

New High-Grade Intercept - Malone Gold Prospect

Malone follow-up RC drilling commenced. Assay results pending from multiple diamond and RC drill holes completed at the Star of Gordon prospect

Malone Prospect

- Reconnaissance RC drilling has returned the best primary intercept to date including;
 - > 5m @ 7.7g/t Au from 210m including 1m @ 10.9g/t Au from 210m and 1m @ 15.4g/t Au from 212m (YRLRC0727)
- > The high-grade intercept is within a broader interval of 16m @ 2.8g/t Au from 204m
- > Mineralisation is open in all directions, follow-up RC drilling has commenced

Gordons Dam Prospect

- Final assays have been received from shallow infill RC drilling at the Gordons Dam prospect including
- > 18m @ 1.8g/t Au from 42m including 5m @ 4.9g/t Au from 44m (YRLRC0688)
- > 19m @ 1.1g/t Au from 33m including 1m @ 10.7g/t Au from 38m (YRLRC0701)

Star of Gordon Prospect

- Five diamond and 73 RC holes have been completed to follow-up highly significant mineralisation discovered in 2021 including;
 - > 10m @ 8.4g/t Au from 43m including 1m @ 52.5g/t Au (YRLRC0630)1
 - > 1m @ 19.8g/t Au from 159m (YRLRC0668)1

Yandal Resources' Managing Director; Mr Lorry Hughes commented:

"The new high-grade gold discovery at Malone is exactly the sort of intercept the team has been searching for in this area over the past year and it is a very positive start for 2022. Last year there was a strong focus on testing the extensive felsic-mafic Malone Contact both in the "Kink Zone" and further along strike.

We drilled a number of RC and diamond holes into the Kink Zone and intersected a number of narrow high-grade and broader low grade intercepts from within sulphidic quartz veins, small shears and intrusive porphyry rocks. This new intercept in YRLRC0727 potentially represents a strengthening of the Malone system, 300m directly west of the Kink Zone.

The extent of the mineralisation is unknown at this stage with large areas nearby considered untested. The two follow-up holes in progress will provide further geological control on mineralisation.

¹ Refer to YRL ASX announcement dated 12 January 2021.

Registered Address

Yandal Resources Limited ACN 108 753 608 ABN 86 108 753 608

- A 159 Stirling Highway Nedlands WA 6009
- P PO Box 1104 Nedlands WA 6909

Board Members

Lorry Hughes Managing Director/CEO
Katina Law Non-Executive Director
Tim Kennedy Chairman
Bianca Taveira Company Secretary

T +61 8 9389 9021 E yandal@yandalresources.com.au W www.yandalresources.com.au

Gold Projects

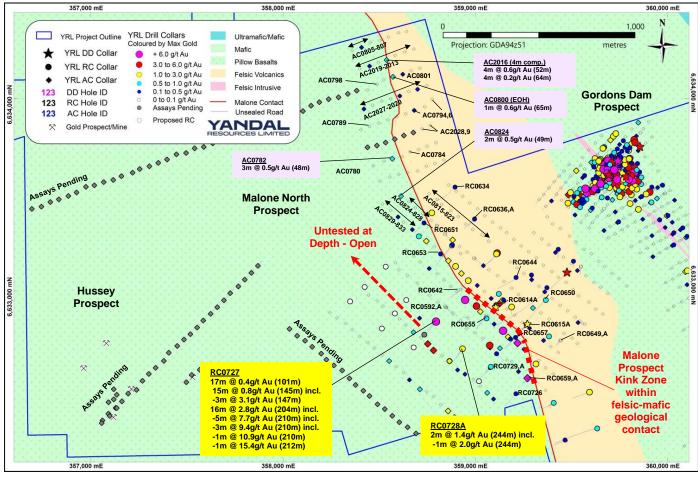
Yandal Resources Ltd (ASX: YRL, "Yandal Resources" or the "Company") is pleased to provide an update on exploration activities at the 100%-owned Gordons gold project located 30km north of Kalgoorlie-Boulder in Western Australia (Figure 1).

Figure 1 – Yandal Resources' gold project locations.

Malone, Malone North and Gordons Dam Prospects

At the **Malone Prospect** located 500m west of the Gordons Dam gold deposit (Figures 2, 5 and Table 1), final assay results have been received from 24 reverse circulation ("RC") holes completed to follow-up encouraging mineralisation defined with air-core ("AC") and limited RC drilling.

The best primary intercept to date was returned from hole YRLRC0727 which is located ~300m west of a pronounced flexure of the felsic-mafic geological contact "Kink Zone". The hole, completed to test beneath anomalous AC holes, intersected and three new zones of mineralisation including;


- > 17m @ 0.4g/t Au from 101m including 1m @ 2.1g/t Au from 106m
- > 15m @ 0.80g/t Au from 145m including 1m @ 6.2g/t Au from 147m; and
- > 16m @ 2.8g/t Au from 204m including 5m @ 7.7g/t Au from 210m.

The high-grade core of the deepest intercept contains individual 1m assays including;

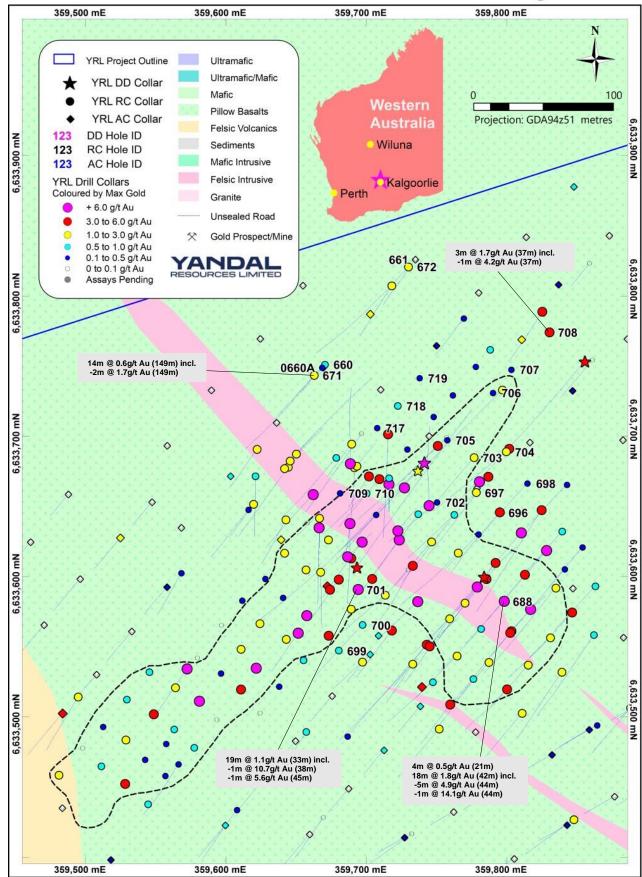
- 1m @ 10.9g/t Au from 210m and;
- > 1m @ 15.4g/t Au from 212m.

This result is highly encouraging and follow-up RC drilling is underway to firstly confirm the geometry of the high-grades and then to test the mineralisation up to 400m north along the interpreted strike. Previous drilling to the north of hole YRLRC0727 was not deep enough to penetrate into the primary rock and therefore this area is considered to be untested, providing a high priority exploration target.

