

ASX RELEASE

17 March 2022

ASXIGT1

SEYMOUR DRILLING UPDATE

HIGHLIGHTS

- Phase 1 extensional diamond drilling program at North Aubry deposit now complete.
- Step-out drilling at North Aubry will be planned in the near term based on pending assay results.
- Two additional thick +10m intersections of spodumene bearing pegmatite intersected at North Aubry.
- Phase 2 drilling commenced: 31 holes for 5,100m at the highly prospective and largely untested,
 Central Aubry zone of Seymour.
- Phase 3 drilling at the untested Pye prospect, 1.5km east of North Aubry, accelerated and commenced (26 holes for 2,000m).

Green Technology Metals Limited (ASX: GT1)(GT1 or the Company) is pleased to provide an update on the diamond drilling activities at its Seymour Lithium Project in Ontario, Canada. Following recent completion of the highly successful Phase 1 program at the North Aubry deposit, drilling activities have now commenced at both the Central Aubry zone and Pye prospect. The decision to accelerate Phase 3 exploration drilling at Pye to run concurrently with the Phase 2 extensional program at Central Aubry was enabled by the continued availability of the second diamond drill rig currently on site.

"With the recent completion of the Phase 1 program at North Aubry, and the strong outcomes it has returned to date, we are naturally excited to have transitioned to Phase 2 extensional drilling activity at the highly prospective Central Aubry zone. The acceleration of the planned Phase 3 exploration drilling program at the Pye prospect also represents a big opportunity. Pye is a genuinely compelling target at Seymour that has been rapidly unlocked via the geophysical surveying and extensive ground truthing work that GT1 has undertaken over the past six months."

- GT1 Chief Executive Officer, Luke Cox

Seymour	Holes	Meters	Status
Phase 1 – North Aubry	16	5,895	16 Holes completed, assays still pending for 13 holes
Phase 2 – Central Aubry	31	5,100	Commenced drilling 15 March, 2022
Phase 3 – Pye	26	2,000	Commenced drilling 14 March, 2022
Total	73	12,995	

Phase 1 extensional drilling (North Aubry deposit) completed

The Phase 1 drilling program at Seymour was designed to evaluate potential along-strike and down-dip extensions of the North Aubry deposit that were open and untested. This maiden program is now complete with 16 holes having been drilled for a total of 5,895 metres (see Figure 2).

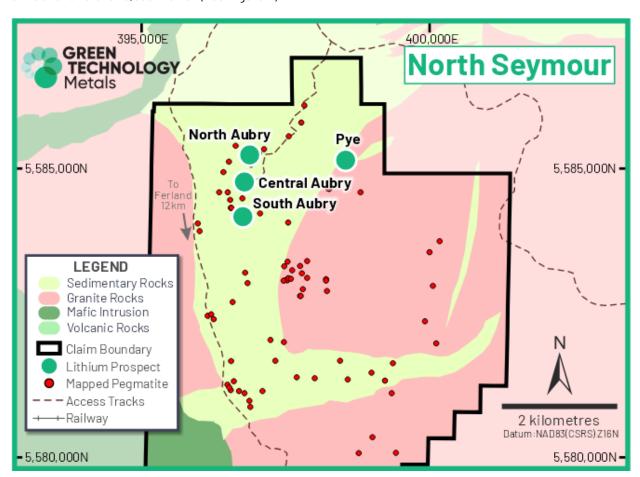


Figure 1: Location map of northern area of the Seymour Project showing North and South Aubry deposits, Central Aubry zone and Pye prospect

All holes in the Phase 1 program intersected pegmatite along strike and down dip (refer GT1 ASX release dated 8 March 2022, North Aubry Deposit Extended Down Dip and Along Strike, and Figure 2 and Table 1 below). The intercepts returned from solely the upper pegmatite at North Aubry range in thickness up to 42.7m, with the widest intervals located in the northern extensions of the deposit.

