 - 20.0m @ 1.20 g/t Au from 64m (Sunraysia North)
 - 6.0m @ 0.33 g/t Au from 52m to the end of hole (Kangaroo)
 - 12.0m @ 0.60 g/t Au from 36m (Kangaroo)
- Further assays pending and follow up drilling planned

Ora Banda Mining Limited (ASX:OBM) ("Ora Banda", "Company") is pleased to announce an operational update and further drilling results from the first pass regional air core (AC) and reverse circulation (RC) drilling programs conducted in the second half of CY21.

Managing Director Comment

Ora Banda Managing Director, Peter Nicholson, said: "Ora Banda has made significant process with our operations over the past year. The production throughput issues we are experiencing continue to diminish in severity as the improvement plans underway continue to be executed.

It is always exciting to see highly significant assay results from first pass wide spaced air core drilling. Identifying gold anomalism in holes 80 metres apart means that there is plenty of follow up work to be done on these prospects. Hitting economic grade in some of these air core holes is even more exciting. We look forward to receiving the outstanding assay results at Sunraysia North and the Greater Pacific prospect and getting the drill rigs back out there to secure a long-term future for the Company."

Operations

Ora Banda produced 5,185oz of gold in January, after milling over 90,000t of ore. Plant performance consistency over the past four months has been noteworthy, with a planned six-monthly maintenance shutdown included in January's performance. The operational team continue to improve the plant performance as we move towards nameplate capacity of 100,000t per month.

On the mining front, open pit mining at Missouri and Riverina continues, with initial pre-stripping works commencing in January at the Sand King mine. Sand King is the fourth mine commenced by the Ora Banda

team in the space of 18 months. Once production from phase one at the Riverina mine completes in the June quarter, Sand King and Missouri will be the primary production sources for the plant for the following year.

The Company has updated its guidance range for FY22 gold production from the "low end" of the prior guidance range (70,000oz – 75,000oz) to 62,000oz – 68,000oz.

The production downgrade has been largely due to production shortfalls at both Riverina and Missouri combined with a lower than expected recovered grade at Missouri. The Riverina pit has been negatively impacted by geotechnical issues during the month of January, with the Company undertaking remedial works and continued monitoring and evaluation of the pit walls for stability. Some additional wall movement related to a prior failure area was identified in February and further remedial actions were taken to resolve this. At Missouri, the Company is focussed on productivity enhancements combined with implementing improvements to drill and blast practices following independent expert review. Ora Banda has also changed out the drill and blast contractors during January, with the new contractor finalising mobilisation of their drilling fleet in early February. OBM's technical team remains focussed on improving the grade performance at Missouri. A number of isolated incidents at the processing plant have also negatively impacted the plant's ability to achieve nameplate throughput, including:

- multiple line breaks in the borefield process water supply line. A program of staged replacement is being implemented with pipe on order;
- shortfall of material movement from the mines to the mill necessitating processing of low grade stockpiles on the ROM pad; and
- the unexpected failure of a hold down bolt in the tertiary crusher in February resulted in significant crusher downtime.

At present the Company sees the biggest potential risks to its production performance as:

- The increasing prevalence of COVID in Western Australia. Any confirmed case at site could materially
 impact productivity. In addition, closed borders continue to impact recruitment efforts, staff
 retention and the Company's ability to achieve a fully staffed workforce.
- Ensuring material continues to be transported from the mine ROM pads to the plant as scheduled. The Company is working closely with its haulage contractor to address this matter.
- Grade performance at Missouri the Company remains focussed on improving the grade performance at Missouri combined with the mine accessing better grade areas of the deposit. In addition to the drill and blast improvements flagged above, Ora Banda is reviewing and improving its processes at Missouri including Resource modelling, Reserve calculations, geological mark-ups and mining practices, based on analysis of performance to date.¹
- Grade performance at Sand King the Company has recently commenced mining at Sand King and it, combined with Missouri, will be the two sources of mine feed to the Davyhurst plant for financial year 2023. The Company will be commencing operations at Sand King with all of the improved processes developed for Missouri operations.

Lithium Exploration

There has been no previous recorded lithium (Li) focused exploration within Ora Banda's tenements, but numerous pegmatite hosted lithium occurrences were discovered as a consequence of gold exploration. The

^{1.} The Company acknowledges that mining operations conducted to date have not achieved all of the Modifying Factors used to estimate the Ore Reserve. However, the operational issues continue to be reviewed, and Missouri is considered to be an early stage operation and the Company has not formed any conclusions that would materially impact Modifying Factors. A work stream has commenced that involves in-depth analysis of the operation and all the available technical data with the view to implementing remedial action to minimise the potential impacts on the Ore Reserve estimate. Any future updates to the Ore Reserve estimate will consider the actual performance of the operation in conjunction with typical industry parameters, to arrive at a position on the appropriate Modifying Factors to apply to the estimate, such that they continue to align with expected and achievable outcomes.

areas identified are within the Riverina region, Davyhurst Central and Gila (Figure 1). Abundant unclassified pegmatite occurrences are observed over extensive areas in outcrop and drilling, where about 1,130 pegmatite occurrences appear in Ora Banda's database.

Preliminary lithium exploration work commenced with a total of 35 samples collected across Ora Banda's tenure from known pegmatite outcrops and drill intersections (core and chips). These samples were selected based on availability across numerous locations to obtain a range of data across Ora Banda's tenure and are not as part of a dedicated lithium exploration program. Lepidolite was the abundant lithium bearing mineral observed in the pegmatites at the time of sampling. Samples were submitted for multielement analysis and X-ray diffraction (XRD) analysis.

Assay results confirmed numerous elevated concentrations of lithium within outcrop and core. Significant lithium assays are presented below:

•	Regional Riverina (Golden Horn Prospect) surface sample	1.24% Li ₂ O
•	Regional Riverina (Sunraysia Prospect) surface sample	1.04% Li ₂ O
•	Regional Riverina (Golden Horn Prospect) surface sample	0.95% Li ₂ O
•	Gila diamond core	0.75% Li ₂ O

XRD analysis on the preliminary sample suite identified Lepidolite dominant pegmatite as the principal source of lithium within Ora Banda's tenure, while failing to identify the presence of spodumene. It is however accepted that this was a preliminary exercise that does not fully represent the Lithium potential of the tenements and that further work is required to achieve this objective. The Company will continue to evaluate the Lithium potential over time as part of a broader exploration strategy for the highly prospective Davyhurst tenements.

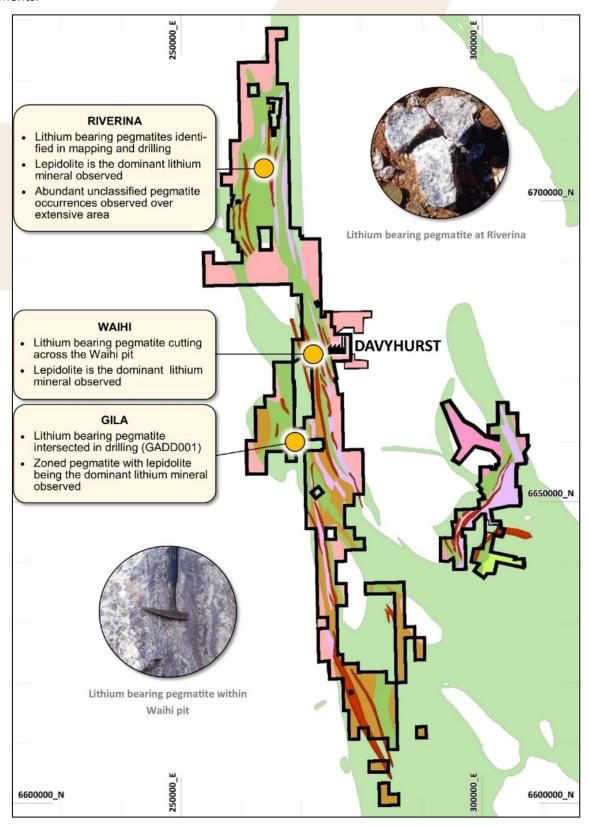


Figure 1 – Plan showing the location of lithium bearing pegmatites within OBM tenements

Regional Exploration

Final assay results have now been received for air core drilling conducted in September and October 2021 (Figure 2) targeting Kangaroo, Nyborgs, Turkey Flat, Wuruk, Ember and Komodo Prospects in the Lady Ida Project. Partial results have been received for the Sunraysia and Greater Pacific Prospects in the Riverina Project.

