

ASX ANNOUNCEMENT 8 March 2022

Stavely Copper-Gold Project – Resource Drilling Update

Outstanding Wide Copper-Gold Intercept at Cayley Lode Points to Significant Upside at Depth

Extreme high-grade drill intersections of up to 19.65% copper, 8.29g/t gold and 202g/t silver and another interval with over 1.2kg per tonne silver below the Low Angle Structure

- Diamond drill-hole SMD173, designed to test the south-easterly plunge of the Cayley Lode mineralisation below the Low-Angle Structure, has intersected a 92.1m zone of inter-fingered micro-diorite and Cayley Lode sulphide mineralisation.
- ➤ In a travesty of nature, the +90m interval of lode-style mineralisation is intruded by a 36.7m interval of inter-fingered late, barren micro-diorite, potentially displacing an even broader intersection of lode-style mineralisation.
- The post-intrusion remnant mineralisation includes an upper portion of:
 - o 3m at 3.81% Cu, 0.11g/t Au and 457g/t Ag from 328m down-hole, including:
 - 1.10m at 2.53% Cu, 0.10g/t Au and 1,225g/t silver
- > And a lower intercept of:
 - 43m at 2.60% Cu, 0.42g/t Au and 10g/t Ag from 378m down-hole, including:
 - 3m at 10.38% Cu, 3.00g/t Au and 71g/t Ag, from 396m, including:
 - 1m at 19.65% Cu, 8.29g/t Au and 202g/t Ag from 397m.
- ➤ This lower intersection is amongst the top 10 intersections recorded to date in the Cayley Lode.
- ➤ The broad, high-grade intercept in SMD173 provides further confidence in the interpreted south-easterly plunge of mineralisation and, significantly, that some very high-grade mineralisation continues to depths that may be available for potential future underground development.
- ➤ The deepest mineralised intersections in the Thursday's Gossan Project are in excess of 1,000m drill depth¹, representing a substantial long-term exploration opportunity to unlock the potential of a vertically extensive Butte/Magma-style lode system.
- Final phase of resource drilling targeting the shallow Cayley Lode mineralisation now nearing completion, with the maiden JORC Mineral Resource on track for Q2 2022.

¹ See ASX announcement 18 June 2019 – SMD045, 16m at 1.30% Cu, 0.15g/t Au and 2.8g/t Ag from 1,077m down-hole

ASX Code: SVY
Shares on issue: 261M
Market capitalisation: \$99M
Cash: \$8.9M (31 December 2021)
ABN 33 119 826 907

Stavely Minerals Limited (ASX Code: **SVY** – "Stavely Minerals") is pleased to report outstanding new results from drilling targeting deeper extensions of the mineralisation in the south-western sector of the Cayley Lode deposit, part of its 100%-owned **Stavely Copper-Gold Project** in western Victoria (Figure 1).

Diamond drill hole SMD173, drilled from the southern paddock south of the railway, was designed to target the Cayley Lode at depth below the Low-Angle Structure (Figures 2, 3 and 4). The intention was to test the south-easterly plunge of high-grade copper-gold-silver mineralisation.

SMD173 has intersected an interval of inter-fingered micro-diorite and Cayley Lode sulphide mineralisation from 328.2m to 420.3m down-hole (Figure 5). The sulphides are variably massive to semi-massive sulphides to disseminated and veins of pyrite with variable abundances of copper sulphides including chalcopyrite, bornite and chalcocite.

Expedited assay results have returned two outstanding intercepts representing a cumulative total of 46 metres of strong copper-gold mineralisation including high-grade assays of up to 19.65% copper, 8.29g/t gold and 202g/t silver, with another interval returning a spectacular silver grade of more than 1.2kg per tonne silver (see discussion below and highlights above).

The significant results for SMD173, particularly considering that the mineralisation is intruded by a 36.7m interval of late, barren micro-diorite, highlight the significant growth potential for the Cayley Lode at depth below the Low-Angle Structure (Figure 2).

Future drilling will target extensions of this position and other opportunities at depth once the maiden JORC Mineral Resource estimate for the shallow part of the Cayley Lode has been completed.

The final phase of the resource drill-out for the Cayley Lode is nearing completion, with the Company on track to complete the extensional drilling in the south-western sector of the Cayley Lode in the next few months, paving the way for a maiden Mineral Resource Estimate (MRE) in Q2 2022.

Stavely Minerals' Chair and Managing Director, Mr Chris Cairns, said:

"The intersection of 92.1m of inter-fingered sulphide mineralisation may well be the longest down-hole intersection of mineralisation recorded at the Cayley Lode to date.

"The significance is that, if follow-up drilling is able to confirm the continuity of these types of widths of mineralisation along strike and up/down-dip, there is significant capacity for these intersections to contribute material additions to the upcoming Mineral Resource Estimate.

"Further, the observed mineralisation in SMD173 has very positive implications for what we have been describing as potential for a Phase 2 underground development. We have a lot of drilling and technical studies to do before we will be able to demonstrate any underground viability, but the foundational building block is demonstrating that the well-developed Cayley Lode copper-gold-silver mineralisation is down there, and a few more hits like this can add tonnes very quickly.

"In short, this is a very important drill hole which highlights the enormous long-term exploration opportunity across the broader project to delineate a vertically extensive Magma/Butte-style copper lode system. We have evidence from our earlier drilling that high-grade mineralisation occurs at depths of up to 1km below surface.

"Our challenge, once we post the maiden Mineral Resource Estimate and complete a Scoping Study on a potential Phase-1 open pit development at the Cayley Lode, is to systematically unlock this potential for what we believe could be a multi-decade copper operation in Western Victoria."

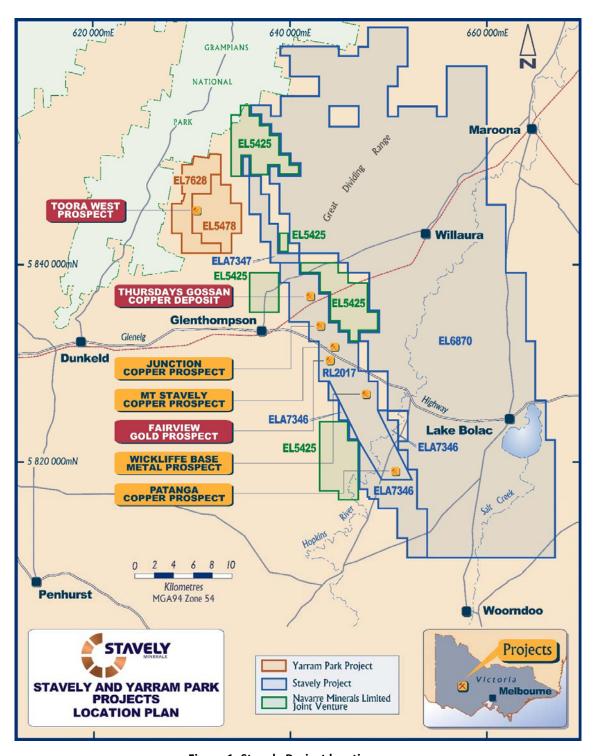


Figure 1. Stavely Project location map.

In a travesty of nature, but an unavoidable attribute of intrusive-related mineralisation styles (including Magma Lode-style copper-gold-silver mineralisation), the overall 92.1m interval is cut and pre-existing mineralisation potentially 'stoped-out' by a late, barren micro-diorite intrusion.

The result is an upper footwall zone of mineralisation that included:

- o 3m at 3.81% Cu, 0.11g/t Au and 457g/t Ag from 328m down-hole, including
 - 1.10m at 2.53% Cu, 0.10g/t Au and 1,225g/t silver from 328m

Of note is that unusually high abundances of silver, certainly in the kilogram per tonne ranges that are normally seen in association with the lead sulphide, galena. In this instance, the lead abundance is 17ppm, precluding the presence of galena. The modest gold grade also precludes electrum.

The deportment of the significant abundance of silver is subject to further investigations.

Below the late micro-diorite intrusion, a second thicker interval of lode-style mineralisation was encountered with:

- 43m at 2.60% Cu, 0.42g/t Au and 10g/t Ag from 378m down-hole, including
 - 3m at 10.38% Cu, 3.00g/t Au and 71g/t Ag, from 396m, including
 - 1m at 19.65% Cu, 8.29g/t Au and 202g/t Ag from 397m

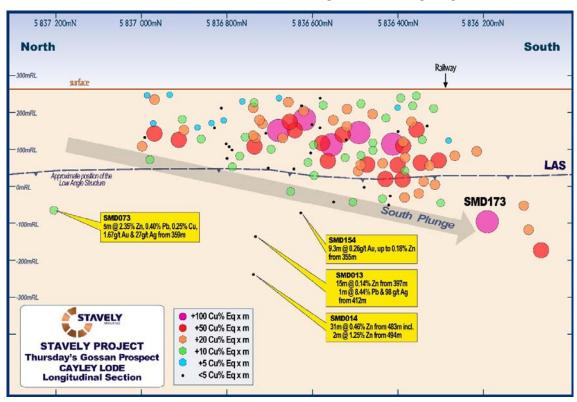


Figure 2. Cayley Lode long-section drill hole pierce points showing location of SMD173. Noting the peripheral base-metal / precious metal intercepts along strike and beneath the plunge of the well-developed copper-gold-silver lode-style mineralisation.

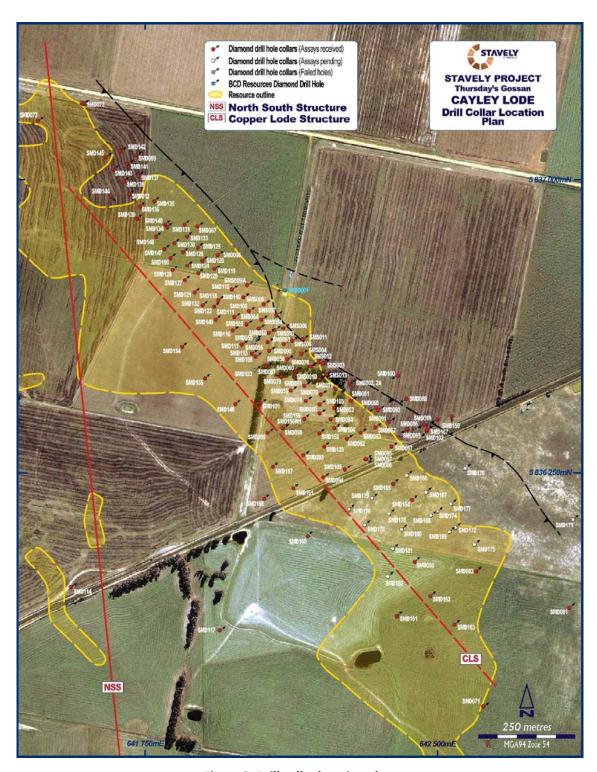


Figure 3. Drill collar location plan.