Both the northern and down-dip extents of the pegmatite are wide open to further expansion. The two final holes drilled in the Phase 1 program, GTDD-22-0001 and GTDD-22-0002, are in the northern zone and to the west of GTDD-22-0003. These two holes have returned thick, continuous pegmatite intervals of 11.2m and 10.7m, respectively (see Table 1).

As a result of this ongoing northern extensional potential at North Aubry, GT1 plans to conduct further step-out drilling in the near term, with planning already underway for this work.

Assays remain pending for 13 of the 16 holes from the Phase 1 program. The first three holes in the program returned mineralised intervals of 42.7m at 1.54% Li_2O (GTDD-21-0004), 8.9m at 1.46% Li_2O (GTDD-22-0005) and 1.58m at 1.11% Li_2O (GTDD-22-0006) (refer GT1 ASX releases dated 17 January 2022 and 8 March 2022 for full details).

All results from the Phase 1 program are set to be incorporated into a scheduled update of the current Seymour Mineral Resource estimate (4.8 Mt @ 1.25% Li₂0¹), which remains on track for completion during Q2 2022.

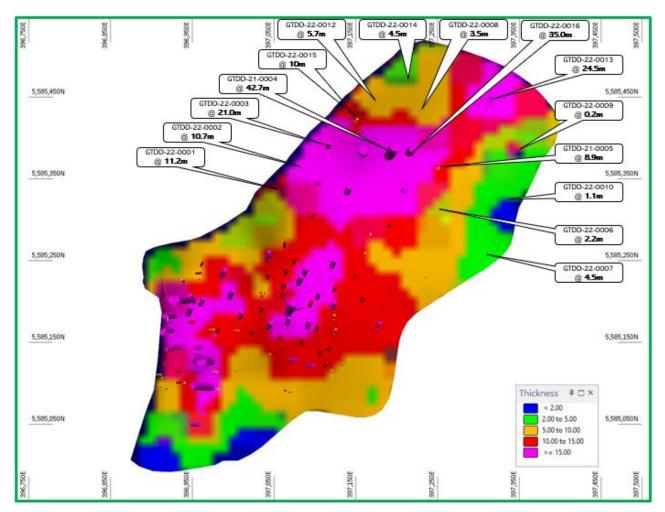


Figure 2: Completed Phase 1 diamond drill program at North Aubry, upper pegmatite intersections displayed

Hole	From	То	Thickness	Easting (collar)	Northing (collar)	RL (Collar)	Lithology
GTDD-22-0001	123.2	134.4	11.2	397,016	5,585,304	390	Pegmatite
GTDD-22-0002	173.0	183.7	10.7	397,050	5,585,389	373	Pegmatite

Table 1: North Aubry upper pegmatite intersection table (new results)

The spodumene crystals are hosted in pegmatite dykes intruding into the country rock. The main lithium mineral observed was fine-to-coarse spodumene crystals. The estimation of abundance has not been specified as the fine crystals could be misinterpreted and the pXRF or Raman Spectrometer was not available for mineral identification. In relation to the disclosure of visual intersections of pegmatite, the Company cautions that visual intersections of pegmatite should never be considered a proxy or substitute for laboratory analysis. Laboratory assay results are required to confirm the widths and grade of visual intersections of pegmatite reported in the preliminary geological logging. The Company will update the market when laboratory analytical results become available.

Phase 2 extensional drilling (Central Aubry zone) commenced

As previously announced (refer GT1 ASX release dated 16 February, *Central Aubry Drilling Set to Commence*), the next round of drilling at Seymour (Phase 2) is testing the highly prospective and largely untested, Central Aubry zone. Phase 2 drilling at the Central Aubry zone has now commenced, following completion of the Phase 1 drilling at the North Aubry deposit. The Phase 2 program comprises a planned 31 holes for approximately 5,100m drilling metres (see Figure 3).