Figure 2 – Malone, Malone North and Gordons Dam plan view map coloured by maximum gold grade (g/t Au) projected to the drill collar with interpreted geology (Refer to Tables 1 & 2 for all new results)¹.

Assay results from 48 AC holes for 3,376m have been returned from the Malone and **Malone North Prospects** located up to 1.5km north of the Malone Kink Zone (Table 2). A number of anomalous intercepts were returned including;

- > 2m @ 0.5g/t Au from 49m (YRLAC0824)
- > 3m @ 0.5g/t Au from 48m (YRLAC0782)
- > 1m @ 0.6g/t Au from 65m and 1m @ 0.1g/t Au at end-of-hole (YRLAC0800)
- 4m @ 0.6g/t Au from 52m and 4m @ 0.2g/t Au from 64m (YRLAC0824 4m composite samples)
- > 10m @ 0.1g/t Au from 80m at end-of-hole (YRLAC2021 4m composite samples)


At the **Gordons Dam Prospect** (Figures 2, 3, 5 & Table 1) individual 1m fire-assay results have been received from 24 RC holes completed for 2,335m. Several significant intercepts were returned including;

- > 18m @ 1.8g/t Au from 42m including 5m @ 4.9g/t Au from 44m (YRLRC0688)
- > 19m @ 1.1g/t Au from 33m including 1m @ 10.7g/t Au from 38m and 1m @ 5.6g/t Au from 45m (YRLRC0701)
- > 3m @ 1.7g/t Au from 37m and 1m @ 4.2g/t Au from 37m (YRLRC0708)

The Company is currently compiling an initial Mineral Resource Estimate on the Gordons Dam Prospect. .

¹ Refer to YRL ASX announcements during 2018 – 2022 for details of previous drilling by Yandal.

Figure 3 – Plan view collar map coloured by maximum gold grade (g/t Au) projected to the drill collar with interpreted geology for the Gordons Dam prospect (Refer to Table 1 for all new results)¹.

 $^{^{1}}$ Refer to YRL ASX announcements during 2018 - 2022 for details of previous drilling by Yandal.

Andrews and Bradman Prospects

At the **Andrews Prospect** located immediately south along strike from the Malone and Gordons Dam prospects (Figures 4 & 5) final assay results have been received from 13 RC holes completed for 2,266m. The majority of the holes were drilled to test the continuation of the east dipping Malone felsic-mafic contact to the south. Only low level results were returned as outlined in Table 1.

Approximately 500m east of the felsic-mafic contact 27 AC holes were completed for 1,511m to explore for new mineralisation (Table 2). A number of highly anomalous results were returned including;

- > 2m @ 0.6g/t Au from 35m (YRLAC0705)
- > 4m @ 1.0g/t Au from 57m including 1m @ 1.5g/t Au from 57m (YRLRC0716)
- > 5m @ 1.1g/t Au from 27m including 1m @ 3.4g/t Au from 30m (YRLRC0740)
- > 1m @ 0.4g/t Au from 26m at end-of-hole (YRLRC0741)

A follow-up RC program is currently being planned.

At the **Bradman Prospect** located ~3km south of Gordons Dam (Figures 4 & 5) final assay results have been returned from one RC hole and one RC and diamond tail hole (Table 1). The holes were completed as a follow-up to significant mineralisation intercepted in hole YRLRC0646;

11m @ 2.0g/t Au from 257m including 1m @ 9.9g/t Au from 261m (YRLRC0646)¹

The best results included:

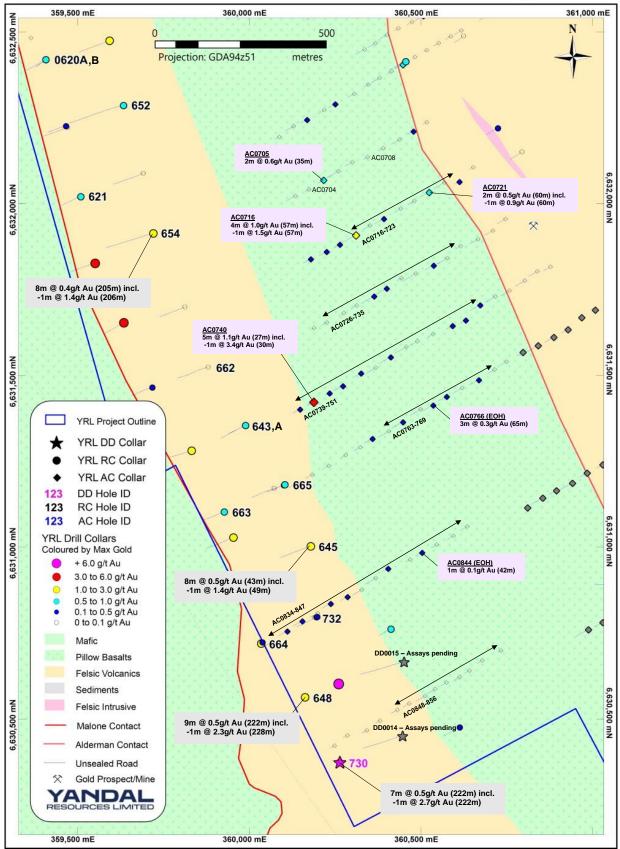
- > 9m @ 0.5g/t Au from 222m including 1m @ 2.3g/t Au from 228m (YRLRC0648)
- 7m @ 0.5g/t Au from 222m including 1m @ 2.7g/t Au from 222m (YRLRCD0730)¹

Results are pending from two recently completed diamond holes (YRLDD0014-15) which were also designed to test for extensions to mineralisation discovered in hole YRLRC0646.

Also at Bradman assay results have been received from 30 AC holes for 1,479m that tested areas immediately adjacent to the Andrews prospect. Only low level anomalism was returned as outlined in Table 2.

Star of Gordon Prospect

The prospect is located 2km directly NNW along strike from the Gordon Sirdar underground gold mine which is owned and operated by FMR Investments Pty Ltd ("FMR") (Figure 5). FMR are currently mining ~60,000t of ore per month using conventional underground mining methods and transporting the ore via road haulage for processing at their mill in Coolgardie.


A five hole diamond drilling program has been completed for 1,144m – results pending. The oriented core holes were designed to confirm the geometry and structural aspects of high-grade gold mineralisation returned from earlier RC drilling in 2021 as follows;

- > 1m @ 19.8g/t Au from 159m (YRLRC668)1
- > 45m @ 2.0g/t Au from 18m including 10m @ 8.4g/t Au from 43m (YRLRC630)1

Final results are also pending for 73 RC holes for 8,907m completed at the prospect during the December Quarter 2021 and the current quarter.