Whilst drilling was completed in the second half of 2021, assay results have been held up due to excessive turnaround times at the laboratory. Further air core drilling recommenced at Greater Pacific in December and was completed in January (assays pending).

The limited drill results received to date at the Riverina Project have successfully extended mineralisation at the Sunraysia North prospect a further 400 metres south and returned significant intercepts of 4m @ 2.64g/t Au from surface and 8m @ 0.87g/t Au from 32m under cover at the previously untested area of Greater Pacific.

First pass AC exploration drilling at the Kangaroo prospect has returned significant intersections of 6m @ 0.33g/t Au from 32m including 1m @ 1.27 g/t Au at the end of hole and 12m @ 0.6 g/t Au from 36m. This is a newly identified mineralised trend with no previous drilling in the area.

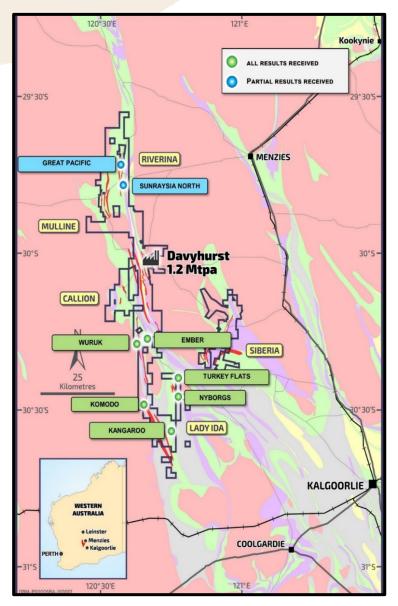


Figure 2 – Regional Location Map

Riverina Project

Sunraysia North and Greater Pacific Prospects are immediately south and north, respectively, of the Riverina Gold Mine and the Silver Tongue and Forehand resources (Figure 3). Both prospects have variable thicknesses of transported sediment cover that mask the continuation of the known multiple Au trends. Both areas have historically received little to no drilling with the Greater Pacific in particular considered an outstanding untested target.

Air core drilling programs undertaken late 2021 were two-fold. The first at Sunraysia North to test along strike and east of significant Au intercepts returned earlier in 2021 (30 July 2021 ASX announcement), and secondly at Greater Pacific to test a completely undrilled area.

Sunraysia North Prospect

Results have been received for six of the 35 air core holes drilled. The results confirm and strengthen the interpretation of the continuity of the mineralised structures throughout this part of the belt. The mineralisation in SYAC061 (4m @ 3.80 g/t Au from 56m, 20m @ 1.20 g/t Au from 64m and 1m @ 0.77 g/t Au from 93m end of hole), in particular has opened up the southern extension of one of the trends east of the main Riverina – Sunraysia South trend. Here the mineralisation is within a shear zone that hosts quartz veins within mafic and metasediment lithologies. There is a notable depletion zone throughout this region of between 30m - 50m depth.

These results add to those already released (see 30 July 2021 ASX announcement) which included:

- 10.0m @ 2.22 g/t Au from 52.0m to end of hole (EOH)
- o 19.0m @ 0.89 g/t Au from 36.0m to EOH
- o 9.0m @ 0.54 g/t Au from 52.0m to EOH
- 7.0m @ 0.71 g/t Au from 56.0m to EOH

This drill program also continues to confirm the ineffectiveness of historic rotary air blast (RAB) drilling throughout this area, by the depths of drill holes reached and the anomalous results being returned.

Greater Pacific Prospect

Drilling tested a conceptual target along strike, north of Forehand and Silver Tongue Prospects beneath transported sediment cover of up to 30 metres depth. Evidence of a possible sub-exposed granitoid, identified from aeromagnetic data by Southern Geoscience in 2000 (A62987), underlies Silver Tongue immediately north of Forehand, where mineralised intermediate intrusives have previously been logged at depth, along with silica-biotite-carbonate alteration and disseminated pyrite and chalcopyrite.

Diorite and intermediate intrusives have been identified from the Greater Pacific drilling displaying variable degrees of sericite-epidote-chlorite alteration or biotite alteration. Sporadic, trace sulphides have also been identified. Results have been received from one of the four wide-spaced air core traverses drilled. The Au result from GPAC124 (8m @ 0.87g/t Au from 32m) occurs around a redox horizon in saprolite within a foliated, pyrite-bearing diorite that is weakly biotite altered and elevated in Cu and Te.

The Au results returned from the western end of the traverse, GPAC118 (4m @ 2.64g/t Au) and GPAC119 8m @ 0.31g/t Au) are from colluvial lag material washed downhill from a set of historic workings of the Ajax Prospect.

The Au result from GPAC115 (4m @ 0.12g/t Au from 44 m) is related to quartz veins hosted within a shear zone along the eastern contact between ultramafic and mafic units. This zone remains largely untested, but sporadic elevated results do occur to the south where drilling has occurred.

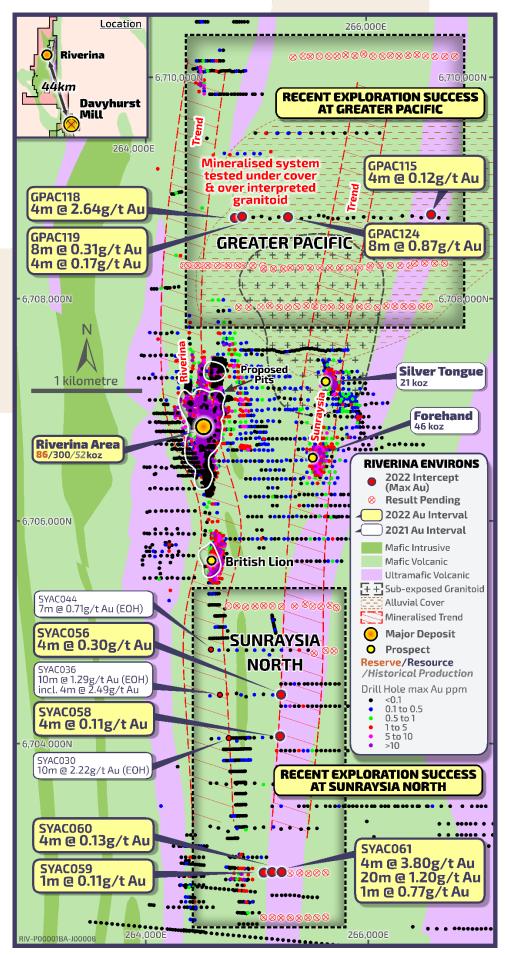


Figure 3 – Plan showing the recent AC drilling results at Greater Pacific and Sunraysia

Lady Ida Project

Kangaroo Prospect

Anomalous gold has been intersected at Kangaroo (Figure 4) in an area containing extensive shallow alluvial cover which has masked underlying mineralisation from surface geochemical sampling programs. Anomalous gold is coincident with NW-SE and NE-SW trending structures visible in aeromagnetic imagery. These current results prove this area hosts previously unknown gold mineralisation.