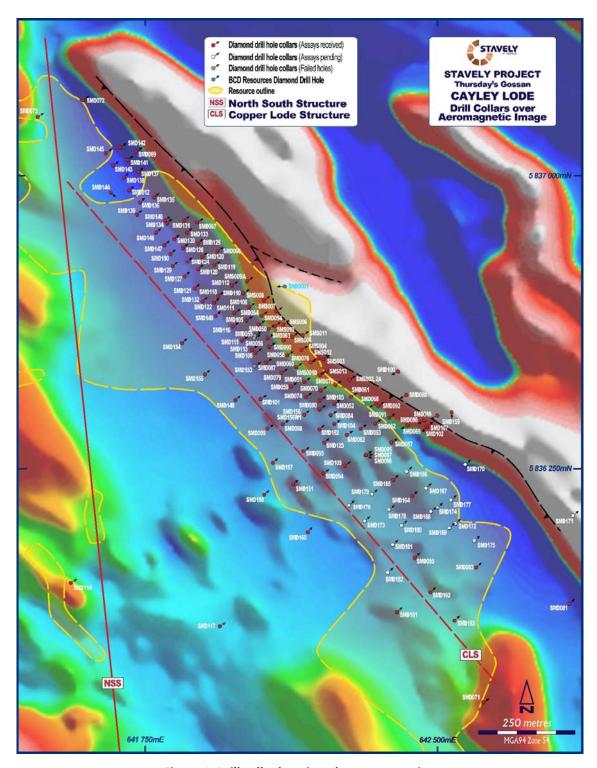


Figure 4. Drill collar location plan on magnetics.

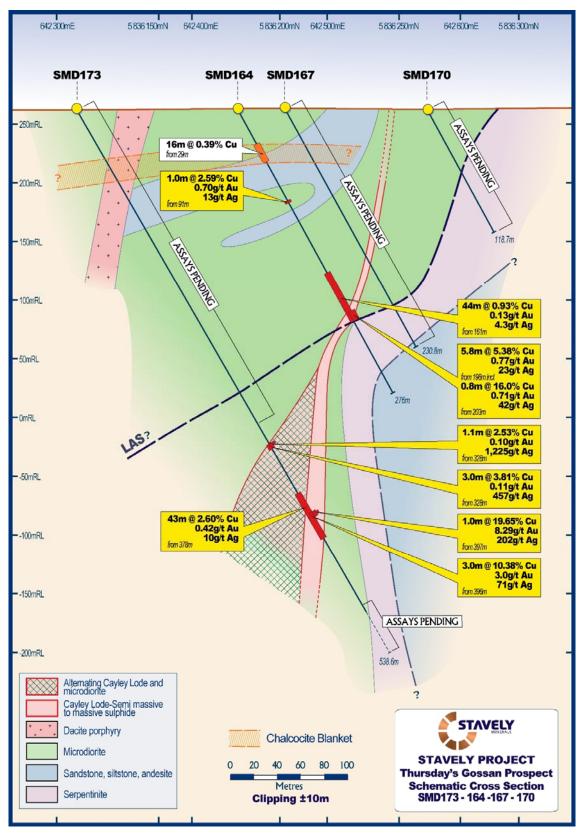


Figure 5. SMD173 drill section.

A series of photographs of the lower high-grade interval are presented in Photos 1 to 7 below, displaying a variety of mineralisation textures from this incredible mineral system. All core is HQ diameter and we will be sending a brand-new pencil to the geologist to use as a scale reference!

Photo 1. Chalcopyite+quartz-filled fractures in chlorite+quartz-altered micro-diorite. 390.6m.

Photo 2. Semi-massive sulphide. Pyrite+chalcopyrite in hematite+quartz rock. 395.6m.

Photo 3. Massive chalcopyrite with bornite. 397.5m.

Photo 4. Semi-massive sulphide. Pyrite+chalcopyrite in hematite+quartz+chlorite rock. 399.0m.

Photo 5. Massive pyrite with chalcopyrite bands. 399.9m.

Photo 6. Semi-massive sulphide. Chalcopyrite+pyrite+quartz+hematite. Unusual texture of crosscutting specular hematite and quartz veins. 416.1m.

Photo 7. Massive chalcopyrite intergrowth with quartz+hematite gangue. 419.9m.

Yours sincerely,

Chris Cairns

Executive Chair and Managing Director

The information in this report that relates to Exploration Targets, Exploration Results, Mineral Resources or Ore Reserves is based on information compiled by Mr Chris Cairns, a Competent Person who is a Fellow of the Australian Institute of Geoscientists and a Fellow of the Australasian Institute of Mining and Metallurgy. Mr Cairns is a full-time employee of the Company. Mr Cairns is Executive Chair and Managing Director of Stavely Minerals Limited and is a shareholder and option holder of the Company. Mr Cairns has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Cairns consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

Authorised for lodgement by Chris Cairns, Executive Chair and Managing Director.

For Further Information, please contact:

Stavely Minerals Limited Media Inquiries:

Phone: 08 9287 7630 Nicholas Read – Read Corporate

Email: info@stavely.com.au Phone: 08 9388 1474

			МО	SA 94 zone 54			
Hole id	Hole Type	East	North	Dip/ Azimuth	RL (m)	Total Depth (m)	Comments
SMD050	DD	642070	5836609	-60/59.5	264	132.6	
SMD051	DD	642160	5836476	-60/59.5	264	220.9	
SMD052	DD	642238	5836421	-60/59.5	264	271.7	
SMD053	DD	642302	5836355	-60/59.5	264	273.6	
SMD054	DD	642048	5836641	-60/59.5	264	245.5	
SMD055	DD	642032	5836595	-60/59.5	264	169.9	Hole failed prior to target depth
SMD056	DD	642031	5836590	-60/59.5	264	185.8	Hole failed prior to target depth
SMD057	DD	642386	5836309	-60/59.5	264	242.2	
SMD058	DD	642115	5836542	-60/59.5	264	140.5	
SMD059	DD	642122	5836461	-60/59.5	264	317.8	
SMD060	DD	642137	5836508	-60/59.5	264	203.2	
SMD061	DD	642276	5836435	-60/59.5	264	219.5	
SMD062	DD	642337	5836367	-60/59.5	264	227.70	
SMD063	DD	642063	5836585	-60/59.5	264	162.7	
SMD064	DD	642041	5836619	-60/59.5	264	184.9	
SMD065	DD	642427	5836356	-60/239.5	264	350	
SMD066	DD	641936	5836807	-60/59.5	264	294	
SMD067	DD	641884	5836880	-60/59.5	264	236	
SMD068	DD	642342	5836414	-60/239.5	264	342	
SMD069	DD	641725	5837063	-60/59.5	264	130.7	
SMD070	DD	642199	5836451	-60/59.5	264	399.6	
SMD071	DD	642616	5835650	-60/59.5	264	562.6	Re-entered 1 June 2021
SMD072	DD	641585	5837196	-60/59.5	264	100.9	
SMD073	DD	641473	5837155	-60/59.5	264	409.9	
SMD074	DD	642162	5836437	-60/59.5	264	302	
SMD076	DD	642174	5836523	-60/59.5	264	198.4	
SMD078	DD	642237	5836464	-60/59.5	264	274.9	
SMD079	DD	642099	5836496	-60/59.5	264	306.7	
SMD080	DD	642196	5836406	-60/59.5	264	309.3	
SMD081	DD	642837	5835899	-60/51	268	197	
SMD082	DD	642264	5836342	-60/59.5	264	313.4	
SMD083	DD	642599	5835995	-60/49.5	264	433.1	
SMD084	DD	642236	5836364	-60/59.5	264	278.1	
SMD085	DD	642444	5836022	-60/49.5	264	522.3	
SMD086	DD	642465	5836370	-60/239.5	264	385.9	
SMD087	DD	642060	5836522	-60/59.5	264	268.3	
SMD089	DD	642502	5836384	-60/239.5	262	502.1	

			МС	GA 94 zone 54			
Hole id	Hole Type	East	North	Dip/ Azimuth	RL (m)	Total Depth (m)	Comments
SMD090	DD	642068	5836563	-60/59.5	262	213.8	
SMD091	DD	642374	5836383	-60/59.5	262	191	
SMD092	DD	642346	5836411	-60/59.5	262	222	
SMD093	DD	642153	5836294	-60/59.5	262	515.1	
SMD093W1	DD	642153	5836294	-60/57.4	262	339.1	SMD093W1 is wedged off SMD093 in order to recover lost core through the Cayley Lode in SMD093
SMD094	DD	642205	5836237	-60/59.5	262	608.3	, ,
SMD094W1	DD	642205	5836237	-60/57.0	262	281.1	SMD094W1 is wedged off SMD094 in order to recover lost core through the Cayley Lode in SMD093
SMD095	DD	642205	5836237	-60/59.5	262	304.6	
SMD096	DD	642319	5836284	-60/71.5	262	287.7	
SMD097	DD	642319	5836284	-60/88.5	262	298.6	
SMD098	DD	642102	5836364	-60/59.5	262	449.1	
SMD099	DD	642063	5836352	-60/59.5	262	531	
SMD100	DD	642396	5836495	-60/239	259	451.8	
SMD101	DD	642044	5836427	-70/59	260	379.7	
SMD102	DD	642471	5836355	-60/223	260	350.6	
SMD103	DD	642196	5836425	-60/59	261	214.6	
SMD104	DD	642225	5836386	-60/59	261	285.6	
SMD105	DD	642009	5836628	-60/59	258	315.6	
SMD106	DD	642015	5836661	-60/59	258	193.8	
SMD107	DD	642471	5836359	-60/59	260	232.8	
SMD108	DD	642031	5836548	-60/59	260	310.7	
SMD109	DD	642261	5836257	-60/59	260	399.2	
SMD110	DD	642000	5836699	-60/59	260	252.4	
SMD111	DD	641977	5836648	-60/59	260	294.2	
SMD112	DD	641971	5836718	-60/59	260	274.4	
SMD113	DD	642031	5836553	-58/56	260	280.3	
SMD114	DD	641558	5835953	-65/59	260	1844.8	
SMD115	DD	641995	5836579	-60/59	261	296.3	
SMD116	DD	641972	5836613	-60/58	261	304.2	
SMD117	DD	641940	5835842	-60/58	261	1711.8	
SMD118	DD	641936	5836691	-60/52	261	247.9	
SMD119	DD	641927	5836771	-60/59	262	246.5	
SMD120	DD	641896	5836793	-62/58	261	233	
SMD121	DD	641875	5836711	-60/60	261	292.9	
SMD122	DD	641926	5836671	-60/58	261	292.6	
SMD123	DD	642209	5836316	-60/59	261	380.1	