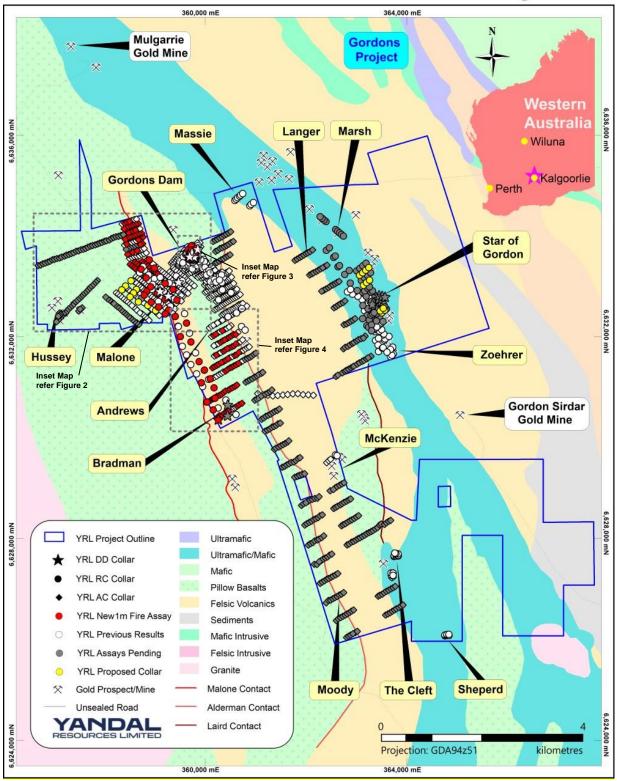

¹ Refer to YRL ASX announcement dated 12 January 2021.

Figure 4 – Plan view drilling collar map coloured by maximum gold grade (g/t Au) projected to the drill collar with interpreted geology for the Andrews and Bradman prospects (Refer to Table 1 for all new results).

Figure 5 – Location map of key prospects within the Gordons Gold project in relation to nearby operating third party gold mines, project tenure and regional geology.

Next Steps

Key exploration activities planned during the remainder of the March Quarter include;

- Completing priority follow-up RC drilling at the Malone prospect
- Receive and interpret pending AC, RC from the Star of Gordon, Malone, Challenger, Parmelia, Success and HMS Sulphur prospects
- Complete cutting and sampling of diamond core from the Star of Gordon and Bradman prospects
- Compile an initial open pit Mineral Resource Estimate for the Gordons Dam prospect;
- Commence detailed planning and execution of heritage surveys over key prospect areas within the Ironstone Well and Barwidgee projects including priority areas within, adjacent to and along strike from the Newport, Flushing Meadows, Oblique, Quarter Moon, Flinders Park and Sims Find prospects.

Authorised by the board of Yandal Resources

For further information please contact:

Lorry Hughes
Managing Director
Yandal Resources Limited
yandal@yandalresources.com.au

Bianca Taveira
Company Secretary
+61 8 9389 9021
yandal@yandalresources.com.au

Table 1 - RC drill collar locations, depth, orientation and down hole assay results - Gordons gold project.

Hole Id	North (m)	East (m)	Depth (m)	Dip (Deg.)	Azi. (Deg.)	From (m)	To (m)	Interval (m)	Au1 g/t (FA50)	Au2 g/t (FA50)
Malone RC In	tervals (>0.	lg/t Au)								
YRLRC0592	6632914	358850	132	-60	130	AE	3D	N:	SA>0.1g/t	Au
YRLRC0592A	6632914	358850	156	-60	130			N:	SA>0.1g/t /	Au
YRLRC0614A	6632926	359107	85	-60	220	64	65	1	0.3	
						71	72	1	0.1	
						74	75	1	0.1	
						78	81	3	0.2	
YRLRC0615A	6632821	359260	66	-60	220	23	24	1	0.1	
YRLRC0634	6633545	358891	270	-60	220	220	223	3	0.2	
						234	235	1	0.1	
						256	264	8	0.1*	
YRLRC0636	6633382	358998	114	-60	220	82	83	1	0.2	ABD
YRLRC0636A	6633382	358998	184	-60	220				SA>0.1g/t /	
YRLRC0642	6633006	358928	168	-60	220				SA>0.1g/t	Au
YRLRC0644	6633059	359218	252	-60	220	90	92	2	0.2	
						149	150	1	0.3	
						201	203	2	0.2	
VDI DC0C40	0000740	250440	00	60	220	246	249	3	0.2	<u> </u>
YRLRC0649	6632746 6632746	359446 359446	66 78	-60 -60	220 220	At	BD I		SA>0.1g/t	
YRLRC0649A									SA>0.1g/t /	4 u
YRLRC0650	6632960	359376	270	-60	220	24	26	2	0.5 0.1	1
						65 68	66 69	1	0.1	
						72	76	4	0.1	
						79	80	1	0.2	
						96	100	4	0.1	
						105	107	2	0.2	
						185	186	1	0.2	
YRLRC0651	6633356	358731	150	-60	220	133	134	1	0.2	0.2
YRLRC0653	6633186	358834	150	-60	220				SA>0.1g/t /	
YRLRC0655	6632869	359059	150	-60	220			N:	SA>0.1g/t /	Au
YRLRC0657	6632764	359212	168	-60	220	48	52	4	0.1*	0.1*
						68	72	4	0.2*	0.2*
						96	100	4	0.1*	0.1*
YRLRC0659	6632552	359283	78	-60	220	AE	BD	N:	SA>0.1g/t /	Au
YRLRC0659A	6632552	359283	108	-60	220			N:	SA>0.1g/t /	Au
YRLRC0726	6632475	359219	204	-60	220	80	81	1	0.1	0.1
						145	146	1	0.2	
						196	199	3	0.1	
YRLRC0727	6632853	358799	252	-60	220	101	118	17	0.4	
				inclu	_	101	110	9	0.7	
				inclu	ding	101	102	1	1.6	1.7
				inclu	ding	106	107	1	2.1	2.0
						145	160	15	8.0	

			l		1				_	
Hole Id	North (m)	East (m)	Depth (m)	Dip (Deg.)	Azi. (Deg.)	From (m)	To (m)	Interval (m)	Au1 g/t (FA50)	Au2 g/t (FA50)
				inclu	ding	147	150	3	3.1	
				inclu		147	148	1	5.7	6.2
						164	171	7	0.3	
						178	179	1	0.6	0.6
						204	220	16	2.8	
				inclu	ding	210	218	8	5.3	
				inclu	ding	210	215	5	7.7	
				inclu	ding	210	213	3	9.4	
				inclu	ding	210	211	1	10.0	10.9
				inclu	ding	212	213	1	14.7	15.4
						229	230	1	0.9	0.9
YRLRC0728	6632716	358930	114	-60	220	AE			SA>0.1g/t /	
YRLRC0728A	6632716	358930	252	-60	220	102	102	1	0.1	
						221	226	5	0.3	
						244	246	2	1.4	
				inclu	ding	244	245	1	1.9	2.0
YRLRC0729	6632611	359083	78	-60	220	56	60	4	0.2* ABD	0.2* ABD
YRLRC0729A	6632611	359083	252	-60	220	53	54	1	0.5	0.4
						65	71	6	0.1	
						102	107	5	0.3	
Gordons Dam	Prospect R	C Intervals	s (>0.1g/t	Au)						I
YRLRC0660	6633749	359670	106	-60	220	52	54	2	0.2	
						88	90	2	0.4	
						95	98	3	0.1	
						101	105	4	0.4	
				inclu	ding	103	104	1	0.9	0.8
YRLRC0660A	6633749	359670	48	-60	220	44	45	1	0.1	ABD
YRLRC0661	6633826	359735	84	-60	220			NS	SA>0.1g/t /	Au
YRLRC0671	6633749	359670	204	-60	220	75	78	3	0.6	
						122	124	2	0.3	
						129	130	1	0.1	
						144	146	2	0.2	
						149	163	14	0.6	
				inclu	ding	149	151	2	1.7	
				inclu	ding	150	151	1	2.3	2.5
YRLRC0672	6633826	359735	252	-60	220			As	says pendi	ng
YRLRC0688	6633581	359797	90	-60	220	21	25	4	0.5	
				inclu		24	25	1	1.2	1.3
						42	60	18	1.8	
				inclu	ding	44	49	5	4.9	
				inclu		44	45	1	13.5	14.1
				inclu		56	58	2	1.2	
						65	69	4	0.2	
						72	73	1	0.3	
						83	84	1	0.1	
						89	90	1	0.1#	EOH
	6633647	359796	119	-60	220	24	25	1	0.1	