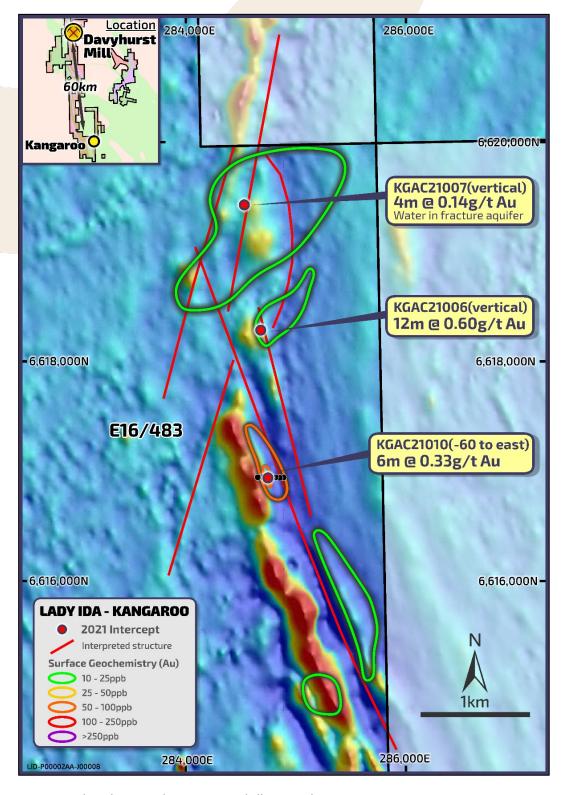


Figure 4 – Plan showing the recent AC drilling results at Kangaroo over aeromagnetic image

This announcement was authorised for release to the ASX by the Company's Board.

For further information about Ora Banda Mining Ltd and its projects please visit the Company's website at www.orabandamining.com.au.

Investor & Media Queries:

Peter Nicholson
Managing Director
+61 8 6365 4548
admin@orabandamining.com.au

Resource & Reserve Tables as at 30 June 2021

PROJECT	Cut	MEAS	SURED	INDIC	CATED	INFE	RRED	TOTAL MATERIAL			
PROJECT	Off	('000t)	(g/t Au)	('000t)	(g/t Au)	('000t)	(g/t Au)	('000t)	(g/t Au)	('000oz.)	
GOLDEN EAGLE	2.0	73	5	235	4.1	97	3.7	405	4.1	53	
LIGHTS OF ISRAEL	3.0	-	-	74	4.3	180	4.2	254	4.2	34	
MAKAI SHOOT	1.0	-	-	1,985	2.0	153	1.7	2,138	2.0	137	
Open	Pit 0.5	-	-	1,948	2.4	131	2.9	2,079	2.4	159	
WAIHI Underground	2.0	-	-	188	3.7	195	4.0	383	3.8	47	
TO [*]	AL	-	-	2,136	2.5	326	3.5	2,462	2.6	206	
Central Davyhurst Subtotal		-	-	4,430	2.4	756	3.3	5,259	2.5	431	
LADY GLADYS	1.0	-	-	1,858	1.9	190	2.4	2,048	1.9	125	
Open	Pit 0.5	86	2.0	1,829	1.8	34	2.6	1,949	1.9	117	
RIVERINA AREA Undergroun	2.0	-	-	390	5.2	618	5.9	1,008	5.6	183	
TO.	AL	86	2.0	2,219	2.4	652	5.7	2,957	3.2	300	
Open Pit	0.5	-	-	386	1.6	17	1.6	403	1.6	21	
BRITISH LION Underground	2.0	-	-	36	3.2	3	3.8	39	3.8	5	
TO'	AL	-	-	422	1.7	20	2.0	442	1.8	25	
Open	Pit 0.5	-	-	-		691	1.5	691	1.5	33	
FOREHAND Underground		-	-	-	-	153	2.5	153	2.5	12	
TO'	AL	-	-	-		844	1.7	844	1.7	46	
Open Pit	0.5	-	-	-	-	127	2.3	127	2.3	9	
SILVER TONGUE Undergroun	2.0	-	-	-	-	77	4.5	77	4.5	11	
TO'		-	-	_	-	204	3.1	204	3.1	21	
SUNRAYSIA	1.0	-		175	2.1	318	2.0	493	2.0	32	
Riverina-Mulline Subtotal		86	2.0	4,674	2.0	2,228	3.1	6,988	2.4	548	
Open	Pit 0.5	-	-	1,252	3.4	128	3.3	1,380	3.4	151	
SAND KING Underground		_	-	438	3.7	698	3.8	1,136	3.7	136	
TO'		-	-	1,690	3.5	826	3.7	2,516	3.5	287	
Open		-	-	1,453	3.4	17	3.5	1,470	3.4	159	
MISSOURI Underground	2.0	_	-	364	3.4	258	3.4	622	3.4	68	
TO:	AL	-	-	1,817	3.4	275	3.4	2,092	3.4	227	
PALMERSTON / CAMPERDOWN	1.0	-	-	118	2.3	174	2.4	292	2.4	23	
BLACK RABBIT	1.0	-	-	_	_	434	3.5	434	3.5	49	
Siberia Subtotal		-	-	3,625	3.4	1,709	3.5	5.334	3.4	585	
Open	Pit 0.5	-	-	241	3.7	28	1.6	269	3.5	30	
CALLION Underground	2.0	-	-	255	6.0	156	5.5	411	5.8	77	
TO'		_	-	496	4.9	184	4.9	680	4.9	107	
Callion Subtotal		-		496	4.9	184	4.9	680	4.9	107	
FEDERAL FLAG	1.0	32	2	112	1.8	238	2.5	382	2.3	28	
SALMON GUMS	1.0	-	-	199	2.8	108	2.9	307	2.8	28	
WALHALLA	1.0	-		448	1.8	216	1.4	664	1.7	36	
WALHALLA NORTH	1.0	-		94	2.4	13	3.0	107	2.5	9	
MT BANIO	1.0	-		109	2.3	126	1.4	235	1.8	14	
MACEDON	1.0	-		-	2.0	186	1.8	186	1.8	11	
Walhalla Subtotal	2.0	32	2.0	962	2.1	887	2.0	1,881	2.1	125	
IGUANA	1.0	-	-	690	2.1	2,032	2.0	2,722	2.0	175	
LIZARD	1.0	106	4	75	3.7	13	2.8	194	3.8	24	
Lady Ida Subtotal		106	4.0	765	2.3	2,045	2.0	2,916	2.1	199	
Davyhurst Total		200	2.9	15,000	2.6	7,800	2.8	23,100	2.7	2,000	

Notes

- The Missouri, Sand King, Riverina Area, British Lion, Waihi, Callion, Golden Eagle, Forehand and Silver Tongue Mineral Resources have been updated in accordance with all relevant aspects of the JORC code 2012, and initially released to the market on 15 December 2016 & 26 May 2020 (Missouri), 3 January 2017 & 26 May 2020 (Sand King), 2 December 2019 & 26 May 2020 (Riverina), 4 February 2020 (Waihi), 15 May 2020 & 29 June 2020 (Callion), 8 April 2020 (Golden Eagle) and 9 October 2020 (Riverina South).
- 2. All Mineral Resources listed above, with the exception of the Missouri, Sand King, Riverina Area, British Lion, Waihi, Callion, Golden Eagle, Forehand and Silver Tongue Mineral Resources, were prepared previously and first disclosed under the JORC Code 2004 (refer Swan Gold Mining Limited Prospectus released to the market on 13 February 2013). These Mineral Resources have not been updated in accordance with JORC Code 2012 on the basis that the information has not materially changed since it was first reported.
- 3. The Riverina Area, British Lion, Waihi, Sand King, Missouri, Callion, Forehand and Silver Tongue Open Pit Mineral Resource Estimates are reported within a A\$2,400/oz pit shell above 0.5g/t. The Riverina Area, British Lion, Waihi, Sand King, Missouri, Callion, Forehand, Silver Tongue and Golden Eagle Underground Mineral Resource Estimates are reported from material outside a A\$2,400 pit shell and above 2.0 g/t.
- 4. Previously, Riverina South included Riverina South and British Lion Resources. Currently Riverina South is included in the Riverina Area Resources as it is contiguous with Riverina mineralisation. British Lion is now quoted separately.
- 5. Resources are inclusive of in-situ ore reserves and are exclusive of surface stockpiles.
- 6. The values in the above table have been rounded.