			МС	SA 94 zone 54			
Hole id	Hole Type	East	North	Dip/ Azimuth	RL (m)	Total Depth (m)	Comments
SMD124	DD	641858	5836779	-60/59	261	242.8	
SMD125	DD	641885	5836827	-60/59	261	168.5	
SMD126	DD	641846	5836813	-60/59	257	248	
SMD127	DD	641849	5836739	-60/59	258	289.9	
SMD128	DD	641887	5836759	-60/59	257	256.5	
SMD129	DD	641821	5836766	-60/59	258	269.7	
SMD130	DD	641824	5836837	-60/59	260	234.5	
SMD131	DD	641851	5836885	-60/59	262	196.6	
SMD132	DD	641898	5836677	-60/53	261	302.8	
SMD133	DD	641858	5836854	-60/59	261	214.7	
SMD134	DD	641806	5836878	-60/59	261	184.6	
SMD135	DD	641773	5836945	-60/59	261	188.8	
SMD136	DD	641736	5836932	-60/59	261	273.4	
SMD137	DD	641731	5837009	-60/59	257	211	
SMD138	DD	641691	5836994	-60/59	258	249.3	
SMD139	DD	641728	5836900	-60/59	258	240.5	
SMD140	DD	641801	5836887	-60/59	257	264	
SMD141	DD	641704	5837042	-60/59	257	237.2	
SMD142	DD	641685	5837073	-60/59	257	232.9	
SMD143	DD	641665	5837027	-60/59	258	249.4	
SMD144	DD	641661	5836957	-60/130	259	279.4	
SMD145	DD	641648	5837059	-60/59	257	264.3	
SMD146	DD	641777	5836855	-60/59	257	298.9	
SMD147	DD	641799	5836823	-60/59	257	316.9	
SMD148	DD	641981	5836424	-60/59	257	651.5	
SMD149	DD	641930	5836640	-60/59	257	326.5	
SMD150	DD	641815	5836800	-60/59	257	278.5	
SMD151	DD	642129	5836210	-60/59	257	901.4	
SMD152	DD	642196	5836351	-60/59	257	354.2	
SMD153	DD	642029	5836513	-60/59	257	19.1	Abandoned
SMD154	DD	641845	5836570	-60/59	262	451	
SMD155	DD	641903	5836490	-60/59	262	463.6	
SMD156	DD	642157	5836387	-60/59	262	355.9	
SMD156W1	DD	642157	5836387	-60/59	262	291.1	
SMD157	DD	642077	5836264	-60/59	262	533.2	
SMD158	DD	642054	5836182	-60/59	262	669.4	
SMD159	DD	642536	5836394	-60/180	262	642.6	

Thursday's Gos		• •					
			MG	GA 94 zone 54			
Hole id	Hole Type	East	North	Dip/ Azimuth	RL (m)	Total Depth (m)	Comments
SMD160	DD	642167	5836085	-60/49	262	717.5	
SMD161	DD	642393	5835880	-60/49	262	718.7	
SMD162	DD	642480	5835930	-60/49	262	593.4	
SMD163	DD	642542	5835856	-60/49	262	630.8	
SMD164	DD	642433	5836177	-60/52	262	276	
SMD165	DD	642383	5836217	-60/50	262	267.3	
SMD166	DD	642418	5836238	-60/50	262	247.9	
SMD167	DD	642469	5836199	-60/50	262	232.3	
SMD168	DD	642483	5836138	-60/50	262	180.3	
SMD169	DD	642532	5836095	-60/50	263	260	
SMD170	DD	642573	5836258	-60/50	261	118.7	
SMD171	DD	642580	5836125	-60/50	262	247.6	
SMD172	DD	642547	5836125	-60/50	260	226.8	
SMD173	DD	642313	5836113	-60/50	262	538.6	
SMD174	DD	642500	5836147	-60/50	262	235.7	
SMD175	DD	642594	5836062	-60/50	262	233.7	
SMD176	DD	642271	5836155	-60/50	262	480.1	
SMD177	DD	642534	5836167	-60/50	262	198.5	
SMD178	DD	642374	5836143	-60/50	262	334.4	
SMD179	DD	642330	5836184	-60/50	262	317.6	
SMD180	DD	642408	5836101	-60/50	262	In Progress	
SMD181	DD	642383	5836050	-60/50	262	In Progress	
SMD182	DD	642372	5835979	-60/50	262	In Progress	
SMS001D	Sonic/DD	642197	5836489	-60/59.5	264	212	Failed to test target - drilled to east of Cayley Lode
SMS002AD	Sonic/DD	642275	5836478	-60/59.5	264	105.4	Failed to test target - drilled to east of Cayley Lode
SMS003	Sonic	642207	5836523	-60/59.5	264	97	Failed to test target - drilled to east of Cayley Lode
SMS004	Sonic	642150	5836555	-60/59.5	264	131.5	Failed to test target - drilled to east of Cayley Lode
SMS005	Sonic	642125	5836587	-60/59.5	264	85.5	
SMS006	Sonic	642102	5836620	-60/59.5	264	76	
SMS007	Sonic	642085	5836654	-60/59.5	264	64	
SMS008	Sonic	642055	5836680	-60/59.5	264	64	
SMS009	Sonic	642011	5836730	-60/59.5	264	54	Abandoned
SMS009A	Sonic	642011	5836730	-60/59.5	264	80	Re-drill of SMS009A
SMS010	Sonic	642083	5836614	-60/59.5	264	83	
SMS011	Sonic	642106	5836581	-60/59.5	264	88	
SMS012	Sonic	642193	5836530	-60/239.5	261	80	
SMS013	Sonic	642212	5836497	-60/234.5	262	58	

Thursday's	Gossan Pi	rospect – Ca	ayley Lode I	Intercept Tab	le								
		MGA 94 z	one 54				Interce	pt					
11-1-1-1	Hole	East	North	Dip/	RL	Total	From	То	Width	Cu	Au	Ag	Ni
Hole id	Туре	East	North	Azimuth	(m)	Depth (m)	(m)	(m)	(m)	(%)	(g/t)	(g/t)	(%)
SMD050	DD	642070	5836609	-60/59.5	264	132.6	19	28	9	0.32			
							62	94	32	5.88	1.00	58	
						Incl.	82	94	12	14.3	2.26	145	
						and	85	87	2	40	3.00	517	
							96.7	101.1	4.4				3.98
SMD051	DD	642160	5836476	-60/59.5	264	220.9	22	29	7	0.40			
							98	157	59	1.80	0.43	15.4	
						Incl.	106.6	115.1	8.5	4.38	0.87	32.7	
						and	134.0	137.0	3.0	5.66	0.29	4.60	
							177.0	185	8.0	9.69	0.40	16.8	
						Incl.	179.0	181.0	2.0	17.30	0.57	13.1	
SMD052	DD	642238	5836421	-60/59.5	264	271.7	25	92	67	0.38	0.10	2.5	
						Incl.	76	92	16	0.63	0.28	7.0	
						Incl.	77	84	7	0.98	0.23	12	
SMD053	DD	642302	5836355	-60/59.5	264	273.6	30	52	22	0.37			
							176	178	2	1.17	1.23	4.1	
							201	211.3	10.3	3.09	1.69	22.6	
						Incl.	202	207	5	5.81	3.20	43.6	
						and	203	204	1	8.42	1.77	97	
						and	204	205	1	2.91	8.69	23.9	
SMD054	DD	642048	5836641	-60/59.5	264	245.52	22	29	7	0.41			
							55	57	2	1.89	0.56	16	
							86	97	11	4.62	0.57	25	
						Incl.	90	97	7	7.10	0.72	39	
						Incl.	92	95	3	10.87	0.67	52	
							96	101	5				1.42
SMD055	DD	642032	5836595	-60/59.5	264	169.9	21.4	59	37.6	0.41			
						Incl.	24	29	5	1.00	0.32	7	
							78	83	5	1.37	0.17	8	
							156	157	1	1.18	0.72	8	
							162	163	1	3.64	0.60	43	
SMD056	DD	642031	5836590	-60/59.5	264	185.8	24	82	58	0.29			
						Incl.	79	82	3	1.68	0.18	8	
							157	165.3	8.3	1.65	0.23	7.2	
						Incl.	157	160	3	3.75	0.25	10.2	
SMD057	DD	642386	5836309	-60/59.5	264	242.2	26	37	11	0.32			

Thursday's	Gossan Pı	rospect – Ca	ayley Lode I	Intercept Tab	le								
		MGA 94 z	one 54				Interce	pt					
	Hole		T	Dip/	RL	Total	From	То	Width	Cu	Au	Ag	Ni
Hole id	Type	East	North	Azimuth	(m)	Depth (m)	(m)	(m)	(m)	(%)	(g/t)	(g/t)	(%)
SMD058	DD	642115	5836542	-60/59.5	264	140.5	19	48	29	0.37			
							68	91	23	1.34	0.26	3.5	
						Incl.	88	91	3	6.33	0.27	2.9	
SMD059	DD	642122	5836461	-60/59.5	264	317.8	21	22	1		3.15	25	
							22	39	17	0.41	0.23	4.5	
							197	202	5	3.28	0.27	13	
							235	253	18	1.00	0.10	3	
						Incl.	245.8	252.6	6.8	1.85	0.17	6	
SMD060	DD	642137	5836508	-60/59.5	264	203.2	19.2	135.4	102.3 ¹	0.68			
						Incl.	74	135.4	48.2 ²	1.04	0.31	14	
						Incl.	74	86	12	1.55	0.63	13	
						and	111	135.4	13.6 ³	1.90	0.38	33	
						Incl.	129	135.1	6.10	3.55	0.73	41	
							116.6	119	2.44				1.20
SMD061	DD	642276	586435	-60/59.5	264	219.5	160.2	164.5	4.3	2.06	0.44	23	
SMD062	DD	642337	5836367	-60/59.5	264	227.70	128	131	3.0	2.43	0.25	11	
							156	162	6.0	3.95	0.38	16	
						Incl.	160	162	2.0	7.46	0.61	31	
						and	160	161	1.0	10.5	0.86	35	
SMD063	DD	642063	5836585	-60/59.5	264	162.7	21	40	19	0.30			
							106	107	1.0	1.10	0.16	5.5	
SMD064	DD	642041	5836619	-60/59.5	264	184.9	20	47	27	0.26			
							121	129	8.0	5.12	1.48	34	
						Incl.	128	129	1.0	26.8	8.48	201	
SMD065	DD	642427	5836356	-60/239.5	264	350			No Si	gnificant F	Results	•	•
SMD066	DD	641936	5836807	-60/59.5	264	294	15	18	3		0.41		
							17	30	13	0.53	0.11	8.0	
SMD067	DD	641884	5836880	-60/59.5	264	236	16	34	18	0.43	0.35	13	
						Incl.	25	27	2.0	1.21	0.27	27	
							107	109	2.0	1.32		8	
SMD068	DD	642342	5836414	-60/239.5	264	342	50.3	102	51.7	0.39			
						Incl.	98	102	4	1.75	0.31	16	
							285	287	2	0.26	0.65	1.8	
SMD069	DD	641725	5837063	-60/59.5	264	130.7	22	37	15		0.12		
							26	37	11	0.32	0.12	6.7	