Hole Id	North (m)	East (m)	Depth (m)	Dip (Deg.)	Azi. (Deg.)	From (m)	To (m)	Interval (m)	Au1 g/t (FA50)	Au2 g/t (FA50)
						42	44	2	0.3	
						47	65	18	0.2	
						90	91	1	0.2	
						102	112	10	0.9	
				includ	ding	103	107	4	1.8	
				includ	ding	106	107	1	5.4	5.5
						115	118	3	0.2	
YRLRC0697	6633661	359780	150	-60	220	9	10	1	0.1	
						27	35	8	0.4	
						40	70	30	0.2	
				includ	ding	44	50	6	0.4	
				includ	ding	44	45	1	1.0	1.0
						97	98	1	0.2	
						104	105	1	0.1	
						115	118	3	0.5	
						124	143	19	0.3	
				includ	ding	127	130	3	0.9	
1/51 5 6 6 6 6						146	149	3	0.2	
YRLRC0698	6633666	359813	120	-60	220	50	53	3	0.2	
						70	71	1	0.1	
\/DI D 00000	2222 - 42	0=0004				91	92	1	0.1	
YRLRC0699	6633548	359681	60	-60	220	3	8	5	0.1	
VDI D00700	0000500	050000	00	00	000	51	58	7	0.3	
YRLRC0700	6633566	359698	60	-60	220	0	2	2	0.1	
						33	35	2	0.3	
						44	46	2	0.1	
\/DI D 00=04						52	54	2	0.3	
YRLRC0701	6633593	359695	60	-90	220	33	52 39	19	1.1 9.9	10.7
				includ		38 44	39 47	1 3	9.9 2.7	10.7
				includ	_	45	46	1	5.6	5.5
VDI D00700	0000055	050740	00							3.3
YRLRC0702	6633655	359748	90	-60	220	23 46	25 52	6	0.2 0.1	
						59	60	1	0.1	
						83	84	1	0.1	
						88	89	1	0.1	
YRLRC0703	6633688	359777	90	-60	220	30	35	5	0.8	
TILLICOTOS	0000000	333111	30	includ	1	31	33	2	1.4	
					9	39	49	10	0.1	
						53	54	10	0.1	
						71	72	1	0.1	
						76	81	5	0.2	
YRLRC0704	6633691	359805	102	-60	220	24	25	1	0.2	
						42	45	3	0.7	
				includ	ding	44	45	1	1.4	1.4
						90	91	1	0.1	
YRLRC0705	6633698	359759	75	-90	220	40	41	1	0.4	

									-	
Hole Id	North (m)	East (m)	Depth (m)	Dip (Deg.)	Azi. (Deg.)	From (m)	To (m)	Interval (m)	Au1 g/t (FA50)	Au2 g/t (FA50)
						49	50	1	0.1	
YRLRC0706	6633733	359789	60	-90	220	50	51	1	0.1	
YRLRC0707	6633750	359803	60	-90	220	40	41	1	0.1	
						54	56	2	0.3	
YRLRC0708	6633780	359832	60	-90	220	33	34	1	0.2	
				inclu	ding	37 37	40 38	3 1	1.7 4.2	3.7
						48	51	3	0.2	
						55	57	2	0.1	
YRLRC0709	6633670	359675	90	-60	220	62	69	7	0.1	
						77	80	3	0.1	
YRLRC0710	6633662	359701	90	-60	220	8	9	1	0.1	
						30	32	2	0.2	
						36	38	2	0.2	
						47	51	2	0.2	
						58	60	2	0.2	
						64	71	7	0.1	
						77	80	3	0.2	
						83	90	7	0.3#	EOH
YRLRC0717	6633708	359708	85	-90	220	24	25	1	0.2	
						46	48	2	0.1	
						69	71	2	0.3	
						76	77	1	0.3	
YRLRC0718	6633726	359724	90	-90	220	43	44	1	0.6	
YRLRC0719	6633746	359741	90	-90	220	52	55	3	0.4	
Andrews RC I			T	T	T T			1		
YRLRC0620	6632419	359413	84	-60	250	AE	BD .		lot sample	
YRLRC0620A	6632419	359413	90	-60	250				SA>0.1g/t /	Au
YRLRC0620B	6632419	359413	150	-60	250	104	105	1	0.4	
						128	132	4	0.4	
\/DI D 00004		070740	4=0		0.50	145	146	1	0.1	
YRLRC0621	6632029	359513	150	-60	250	67	68	1	0.2	
				1		86	95	9	0.2	
				. ,	l l	106	115	9	0.2	0.0
				inclu	aing	107	108	1	0.5	0.6
VDI DOCCAS	6604055	250000	120	60	250	138	139 3D	1	0.1	<u> </u>
YRLRC0643	6631355	359999	120	-60 -60				1	SA>0.1g/t /	-tu I
YRLRC0643A	6631355	359999	198	-00	250	143 151	144 153	2	0.2 0.1	
						157	163	6	0.1	
						171	174	3	0.2	
				inclu	ding	171	174	1	0.4	0.9
				molu	unig	188	189	1	0.9	0.9
YRLRC0645	6630999	360190	252	-60	250	43	51	8	0.5	
TILLINGUU43	0000333	300130	202	inclu		43 49	50	1	1.4	
				1110101		52	56	4	0.2*	
	1	1	1	1		U_		, T	U.Z	Ī