Recently completed aerial magnetic surveying combined with Ground Penetrating Radar (**GPR**) surveying completed in 2018 (refer ADV ASX release dated 27 September 2018) provide compelling signals that mineralised pegmatite extends into the central portion of Aubry, between the currently delineated Mineral Resource estimates at the North and South Aubry lithium deposits. The magnetics and GPR suggest a series of stacked moderately north-easterly dipping structures at Central Aubry, similar to the attitude of the pegmatites within the existing North and South Aubry systems (northwest-southeast strike and northeast dip).

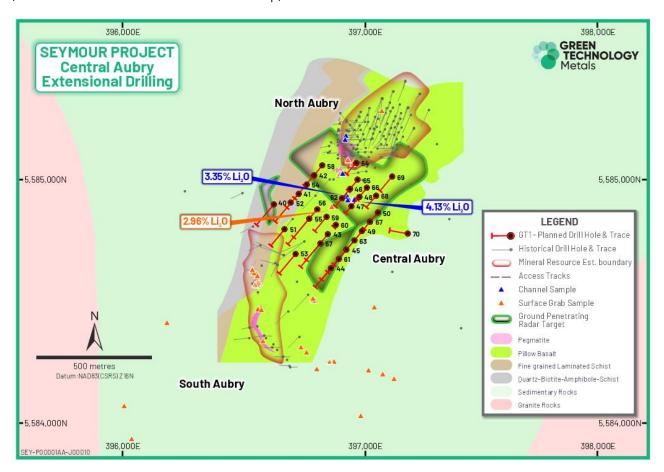


Figure 3: Phase 3 diamond drill program at Central Aubry

The identified structures have been extrapolated to surface, with recent geological mapping confirming pegmatite occurrences in this area. Historical channel sampling of identified surficial pegmatite in the Central Aubry zone also returned assay values up to 4.13% Li₂0 (ASX: GT1 16 February 2022). There is currently no Mineral Resource estimate at Central Aubry, with the existing Seymour Mineral Resource estimate of 4.8 Mt @ 1.25% Li₂0¹ comprised solely of the North and South Aubry deposits.

Phase 3 exploration drilling (Pye prospect) accelerated

Building on recent and highly encouraging geophysical survey and geological mapping work, and following the recent confirmation of continued availability of the second diamond drill rig currently on site at Seymour, the next round of drilling at Seymour (Phase 3 exploration drilling focussed on Pye) has been accelerated and has also now commenced.

The Pye prospect is located approximately 1 km east of the Aubry complex. The Phase 3 diamond drill program is set to drill an initial 26 holes at Pye for approximately 2,000 drilling metres.

The elevated prospectivity of the Pye target has been established, in part, through the aerial geophysical survey undertaken last year by GT1 that covered the full extent of the Seymour tenement package. It was designed and supervised by Karen Gilgallon from Southern Geoscience, who has extensive experience in these types of surveys and lithium bearing pegmatites. The results were highly encouraging given excellent alignment of identified geophysical anomalies on the Seymour tenements with currently defined Mineral Resources, Exploration Targets, and geological interpretations (see Figure 4).

Of particular note, was that the Total Magnetic Intensity (**TMI**) survey delineated a syn-form structure with the hinge axis located at the Pye prospect. Such a structure is a common location for LCT pegmatite mineralisation, with a ready example of such depositional structure being the world-class Wodgina lithium deposit in Western Australia.

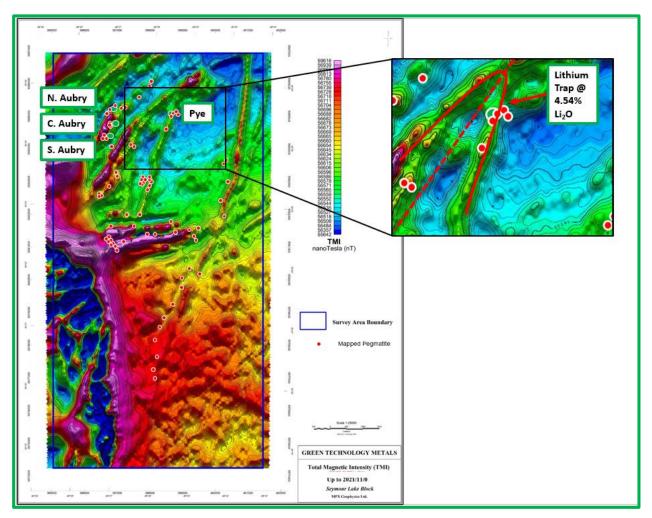


Figure 4: Total Magnetic Intensity (TMI) and mapped pegmatite occurrences (red dots)