Thursday's (Gossan Pi		<u> </u>	Intercept Tab	ile								
		MGA 94 z	one 54				Interce	pt					
Hole id	Hole Type	East	North	Dip/ Azimuth	RL (m)	Total Depth (m)	From (m)	To (m)	Width (m)	Cu (%)	Au (g/t)	Ag (g/t)	Ni (%)
SMD070	DD	642199	5836451	-60/59.5	264	275.9	20	95	75.0	0.60	0.19	5	
						Incl.	65	84	19.0	1.48	0.40	15	
						and	69.3	73	3.7	6.02	1.18	66	
						and	71	72	1.0	9.23	2.67	125	
SMD071	DD	642616	5835650	-60/59.5	264	562.6			No Si	I gnificant R	Results		
SMD072	DD	641585	5837196	-60/59.5	264	100.9			No Si	gnificant R	Results		
SMD073	DD	641473	5837155	-60/59.5	264	409.9	149	153	4.0	1.31	0.31	6	
							359	364	5.0	0.25	1.67	27	
						Incl.	361.1	362	0.9	0.42	4.58	51	
SMD074	DD	642162	5836437	-60/59.5	264	302	25	59	34.0	0.32			
							176	183.6	7.6	1.36	0.24	7	
							193	197.7	4.35	1.94	0.27	10	
							213	234.3	21.3	1.31	0.43	6	
SMD076	DD	642174	5836523	-60/59.5	264	198.4	128	144	16	1.01	0.24	6.5	
						Incl.	139	144	5	2.42	0.55	14	
SMD078	DD	642237	5836464	-60/59.5	264	274.9	227.2	231	3.8	4.97	3.08	81	
SMD079	DD	642099	5836496	-60/59.5	264	306.7	24	41	17	0.31			
							86	87	1	1.29	0.41	9	
							141	144	3	1.38	0.15	5	
							153	154	1	1.16	0.31	8	
							159	161	2	0.64	1.82	8.4	
							207.9	211	3.1	3.16	0.70	30	
SMD080	DD	642196	5836406	-60/59.5	264	309.3	23	25	2	1.75			
							25	52	27	0.58			
							154	157.95	3.95	3.78	0.43	54	
						Incl.	156	157.95	1.95	7.02	0.35	102	
							189	196	7	1.07	0.26	23	
							224.2	230.6	6.4	2.71	0.52	8.3	
SMD081	DD	642837	5835899	-60/51	268	197		•	No Sig	gnificant R	Results		
SMD082	DD	642264	5836342	-60/59.5	264	313.4	32	117.3	85.3	0.82			
						Incl.	99	117.3	18.3	2.56	0.16	9.4	
						Incl.	104.5	116	11.5	3.76	0.23	14	
							243	247.8	4.8	2.42	0.31	25	
SMD083	DD	642599	5835995	-60/49.5	264	433.1	29	41	12	0.29			

, ,	5055uii i i			ntercept Tab	ne								
		MGA 94 z	one 54				Interce	pt					
	Hole			Dip/	RL	Total	From	То	Width	Cu	Au	Ag	Ni
Hole id	Туре	East	North	Azimuth	(m)	Depth (m)	(m)	(m)	(m)	(%)	(g/t)	(g/t)	(%)
SMD084	DD	642236	5836364	-60/59.5	264	278.1	43	72	29	0.44			
							132	201	69	1.00	0.18	5.4	
						Incl.	157	201	44	1.43	0.26	7.3	
						Incl.	197	201	4	4.16	0.61	23	
SMD085	DD	642444	5836022	-60/49.5	264	522.3	28	67	39	0.41			
							339	362	23	1.07	0.11		
						Incl.	357	361	4	4.44	0.26	7.9	
						Incl.	358	359	1	9.44	0.22	6.4	
SMD086	DD	642465	5836370	-60/239.5	264	385.9	142	154	12	1.01	0.18	2.6	
						Incl.	149	153	4	2.33	0.42	5.3	
							261	262	1	2.17	7.06	7.9	
							301	308	7	0.16	0.48	15	0.32
							318	321	3	0.49	0.29	3.4	
							326	327	1	5.90	0.33	47	
SMD087	DD	642060	5836522	-60/59.5	264	268.3	24	40	16	0.37			
							140	227 ⁶	87	1.74	0.57	20	
						Incl.	163	187	24	4.19	1.27	53	
						and	170	172	2	11.75	1.45	66	
						and	181.7	183.2	1.5	13.28	2.58	209	
						and	185.6	186.4	0.8	24.1	1.16	249	
						and	185	187	2	9.95	0.71	107	0.89
						Incl.	218	227	9	4.09	1.83	39	
						and	226	227	1	1.30	10.05	48	
SMD088	DD	642427	5836445	-60/239.5	264	405.5	212.3	242.3	30	1.98	0.23	9.1	
						Incl.	216	226.8	10.8	3.20	0.31	16	
					and	233.2	239	5.8	3.54	0.43	14		
							319.5	370	50.5	0.88	0.11	3.8	
						Incl.	319.5	331.2	11.7	1.42	0.15	4.5	
						and	342	357.6	15.6	1.26	0.17	5.0	
						and	365.6	370	4.4	1.61	0.20	5.7	

Thursday's (Joesuli II			огоорт так	,,,								
		MGA 94 z	one 54				Interce	pt					
Hole id	Hole Type	East	North	Dip/ Azimuth	RL (m)	Total Depth (m)	From (m)	To (m)	Width (m)	Cu (%)	Au (g/t)	Ag (g/t)	Ni (%)
SMD089	DD	642502	5836384	-60/239.5	262	502.1	87	98.8	11.8	1.54	0.42	14	
						Incl.	91	94	3	3.28	1.09	34	
							214	233.9	19.9	2.40	0.35	17	
						Incl.	219	226.1	7.1	4.30	0.52	35	
						Incl.	219	222	3	6.02	0.71	52	
							271	280.7	9.7	3.10	0.97	26	
						Incl.	273	275	2	7.86	2.09	88	
						Incl.	273	274	1	11.05	2.73	131	
SMD090	DD	642068	5836563	-60/59.5	262	213.8	23	58	35	0.40			
						Incl.	54	56	2	1.10	1.06	18	
SMD091	DD	642374	5836383	-60/59.5	262	191			No Si	gnificant R	lesults	l	
SMD092	DD	642346	5836411	-60/59.5	262	222			No Si	gnificant R	lesults		
SMD093	DD	642153	5836294	-60/59.5	262	515.1	35	334.7	299.7	0.40			
						Incl.	35	99	64	0.68			
						Incl.	36	54	18	1.11			
							304.6	334.7	30.1	1.44	0.21	4.4	
						Incl.	306	310	4	3.17	0.26	7.5	
SMD094	DD	642205	5836237	-60/59.5	262	608.3	50	103	53	0.39			
							347	351.9	4.9	2.14	0.33	9.8	
SMD095	DD	642205	5836237	-60/59.5	262	304.6	28	78	50	0.40			
							224	234	10	2.33	0.45	20	
SMD096	DD	642319	5836284	-60/71.5	262	287.7	33	58	25	0.52			
							152	154	2	1.25		10	
							220	235	15	3.26	0.62	16	
					Dupli	icate Sample	220	235	15	3.59	2.73	18	
						Incl.	222	223	1	2.41	24.6	16.5	
SMD097	DD	642319	5836284	-60/88.5	262	298.6	38	56	18	0.63			
							255.8	260.6	4.8	3.56	0.46	29	
SMD098	DD	642102	5836364	-60/59.5	262	449.1	64	89	25	0.26			
SMD099	DD	642063	5836352	-60/59.5	262	531	51	131	80	0.31			
							183	184	1	1.79	0.47	6.4	

Thursday's (Gossan Pi	rospect – C	ayley Lode l	Intercept Tal	ole								
		MGA 94 z	zone 54				Interce	pt					
Hole id	Hole	Faat	Nauth	Dip/	RL	Total	From	То	Width	Cu	Au	Ag	Ni
	Туре	East	North	Azimuth	(m)	Depth (m)	(m)	(m)	(m)	(%)	(g/t)	(g/t)	(%)
SMD100	DD	642396	5836495	-60/239	259	451.8	118	121.6	3.6	0.34	0.21	13	
							222	226	4	0.20	0.51	2.7	
							297	305	8	0.66	0.27	7.2	
							332.2	341	8.8	1.57	0.24	4.5	
SMD101	DD	642044	5836427	-70/59	260	379.7	24	40	16		0.21	3.9	
							31	51	20	0.61			
							93	94	1	1.22	0.17	9.7	
							144	149	5	0.30	0.11	2.2	
SMD102	DD	642471	5836355	-60/223	260	350.6	50	54	4	0.16			
							134	177	43	0.24			
							248.1	253	4.9	1.54	0.29	4.8	
							270	290	20	0.25			
	SMD103 DD 6421						320	321	1	1.13	1.44	4.4	
SMD103		642196	5836425	-60/59	261	214.6	24.4	59.6	35.2	0.25			
							24.4	190	165.6	0.33			
						Incl.	24.4	59.6	35.2	0.25			
						and	117	147.2	30.2	0.35	0.17	2	
						Incl.	185	188	3	5.52	0.45	10	
SMD104	DD	642225	5836386	-60/59	261	285.6	35	179	144	1.04	0.15	3.4	
						Incl.	95	179	84	1.55	0.23	5.0	
						Incl.	151	179	28	3.31	0.49	7.1	
SMD105	DD	642009	5836628	-60/59	258	315.6	22	29	7	0.30			
							126	139	13	0.40	0.37	8	
SMD106	DD	642015	5836661	-60/59	258	193.8	85 ⁷	133	48	1.39	6.33	12	
						Incl.	115 ⁸	131.7	16.7	3.13	17.93	29	
						Incl.	116	118	2	0.74	132	38	
						and.	130.8	131.7	0.9	21.10	17.45	232	
SMD107	DD	642471	5836359	-60/59	260	232.8	26	60	34	0.61	0.07	14	
							45	53	8	1.37	0.18	40	
						Incl.	46	49	3	2.51	0.36	63	