Hole Id	North (m)	East (m)	Depth (m)	Dip (Deg.)	Azi. (Deg.)	From (m)	To (m)	Interval (m)	Au1 g/t (FA50)	Au2 g/t (FA50)
						139	141	2	0.4	
						166	168	2	0.1	
						243	245	2	0.2	
YRLRC0652	6632286	359634	292	-60	250	36	40	4	0.2	
						44	46	2	0.3	
						85	87	2	0.3	
						164	165	1	0.8	0.8
YRLRC0654	6631895	359729	270	-60	250	44	51	7	0.2	
						56	60	4	0.1*	0.1*
						64	72	8	0.1*	
						205	213	8	0.4	
				includ	ding	206	207	1	1.3	1.4
				includ		211	212	1	0.9	
YRLRC0662	6631528	359890	252	-60	250			N:	SA>0.1g/t /	-\u
YRLRC0663	6631117	359930	150	-60	250	132	133	1	0.9	1.0
						135	136	1	0.1	
YRLRC0664	6630730	360037	138	-90	250	68	70	2	0.5	
						130	133	3	1.0	
				includ	dina	131	132	1	1.5	1.3
YRLRC0665	6631178	360097	120	-60	250	55	64	9	0.2	
TREREGOOD	0001170	000001	120	00	200	70	72	2	0.1	
						75	76	1	0.2	
Bradman RC	and Diamon	d Tail Inte	rvals (>0.	1a/t Au)						
YRLRC0648	6630565	360169	290	-90	360	36	37	1	0.2	
						205	207	2	0.9	
				includ	dina	206	207	1	1.6	1.7
						215	218	3	0.6	
				includ	dina	216	217	1	1.1	
						222	231	9	0.5	
				includ	dina	227	229	2	1.6	
				includ		228	229	1	2.3	
YRLRCD0730	6630388	360266	330.30	-90	360	37	51	14	0.2	
	0000000	000200	000.00	30	330	64	65	1	0.2	
						134	136	2	0.2	
						141	144	3	0.2	
						189	190	1	0.1	
						203	204	1	0.5	0.5
						214	217	3	0.5	
				includ	dina	216	217	1	1.4	1.5
					9	222	229	7	0.5	-
				includ	dina	222	223	1	2.7	2.7
				diamor		256.00	257.0	1	0.1	
				diamor		261.00	262.0	1	0.1	
				diamor		264.00	264.5	0.50	0.1	0.4
YRLDD0014	6630453	360446	451.60	-75	250	204.00	204.0		ays pend	
YRLDD0014 YRLDD0015	6630338	360451	430.70	-75 -75	250				says pend	
11/500019	0000000	550451	730.70	-13	200			ass	ays penu	····y

Table 2 - AC drill collar locations, depth, orientation and down hole assay results - Gordons gold project.

Hole Id	North (m)	East (m)	Depth (m)	Dip (Deg.)	Azi. (Deg.)	From (m)	To (m)	Interval (m)	Au1 g/t (AR50)	Au2 g/t (AR50)
Malone Prosp	ect AC Inte	vals (>0.1g	g/t Au)							
YRLAC0815	6633508	358756	76	-90	360			N:	SA>0.1g/t	Au
YRLAC0816	6633476	358795	51	-90	360			N:	SA>0.1g/t	Au
YRLAC0817	6633444	358833	58	-90	360			N:	SA>0.1g/t	Au
YRLAC0818	6633412	358871	70	-90	360			N:	SA>0.1g/t /	Au
YRLAC0819	6633380	358909	72	-90	360				SA>0.1g/t /	
YRLAC0820	6633347	358948	71	-90	360			N:	SA>0.1g/t /	Au
YRLAC0821	6633315	358986	60	-90	360			N:	SA>0.1g/t /	Au
YRLAC0822	6633283	359024	56	-90	360			N:	SA>0.1g/t /	Au
YRLAC0823	6633251	359062	63	-90	360				SA>0.1g/t /	
YRLAC0824	6633496	358615	63	-90	360	49	51	2	0.5	_
11(2)(0002)	0000100	000010	- 00		000	54	55	 1	0.1	
YRLAC0825	6633464	358654	70	-90	360	<u> </u>	- 50	<u> </u>	SA>0.1g/t /	Au
YRLAC0826	6633431	358692	39	-90	360				SA>0.1g/t /	
YRLAC0827	6633399	358730	80	-90	360				SA>0.1g/t /	
YRLAC0828	6633367	358769	84	-90	360				SA>0.1g/t /	
YRLAC0829	6633451	358512	48	-90	360				SA>0.1g/t /	
YRLAC0830	6633419	358551	41	-90	360			N:	SA>0.1g/t /	Au
YRLAC0831	6633386	358589	45	-90	360	42	44	2	0.2	
YRLAC0832	6633354	358627	54	-90	360			N:	SA>0.1g/t /	Au
YRLAC0833	6633322	358666	63	-90	360	58	60	2	0.3	
Malone North	Prospect A	C Intervals	(>0.1g/t	Au)	1					I
YRLAC0780	6633653	358474	30	-90	360			N:	SA>0.1g/t	Au
YRLAC0782	6633687	358568	68	-90	360	48	51	3	0.5	
						64	65	1	0.1	
YRLAC0784	6633721	358661	63	-90	360			N:	SA>0.1g/t	Au
YRLAC0789	6633858	358452	66	-90	360			N:	SA>0.1g/t	Au
YRLAC0794	6633943	358687	89	-90	360	87	88	1	0.1	
YRLAC0796	6633978	358781	108	-90	360			N:	SA>0.1g/t	Au
YRLAC0798	6634080	358478	59	-90	360			N:	SA>0.1g/t	Au
YRLAC0800	6634114	358572	85	-90	360	30	31	1	0.1	
						65	66	1	0.6	0.6
						84	85	1	0.1#	EOH
YRLAC0801	6634131	358619	96	-90	360	90	91	1	0.3	
YRLAC0805	6634268	358409	88	-90	360	4	5	1	0.2	
YRLAC0801	6634131	358619	96	-90	360	90	91	1	0.3	
YRLAC0805	6634268	358409	88	-90	360	4	5	1	0.2	
YRLAC0806	6634285	358456	68	-90	360			N:	SA>0.1g/t /	Au
YRLAC0807	6634302	358503	57	-90	360			N:	SA>0.1g/t	Au
YRLAC2013	6634259	358678	90	-90	360			N:	SA>0.1g/t	Au
YRLAC2014	6634242	358631	89	-90	360	88	89	1	0.1*#	ЕОН
YRLAC2015	6634225	358584	72	-90	360			N:	SA>0.1g/t	
YRLAC2016	6634208	358537	84	-90	360	52	56	4	0.6*	0.6*
						64	68	4	0.1*	0.2*
YRLAC2017	6634191	358490	63	-90	360			N:	SA>0.1g/t	Au