The Company's Davyhurst 2021 Mineral Resources and Ore Reserves statement as at 30 June 2021 was announced to the ASX on 29 July 2021 'Davyhurst Gold Project Mineral Resources and Ore Reserves Statement'. OBM confirms that whilst the operational issues continue to be reviewed, no conclusions have been drawn that would materially affect the information included in the announcement dated 29 July 2021 'Davyhurst Gold Project Mineral Resources and Ore Reserves Statement' and that all material assumptions and technical parameters underpinning the estimates in the statement continue to apply and have not materially changed, with the exception of the Mineral Resources and Ore Reserves relating to Mt Ida, which the Company has since sold (as announced to the market on 24 September 2021 '\$11M Mt Ida Sale Complete').

PROJECT 1,2,9	PRO	OVED	PRO	BABLE	TOTAL MATERIAL				
PROJECT	('000t)	(g/t Au)	('000t)	(g/t Au)	('000t)	(g/t Au)	('000oz.)		
Sand King 3,4			1,200	2.7	1,200	2.7	110		
Missouri ^{3,4}	20	0.9	1,600	2.7	1,600	2.6	130		
Riverina ^{3,4,5}	340	1.1	1,300	1.7	1,700	1.6	86		
Golden Eagle ^{6,7}	50	3.2	85	3.6	140	3.5	15		
Waihi ^{3,4}			1,300	2.4	1,300	2.4	110		
Callion ^{3,4}			230	2.7	230	2.7	20		
TOTAL	410	1.4	5,800	2.4	6,200	2.4	470		

Notes

- 1. The table contains rounding adjustments to two significant figures and does not total exactly.
- 2. This Ore Reserve was estimated from practical mining envelopes and the application of modifying factors for mining dilution and ore loss.
- 3. For the open pit Ore Reserve dilution skins were applied to the undiluted LUC Mineral Resource estimate at zero grade. The in-pit global dilution is estimated to be 31% at Sand King, 45% at Missouri, 24% at Riverina, 13% at Waihi and 26% at Callion all of which were applied at zero grade. The lower dilution at Riverina, Waihi and Callion reflecting the softer lode boundary and allows for inherent dilution within the lode wireframe. All Inferred Mineral Resources were considered as waste at zero grade.
- 4. The Open Pit Ore Reserve was estimated using incremental cut-off grades specific to location and weathering classification. They range from 0.67g/t to 0.80g/t Au and are based on a price of A\$2200 per ounce and include ore transport, processing, site overheads and selling costs and allow for process recovery specific to the location and domain and which range from 85% (Sand King fresh ore) to 95%.
- 5. Approximately 100,000t at 1.6 g/t at Riverina was downgraded from Proved to Probable due to current uncertainty surrounding reconciliations experienced during the implementation phase.
- 6. The underground Ore Reserve was estimated from practical mining envelopes derived from expanded wireframes to allow for unplanned dilution. A miscellaneous unplanned dilution factor of 5% at zero grade was also included. The global dilution factor was estimated to be 52% with zero dilution grade.
- 7. The underground Ore Reserve was estimated using stoping cut-off of 2.1g/t Au which allows for ore drive development, stoping and downstream costs such as ore haulage, processing, site overheads and selling costs. An incremental cut-off grade of 0.66g/t Au was applied to ore drive development and considers downstream costs only. Cut-off grades were derived from a base price of A\$2200 per ounce and allow for process recovery of 92%.
- 8. For Golden Eagle, approximately 35,000 t at 3.9 g/t of material was classified as Proved and derived from the Measured portion of the Mineral Resource. The balance of the Proved material was contained within surface stockpiles.
- 9. The Ore Reserve is inclusive of surface stockpiles above the relevant incremental cut-of and total 370,000 t at 1.1 g/t. All surface stockpiles were classified as Proved.

The Company acknowledges that mining operations conducted to date have not achieved all of the Modifying Factors used to estimate the Ore Reserve. However, the operational issues continue to be reviewed, and Missouri is considered to be an early stage operation and the Company has not formed any conclusions that would materially impact Modifying Factors. A work stream has commenced that involves in-depth analysis of the operation and all the available technical data with the view to implementing remedial action to minimise the potential impacts on the Ore Reserve estimate. Any future updates to the Ore Reserve estimate will consider the actual performance of the operation in conjunction with typical industry parameters, to arrive at a position on the appropriate Modifying Factors to apply to the estimate, such that they continue to align with expected and achievable outcomes.