Thursday's (3033uii i	MGA 94 2		intercept rui	oic .		Interce	nt					
		WIGA 94 2	LUITE 34		T n:				147		1 .		Ni
Hole id	Hole Type	East	North	Dip/ Azimuth	RL (m)	Total Depth (m)	From (m)	To (m)	Width (m)	Cu (%)	Au (g/t)	Ag (g/t)	(%)
SMD108	DD	642031	5836548	-60/59	260	310.7	22	90	68	0.27			
							150.9	172.6	21.7	2.06	0.53	17	
						Incl.	164.9	171.2	6.3	3.57	1.17	25	
							254.6	264.6	10	1.33	0.16	7.8	
						Incl.	255.2	259.6	4.4	2.24	0.29	12	
SMD109	DD	642261	5836257	-60/59	260	399.2	35	77	42	0.53			
							262	265	3	1.35	0.20	2.7	
							283.5	295	11.5	2.74	0.35	4.5	
						Incl.	292	294.1	2.1	7.25	0.67	11	
SMD110	DD	642000	5836699	-60/59	260	252.4	20	65	45	0.28			
						Incl.	33	41	8	0.44	0.20	2.5	
							97	106	9	2.34	0.56	12	
						Incl.	102	105	3	4.50	0.87	17	
SMD111	DD	641977	5836648	-60/59	260	294.2	36.7	87	87 50.3 0.27 0.14	2.5			
						Incl.	83	87	4	0.82	0.97	10	
							131	166	35	0.46	0.92	9.4	
						Incl.	131	148	17	0.42	1.34	10	
						and	164	166	2	2.85	2.25	45	
SMD112	DD	641971	5836718	-60/59	260	274.4	119.6	147.6	28	0.79	0.16	5.4	
						Incl.	134.1	146	11.9	1.56	0.29	12	
						Incl.	135	139	4	2.49	0.41	19	
SMD113	DD	642031	5836553	-58/56	260	280.3	25	71	46	0.35			
							153	174	21	0.50	0.15	6.5	
							230	239.9	9.9	1.08	0.06	5.9	
SMD114	DD	641558	5835953	-65/59	260	1844.8	830	842	12	1.43	0.23	7.4	
						Incl.	839	841	2	4.98	0.61	25	
SMD115	DD	641995	5836579	-60/59	261	296.3	23	62	39	0.26			
SMD116	DD	641972	5836613	-60/58	261	304.2	23	72	49	0.35		2.7	
SMD117	DD	641940	5835842	-60/58	261	1711.8		<u>I</u>	No Si	gnificant R	Results	<u>I</u>	1
SMD118	DD	641936	5836691	-60/52	261	247.9			No Si	gnificant R	Results		
SMD119	DD	641927	5836771	-60/59	262	246.5			No Si	gnificant R	Results		
SMD120	DD	641896	5836793	-62/58	261	233			No Si	gnificant R	Results		

Thursday's (Gossan P	rospect – C	ayley Lode	Intercept Tal	ble								
		MGA 94 2	zone 54				Interce	pt					
Hole id	Hole	East	North	Dip/	RL	Total	From	То	Width	Cu	Au	Ag	Ni
потета	Туре	East	North	Azimuth	(m)	Depth (m)	(m)	(m)	(m)	(%)	(g/t)	(g/t)	(%)
SMD121	DD	641875	5836711	-60/60	261	292.9	26	41	15	0.31			
							104	177	73	0.64	0.70	6.8	
						Incl.	110.4	112	1.6	1.72	20.47	30	
						and	150	177	27	1.04	0.46	11	
						Incl.	170	177	7	2.56	1.00	19	
							246	247	1	1.67	0.18	39.4	
SMD122	DD	641926	5836671	-60/58	261	292.6	21	27	6	0.32	0.15	1.4	
							101	119	18	0.26		25	
							158	160	2	0.26	1.71	7.3	
							172	189	17	0.65	0.13	10	
SMD123	DD	642209	5836316	-60/59	261	380.1	31	78	47	0.59			
						Incl.	52	62	10	1.15		1.6	
							231	233	2	1.73			
SMD124	DD	641858	5836779	-60/59	261	242.8	16	24	8	0.41			
SMD125	DD	641885	5836827	-60/59	261	168.5	122	135	13		0.41	12	
SMD126	DD	641846	5836813	-60/59	257	248			No Si	l gnificant R	lesults		
SMD127	DD	641849	5836739	-60/59	258	289.9	22	44	22	0.37			
							126	200.8	74.8	0.37	0.23	5.9	
						Incl.	151	159	8	1.36	0.81	17	
						Incl.	156	158	2	2.78	1.26	33	
						and	199.3	200.8	1.5	2.46	0.81	37	
SMD128	DD	641887	5836759	-60/59	257	256.5			No Si	l gnificant F	lesults		
SMD129	DD	641821	5836766	-60/59	258	269.7			No Sig	gnificant R	lesults		
SMD130	DD	641824	5836837	-60/59	260	234.5	15	74	59	0.48			
						Incl.	37	40	3	1.82			
							127	140.05	13.05	0.83	0.26	5.5	
						Incl.	138	140.05	2.05	1.76	0.39	7.0	
							181	186	5		1.24	35	
						Incl.	181	182	1	0.87	1.67	149	
SMD131	DD	641851	5836885	-60/59	262	196.6	18	45	27	0.85	0.12	5.3	
						Incl.	28	37	9	1.82	0.20	11	
						Incl.	32	36	4	3.11	0.26	20	
							83	90	7	1.65	0.41	30	

Thursday's	Gossan P	rospect – C	ayley Lode	Intercept Tal	ble								
		MGA 94 2	zone 54				Interce	pt					
Hole id	Hole	East	North	Dip/	RL	Total	From	То	Width	Cu	Au	Ag	Ni
Hole Id	Type	EdSt	North	Azimuth	(m)	Depth (m)	(m)	(m)	(m)	(%)	(g/t)	(g/t)	(%)
SMD132	DD	641898	5836677	-60/53	261	302.8	27	55	28	0.35			
SMD133	DD	641858	5836854	-60/59	261	214.7	96	112	16	0.34	0.24	6.5	
SMD134	DD	641806	5836878	-60/59	261	184.6	101	149.8	44.2 ⁹	0.61	0.26	6.2	
						Incl.	134	149.8	11.2 ⁹	1.71	0.59	17	
						Incl.	148.4	149.8	1.4	3.18	0.39	44	
SMD135	DD	641773	5836945	-60/59	261	188.8	66.6	93	26.4 ¹⁰	1.17	0.17	8	
						Incl.	66.6	73	6.4 ¹⁰	4.02	0.50	29	
						Incl.	67.3	68.3	1	21.2	1.75	142	
							121	134	13	1.54	2.2	203	
						Incl.	133	134	1	10.05	25.2	2540	
SMD136	DD	641736	5836932	-60/59	261	273.4	29	104	75	0.32			
							30	35.8	5.8	1.39	0.19	8	
SMD137	DD	641731	5837009	-60/59	257	211			No Si	gnificant R	lesults	•	
SMD138	DD	641691	5836994	-60/59	258	249.3	No Significant Results						
SMD139	DD	641728	5836900	-60/59	258	240.5	94	173	79	0.38	0.10	4.7	
						Incl.	94	103	9	1.25	0.18	19	
SMD140	DD	641801	5836887	-60/59	257	264	37	57	20	0.27			
							93.8	143	49.2	0.96	0.28	11	
						Incl.	94.4	97	2.6	2.16	0.55	10	
						and	114	118	4	2.42	0.56	25	
						and	127	136	9	1.95	0.43	17	
SMD141	DD	641704	5837042	-60/59	257	237.2		•	No Si	gnificant R	lesults	•	•
SMD142	DD	641685	5837073	-60/59	257	232.9			No Si	gnificant R	lesults		
SMD143	DD	641665	5837027	-60/59	258	249.4			No Si	gnificant R	lesults		
SMD144	DD	641661	5836957	-60/130	259	279.4	186	212	26	0.44	0.14	2.6	
						Incl.	186	188	2	1.40	0.27	5.4	
SMD145	DD	641648	5837059	-60/59	257	264.3	148	152	4	0.87	0.19	29	
SMD146	DD	641777	5836855	-60/59	257	298.9	130.8	149	18.2	0.59	0.24	8.1	
						Incl.	132.2	135	2.8	1.74	0.72	20	
SMD147	DD	641799	5836823	-60/59	257	316.9	11.8	18	6.2		1.38		
							19	32	13	0.72	0.65	3.4	
							27	32	5	1.14	1.64	7.1	
							132	136	4	1.29			
						Incl.	160.4	164	3.6	3.31	0.43	38	