The initial target for drilling is the Pye prospect LCT pegmatite which is exposed at surface with dimensions of approximately 18m wide by 84m long, striking in a NE-SW direction and mapped as sub-vertical (Announced by ASX: ADV on 21st September 2016 and re-reported by ASX: GT1 17th March 2022) (see Figure 5).

The drilling at Pye is then planned to step-out and target geological and geophysical features which are considered favourable for lithium mineralisation along the Pye syn-form limbs (see Figure 6) targeting:

- Outcropping pegmatites
- Intersections of secondary faults with a major fault
- Non-magnetic or demagnetised zones interpreted as possible localised intrusions or alteration zones, eg magnetite alteration to pyrrhotite within mafic units
- Potential dilatational settings such as fault intersections, shear zones, kinks, or bends.
- Zones of increased resistivity in the VLF

Figure 5: Pye pegmatite

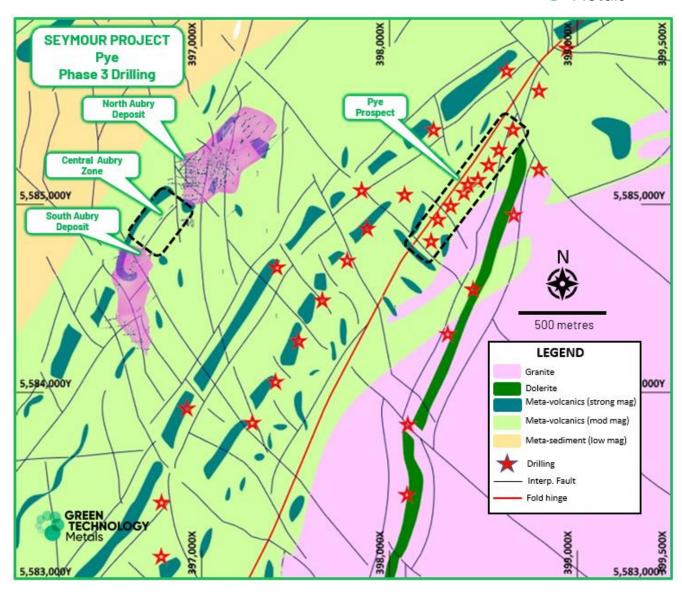
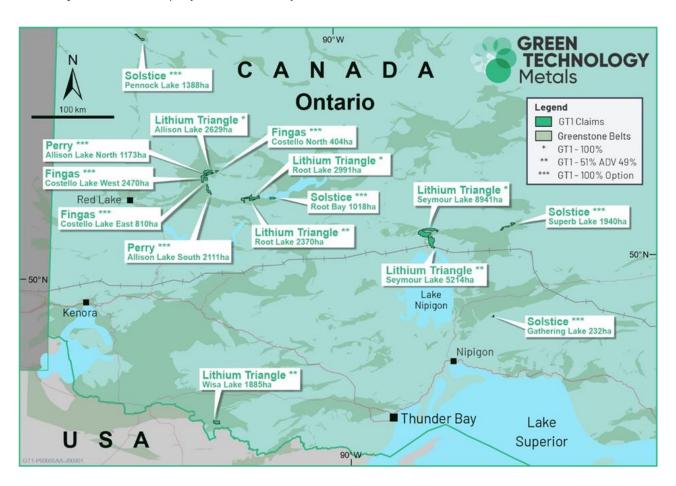