Appendix 1: Significant Intersections Table – Aircore Drilling

PROJECT	HOLE ID	MGA North	MGA East	RL	AZI	DIP	END DEPTH	HOLE TYPE	DEPTH FROM	DEPTH TO	INTERVAL	GRADE	GRAM METRES	Au g/t interval
GREATER	GPAC101	6708739	265400	427	270	-60	59.0	AC						N.S.I
PACIFIC	GPAC102	6708751	265475	426	270	-60	66.0	AC						N.S.I
	GPAC103	6708768	265555	438	270	-60	41.0	AC						N.S.I
	GPAC104	6708746	265639	435	270	-60	25.0	AC						N.S.I
	GPAC105	6708741	265729	428	270	-60	39.0	AC						N.S.I
	GPAC106	6708742	265814	424	270	-60	73.0	AC						N.S.I
	GPAC107	6708748	265869	425	270	-60	51.0	AC						N.S.I
	GPAC108	6708755	265960	430	270	-60	50.0	AC						N.S.I
	GPAC109	6708751	266050	425	270	-60	58.0	AC						N.S.I
	GPAC110	6708744	266116	416	270	-60	51.0	AC						N.S.I
	GPAC111	6708742	266205	423	270	-60	37.0	AC						N.S.I
	GPAC112	6708764	266308	421	270	-60	60.0	AC						N.S.I
	GPAC113	6708762	266396	431	270	-60	58.0	AC						N.S.I
	GPAC113	6708748	266477	424	270	-60	55.0	AC						N.S.I
								AC	44.0	40.0	4.0	0.12	0.5	
	GPAC115	6708757	266566	421	270	-60	60.0		44.0	48.0	4.0	0.12	0.5	4.0m @ 0.12 g/t
	GPAC116	6708746	266636	418	270	-60	39.0	AC						N.S.I
	GPAC117	6708743	266717	415	270	-60	54.0	AC						N.S.I
	GPAC118	6708745	264801	434	270	-60	25.0	AC	0.0	4.0	4.0	2.64	10.5	4.0m @ 2.64 g/t
	GPAC119	6708753	264868	451	270	-60	52.0	AC	0.0	8.0	8.0	0.31	2.5	8.0m @ 0.31 g/t
									28.0	32.0	4.0	0.17	0.7	4.0m @ 0.17 g/t
	GPAC120	6708751	264967	444	270	-60	65.0	AC						N.S.I
	GPAC121	6708759	265041	432	270	-60	47.0	AC						N.S.I
	GPAC122	6708739	265117	433	270	-60	45.0	AC						N.S.I
	GPAC123	6708753	265195	437	270	-60	57.0	AC						N.S.I
	GPAC124	6708753	265279	427	270	-60	55.0	AC	32.0	40.0	8.0	0.87	7.0	8.0m @ 0.87 g/t
	GPAC125	6708762	265602	427	270	-60	31.0	AC						N.S.I
	GPAC126	6708737	265680	427	270	-60	26.0	AC						N.S.I
SUNRAYSIA	SYAC056	6704461	265219	435	270	-60	56.0	AC	48.0	52.0	4.0	0.30	1.2	4.0m @ 0.30 g/t
NORTH	SYAC057	6704077	265130	441	270	-60	88.0	AC						N.S.I
	SYAC058	6704082	265208	430	270	-60	71.0	AC	60.0	64.0	4.0	0.11	0.4	4.0m @ 0.11 g/t
	SYAC059	6702859	265061	427	270	-60	60.0	AC	59.0	60.0	1.0	0.11	0.1	1.0m @ 0.11 g/t
	SYAC060	6702867	265136	421	0	-60	62.0	AC	40.0	44.0	4.0	0.11	0.5	4.0m @ 0.13 g/t
	SYAC000	6702863	265219	429	0	-60	94.0	AC	56.0	60.0	4.0	3.80	15.2	
	31AC001	0702003	200219	429	U	-00	94.0	AC						4.0m @ 3.80 g/t
									64.0	84.0	20.0	1.20	24.0	20.0m @ 1.20 g/t
TUDICEV ELAT	1/04004004	0000547	004405	400	000		F4.0	10	93.0	94.0	1.0	0.77	0.8	1.0m @ 0.77 g/t
TURKEY FLAT	KGAC21001	6636547	284425	420	360	-90	51.0	AC						N.S.I
	KGAC21002	6636092	284419	425	360	-90	59.0	AC						N.S.I
	KGAC21003	6635711	284661	432	360	-90	32.0	AC						N.S.I
	KGAC21004	6635261	284672	423	360	-90	46.0	AC						N.S.I
	KGAC21005	6634873	284672	423	360	-90	51.0	AC						N.S.I
KANGAROO	KGAC21006	6618289	284684	424	360	-90	56.0	AC	36.0	48.0	12.0	0.60	7.2	12.0m @ 0.60 g/t
	KGAC21007	6619431	284535	423	360	-90	74.0	AC	60.0	64.0	4.0	0.14	0.6	4.0m @ 0.14 g/t
	KGAC21008	6616943	284888	452	360	-60	63.0	AC						N.S.I
	KGAC21009	6616939	284853	455	360	-60	66.0	AC						N.S.I
	KGAC21010	6616944	284817	448	360	-60	58.0	AC	52.0	58.0	6.0	0.33	2.0	6.0m @ 0.33 g/t
	KGAC21011	6616943	284771	443	360	-60	28.0	AC						N.S.I
	KGAC21012	6616942	284732	440	360	-60	54.0	AC						N.S.I
1	KGAC21013	6616947	284695	449	360	-60	58.0	AC						N.S.I
1	KGAC21014	6616945	284653	438	360	-60	63.0	AC						N.S.I
EMBER	EMAC001	6649521	274946	445	90	-60	91.0	AC						N.S.I
1	EMAC002	6649511	274909	457	90	-60	101.0	AC						N.S.I
1	EMAC003	6649509	274866	451	90	-60	66.0	AC						N.S.I
1	EMAC004	6649517	274826	454	90	-60	63.0	AC						N.S.I
1	EMAC005	6649511	274782	450	90	-60	40.0	AC						N.S.I
1	EMAC006	6649512	274744	442	90	-60	48.0	AC						N.S.I
1	EMAC000	6649506	274703	443	90	-60	40.0	AC						N.S.I
1	EMAC007	6649508	274658	443	90	-60	30.0	AC						N.S.I
1		6649512												
1	EMAC010		274624	450	90	-60	51.0	AC						N.S.I
1	EMAC010	6649506	274591	450	90	-60	56.0	AC						N.S.I
1	EMAC011	6649478	274567	450	90	-60	57.0	AC						N.S.I
1	EMAC012	6649462	274535	453	90	-60	68.0	AC						N.S.I
1	EMAC013	6649453	274483	446	90	-60	90.0	AC	52.0	56.0	4.0	0.10	0.4	4.0m @ 0.10 g/t
1	EMAC014	6649470	274442	451	90	-60	78.0	AC						N.S.I
1	EMAC015	6649476	274391	455	90	-60	75.0	AC						N.S.I
		6649502	274352	452	90	-60	70.0	AC						N.S.I
	EMAC016	0043302												
	EMAC016 EMAC017	6649504	274302	453	90	-60	64.0	AC						N.S.I
				453 452	90 90	-60 -60	64.0 65.0	AC AC						N.S.I N.S.I