		MGA 94 2	zone 54				Interce	pt					
			T	1	- DI		From	То	Width	C	A	A ==	Ni
Hole id	Hole Type	East	North	Dip/ Azimuth	RL (m)	Total Depth (m)	(m)	(m)	(m)	Cu (%)	Au (g/t)	Ag (g/t)	(%)
SMD148	DD	641981	5836424	-60/59	257	651.5	42	76	34	0.39			
SMD149	DD	641930	5836640	-60/59	257	326.5	22	32	10	0.49	0.15	1.8	
					Incl.	22	24	2	1.01	0.60	3.8		
							209	211	2	3.27	1.13	6.8	
SMD150 DD	641815	5836800	-60/59	257	278.5	22	37	15	0.33				
							144	149	5	0.96	0.18	9.3	
							181	183	2	1.47	0.88	21	
SMD151	DD	642129	5836210	-60/59	257	901.4	77	194	117	0.48			
						Incl.	78	99	21	1.38			
						410	418	8	1.04	0.10	6		
SMD152 DD	642196	5836351	-60/59	257	354.2	26.7	138	111.3	0.35				
						Incl.	27.6	35	7.4	1.44			
							219	283.1	64.1	1.04	0.13	3.5	
						Incl.	219	237	18	1.49	0.10	4.0	
					and	249	254	5	1.65	0.27	5.6		
						and	273.4	283.1	9.7	2.48	0.38	8.6	
SMD153	DD	642029	5836513	-60/59	257	19.1		l .	Hole aban	doned – n	o samples		
SMD154	DD	641845	5836570	-60/59	262	451	21	210	189	0.25			
						Incl.	21	50	29	0.40			
							355	364.3	9.3		0.26	4.2	
SMD155	DD	641903	5836490	-60/59	262	463.6			No Sig	nificant R	esults		
SMD156	DD	642157	5836387	-60/59	262	355.9	28	45	17	0.77			
						Incl.	35	39	4	1.78			
							247	269.8	22.811	2.27	0.38	19	
						Incl.	247	250	3	6.86	1.00	11	
						and	265.1	269.8	4.712	4.07	0.78	77	
SMD156W1	DD	642157	5836387	-60/59	262	291.1	246.9	270	23.1 ¹³	1.67	0.25	19	
						Incl.	246.9	250	3.1 ¹⁴	6.21	0.69	77	
SMD157	DD	642077	5836264	-60/59	262	533.2	54	200	146	0.33			
						Incl.	28	56	28	0.77			
SMD158	DD	642054	5836182	-60/59	262	669.4	89	99	10	0.70			
							213	330	117	0.30			

Thursday's	Gossan P			intercept Ta	ble								
		MGA 94	zone 54				Interce	ept					
Hole id	Hole Type	East	North	Dip/ Azimuth	RL	Total Depth (m)	From	То	Width	Cu	Au	Ag	Ni (0/)
0145450		242522	5000001		(m)	,	(m)	(m)	(m)	(%)	(g/t)	(g/t)	(%)
SMD159	DD	642536	5836394	-60/180	262	642.6	348.9	351	1.1	4.58	0.33	24	
							375	376	1	1.21	0.13	4.3	
							419	420	1	1.73		5.3	
							474.3	480.2	5.9	3.92	0.45	7.4	
							496	498.1	2.1	2.49	0.27	11	
							528	554.8	26.8	1.55	0.35	10	
						Incl.	547.3	553.3	6	3.81	1.05	23	
SMD160	DD	642167	5836085	-60/49	262	717.5			No Si	gnificant F	Results		
SMD161	DD	642393	5835880	-60/49	262	718.7	34	71	37	0.26			
SMD162	DD	642480	5835930	-60/49	262	593.4	28	42	14	0.29			
							544	545	1		5.01		
						572	574	2	0.17	1.16	5.8		
SMD163	DD	642542	5835856	-60/49	262	630.8			No Si	I gnificant F	Results		
SMD164 DD	DD	642433	5836177	-60/52	262	276	29	45	16	0.39			
							91	92	1	2.59	0.70	13	
							161	205	44	0.93	0.13	4.3	
						Incl.	198	203.8	5.8	5.38	0.77	23	
						Incl.	203	203.8	0.8	16	0.71	42	
						267.3	29	59	30	0.51			
							157	158	1	1.08	0.48	15	
SMD165	DD	642383	5836217	-60/50	262		215.1	218.3	3.2	7.08	0.46	11	
						Incl.	215.1	216.1	1	16.35	0.81	24	
SMD166	DD	642418	5836238	-60/50	262	247.9			As	says Pend	ding		
SMD167	DD	642469	5836199	-60/50	262	232.3				says Pend	•		
SMD168	DD	642483	5836138	-60/50	262	180.3				says Pend			
SMD169	DD	642532	5836095	-60/50	263	260				says Pend			
SMD170	DD	642573	5836258	-60/50	261	118.7				says Pend			
SMD170 SMD171			5836125							says Pend			
	DD	642580		-60/50	262	247.6				says Pend			
SMD172	DD	642547	5836125	-60/50	260	226.8	200	224		-		457	
						538.6	328	331	3	3.81	0.11	457	
						Incl.	328	329.1	1.1	2.53	0.10	1,225	
SMD173 ¹⁵	DD	642313	5836113	-60/50	262		378	421	43	2.60	0.42	10	
						Incl.	396	399	3	10.38	3.00	71	
						and	397	398	1	19.65	8.29	202	

SMD174	DD	642500	5836147	-60/50	262	235.7			As	says Pend	ding		
SMD175	DD	642594	5836062	-60/50	262	233.7			As	says Pend	dina		
SMD176	DD	642271	5836155	-60/50	262	480.1				says Pend			
										says Pend			
SMD177	DD	642534	5836167	-60/50	262	198.5				•			
SMD178	DD	642374	5836143	-60/50	262	334.4				says Pend			
SMD179	DD	642330	5836184	-60/50	262	317.6				says Pend			
SMD180	DD	642408	5836101	-60/50	262	In Progress			As	says Pend	ding		
SMD181	DD	642383	5836050	-60/50	262	In Progress			As	says Pend	ding		
SMD182	DD	642372	5835979	-60/50	262	In Progress			As	says Pend	ding		
SMS001D	Sonic/	642197	5836489	-60/59.5	264	212			No Si	gnificant F	Results		
CINICOOTE	DD	012107	0000100	00/00.0	201	2.2			110 0	grimodrit	toouno		
SMS002AD	Sonic/	642275	5836478	-60/59.5	264	105.4			No Si	gnificant F	Results		
	DD												
SMS003	Sonic	642207	5836523	-60/59.5	264	97			No Si	gnificant F	Results		
SMS004	Sonic	642150	5836555	-60/59.5	264	131.5			No Si	gnificant F	Results		
SMS005	Sonic	642125	5836587	-60/59.5	264	85.5			No Si	gnificant F	Results		
SMS006	Sonic	642102	5836620	-60/59.5	264	76	3	51	48		0.29		
						Incl.	19	51	32	0.26			
						Incl.	45	47	2	1.42	0.32	12	
SMS007	Sonic	642085	5836654	-60/59.5	264	64	13	39	26		0.77		
							22	42	20	1.36	0.85	12	
						Incl.	24	39	15	1.68	1.09	14	
							42	45	3				1.46
SMS008	Sonic	642055	5836680	-60/59.5	264	64	20	45	25	0.45			
						Incl.	20	23	3	1.13	1.01	16	
SMS009	Sonic	642011	5836730	-60/59.5	264	54	32	54	22	0.69	0.13	3.6	
						Incl.	51	54	3	1.87	0.47	16	
SMS009A	Sonic	642011	5836730	-60/59.5	264	80	43	49	6	3.00	0.59	15	
SMS010	Sonic	642083	5836614	-60/59.5	264	83	20	79	59	0.44	0.20	2.2	
						Incl.	38	41	3	1.33	0.84	6.5	
SMS011	Sonic	642106	5836581	-60/59.5	264	88	22	42	20	0.31			
SMS012	Sonic	642193	5836530	-60/239.5	261	80	43	77	34	0.90	0.24		
						Incl.	46	55	9	2.24	0.67	18.0	
0.100.10		0.400:-	5000::=	00/00: =	000	Incl.	52	55	3	5.20	1.46	30.0	
SMS013	Sonic	642212	5836497	-60/234.5	262	58	10	40	30		0.23		
						Incl.	31	40	9	1.13	0.60	4.2	
						Incl.	38	39	1	3.52	2.53	14	

Chalcocite Blanket results are shown in blue.

- 1. Excluding 13.9m of core loss
- 2. Excluding 13.2m of core loss
- 3. Excluding 10.8m of core loss
- 4. 1.8m of core loss immediately above this interval
- 5. 0.4m of core loss included in this interval
- 6. 0.3m of core loss included in this interval
- 7. 0.6m core loss included in this interval

- 8. 0.3m core loss included in this interval
- 9. 4.6m core loss included in this interval
- 10. 0.5m core loss included in this interval
- 11. 1.3m core loss included in this interval
- 12. 0.9m core loss included in this interval
- 13. 0.4m core loss included in this interval
- 14. 0.4m core loss included in this interval
- 15. Results received for 310m to 490m.

 Remaining assays for SMD173 are pending.

JORC Code, 2012 Edition – Table 1

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling	Nature and quality of	Diamond Drilling
techniques	sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.	For diamond holes at the Cayley Lode the entire hole has been sampled. PQ quarter core and HQ half core is submitted for analysis. Pre drill hole SMD069 the sample intervals were based on lithology but in general were 1m. No intervals were less than 0.4m or greater than 1.2m.
		For diamond holes post drill hole SMD069, the maximum sample size is 1.2m and the minimum sample size is 0.6m, unless it is between core-loss. In zones of significant core-loss, sampling of all available core will be taken and a record of lost core will be made. There is no minimum sample size in these zones. Samples are taken every 1m on metre marks except in high grade lodes and massive sulphide within the Cayley Lode. Within the Cayley Lode, the sampling boundaries will reflect the high- grade contacts at beginning and within high grade lodes and massive sulphide within the Cayley Lode whilst honouring the minimum and maximum sample sizes. The deep diamond drill holes, SMD114 and SMD117,
		drilled to test the porphyry target were only selectively sampled in the area of interest. For SMD114 one metre quarter core samples were taken from 592m to 1,000m.
		For SMD117 one metre quarter core samples were taken from 400m to 950m.
	Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.	Sample representivity was ensured by a combination of Company Procedures regarding quality control (QC) and quality assurance/ testing (QA). Certified standards and blanks were inserted into the assay batches.
	Aspects of the	Diamond Drilling
	determination of mineralisation that are	Drill sampling techniques are considered industry standard for the Stavely work program.
	Material to the Public Report - In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling	The diamond drill samples were submitted to Australian Laboratory Services ("ALS") in Adelaide, SA. Laboratory sample preparation involved:- sample crush to 70% < 2mm, riffle/rotary split off 1kg, pulverize to >85% passing 75 microns.
	was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual	Diamond core samples were analysed by ME-ICP61 – multi acid digest with HF and ICPAES and ICPMS and Au-AA23 – fire assay with AAS finish. For sample that returned Cu values greater than 10,000ppm (1%) re-assaying was conducted by OG62, which is a four acid digest with ICP-AES or AAS finish.