	I		I							
Hole Id	North (m)	East (m)	Depth (m)	Dip (Deg.)	Azi. (Deg.)	From (m)	To (m)	Interval (m)	Au1 g/t (AR50)	Au2 g/t (AR50)
YRLAC2018	6634174	358443	66	-90	360	44	48	4	0.2*	0.2*
YRLAC2019	6634157	358397	66	-90	360			NS	SA>0.1g/t A	Au
YRLAC2020	6634072	358747	79	-90	360			NS	SA>0.1g/t A	Αu
YRLAC2021	6634054	358700	90	-90	360	80	90	10	0.1#	EOH
YRLAC2022	6634037	358653	81	-90	360			NS	SA>0.1g/t /	∖ u
YRLAC2023	6634020	358606	72	-90	360	20	24	4	0.3	0.3
YRLAC2024	6634003	358559	72	-90	360			NS	SA>0.1g/t A	A u
YRLAC2025	6633986	358512	72	-90	360			NS	SA>0.1g/t A	λu
YRLAC2026	6633969	358465	90	-90	360	80	84	4	0.1	0.1
YRLAC2027	6633952	358418	90	-90	360	52	60	8	0.1	0.1
YRLAC2028	6633867	358768	90	-90	360			NS	SA>0.1g/t A	λu
YRLAC2029	6633849	358721	69	-90	360			NS	SA>0.1g/t A	Αu
Andrews Pros	spect AC Inte	ervals (>0.	1g/t Au)	•				•		
YRLAC0704	6632040	360178	28	-60	240			NS	SA>0.1g/t A	λu
YRLAC0705	6632065	360222	40	-60	240	35	37	2	0.6	=
				inclu	ding	35	36	1	8.0	8.0
YRLAC0708	6632140	360351	32	-60	240			NS	SA>0.1g/t A	λu
YRLAC0716	6631909	360312	105	-60	240	57	61	4	1.0	
				inclu	ding	57	58	1	1.4	1.5
				inclu	ding	60	61	1	1.3	1.3
YRLAC0717	6631934	360355	46	-60	240			NS	SA>0.1g/t /	∖ u
YRLAC0718	6631959	360398	66	-60	240	61	62	1	0.2	
						65	66	1	0.1#	EOH
YRLAC0720	6632009	360485	48	-60	240			NS	SA>0.1g/t A	∖ u
YRLAC0721	6632034	360528	67	-60	240	60	62	2	0.5	=
				inclu	ding	60	61	1	8.0	0.9
YRLAC0722	6632059	360571	75	-60	240			NS	SA>0.1g/t A	 u
YRLAC0723	6632084	360615	36	-60	240	34	36	2	0.1#	EOH
YRLAC0726	6631653	360228	39	-60	240			NS	SA>0.1g/t A	∖ u
YRLAC0729	6631728	360358	88	-60	240	73	75	2	0.3	
						87	88	1	0.1#	0.2#
YRLAC0730	6631753	360402	85	-60	240	71	72	1	0.1	
YRLAC0731	6631778	360445	32	-60	240			NS NS	SA>0.1g/t /	Au
YRLAC0733	6631828	360531	58	-60	240	52	54	2	0.1	
YRLAC0734	6631853	360575	70	-60	240	59	60	1	0.1	
YRLAC0735	6631878	360618	36	-60	240			NS NS	SA>0.1g/t /	Au
YRLAC0739	6631397	360145	50	-60	240	15	16	1	0.4	
						46	47	1	0.2	
YRLAC0740	6631422	360188	48	-60 inclu	240 ding	27 30	32 31	5 1	1.1 3.3	3.4
YRLAC0741	6631447	360232	27	-60	240	26	27	1	0.4#	ЕОН
YRLAC0742	6631472	360275	66	-60	240	61	62	1	0.1	
YRLAC0742	6631497	360318	60	-60	240	54	55	1	0.1	
YRLAC0745	6631547	360405	78	-60	240	71	72	1	0.1	
YRLAC0746	6631572	360448	74	-60	240				SA>0.1g/t /	Au
YRLAC0749	6631647	360578	45	-60	240	13	14	1	0.2	
	1 220.017	2300.0					• •	1 '		l .

			I	ı						
Hole Id	North (m)	East (m)	Depth (m)	Dip (Deg.)	Azi. (Deg.)	From (m)	To (m)	Interval (m)	Au1 g/t (AR50)	Au2 g/t (AR50)
YRLAC0750	6631672	360621	43	-60	240	17	18	2	0.1	
						41	43	2	0.1#	EOH
YRLAC0751	6631697	360665	69	-60	240	64	68	4	0.2	
				inclu	ding	67	68	1	0.4	0.5
Bradman Pros	spect AC Int	ervals (>0.	1g/t Au)							
YRLAC0763	6631341	360408	69	-60	240			NS	SA>0.1g/t /	٩u
YRLAC0764	6631366	360452	77	-60	240	56	61	5	0.1	
YRLAC0765	6631391	360495	72	-60	240			NS	SA>0.1g/t /	Чu
YRLAC0766	6631416	360538	68	-60	240	65	68	3	0.3#	EOH
YRLAC0767	6631441	360582	65	-60	240	60	62	2	0.3	
YRLAC0768	6631466	360625	63	-60	240			NS	SA>0.1g/t /	4u
YRLAC0769	6631491	360668	65	-60	240	57	58	1	0.2	
						61	62	1	0.2	
YRLAC0834	6630730	360069	45	-60	240	1	3	2	0.1	
YRLAC0835	6630755	360112	60	-60	240	0	1	1	0.1	0.1
						48	49	1	0.2	0.2
						58	59	1	0.1	
YRLAC0836	6630780	360155	63	-60	240	1	2	1	0.1	0.1
YRLAC0837	6630805	360199	54	-60	240			NS	SA>0.1g/t /	Au
YRLAC0838	6630830	360242	60	-60	240	0	4	4	0.2	
YRLAC0839	6630855	360285	48	-60	240	0	2	2	0.1	
YRLAC0840	6630880	360329	60	-60	240			NS	SA>0.1g/t /	Au
YRLAC0841	6630905	360372	72	-60	240			NS	SA>0.1g/t /	Αu
YRLAC0842	6630930	360415	41	-60	240	38	39	1	0.3	0.3
YRLAC0843	6630955	360458	30	-60	240			NS	SA>0.1g/t /	Au
YRLAC0844	6630980	360502	43	-60	240	42	43	1	0.1#	EOH
YRLAC0845	6631005	360545	38	-60	240			NS	SA>0.1g/t /	 u
YRLAC0846	6631030	360588	40	-60	240			NS	SA>0.1g/t /	Αu
YRLAC0847	6631055	360632	48	-60	240			NS	SA>0.1g/t /	Αu
YRLAC0848	6630643	360638	36	-60	240			NS	SA>0.1g/t /	Αu
YRLAC0849	6630668	360682	36	-60	240			NS	SA>0.1g/t /	Αu
YRLAC0850	6630693	360725	23	-60	240			NS	SA>0.1g/t /	Αu
YRLAC0851	6630418	360249	26	-60	240	0	1	1	0.1	
YRLAC0852	6630443	360292	27	-60	240	1	2	1	0.1	
YRLAC0853	6630468	360335	34	-60	240			NS	SA>0.1g/t /	Au
YRLAC0854	6630493	360379	31	-60	240			NS	SA>0.1g/t /	Au
YRLAC0855	6630518	360422	41	-60	240	0	2	2	0.1	
YRLAC0856	6630543	360465	44	-60	240	24	25	1	0.1	
YRLAC0833	6633322	358666	63	-90	360	58	60	2	0.3	

Notes to Tables 1-3; 1. An accurate dip and strike and the controls on mineralisation are only interpreted and the true width of mineralisation is unknown at this stage. 2. For AC and RC drilling, 4m composite samples are submitted are analysed using a 50g Aqua Regia digest with Flame AAS gold finish (0.01ppm detection limit), for DD drilling samples are analysed using a 50g fire assay with ICP-MS finish gold analysis (0.01ppm detection limit) by Aurum Laboratories in Beckenham, Western Australia. 3. Au1 is the original assay, Au2 is the highest grade from duplicate or repeat samples if they have been completed. 4. g/t (grams per tonne). 5. Intersections are calculated over intervals >0.10g/t or as indicated. 6. Drill type AC = Air-core, RC = Reverse Circulation, DD = Diamond. 7. Coordinates are in GDA94, MGA Z51. 8. # denotes an end of hole assay. 9. ABD denotes hole abandoned before target depth. 10. NSA denotes no significant assay. 11. * denotes a 4m composite assay unless otherwise indicated.

About Yandal Resources Limited

Yandal Resources listed on the ASX in December 2018 and has a portfolio of advanced gold exploration projects in the highly prospective Yandal and Norseman-Wiluna Greenstone Belts of Western Australia.

Yandal Resources' Board has a track record of successful discovery, mine development and production.