PROJECT	HOLE ID	MGA North	MGA East	RL	AZI	DIP	END DEPTH	HOLE TYPE	DEPTH FROM	DEPTH TO	INTERVAL	GRADE	GRAM METRES	Au g/t interval
EMBER	EMAC020	6649507	274189	448	90	-60	39.0	AC						N.S.I
	EMAC021	6649516	274142	449	90	-60	48.0	AC						N.S.I
	EMAC022	6649531	274117	452	90	-60	63.0	AC						N.S.I
	EMAC023	6649514	274066	452	90	-60	76.0	AC						N.S.I
	EMAC024	6649508	274023	450	90	-60	75.0	AC						N.S.I
	EMAC025	6649516	273993	449	90 /	-60	80.0	AC						N.S.I
	EMAC026	6649515	273941	458	90	-60	87.0	AC						N.S.I
	EMAC027	6649492	273902	458	90	-60	90.0	AC						N.S.I
	EMAC028	6649501	273871	463	90	-60	74.0	AC						N.S.I
	EMAC029	6649499	273822	463	90	-60	61.0	AC						N.S.I
	EMAC030	6649483	273778	455	90	-60	61.0	AC						N.S.I
	EMAC031	6649489	273738	454	90	-60	65.0	AC						N.S.I
	EMAC032	6649495	273701	453	90	-60	68.0	AC	60.0	67.0	7.0	0.21	1.5	7.0m @ 0.21 g/t
	EMAC033	6649499	273664	457	90	-60	62.0	AC						N.S.I
	EMAC034	6649500	273617	455	90	-60	47.0	AC						N.S.I
	EMAC035	6649517	273587	452	90	-60	45.0	AC						N.S.I
	EMAC036	6649535	273545	456	90	-60	45.0	AC						N.S.I
	EMAC037	6649502	273510	461	90	-60	54.0	AC						N.S.I
	EMAC038	6649507	273464	456	90	-60	38.0	AC						N.S.I
	EMAC039	6649510	273426	459	90	-60	41.0	AC						N.S.I
	EMAC040	6649498	273389	455	90	-60	37.0	AC						N.S.I
	EMAC041	6648701	274881	459	90	-60	54.0	AC						N.S.I
	EMAC042	6648701	274854	459	90	-60	79.0	AC						N.S.I
	EMAC043	6648699	274812	455	90	-60	77.0	AC						N.S.I
	EMAC044	6648707	274765	464	90	-60	61.0	AC						N.S.I
	EMAC045	6648699	274726	457	90	-60	64.0	AC						N.S.I
	EMAC046	6648690	274670	457	90	-60	71.0	AC						N.S.I
	EMAC047	6648694	274639	456	90	-60	89.0	AC						N.S.I
	EMAC048	6648697	274600	445	90	-60	73.0	AC						N.S.I
	EMAC049	6648713	274569	456	90	-60	76.0	AC						N.S.I
	EMAC050	6648735	274508	458	90	-60	80.0	AC						N.S.I
	EMAC051	6648725	274465	454	90	-60	78.0	AC						N.S.I
	EMAC052	6648683	274389	452	90	-60	72.0	AC						N.S.I
	EMAC053	6648676	274345	449	90	-60	70.0	AC						N.S.I
	EMAC054	6648710	274434	451	90	-60	67.0	AC						N.S.I
	EMAC055	6648680	274304	454	90	-60	39.0	AC						N.S.I
	EMAC056	6648691	274267	460	90	-60	38.0	AC						N.S.I
	EMAC057	6648703	274230	451	90	-60	43.0	AC						N.S.I
	EMAC058	6648714	274199	453	90	-60	53.0	AC						N.S.I
	EMAC059	6648719	274155	451	90	-60	75.0	AC						N.S.I
	EMAC060	6648721	274106	448	90	-60	39.0	AC						N.S.I
	EMAC061	6648721	274067	452	90	-60	57.0	AC						N.S.I
	EMAC062	6648715	274034	455	90	-60	60.0	AC						N.S.I
	EMAC063	6648699	273999	451	90	-60	73.0	AC						N.S.I
	EMAC064	6648702	273953	484	90	-60	75.0	AC						N.S.I
	EMAC065	6648703	273929	450	90	-60	72.0	AC						N.S.I
	EMAC066	6648708	273886	468	90	-60	44.0	AC						N.S.I
	EMAC067	6648687	273841	464	90	-60	54.0	AC						N.S.I
	EMAC068	6648666	273784	453	90	-60	48.0	AC						N.S.I
	EMAC069	6648673	273740	459	90	-60	54.0	AC						N.S.I
	EMAC070	6648691	273701	466	90	-60	38.0	AC						N.S.I
	EMAC071	6648691	273676	453	90	-60	50.0	AC						N.S.I
	EMAC072	6648709	273638	459	90	-60	65.0	AC	56.0	60.0	4.0	0.11	0.4	4.0m @ 0.11 g/t
	EMAC073	6648693	273609	466	90	-60	61.0	AC	33.0	55.0		Ų. I I	V. 1	N.S.I
	EMAC074	6648680	273564	459	90	-60	57.0	AC						N.S.I
	EMAC075	6648693	273510	453	90	-60	64.0	AC						N.S.I
	EMAC076	6648700	273477	464	90	-60	64.0	AC						N.S.I
	EMAC077	6648696	273477	460	90	-60	70.0	AC						N.S.I
	EMAC078	6648692	273446	465	90	-60	45.0	AC						N.S.I
	LIVIACOTO	00-0002	210710	700	50	-00	70.0	7.0						14.0.1

PROJECT	HOLE ID	MGA North	MGA East	RL	AZI	DIP	END DEPTH	HOLE TYPE	DEPTH FROM	DEPTH TO	INTERVAL	GRADE	GRAM METRES	Au g/t interval
NYBORGS	NYAC21001	6629596	285618	448	90	-60	49.0	AC						N.S.I
	NYAC21002	6629597	285597	449	90	-60	55.0	AC						N.S.I
	NYAC21003	6629599	285567	446	90	-60	57.0	AC	32.0	36.0	4.0	0.12	0.5	4.0m @ 0.12 g/t
	NYAC21004	6629365	285831	429	90	-60	62.0	AC						N.S.I
	NYAC21005	6629368	285785	440	90	-60	65.0	AC						N.S.I
	NYAC21006	6629365	285720	439	90	-60	42.0	AC						N.S.I
	NYAC21007	6629369	285662	452	90	-60	56.0	AC						N.S.I
	NYAC21008	6629369	285621	446	90	-60	24.0	AC						N.S.I
	NYAC21009	6629367	285606	444	90	-60	26.0	AC						N.S.I
	NYAC21010	6629369	285569	443	90	-60	34.0	AC						N.S.I
WURUK	WUAC21001	6648006	271682	485	90	-60	14.0	AC						N.S.I
	WUAC21002	6648007	271648	492	90	-60	17.0	AC						N.S.I
	WUAC21003	6648003	271606	489	90	-60	46.0	AC	44.0	45.0	1.0	0.15	0.1	1.0m @ 0.15 g/t
	WUAC21004	6648001	271564	492	90	-60	5.0	AC						N.S.I
	WUAC21005	6648001	271522	489	90	-60	5.0	AC						N.S.I
	WUAC21006	6648001	271482	491	90	-60	49.0	AC						N.S.I
	WUAC21007	6648002	271443	491	90	-60	67.0	AC	48.0	64.0	16.0	0.27	4.2	16.0m @ 0.27 g/t
	WUAC21008	6648003	271405	488	90	-60	77.0	AC	76.0	77.0	1.0	0.13	0.1	1.0m @ 0.13 g/t
	WUAC21009	6646961	272142	478	90	-60	62.0	AC						N.S.I
	WUAC21010	6646963	272106	473	90	-60	49.0	AC	40.0	44.0	4.0	0.13	0.5	4.0m @ 0.13 g/t
	WUAC21011	6646961	272065	478	90	-60	45.0	AC						N.S.I
	WUAC21012	6646961	272025	477	90	-60	50.0	AC	0.0	4.0	4.0	0.22	0.9	4.0m @ 0.22 g/t
									49.0	50.0	1.0	0.20	0.2	1.0m @ 0.20 g/t
	WUAC21013	6646965	271984	472	90	-60	44.0	AC						N.S.I
	WUAC21014	6646963	271936	473	90	-60	59.0	AC						N.S.I
	WUAC21015	6646964	271901	474	90	-60	64.0	AC						N.S.I
	WUAC21016	6646962	271865	472	90	-60	47.0	AC						N.S.I
	WUAC21017	6648000	271568	483	0	-60	20.0	AC						N.S.I
	WUAC21018	6648004	271523	493	0	-60	21.0	AC						N.S.I
	WUAC21019	6648000	271591	485	0	-60	30.0	AC						N.S.I
	WUAC21020	6648002	271547	485	0	-60	34.0	AC						N.S.I

Drill intercepts are 0.1g/t lower cut-off, not top-cut, no internal waste. 4m composite samples Holes in the above table are from current drilling referred to in text.

Appendix 1: Significant Intersections Table – RC Drilling

PROJECT	HOLE ID	MGA North	MGA East	RL	AZI	DIP	END	HOLE	DEPTH	DEPTH	INTERVAL	GRADE	GRAM	Au g/t interval	
PROJECT	HOLE ID	WIGA NOTH	IVIGA East	KL.	ALI	DIF	DEPTH	TYPE	FROM	TO	INTERVAL	GRADE	METRES	Au g/t iiitei vai	
KOMODO	KORC001	6627161	275727	489	360	-60	25.0	RC						N.S.I	
	KORC001A	6627162	275728	487	360	-60	114.0	RC	91.0	93.0	2.0	0.79	1.6	2.0m @ 0.79 g/t	
	KORC002	6627163	275661	497	360	-60	100.0	RC	42.0	48.0	6.0	0.65	3.9	6.0m @ 0.65 g/t	
	KORC003	6627167	275624	491	270	-60	110.0	RC	92.0	96.0	4.0	0.63	2.5	4.0m @ 0.63 g/t	

Drill intercepts are length weighted, 0.5g/t lower cut-off, not top-cut, 2m internal waste Holes in the above table are from current drilling referred to in text.