Criteria	JORC Code explanation	Commentary
	commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.	
Drilling techniques	Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	Thursday's Gossan Prospect The dips, azimuths and depths of drill holes in the current drilling programme are provided in the Thursday's Gossan Prospect - Cayley Lode Collar Table. Diamond Drilling Diamond drilling to test the Cayley Lode, including holes SMD050 to SMD113, SMD115 to SMD116, SMD118 to SMD172, SMD174 to SMD179 have been drilled by Titeline Drilling. For the diamond holes, drilling was used to produce drill core with a diameter of 85mm (PQ) from surface until the ground was sufficiently consolidated and then core with a diameter of 63.5mm (HQ) was returned. For the diamond tails, drilling was used to produce drill core with a diameter of 63.5mm (HQ). Diamond drilling was standard tube. Diamond core was
		orientated by the Reflex ACT III core orientation tool.
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed.	Minerals' Diamond Drilling Diamond core recoveries were logged and recorded in the database. Unless specifically mentioned, the core recovery for all diamond holes was on average greater than 90%. Core recovery for SMD050 averaged 82% with an average recovery of 76% in the mineralised zone between 79m and 93m. Core recovery for SMD051 averaged 86%. For the mineralised zone between 97m and 182m recovery averaged 76%, however between 98m and 127.7m the recovery only averaged 55%. Core recovery for SMD053 was on average 87%, however the in the final metre of the mineralised zone there was only 46% recovery. Core recovery for SMD054 averaged 87%. Core recovery for SMD060 averaged 85%. However, core recovery between 104m and 116m was very poor at less than 50% and between 119.9m and 126.2m there was 100% core loss. Core recovery for SMD074 averaged 93%, but a portion of the mineralised zone between 181.6m and 195.7m only averaged 76%. While the overall recovery for SMD093 and SMD094 was 94% and 96%, respectively, there was core loss through the Cayley Lode and hence a wedge — SMD093W1 and SMD094W1 was drilled for each hole. There was still some core loss in the Cayley Lode in the wedges.

Criteria	JORC Code explanation	Commentary
		Core recovery for SMD096 averaged 90%, however for the Cayley Lode recovery was 99%, but 0.3m of core was lost from the bottom of the mineralised zone.
		Core recovery for SMD104 averaged 89%, however in the high-grade zone the core recovery averaged 96%.
		Core recovery for SMD106 averaged 89%.
		Overall core recovery for SMD108 averaged 88%, however within the Cayley Lode it dropped to an average of 76%.
		Overall core recovery for SMD134 averaged 92%, however there was 4.6m core loss in the Cayley Lode.
		Overall core recovery for SMD135 averaged 95%, however there was 0.5m core loss in the Cayley Lode.
		Overall core recovery for SMD156 averaged 90%, however core recovery was only 46% in the Cayley Lode between 262.4m to 269.4m.
		Overall core recovery for SMD156W1 averaged 91%, however core recovery was only 87% in the Cayley Lode between 246m to 270m.
	Measures taken to	Stavely Project - Thursday's Gossan Prospect - Stavely
	maximise sample recovery	Minerals' Diamond Drilling
	and ensure representative nature of the samples.	Diamond core is reconstructed into continuous runs on an angle iron cradle for orientation marking. Depths are checked against the depth given on the core blocks and rod counts are routinely carried out by the driller.
	Whether a relationship exists between sample	Stavely Project - Thursday's Gossan Prospect - Stavely Minerals' Diamond Drilling
	recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	There are some issues with sample recovery within the mineralised zone. This includes the loss of material which is likely to have carried grade.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	Geological logging of samples followed Company and industry common practice. Qualitative logging of samples including, but not limited to, lithology, mineralogy, alteration, veining and weathering. Diamond core logging included additional fields such as structure and geotechnical parameters. Magnetic Susceptibility measurements were taken for each 1m diamond core interval.
	Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.	Diamond Drilling All logging is quantitative, based on visual field estimates. Systematic photography of the core in the wet and dry form was completed.
	The total length and percentage of the relevant intersections logged.	Diamond Drilling Detailed core logging, with digital capture, was conducted for 100% of the core by Stavely Minerals' on-site geologist at the Company's core shed near Glenthompson.

Criteria	JORC Code explanation	Commentary			
Sub-sampling techniques and sample	If core, whether cut or sawn and whether quarter, half or all core taken.	Quarter core for the PQ diameter diamond core and half core for the HQ diameter core was sampled on site using a core saw.			
preparation	If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.	One metre individual and EOH samples were collected as grab samples for the air-core drilling.			
	For all sample types, the nature, quality and appropriateness of the sample preparation	Company procedures were followed to ensure sub- sampling adequacy and consistency. These included, but were not limited to, daily work place inspections of sampling equipment and practices.			
	technique.	The sampling practices followed for the diamond drilling were audited by Mining Plus in December 2019 and found to be appropriate. In February 2020, Cube Consulting conducted a site visit and audit of sampling procedures. Recommendations made have been implemented.			
	Quality control procedures	Diamond Drilling			
	adopted for all sub- sampling stages to maximise representivity of samples.	Blanks and certified reference materials are submitted with the samples to the laboratory as part of the quality control procedures.			
		High Grade (>1% Cu)			
		Standard – 1 per 10m (matrix matched) Duplicate – 1 per 10m (1/4 core) Blank – 1 per 10m.			
		Low grade and waste (<1% Cu)			
		Standard – 1 per 20m (low grade standards) Duplicate – 1 per 40m (1/4 core) Blank – 1 per 80m.			
	Measures taken to ensure that the sampling is representative of the in situ material collected, including	Quarter core sampling of the diamond PQ core is conducted to provide a field duplicate from hole SMD067 to SMD097. On-going duplicate sampling is conducted on selected diamond holes based on their geographic location.			
	for instance results for field duplicate/second-half sampling.	For the air-core drilling, the representative of the in-situ material collected included the collection of field duplicates.			
	Whether sample sizes are appropriate to the grain size of the material being sampled.	The sample sizes are considered to be appropriate to correctly represent the sought mineralisation.			
Quality of	The nature, quality and	The half or quarter diamond drill core and the 1m air-core			
assay data	appropriateness of the	grab samples were analysed by multielement ICPAES			
and laboratory tests	assaying and laboratory procedures used and whether the technique is considered partial or total.	Analysis - Method ME-ICP61. A 0.25g sample is predigested for 10-15 minutes in a mixture of nitric and perchloric acids, then hydrofluoric acid is added and the mixture is evaporated to dense fumes of perchloric (incipient dryness). The residue is leached in a mixture of nitric and hydrochloric acids, the solution is then cooled and diluted to a final volume of 12.5mls. Elemental concentrations are measured simultaneously by ICP Atomic Emission Spectrometry. This technique approaches total dissolution of most minerals and is considered an			

Criteria	JORC Code explanation	Commentary
		appropriate assay method for porphyry copper-gold
		systems.
		This technique is a four- acid digest with ICP-AES or AAS finish.
		The drill core and 1m grab splits were also analysed for gold using Method Au-AA23. Up to a 30g sample is fused at approximately 1,100°C with alkaline fluxes including lead oxide. During the fusion process lead oxide is reduced to molten lead which acts as a collector for gold. When the fused mass is cooled the lead separates from the impurities (slag) and is placed in a cupel in a furnace at approximately 900°C. The lead oxidizes to lead oxide, being absorbed by the cupel, leaving a bead (prill) of gold, silver (which is added as a collector) and other precious metals. The prill is dissolved in aqua regia with a reduced final volume. Gold content is determined by flame AAS using matrix matched standards. For samples which are difficult to fuse a reduced charge may be used to yield full recovery of gold. This technique approaches total dissolution of most minerals and is considered an appropriate assay method for detecting gold mineralisation.
	For geophysical tools,	2D Seismic Survey
	spectrometers, handheld XRF instruments, etc, the parameters used in	A 2D seismic survey was conducted along two orthogonal lines of 7km and 8km length centred on the Thursday's Gossan prospect.
	determining the analysis including instrument make and model, reading times, calibrations factors applied	A seismic survey is a low impact, non-invasive method of gathering information about the location and characteristics of geological structures beneath the Earth's surface.
	and their derivation, etc.	A vibroseis truck was used to generate a surface-induced seismic pulse to image the subsurface formations. The seismic wave is picked up by sensors called "geophones" as the waves reflect off the subsurface formations.
		The reflections are caused by abrupt changes in acoustic impedance, including lithologic interfaces, alteration zones, faults, shears, bedding planes and unconformities.
		A 2D seismic line represents reflections from all directions as being approximately below the acquisition line. It is incapable of identifying the direction a reflection has emanated from. The only way to resolve "off-plane" reflector locations is to conduct a 3D seismic survey.
		Processing of the data collected during the seismic survey is conducted by Hiseis using proprietary software.
		Rock property measurements, including velocity and density are taken from drill core to assist with modelling of the seismic data.
		Interpretation of the processed seismic data is conducted by Hiseis geoscientists in conjunction with geologists from Stavely Minerals.
	Nature of quality control procedures adopted (eg standards, blanks, duplicates, external	Laboratory QAQC involved the submission of standards, blanks and duplicates. For every 20 samples submitted either a standard or blank was submitted.