November 2020 Mineral Resource Estimate Summary Table - Flushing Meadows Gold Deposit

Material Indicated					Inferred			Total			
Туре	Tonnes	Au (g/t)	Oz	Tonnes	Au (g/t)	Oz	Tonnes	Au (g/t)	Oz		
Laterite	89,853	1.26	3,631	86,671	1.23	3,422	176,524	1.24	7,054		
Oxide	2,015,900	1.33	86,071	2,246,845	1.10	79,389	4,262,745	1.21	165,420		
Transition	35,223	1.20	1,360	1,160,471	1.10	40,966	1,195,695	1.10	42,325		
Fresh				1,751,484	0.95	53,440	1,751,484	0.95	53,440		
Total	2,140,976	1.32	91,062	5,245,471	1.05	177,217	7,386,448	1.13	268,352		

^{*} Reported above 0.5g/t Au lower cut-off grade, refer to Yandal Resources Ltd ASX announcement dated 4 November 2020 for full details.

Competent Person Statement

The information in this document that relates to Exploration Results, geology and data compilation is based on information compiled by Mr Trevor Saul, a Competent Person who is a Member of The Australasian Institute of Mining and Metallurgy. Mr Saul is the Exploration Manager for the Company, is a full-time employee and holds shares and options in the Company.

Mr Saul has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Saul consents to the inclusion in this announcement of the matters based on this information in the form and context in which it appears.

The information in this announcement that relates to the Flushing Meadows Mineral Resource Estimate is based on information compiled and generated by Andrew Bewsher, an employee of BM Geological Services Pty Ltd ("BMGS"). Both Andrew Bewsher and BMGS hold shares in the company. BMGS consents to the inclusion, form and context of the relevant information herein as derived from the original resource reports. Mr Bewsher has sufficient experience relevant to the style of mineralisation and type of deposit under consideration and to the activity which is being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the JORC 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'.

Appendix 1 – Gordons Gold Project JORC Code (2012) Table 1, Section 1 and 2

Mr Trevor Saul, Exploration Manager of Yandal Resources compiled the information in Section 1 and Section 2 of the following JORC Table 1 and is the Competent Person for those sections. The following Table and Sections are provided to ensure compliance with the JORC Code (2012 edition) requirements for the reporting of Mineral Resources.

Section 1 Sampling Techniques and Data

Criteria	JORC Code explanation	Commentary
Sampling techniques	Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling.	 4m composite samples taken with a sample scoop thrust into the RC sample bag which is laid out in individual metres in a plastic bag on the ground. 1m single splits taken using a cone splitter at time of drilling, if 4m composites are anomalous (>100-200ppb or lower depending on location), 1m single splits are submitted for analyses. Average sample weights about 3.0kg for 4m composites and 2.0-3.0kg for 1m samples. For AC drilling samples laid out on the ground and sampled as above. Average weights are 2.0-3.0kg for composites and 3.0-4.0kg for singles. For diamond drilling ("DD") HQ or NQ is cut in half and assayed.
	Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.	 For RC and AC drilling regular air and manual cleaning of cyclone to remove hung up clays where present. For all drilling methods, regular standards are submitted during composite analysis and standards, blanks and duplicates for 1m samples. Based on statistical analysis and cross checks o these results, there is no evidence to suggest the samples are not representative. Standards & replicate assays taken by the laboratory.
	Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information.	 AC, RC and DD drilling was used to obtain 1m samples (or smaller in the case of DD) from which approximately 2.0-3.0kg sample was pulverised to produce a 50g Aqua Regia digest with Flame AAS gold finish (0.01ppm detection limit) for AC samples and a 50g fire assay with ICP-MS (inductively coupled plasma - mass spectrometry) finish gold analysis (0.01ppm detection limit) for RC/DD samples by Aurum Laboratories in Beckenham, Western Australia. Samples assayed for Au, As, Cu, Pb, Zn and Ag for AC composites and Au only for RC and DD. Drilling intersected oxide, transitional and primary mineralisation to a maximum drill depth below 250m.
Drilling techniques	Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	• RC drilling with a 4' ½ inch face sampling hammer bit. AC drilling used a 3' ½ inch blade bit. DD drilling used a roller bit down to hard then HQ and NQ sized rods.
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	 RC) for individual meters. Estimates of sample recoveries were recorded. Routine checks for correct sample depths are undertaken every RC rod (6m). DD recoveries were estimated by the drillers and written on core blocks. RC sample recoveries were visually checked for recovery, moisture and contamination. The cyclone was routinely cleaned ensuring no material build up.

Criteria	JORC Code explanation	C	ommentary
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections	•	RC, AC and DD logging is routinely completed on one metre intervals at the rig or yard by the geologist. The log was made to standard logging descriptive sheets and transferred into Micromine software on a computer once back at the office. Logging was qualitative in nature. All intervals logged for AC and RC drilling completed during drill program with a representative sample placed into chip trays.
	logged.		
Sub-sampling techniques	If core, whether cut or sawn and whether quarter, half or all core taken.		DD, AC and RC samples taken. AC and RC samples were collected from the drill rig by spearing each 1m collection bag (RC) or from
and sample preparation	If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.	•	the ground (AC) and compiling a 4m composite sample. Single splits were automatically taken by the rig cone splitter for RC. Wet or dry samples were noted in the logs. For Yandal Resources Ltd samples, duplicate 1m samples were taken in the field, with standards and
	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	•	blanks inserted with the 1m and 4m samples for analyses. 1m samples were consistent and weighed approximately 3.0-4.0kg for RC (2.0-3.0kg for AC) and it is
	Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.	•	common practice to review 1m results and then review sampling procedures to suit. Once samples arrived in Perth, further work including duplicates and QC was undertaken at the laboratory. Yandal Resources Ltd has determined that at the Gordons Dam prospect there is sufficient
	Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.		data for a MRE and an initial one is planned upon completion upon receipt of all pending results and QA/QC re-sample and re-assay programs (however the deposit is open in many directions). Mineralisation mostly occurs within intensely oxidised saprolitic and palaeochannel clays after altered
	Whether sample sizes are appropriate to the grain size of the material being sampled.		mafic, porphyry and felsic rocks (typical greenstone geology). The sample size is standard practice in the WA Goldfields to ensure representivity.
Quality of assay data and	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	•	The composite 4m AC samples were assayed using a 50g Aqua Regia digest with Flame AAS gold finish (0.01ppm detection limit) finish Au, Ag, As, Cu, Pb and Zn analysis (0.01ppm detection limit) by Aurum Laboratories in Beckenham, Western Australia for gold only. Initial 4m samples were assayed
laboratory tests	For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	•	by Aqua Regia with fire assay checks (0.01ppm detection limit). RC and DD sampling assayed for Au only. No geophysical assay tools were used. Laboratory QA/QC involves the use of internal lab standards using certified reference material, blanks, splits and replicates as part of the in-house procedures. QC results (blanks, duplicates, standards) were
	Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.		in line with commercial procedures, reproducibility and accuracy. These comparisons were deemed satisfactory. Some re-splitting with an onsite three-tier riffle splitter has been undertaken in the palaeochannel area for analyses from RC samples. A number of samples have been selected for future metallurgical testing. A number of 1m residues from RC assays are planned to be analysed at other laboratories for comparison.
Verification of sampling and	The verification of significant intersections by either independent or alternative company personnel.	•	Work was supervised by senior Aurum Laboratory staff experienced in metals assaying. QC data reports confirming the sample quality have been supplied.
assaying	The use of twinned holes.	•	Data storage as PDF/XL files on company PC in the Perth office. No data was adjusted.
	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	•	Significant intercepts are reported in Table 1 by Mr Trevor Saul of Yandal Resources and were generated by compositing to the indicated downhole thickness. A 30ppb Au lower cut-off was used for AC results (0.10g/t Au for RC and DD) and intersections generally calculated with a maximum of 2m of