Appendix 2: Lithium Exploration - Historic Drill Hole Assay Results Table

PROJECT	HOLE ID	MGA North	MGA East	RL	AZI	DIP	END DEPTH	HOLE TYPE	DEPTH FROM	DEPTH TO	INTERVAL	Li_PPM	Li2O
CALLION-	GADD001	6659855.295	269039.892	487.581	270.00	-55.00	258.60	DDH	116.40	117.00	0.60	220	0.05
GLASSON									117.00	118.00	1.00	2370	0.51
									118.00	119.00	1.00	3500	0.75
									119.00	120.00	1.00	3300	0.71
									120.00	121.00	1.00	340	0.07
									121.00	122.00	1.00	190	0.04
									122.00	122.60	0.60	90	0.02

Appendix 2: Lithium Exploration – Surface Rock Chip Sample Assay Results Table

SAMPLE ID	PROSPECT	CURRENT LEASE ID	MGA NORTH	MGA EAST	MGA RL	DESCRIPTION	Li ppm	Li20 %
OBM06306	REGIONAL	E30/0333	6708667	262843	~460	Narrow E-W peg, Qtz-Feld & 1-2% lepidolite	1400	0.3
OBM06307	REGIONAL	E30/0333	6708666	262843	~460	Narrow E-W peg, Qtz-Feld & trace lepidolite	80	0.02
OBM06308	REGIONAL	E30/0333	6708618	262868	~460	Narrow E-W peg, Qtz-Feld, no lepidolite	10	0
OBM06309	REGIONAL	E30/0333	6708540	263012	~460	Narrow E-W peg, Qtz-Feld, no lepidolite	20	0
OBM06310	REGIONAL	E30/0333	6708442	263060	~460	Narrow E-W peg, Qtz-Feld, no lepidolite	10	0
OBM06311	REGIONAL	E30/0333	6707961	262968	~460	2m thick E-W peg s/c in creek, Qtz-Feld & 20% lepidolite	5750	1.24
OBM06312	REGIONAL	E30/0333	6707961	262967	~460	2m thick E-W peg s/c in creek, Qtz-Feld & 5% lepidolite + possible spodumene	4390	0.95
OBM06313	REGIONAL	E30/0333	6706546	263225	~460	Very narrow E-W peg, Qtz-Feld & 1% lepidolite	680	0.15
OBM06314	REGIONAL	E30/0333	6706493	263231	~460	Very narrow E-W peg, Qtz-Feld & 5% lepidolite	700	0.15
OBM06315	REGIONAL	E30/0468	6706333	263277	~460	Very narrow E-W peg, Qtz-Feld & 5% lepidolite	120	0.03
OBM06316	REGIONAL	E30/0468	6706374	263307	~460	Very narrow E-W peg, Qtz-Feld & 1% lepidolite	820	0.18
OBM06317	REGIONAL	M30/0256	6703685	264248	~460	Very narrow E-W peg, Qtz-Feld & 5% lepidolite	50	0.01
OBM06318	REGIONAL	M30/0256	6700437	263632	~460	2m thick NW-SE peg, Qtz-Feld + very coarse lepidolite (10%) & beryl	4810	1.04
OBM06319	REGIONAL	M30/0256	6700439	263630	~460	2m thick NW-SE peg, Qtz-Feld + green mica + amblygonite? + trace lepidolite	1230	0.26
OBM06320	REGIONAL	E30/0468	6699566	264043	~460	Very narrow E-W peg, Qtz-Feld & 8% lepidolite	230	0.05
OBM06321	REGIONAL	M30/0255	6675412	271736	~460	Narrow NE-SW peg, Qtz-Feld + green mica	50	0.01
OBM06322	REGIONAL	M30/0255	6675408	271784	~460	Narrow NE-SW peg, Qtz-Feld + greenish mica	100	0.02
OBM06323	REGIONAL	M30/0255	6674342	272164	~460	2m thick peg in Waihi pit, Qtz-Feld + 10% lepidolite	980	0.21
OBM06324	IGUANA	M16/0262	6623724	275840	~460	Drill Spoil. IGRC21001: 4-5m red mica rich pegmatite	20	0
OBM06325	IGUANA	M16/0262	6623724	275840	~460	Drill Spoil. IGRC21001: 7-8m White mica rich pegmatite	30	0.01
OBM06326	IGUANA	M16/0262	6623723	275798	~460	Drill Spoil. IGRC21002: 32-35 mica rich pegmatite? with green mica	40	0.01
OBM06327	IGUANA	M16/0262	6623723	275798	~460	Drill Spoil. IGRC21002: 76-77m white qtz-feld pegmatite, trace mica & trace red mineral - garnet or rubellite?	20	0
OBM06328	IGUANA	M16/0262	6623723	275798	~460	Drill Spoil. IGRC21002: white qtz-feld pegmatite, trace mica & trace red mineral - garnet or rubellite?	10	0
OBM06329	IGUANA	M16/0262	6623786	275731	~460	Drill Spoil. IGRC21004: 99-103m coarse qtz-feld pegmatite, minor clear mica + greenish tinge to sample	20	0
OBM06330	IGUANA	M16/0262	6623812	275751	~460	Drill Spoil. IGRC21005: 80-82m qtz-feld pegmatite with minor clear mica	10	0
OBM06331	IGUANA	M16/0262	6623812	275751	~460	Drill Spoil. IGRC21005: 82-83m qtz-feld pegmatite, minor clear mica + ruby red mineral (garnet or rubellite?)	20	0
OBM06332	LADY EILEEN SOUTH	M30/0255	6671813	272467	~460	Qtz+FP+ (~5%) Lepidolite +/- Blueish tint mineral (Beryl?) – West Wall – Flat Pegmatite	2290	0.49
OBM06333	LADY EILEEN SOUTH	M30/0255	6671868	272453	~460	White Pegmatite (FP?) with Qtz veins – West Wall – NE-Strike	10	0

Competent Persons Statement

The information in this report that relates to Exploration Results is based on information compiled under the supervision of Mr Andrew Czerw, an employee of Ora Banda Mining Limited, who is Member of the Australian Institute of Mining and Metallurgy. Mr Czerw has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Czerw consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

Forward-looking Statements

This Announcement contains forward-looking statements which may be identified by words such as "believes", "estimates", "expects', "intends", "may", "will", "would", "could", or "should" and other similar words that involve risks and uncertainties. These statements are based on an assessment of present economic and operating conditions, and on a number of assumptions regarding future events and actions that, as at the date of this Announcement, are expected to take place.

Such forward-looking statements are not guarantees of future performance and involve known and unknown risks, uncertainties, assumptions and other important factors, many of which are beyond the control of the Company, the Directors and management of the Company. These and other factors could cause actual results to differ materially from those expressed in any forward-looking statements.

The Company has no intention to update or revise forward-looking statements, or to publish prospective financial information in the future, regardless of whether new information, future events or any other factors affect the information contained in this Announcement, except where required by law.

The Company cannot and does not give assurances that the results, performance or achievements expressed or implied in the forward-looking statements contained in this Announcement will actually occur and investors are cautioned not to place undue reliance on these forward-looking statements.