Figure 6: Targeted Phase 3 drilling locations at Pye prospect and along Pye syn-form limbs

This ASX release has been approved for release by: Luke Cox, Chief Executive Officer

KEY CONTACTS

Investors	Media
Luke Cox	Andrew Edge
Chief Executive Officer	Fivemark Partners
info@greentm.com.au	andrew.edge@fivemark.com.au
+61 8 6557 6825	+61 410 276 744



Green Technology Metals (ASX:GT1)

GT1 is a North American focussed lithium exploration and development business. The Company's Ontario Lithium Projects comprise high-grade, hard rock spodumene assets (Seymour, Root and Wisa) and lithium exploration claims (Allison and Solstice) located on highly prospective Archean Greenstone tenure in north-west Ontario, Canada.

All sites are proximate to excellent existing infrastructure (including hydro power generation and transmission facilities), readily accessible by road, and with nearby rail delivering transport optionality.

Seymour has an existing Mineral Resource estimate of 4.8 Mt @ 1.25% Li₂0 (comprised of 2.1 Mt at 1.29% Li₂0 Indicated and 2.7 Mt at 1.24% Li₂0 Inferred). Accelerated, targeted exploration across all three projects delivers outstanding potential to grow resources rapidly and substantially.

The Company currently holds a 51% interest in the Ontario Lithium Projects (Seymour, Root and Wisa) under a joint venture with Ardiden Limited (ASX: ADV). GT1 has the right to acquire a further 29% interest in the Ontario Lithium Projects via the payment of A\$3.5 million in GT1 shares within 12-months of listing. Refer to the Company's Prospectus (see GT1 ASX release dated 8 November 2021) for further details.

 The information in this release that relates to Mineral Resources for the Ontario Lithium Projects was released in the Company's prospectus (see GT1 ASX release dated 8 November 2021). The Company confirms that it is not aware of any new information or data that materially affects the information in that release and that the material assumptions and technical parameters underpinning these exploration results and mineral resource estimates continue to apply and have not materially changed.

APPENDIX A: IMPORTANT NOTICES

Competent Person's Statements

Information in this report relating to Exploration Results is based on information reviewed by Mr Luke Cox (Fellow AusIMM). Mr Cox has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined by the 2012 Edition of the Australasian Code for reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr Cox consents to the inclusion of the data in the form and context in which it appears in this release. Mr Cox is the Chief Executive Officer of the Company and holds securities in the Company.

Forward Looking Statements

Certain information in this document refers to the intentions of Green Technology Metals Limited (ASX: GT1), however these are not intended to be forecasts, forward looking statements or statements about the future matters for the purposes of the Corporations Act or any other applicable law. Statements regarding plans with respect to GT1's projects are forward looking statements and can generally be identified by the use of words such as 'project', 'foresee', 'plan', 'expect', 'aim', 'intend', 'anticipate', 'believe', 'estimate', 'may', 'should', 'will' or similar expressions. There can be no assurance that the GT1's plans for its projects will proceed as expected and there can be no assurance of future events which are subject to risk, uncertainties and other actions that may cause GT1's actual results, performance or achievements to differ from those referred to in this document. While the information contained in this document has been prepared in good faith, there can be given no assurance or quarantee that the occurrence of these events referred to in the document will occur as contemplated. Accordingly, to the maximum extent permitted by law, GT1 and any of its affiliates and their directors, officers, employees, agents and advisors disclaim any liability whether direct or indirect, express or limited, contractual, tortuous, statutory or otherwise, in respect of, the accuracy, reliability or completeness of the information in this document, or likelihood of fulfilment of any forward-looking statement or any event or results expressed or implied in any forward-looking statement; and do not make any representation or warranty, express or implied, as to the accuracy, reliability or completeness of the information in this document, or likelihood of fulfilment of any forwardlooking statement or any event or results expressed or implied in any forward-looking statement; and disclaim all responsibility and liability for these forward-looking statements (including, without limitation, liability for negligence).