Criteria	JORC Code explanation	Commentary
	laboratory checks) and whether acceptable levels of accuracy (ie lack of bias)	The analytical laboratory provide their own routine quality controls within their own practices. The results from their own validations were provided to Stavely Minerals.
	and precision have been established.	Results from the CRM standards and the blanks gives confidence in the accuracy and precision of the assay data returned from ALS.
		Quarter core sampling of the diamond PQ core is conducted to provide a field duplicate from hole SMD067 to SMD097. On-going duplicate sampling will be conducted on selected diamond holes.
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel.	Stavely Minerals' Managing Director, the Technical Director or the Geology Manager – Victoria have visually verified significant intersections in the diamond core and air-core chips.
	The use of twinned holes.	No twinned holes have been drilled.
	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	Primary data was collected for drill holes using the OCRIS logging template on Panasonic Toughbook laptop computers using lookup codes. The information was sent to a database consultant for validation and compilation into a SQL database.
	Discuss any adjustment to assay data.	No adjustments or calibrations were made to any assay data used in this report.
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	The drill collar location was pegged before drilling and surveyed using Garmin handheld GPS to accuracy of +/- 3m. Collar surveying was performed by Stavely Minerals' personnel. Subsequent to drilling, the collar locations have been surveyed using a DGPS.
	Specification of the grid system used.	The grid system used is GDA94, zone 54.
	Quality and adequacy of topographic control.	For Stavely Minerals' exploration, the RL was recorded for each drill hole location from the DGPS. Accuracy of the DGPS is considered to be within 1m.
Data spacing and	Data spacing for reporting of Exploration Results.	The drill hole spacing is project specific, refer to figures in text.
distribution	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	No Mineral Resource and Ore Reserve estimation procedure(s) and classifications apply to the exploration data being reported.
	Whether sample compositing has been applied.	Diamond Drilling The diamond core for the entire hole is sampled. For diamond core PQ quarter core and HQ half core was submitted for analysis. Sample intervals were based on

Criteria	JORC Code explanation	Commentary
		lithology but in general were 1m. No intervals were less than 0.4m or greater than 1.2m.
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	Diamond Drilling The orientation of diamond drill holes is tabulated in the Cayley Lode Collar Table included in this report. As best as practicable, drill holes are designed to intercept targets and structures at a high angle.
	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	Diamond Drilling The azimuths for each drill hole are presented in the Cayley Lode Collar Table. The majority of the drilling has intersected the Cayley Lode mineralisation approximately perpendicularly except where limitations relating to surface access has resulted in the Cayley Lode mineralisation being intersected sub optimally.
Sample security	The measures taken to ensure sample security.	Drill samples in closed poly-weave bags are delivered by Stavely personnel to Ballarat from where the samples are couriered by a reputable transport company to ALS Laboratory in Adelaide, SA. At the laboratory, samples are stored in a locked yard before being processed and tracked through sample preparation and analysis.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	An audit of the sampling techniques, QAQC and the database was conducted by Mining Plus in November 2019 and by Cube Consulting in February 2020. The majority of the recommendations of the audit have been implemented. In particular there were slight adjustments to the sampling interval, frequency of QAQC samples and a minor update to the database.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral	Type, reference	Stavely Project
tenement and land tenure status	name/number, location and ownership including agreements or material issues with third parties	The drilling at Thursday's Gossan is located on RL2017 (previously EL4556), which forms the Stavely Project. RL2017 was granted on 8 May 2020 for a term of 10 years. The mineralisation at Thursday's Gossan is situated within
	such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	retention licence RL2017. The Stavely Project was purchased by Stavely Minerals (formerly Northern Platinum) from BCD Resources Limited in May 2013. Stavely Minerals hold 100% ownership of the Stavely Project tenements. A Section 31 Deed and a Project Consent Deed has been signed between Stavely Minerals Limited and the Eastern Maar Native Title Claim Group for RL2017.
		The New Challenge Resources Pty Ltd net smelter return royalty of 3% on EL4556 (now RL2017) has been purchased by Stavely Minerals for a cash consideration of \$350,000 and the issue of 850,000 Stavely Minerals' shares.
		EL6870 was granted on 30 August 2021 for a period of 5 years to Stavely Minerals. A Section 31 Deed and a Project Consent Deed has been signed between Stavely Minerals Limited and the Eastern Maar Native Title Claim Group for EL6870. Stavely Minerals hold 100% ownership of EL6870.
		Yarram Park Project
		The Yarram Park Project comprises EL5478. The Yarram Park Project was purchased by Stavely Minerals from Diatreme Resources Limited in April 2015. Stavely Minerals hold 100% ownership of EL5478.
		The tenement is on freehold land and is not subject to native title claim.
		Black Range Joint Venture
		The Black Range Joint Venture comprises exploration licence 5425 and is an earn-in and joint venture agreement with Navarre Minerals Limited. Stavely Minerals earned 80% equity in EL5425 in December 2021. EL5425 was granted on 18 December 2012 and expires on the 17 December 2022.
	The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	All the exploration licences and the retention licence are in good standing and no known impediments exist.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	Stavely Project & Black Range Joint Venture The Mt Stavely belt has been explored since the late 1960's, including programmes undertaken by mineral exploration companies including WMC, Duval, CRA Exploration, BHP, and North.

Criteria	JORC Code explanation	Commentary
		Exploration activity became focused on Thursday's Gossan and the Junction prospects following their discovery by Pennzoil of Australia Ltd in the late 1970s. North Limited continued to focus on Thursday's Gossan in the 1990s. North's best drill result at Thursday's Gossan came from VICT1D1 which gave 161m of 0.26% Cu from 43m, including 10m of 0.74% Cu from 43m from a supergeneenriched zone containing chalcocite.
		The tenement was optioned to CRA Exploration between 1995 and 1997. CRAE drilled several deep diamond drill holes into Thursday's Gossan, including DD96WL10, which intersected 186m from 41m of 0.15% Cu and DD96WL11, which intersected 261.7m from 38.3m of 0.13% Cu.
		EL4556 was further explored by Newcrest Operations Limited under option from New Challenge Resources Ltd between 2002 and 2004. Their main focus was Thursday's Gossan in order to assess its potential as a porphyry copper deposit. One of their better intersections came from drill hole VSTD01 on the northern edge of the deposit which gave 32m at 0.41 g/t Au and 0.73% Cu from 22m in supergene-enriched material.
		The Stavely Project was optioned to Beaconsfield Gold Mines Pty Ltd in 2006 who flew an airborne survey and undertook an extensive drilling programme focused on several prospects including Thursday's Gossan. One of their diamond drill holes at Thursday's Gossan, SNDD001, encountered zones with quartz- sulphide veins assaying 7.7m at 1.08 g/t Au and 4.14% Cu from 95.3m and 9.5m at 0.44 g/t Au and 2.93% Cu from 154.6m along silicified and sheared contacts between serpentinite and porphyritic intrusive rocks.
		Once Beaconsfield Gold Mines Pty Ltd had fulfilled their option requirements, title of EL4556 passed to their subsidiary company, BCD Metals Pty Ltd, who undertook a gravity survey and extensive drilling at prospects including Thursday's Gossan. They also commissioned a maiden Mineral Resource estimate for Thursday's Gossan.
		All work conducted by previous operators at Thursday's Gossan is considered to be of a reasonably high quality.
		Yarram Park Project
		In 2013, Diatreme Resources Limited completed ground gravity in the northern half of EL5478, over the prospective Cambrian aged volcanics. In 2015, Stavely Minerals engaged Newexco Services to reprocess and model the ground gravity data as well as the publicly available regional aeromagnetic data. A coincident gravity low with peripheral and central magnetic highs was identified within the Cambrian aged volcanics in the northern portion of EL5478 and named the Toora West prospect.

Geology

Deposit type, geological setting and style of mineralisation.

Stavely Project & Black Range Joint Venture

The Stavely Project and Black Range JV are located in the Mount Stavely Volcanic Complex (MSVC). Intrusion of volcanic arc rocks, such at the Mount Stavely Volcanic Complex, by shallow level porphyries can lead to the formation of porphyry copper ± gold ± molybdenum deposits.

EL6870 is interpreted by Cayley et al. (2017) to host structurally dislocated and rotated segments of both the Stavely Belt and the Bunnugal Belt.

Stavely Project

Thursday's Gossan Prospect

The Thursday's Gossan prospect is located in the Mount Stavely Volcanic Complex (MSVC). Intrusion of volcanic arc rocks, such at the Mount Stavely Volcanic Complex, by shallow level porphyries can lead to the formation of porphyry copper ± gold ± molybdenum deposits.

The Thursday's Gossan Chalcocite deposit (TGC) is considered to be a supergene enrichment of primary porphyry-style copper mineralisation. Mineralisation is characterised by chalcopyrite, covellite and chalcocite copper sulphide mineralisation within a sericite, illite and kaolin clay alteration assemblage. Copper mineralisation is within a flat lying enriched 'blanket' of overall dimensions of 4 kilometres north-south by up to 1.5 kilometres eastwest by up to 60 metres thick with an average thickness of approximately 20 metres commencing at an average depth below surface of approximately 30 metres. The majority (circa 60%) of the Mineral Resources reside within a higher-grade zone of approximate dimensions of 1 kilometre x 300 metres by 35 metres thick.

The mineralisation at the Cayley Lode at the Thursday's Gossan prospect is associated with high-grade, structurally controlled copper-gold-silver mineralisation along the ultramafic contact fault.

The Thursday's Gossan area hosts a major hydrothermal alteration system with copper-gold mineralisation over a 10 kilometre long corridor. The Junction porphyry target is defined by a coincident magnetic high, strong soil copper geochemistry, RAB drilling copper anomalism. Stavely Minerals believes the technical evidence indicates there is significant porphyry copper-gold mineralisation potential at depth at Thursday's Gossan.

Yarram Park Project

The aeromagnetic data shows that the northern half of EL5478 covers an offset of the Mount Stavely Belt, or a structurally offset portion of the Bunnugal Belt, which is overlain by approximately 80 metres of Quaternary cover.

Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length.	Included in the drill hole table in the body of the report.
	If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	No material drill hole information has been excluded.
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated.	Stavely Project Thursday's Gossan Prospect Porphyry target exploration results are nominally reported where copper results are greater than 0.1% over a downhole width of a minimum of 3m. For the Cayley Lode, high-grade mineralisation exploration all copper/ and or gold intervals considered to be significant have been reported with subjective discretion. No top-cutting of high-grade assay results have been applied, nor was it deemed necessary for the reporting of significant intersections.
	Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	Stavely Project Thursday's Gossan Prospect In reporting exploration results, length weighted averages are used for any non-uniform intersection sample lengths. Length weighted average is (sum product of interval x corresponding interval grade %) divided by sum of interval length.
	The assumptions used for any reporting of metal equivalent values should be clearly stated.	No metal equivalent values are used for reporting exploration results.

Polotionshin	Those relationships are	Stavely Project
Relationship between mineralisation widths and intercept lengths	These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.	Stavely Project Thursday's Gossan Prospect There is insufficient drilling data to date to demonstrate continuity of mineralised domains and determine the relationship between mineralisation widths and intercept lengths.
	If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').	Refer to the Tables and Figures in the text.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Refer to Figures in the text. A plan view of the drill hole collar locations is included.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	Stavely Project Thursday's Gossan Prospect All copper and gold values considered to be significant for structurally controlled mineralisation have been reported. Some subjective judgement has been used.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	All relevant exploration data is shown on figures and discussed in the text.

Further work

The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling).

Diagrams clearly
highlighting the areas of
possible extensions,
including the main
geological interpretations
and future drilling areas,
provided this information is
not commercially sensitive.

Stavely Project

Thursday's Gossan Prospect

A resource drill-out is currently in progress at the Cayley Lode. In addition, drilling will be conducted to test the lateral and depth extents of the Cayley Lode.

Regional reconnaissance auger sampling or air-core drilling depending on the depth of cover is in progress to test the exploration targets.