1. JORC CODE, 2012 EDITION – TABLE 1 REPORT TEMPLATE

Section 1 Sampling Techniques and Data

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 Aircore 1 metre scoop sampling of AC holes from which 4m composite samples with the end of hole metre submitted as a single sample. Samples were submitted to Nagrom in Perth for analysis of Au, Ag, Bi, Pb, Sb, W by Aqua Regia with an ICP_MS finish and As, Co, Cr, Cu, Ni, Zn by aqua regia digest with an ICP_OES. All reported intercepts reflect four metre composite samples. 1m RC samples using face sampling hammer with samples collected under cone splitter directly off rig into calico bags. Samples were submitted to Nagrom in Perth for analysis of Au, Ag, Bi, Pb, Sb, W by Aqua Regia with an ICP_MS finish and As, Co, Cr, Cu, Ni, Zn by aqua regia digest with an ICP_OES.
Drilling techniques	Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	Aircore All drilling was conducted by contractors Gyro Australia Drilling by Aircore using a 3.5" Blade All holes were drilled to Blade refusal, with Hammer used when required RC 5.625 inch diameter RC holes using face sampling hammer with samples collected under cone splitter.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	Aircore All sample recoveries were recorded with values ranging from poor to Very good. A very small percentage was recorded as poor and predominately samples related to the collaring rod RC All sample recoveries were recorded with values ranging from poor to Very good with 2 samples recorded as poor
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections 	Field logging was conducted using Geobank MobileTM software on Panasonic Toughbook CF-31 ruggedized laptop computers. Qualitative logging: Lithology, colour, oxidation, grainsize, texture, structure, hardness, regolith. Quantitative: estimates are made of quartz veining, sulphide and alteration percentages. End of Hole chip samples were collected and retained.

Criteria	JORC Code explanation	Commentary
	logged.	
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 Aircore 1m samples collected under cyclone. 4m (3-4kg) composites, scoop sampled. All samples were in a dry condition. All values greater than 0.1g/t gold, will be resampled as split at 1m intervals. Blanks and standards were submitted for QAQC analysis. RC RC samples were submitted as single metre split samples. Samples were dried, crushed, split, pulverised for analysis of Au plus a ME suite by aqua regia digest with an ICP finish. Field duplicates, blanks and standards were submitted for QAQC analysis.
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.	 Aircore Samples were submitted to Nagrom in Perth for analysis of Au and a ME suite by aqua regia digest with an ICP finish. A coarse (40mm) Basalt blank and commercially prepared standard samples were inserted into the sample stream every 20 samples. No Field duplicates were taken All samples were sent to an accredited laboratory (Nagrom Laboratories in Perth). Samples were analysed for Au and a ME suite by aqua regia digest with an ICP finish. Au and a ME suite by aqua regia digest with an ICP finish. Commercially prepared standard samples and blanks are inserted in the sample stream at a rate of 1:12. Sizing results (percentage of pulverised sample passing a 75µm mesh) are undertaken on approximately 1 in 40 samples. The accuracy (standards) and precision (repeats) of assaying are acceptable. Standards and blanks were inserted into the sample stream at a rate of approximately 1:25. Duplicates were submitted at a rate of approximately 1:25.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	Aircore and RC Geological and sample data logged directly into Geobank via toughbook. Data is transferred to Perth via a shared serverl and imported into Geobank SQL database by the database administrator (DBA). Assay files are received in .csv format and loaded directly into the database by the DBA. Hardcopy and/or digital copies of data are kept for reference if necessary. No adjustments are made to any assay data. First gold assay is utilised for any reporting.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	MGA94, zone 51. Collars were set up using a handheld GPS, no downhole surveys taken. RC MGA94, zone 51. Collars were set up using a handheld GPS, no downhole surveys taken.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve 	Aircore Drill hole spacing is adequate as first pass exploration Drill intercepts are length weighted, 0.1g/t lower cut-off, not top-cut, no internal waste.

Criteria	JORC Code explanation	Commentary
	estimation procedure(s) and classifications applied. • Whether sample compositing has been applied.	RC • Drill intercepts are length weighted, 0.5g/t lower cut-off, not top-cut, maximum 2m internal dilution.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	Aircore Drilling is inclined at -60° in order to obtain maximum coverage. Drill lines were completed across strike of known mineralised trends. Drill line spacing was at 400 or 800 metres RC Drilling is inclined at -60° in order to obtain maximum coverage. Drill lines were completed across strike of known mineralised trends. Drilling was carried out on a single line
Sample security	The measures taken to ensure sample security.	Aircore and RC All samples are bagged, tied and placed in a secure yard. Once submitted to the laboratories they are stored in cages within a secure fenced compound. Samples are tracked through the laboratory via their LIMS. Samples are either driven to the laboratory directly by the geologist or field assistant or samples are dropped at the company owned mill (remote location) and picked up by the freight company.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	Aircore and RC No audits of sampling techniques have undertaken to date.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 All current drilling is located on tenements M30/256, E30/468, E30/491, M30/157, E16/344, E16/474, E16/487, E16/482, E16/483, E16/484 Tenements are held by Carnegie Gold PTY LTD or Siberia Mining Corporation Pty Ltd, both wholly owned subsidiaries of Ora Banda Mining LTD. (OBM) The tenements are not subject to joint ventures, partnerships or 3rd party royalties. There are no known heritage or native title issues. There are no known impediments to obtaining a licence to operate in the area. E30/468 is currently the subject to plaint proceedings.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 Drilling, sampling and assay procedures and methods as stated in the database and confirmed from Wamex reports and hard copy records are considered acceptable and to industry standards of the time. Previous Exploration within the Greater Pacific and Sunraysia North areas was very limited consisting of RAB by Consolidated Gold in the 1990's and Aztec in the 1980's.

Criteria	JORC Code explanation	Commentary
		 Previous Exploration at Ember, Wuruk and Komodo areas consisted of RAB by Delta Gold in 1995 and Monarch in 2008. This current phase of drilling at Nyborgs, Kangaroo and Turkey Flats is the first in the area
Geology	Deposit type, geological setting and style of mineralisation.	 The reported prospects are in most cased at the grassroots stage of exploration and therefore deposit and mineralisation style is difficult to state. Ember and Wuruk - Much of the historical drilling has only tested the oxide component so lithological descriptions and geology information is poor. The host lithologies vary between mafics, basalt and meta-sediments. The style of mineralisation is unknown, this drilling is designed to help determine the style and orientation of mineralisation. Nyborgs, Kangaroo and Turkey Flats - The Nyborgs target is the SE extension of the Nyborgs prospect. Rocks units are sheared meta-sediments with anomalous gold and copper. The style of mineralisation is unknown Greater Pacific and Sunraysia North - The geology of the Riverina area consists of an interlayered sequence of meta-basalts, meta-sediments and ultramafics, rarely crosscut by narrow pegmatite dykes. The local stratigraphy strikes roughly N-S with primarily steep east to sub-vertical dips. The area has been affected by upper greenschist to lower amphibolite grade metamorphism with many minerals exhibiting strong preferred orientations. All rock units exhibit strain via zones of foliation, with strongly sheared zones more common in ultramafic lithologies. Contemporaneous strike faults and late stage faults have dislocated the stratigraphy and hence, mineralisation Gold mineralisation is hosted by quartz-sulphide and quartz-Fe oxide veining primarily in the metabasalts. Metasediments and ultramafics may also contain gold mineralised quartz veining, although much less abundant. Gold mineralisation is also seen in silica-biotite-sulphide and silica-sericite-sulphide alteration zones in the metabasalts.
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	Refer to Appendix 1 for additional information.
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent	Aircore Drill intercepts are length weighted, 0.1g/t lower cut-off, not top-cut, no internal waste. RC Drill intercepts are length weighted, 0.5g/t lower cut-off, not top-cut, maximum 2m internal dilution.

Criteria	JORC Code explanation	Commentary
	values should be clearly stated.	
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	All intercept lengths reported are downhole lengths, not true widths.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Refer to diagrams in release
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	All Results have been reported
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	All exploration data believed to be meaningful and material to this release has been included
Further work	The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	Follow up drill programs are being developed across all areas