APPENDIX B: SEYMOUR MINERAL RESOURCE ESTIMATE

Area	Category	Mt	Li₂0 (%)
North Aubry	Indicated	2.1	1.29
North Aubry	Inferred	1.7	1.50
South Aubry	Inferred	1.0	0.80
TOTAL		4.8	1.25

APPENDIX C: JORC CODE, 2012 EDITION - Table 1 Report

Section 1 Sampling Techniques and Data

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 Diamond drilling was used to obtain nominally 1m downhole samples of core. 54 core samples were ½ cored using a diamond saw with ½ the core placed in numbered sample bags for assaying and the other half retained in sequence in the core tray. ½ core samples were approximately 2.5kg in weight with a minimum weight of 500grams. Core was cut down the apex of the core and the same downhole side of the core selected for assaying to reduce potential sampling bias. Historic Grab Samples Samples were collected between 16 June and 9 November 2016 by Caracle Creek International Consulting Inc, of Sudbury Ontario on behalf of Ardiden Limited (ASX:ADV) and are noted in the Technical Report for MNDM Assessment, 2016 Surface Exploration Program, dated 28 September 2018. The report was prepared by Caracle Creek International Consulting Inc on behalf of Ardiden and included channel samples collected within the reporting period. Details of the grab sampling and preparation techniques were extracted from this report; Grab Samples were collected using a hammer and/or chisel from a cleaned rock exposure. Samples were tagged and placed in a cotton bag then fastened with a zip tie. Historic Channel Samples Preparation prior to obtaining the channel samples including grid and geo-references and marking of the pegmatite structures. Samples were cut across the pegmatite with a diamond saw perpendicular to strike. Average 1 metre samples are obtained, logged, removed and bagged and secured in accordance with QAOC procedures. Sampling continued past the Spodumene -Pegmatite zone, even if it is truncated by Mafic Volcanic a later intrusion. Samples were then transported directly to the laboratory for analysis accompanied with the log and instruction forms. Bagging of the samples was supervised by a geologist to ensure there are no numbering mix-ups
Drilling techniques	Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type,	Tri-cone drilling was undertaken through the thin overburden prior to NQ2 diamond drilling through the primary rock.

Criteria	JORC Code explanation	Commentary
	whether core is oriented and if so, by what method,	
Drill sample recovery	 etc). Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	No core was recovered through the overburden tri-coned section of the hole (top 5m of the hole) Core recovery through the primary rock and mineralised pegmatite zones was over 98% and considered satisfactory. Recovery was determined by measuring the recovered metres in the core trays against the drillers core block depths for each run.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 Each sample was logged for lithology, minerals, grainsize and texture as well as alteration, sulphide content, and any structures. Logging is qualitative in nature. Samples are representative of an interval or length. Sampling was undertaken for the entire cross strike length of the intersected pegmatite unit at nominal 1m intervals with breaks at geological contacts. Sampling extended into the country mafic rock.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all subsampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 Each ½ core sample was dried, crushed to entirety to 90% - 10 mesh, riffle split (up to 5 kg) and then pulverized with hardened steel (250 g sample to 95% -150 mesh) (includes cleaner sand). Blanks and Certified Reference samples were inserted in each batch submitted to the laboratory at a rate of approximately 1:20. Field duplicates were taken at a rate of 1:20 taken immediately adjacent to the original sample. The sample preparation process is considered representative of the whole core sample.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 Actlabs inserted internal standards, blanks and pulp duplicates within each sample batch as part of their own internal monitoring of quality control. All and blanks and certified reference samples returned acceptable results. The major element oxides and trace elements including Rb, Cs, Nb, Ta and Be were analyzed by FUS-ICP and FUS-MS (4Litho-Pegmatite Special) analytical codes which uses a lithium metaborate tetraborate fusion with analysis by ICP and ICPMS. Historic specific gravity testwork was determined for every 10th sample by RX17-GP analytical code measured on the pulp by a gas pycnometer.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	• NA
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control.	A GPS reading was taken for each sample location using UTM NAD83 Zone16 (for Seymour); waypoint averaging or dGPS was performed when possible. Ardiden undertook a Lidar survey of the Seymour area in 2018 (+/- 0.15m) which underpins the local topographic surface. Downhole survey data used a Digital Electronic Multi-shot (DEMS) camera for establishing hole orientation.