Criteria	JORC Code explanation	Co	ommentary
	Discuss any adjustment to assay data.		internal dilution.
Location of data points Data spacing	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. Data spacing for reporting of Exploration Results.	•	All drill collar locations were initially pegged and surveyed using a hand held Garmin GPS, accurate to within 3-5m. Holes were drilled at various spacings dependent on prospect assessment. All reported coordinates are referenced to the GDA. The topography is very flat at the location of the Gordons Dam prospect. Down hole surveys utilised a proshot camera at the end of hole plus every 30m while pulling out of the hole. Grid MGA94 Zone 51. Topography is very flat, small differences in elevation between drill holes will have little effect on mineralisation widths on initial interpretation. All new holes and some available historic holes have been surveyed by DGPS as well as a surveyed topographical surface for compilation of MRE's. The topographic surface has been generated by using the hole collar surveys. It is considered to be of sufficient quality to be valid for this stage of exploration.
and distribution	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied.	•	Holes were variably spaced in accordance with the collar details/coordinates supplied in Table 1. The hole spacing was determined by the Company to be sufficient when combined with confirmed historic drilling results to explore effectively. The sample spacing and the appropriateness of each hole to be included to make up data points for a Mineral Resource has not been determined. It will depend on results from all the drilling and geological interpretations when complete.
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	•	No, drilling angle or vertical holes is deemed to be appropriate to intersect the supergene mineralisation and potential residual dipping structures and is appropriate for the current stage of the prospects. At depth angle holes have been used to intersect the interpreted dipping lodes. True widths are often calculated depending upon the geometry. The relationship between the drilling orientation and the orientation of mineralised structures is not considered to have introduced a sampling bias. Given the style of mineralisation and drill spacing/method, it is the most common routine for delineating shallow gold resources in Australia. Angle holes are the most appropriate for exploration style and Resource style drilling for the type and location of mineralisation intersected.
Sample security	The measures taken to ensure sample security.	•	Samples were collected on site under supervision of the responsible geologist. The work site is on a pastoral station. Once collected samples were wrapped and transported to Perth for analysis. Dispatch and consignment notes were delivered and checked for discrepancies. Sample security for historical samples was highly variable and dependent on the exploration company however most of the companies working in the area are considered leaders in improving the sample security, QAQC procedures and exploration procedures.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	•	No Audits have been commissioned.

Section 2 Reporting of Exploration Results

Criteria	JORC Code explanation	Сс	ommentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	•	The new drilling was conducted on the following tenements; Gordons Project – M27/502, P27/2214, P27/2338, P27/2339, E27/601 and E27/570. The tenements are 100% owned by the Company. The tenements are in good standing and no known impediments exist. E27/570 is subject to a Net Smelter Royalty ("NSR") of 2%, being payable to PVW Resources Ltd on all product mined from the tenement. Tenements E24/198, P27/2206, E27/536, M27/237 ("Mulgarrie North Tenements") and E27/601, P27/2325, P27/2331, P27/2340-41, P27/2355-64 are subject to Heads of Agreement announced on 11 November 2021 with Moho Resources Ltd ("Moho"). Should the deal be executed in full, Moho will own 100% of the Ni-Cu-Co-PGE minerals produced and Yandal will retain a 100% interest in the gold and
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	•	related metals and a 1% NSR on the Ni-Cu-Co-PGE minerals produced. Previous workers in the area include among others, North Ltd, Delta Gold Ltd, Aurion Gold Ltd, Placer Dome Asia Pacific, Barminco Investments, Mt Kersey Mining NL, Gutnick Resources NL, Pacific Arc Exploration, Geopeko, Flinders Resources Ltd, Kesli Chemicals Pty Ltd and Windsor Resources NL.
Geology	Deposit type, geological setting and style of mineralisation.	•	Archaean Orogenic Gold mineralisation hosted within the Boorara domain of the Kalgoorlie Terrane within the Norseman-Wiluna Archaean greenstone belt. The granite-greenstone belt is approximately 600 km long and is characterised by very thick, possibly rift controlled accumulations of ultramafic, mafic and felsic volcanics, intrusive and sedimentary rocks. It is one of the granite / greenstone terrains of the Yilgarn Craton of WA.
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: • easting and northing of the drill hole collar • elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar • dip and azimuth of the hole • down hole length and interception depth • hole length.	•	See Table 1. All holes reported from the current program are listed in Table 1 or can be viewed in Yandal's other ASX releases during 2019-2021. Other hole collars in the immediate area of the Gordons Dam prospect have been included for diagrammatic purposes and Mr Saul considers listing all of the drilling details is prohibitive and would not improve transparency or materiality of the report. Plan view diagrams are shown in the report of all drilling collars in close proximity to the new drilling for exploration context in Figures 2-5. No information is excluded.
	If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.		
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	•	No weighting or averaging calculations were made, assays reported and compiled are as tabulated in Table 1. All assay intervals reported in Table 1 are typically 1m downhole intervals above 0.10g/t Au lower cut-off for RC/DD drilling (interval width as indicated for DD drilling). For AC drilling the interval is composited downhole interval as indicated above a 30ppb Au lower cut-off. There is occasionally small samples such as 1m or 2m when the hole was completed to depth that was not a multiple of 4 for AC drilling. No metal equivalent calculations were applied.

Criteria	JORC Code explanation	Commentary
	The assumptions used for any reporting of metal equivalent values should be clearly stated.	
Relationship between mineralisatio n widths and intercept lengths	These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known').	 Oxide and Transitional mineralisation is generally flat lying (blanket like) while mineralisation at depth is generally steeper dipping. Further orientation studies are required. Drill intercepts and true width appear to be close to each other, or within reason allowing for the minimum intercept width of 1m. Yandal Resources Ltd estimates that the true width is variable but probably around 80-100% of the intercepted widths. Given the nature of AC and RC drilling, the minimum width and assay is 1m. Given the highly variable geology and mineralisation including supergene mineralisation and structurally hosted gold mineralisation there is no project wide relationship between the widths and intercept lengths.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	See Figures 2-5 and Table 1.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	 Summary results for all holes as 4m AC assays > 0.1g/t Au are shown in Table 1, all holes as 1m or less RC/DD assays > 0.10g/t Au for the current drilling. Diagrammatic results are shown in Figures 2-5.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	 There have been no historical Mineral Resource Estimates. There has been no historic mining at the Gordons Dam or Malone prospects as they are new discoveries. There has been minor historic (early 1900's) underground workings on a number of lodes in proximity to the Star of Gordon prospect.
Further work	The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling).	 Additional exploration including AC, RC and DD drilling and or geophysical surveys to advance known prospects is warranted. Additional exploration drilling is likely if new programs can be approved by the Company.
	Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	