Criteria	JORC Code explanation	Commentary
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	The Seymour North Aubry pegmatites have variable drill spacing from 20Ex20Nm in the shallower areas (<150m) of the deposit to 50mEx50mN at lower depths (150-250m) Im compositing was applied to the historic Seymour Mineral Resource.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 Drill samples were drilled close to perpendicular to the strike of the pegmatite unit and sampled the entire length of the pegmatite as well including several metres into the mafic country rock either side of the pegmatite. Grab and trench samples were taken where outcrop was available. All attempts were made to ensure trench samples represented traverses across strike of the pegmatite.
Sample security	The measures taken to ensure sample security.	All core and samples were supervised and secured in a locked vehicle, warehouse, or container until delivered to Actlabs in Thunder Bay for cutting, preparation and analysis.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	• NA

Section 2 Reporting of Exploration Results

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	 Joint Venture between Green Technology Metals (ASX:GT1) 51% and Ardiden Ltd (ASX:ADV) 49%. GT1 has the option to acquire 80% of the Ardiden Lithium Assets for consideration of \$3.5M in GT1 shares Seymour Lithium Asset consists of 265 Cell Claims (Exploration Licences) with a total claim area of 5,205 ha. All Cell Claims are in good standing An Active Exploration Permit exists over the Seymour Lithium Assets and is due for renewal February 2022 Renewal is a simple on-line application process An Early Exploration Agreement is current with the Whitesand First Nation who are supportive of GT1 exploration activities.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 Regional exploration for lithium deposits commenced in the 1950's. In 1957, local prospector, Mr Nelson Aubry, discovered the North Aubry and the South Aubry pegmatites. Geological mapping by the Ontario Department of Mines commenced in 1959 and was completed in 1962 (Pye, 1968), with the publication of "Map 2100 Crescent Lake Area" in 1965. From the late 1950's to 2002, exploration by the Ontario Department of Mines was generally restricted to geological mapping and surface sampling, although some minor drilling was completed to test the North Aubry pegmatite in late 1957 (Rees, 2011). In 2001, Linear Resources Inc. ("Linear Resources") obtained the Seymour Lake Project with an initial focus on the project's tantalum potential. In 2002, a 23-diamond drill-hole campaign was completed at North Aubry, and a further 8 diamond drill-holes at South Aubry. In 2008, Linear Resources completed a regional soil-sampling program which resulted in the identification of a number soil geochemical anomalies. Based on these anomalies, another drilling campaign (completed in 2009), with 12 diamond drill-holes at North Aubry, 2 diamond drill-

Criteria	JORC Code explanation	Commentary
		holes at South Aubry, and further 5 diamond drill-holes peripheral to the Aubry prospects designed to test the main 2008 soil geochemical anomalies. Little work was undertaken between 2010 and 2016 until Ardiden acquired the project from Linear Resources in 2016. Further drilling was carried out by Ardiden between 2017 and 2018 resulting in the completion of an updated mineral resource estimate of the Aubry pegmatites in 2018. Ground Penetrating Radar (GPR) was also undertaken by Ardiden in 2018 to test any further exploration potential beyond the current Aubry pegmatite delineating numerous targets.
Geology	Deposit type, geological setting and style of mineralisation.	 Regional Geology: The general geological setting of the Seymour Lithium Asset consists of the Precambrian Canadian Shield that underlies approximately 60% of Ontario. The Shield can be divided into three major geological and physiographic regions, from the oldest in the northwest to the youngest in the southeast. Local Geology: The Seymour Lithium Asset is located within the eastern part of the Wabigoon Subprovince, near the boundary with the English River Subprovince to the north. These subprovinces are part of the Superior Craton, comprised mainly of Archaean rocks but also containing some Mesoproterozoic rocks such as the Nipigon Diabase. Bedrock Geology: The bedrock is best exposed along the flanks of steep-sided valleys scoured by glaciers during the recent ice ages. The exposed bedrock is commonly metamorphosed basaltic rock, of which some varieties have well-preserved pillows that have been intensely flattened in areas of high tectonic strain. Intercalated between layers of basalt are lesser amounts of schists derived from sedimentary rocks and lesser rocks having felsic volcanic protoliths. These rocks are typical of the Wabigoon Subprovince, host to most of the pegmatites in the region. Ore Geology: Pegmatites are reasonably common in the region intruding the enclosing host rocks after metamorphism, evident from the manner in which the pegmatites cut across the well developed foliation within the metamorphosed host rocks. This post-dating relationship is supported by radiometric dating; an age of 2666 + 6 Ma is given for the timing of intrusion of the pegmatites (Breaks, et al., 2006).
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	 The original MRE for the Seymour Lake Project area was undertaken by Ardiden in February 2019. Ardiden commissioned an independent consultant, Mr Phil Jones (MAusIMM [#105653] / MAIG [#1903]) to produce the MRE as a competent person as defined by the JORC Code (JORC., 2012). Mr Phil Jones subsequently agreed to act as the Competent Person for the current MRE for the Seymour Lake Project under the 51% owner Green Technology Metals. A total of 185 diamond holes, on a nominal 20m x 20m grid, have been drilled and used in the resource modelling at North Aubry and South Aubry. A total of 130 holes were drilled by Ardiden, with the previous owners Linear drilling 44 holes The 2018 Ardiden drilling was completed by Rugged Aviation Inc. using BTW coring equipment producing 4.20 cm diameter core. The earlier drill holes were either vertical or inclined towards the west. Once the pegmatite was determined to be dipping towards the north-east, the later drill holes were inclined towards the south-west Hole GTDD-21-0004 was drilled by Green Technology

Criteria	JORC Code explanation	Commentary		
		Metals Ltd from 8-15 December 2021 with the following collar coordinates:		
		Hole Easting Northing RL Depth Dip Azimuth GTDD-21-0004 397,233 5,585,466 390 331 -76 210 Coordinates in NAD83 Zone 16 Grid format 400 300		
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated.	 length weighted averages and all resource estimates are tonnage weighted averages Grade cut-offs have not been incorporated. No metal equivalent values are quoted. 		
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 The historic reported results are stated as down hole lengths. The historic pierce angle of the drilling with the pegmatite varies hole by hole so all intersection widths are longer than true widths. The resource modelling considers the intersections in 3D and adjusts accordingly. Hole GTDD-21-0004 pierces the mineralised pegmatite approximately perpendicular to strike, and therefore, the downhole intercepts are approximately equivalent to the true width of the mineralisation. Trenches are representative widths of the exposed pegmatite outcrop. Some exposure may not be a complete representation of the total pegmatite width due to recent glacial deposit cover limiting the available material to be sampled. 		
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	The appropriate maps are included in the announcement.		
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	All historic data has been reported. GTDD-21-0004 summarised assay results are listed below: Hole		
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. GT1 completed a fixed wing single sensor magnetic/radiometric/VLF airborne geophysical Survey details, 1191 line-km, 75m line spacing, degrees to cross cut pegmatite strike, 70m altimates and VLF. Radiometric, Total Magnetics and VLF. Raw data currently being processed by MPX Ge Interpretation will be completed by Southern G 			
Further work	The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or largescale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	 Geological field mapping of anomalies and associated pegmatites Sampling pegmatites for spodumene Phase 2 diamond drilling at Aubrey Central (Seymour Project). Drill targeting and then drilling with RC and Diamond over the next 24 months. 		