SOLIS AIRCORE RESAMPLES ENHANCE GOLD PROSPECTIVITY #### **SUMMARY** - The recent maiden aircore program at Solis, at the southern end of the Island Gold Project, defined a +1km long regolith gold anomaly (see ASX 16 March 2022). - One metre resamples of the original four metre composites have now been received, with better results including: - o 1m @ 3.9g/t Au from 28m - o 3m @ 1.2g/t Au from 50m, incl. 1m @ 2.9g/t - o **1m @ 1.5g/t Au** from 42m - o 1m @ 1.2g/t Au from 30m and - o 1m @ 1.2g/t Au from 38m. - Given the coarse drill spacing and first pass nature of the program, the grades returned from the resamples are very encouraging and reinforce Caprice's belief in the prospectivity of the Solis Prospect for gold mineralisation. - Follow up aircore drilling remains on track for the June quarter. Caprice Resources Ltd (ASX: **CRS)** ("**Caprice**" or "**the Company**") is pleased to provide an exploration update for the Island Gold Project ("**IGP**", "**Project**"), located in the Murchison Region of Western Australia. The maiden aircore drilling on the Solis Prospect delineated a continuous +1km long regolith gold anomalous zone. Solis is located on the southern fringe of Lake Austin within the Island Gold Project. The 80 hole broad spaced program was the first drilling in this area with 400m line spacing designed to test a large area. The anomalous four metre composites have been re-sampled on one metre intervals, returning multiple +1g/t gold intercepts. The resamples have confirmed the gold mineralisation and upgraded the anomaly at the southern end. With five adjacent holes that contain +1g/t intercepts, over an 800m strike and up to c.200m wide, the southern area is the highest priority target at Solis. Follow up aircore drilling is scheduled for the June quarter, with final timing dependent on drill rig availability and PoW approval. #### Managing Director, Andrew Muir, commented: "Generating multiple +1g/t gold intercepts in a first pass aircore program in an untested area is an outstanding result. In addition, the scale and coherence of the anomaly is very encouraging. The aircore program successfully demonstrated that this new area is prospective for gold mineralisation. We look forward to follow-up aircore drilling soon to refine the anomaly with a view to generating targets for deeper RC drilling." **Figure 1: Island Gold Project Prospects** ## **Solis Drilling** The 80 hole aircore program included 2,451m of drilling at the Solis Prospect, located at the southern end of Lake Austin within E 21/186. This is the first time this area has been drilled. Drill lines were spaced approximately 400m apart, with holes spaced 80m apart. Composite samples were collected down hole. The anomalous (>0.1g/t Au) composites samples were resampled at one metre intervals. Figure 2: Solis aircore collar locations, coloured by Max Au in hole, with Max Au contours, updated to include the 1m resampling results. The program successfully identified a +1km gold anomaly using the four metre composites data. The one metre resamples have confirmed the orientation of the regolith anomaly, returning numerous +1g/t intercepts. #### Better results include: - o 1m @ 3.9g/t Au from 28m in 22IGAC0046 - o **3m @ 1.2g/t Au** from 50m, incl. **1m @ 2.9g/t** in 22IGAC0045 - o 1m @ 1.5g/t Au from 42m in 22IGAC0066 - o 1m @ 1.2g/t Au from 30m in 22IGAC0047 and - o 1m @ 1.2g/t Au from 38m in 22IGAC0051 Figure 3: Solis aircore cross section A, see Figure 2 for section location, with all 1m sample intervals displayed The +1 g/t intercepts are contained within a broader envelope of gold anomalism of between 4 to 10 metres downhole. Due to the weathered nature of most of the intercepts, combined with the coarse drill spacing, an interpretation of the geometry of the anomalism or possible geological controls is not possible. Infill drilling will enable a greater understanding of the grade distribution and geometry, and assist in determining next steps in the exploration strategy for the Prospect. ### **Summary & Next Steps** The recent aircore program successfully demonstrated the potential for the Solis Prospect at Lake Austin to host gold mineralisation with the definition of a large and coherent regolith gold anomaly. Follow up aircore drilling will help refine the understanding of the mineralisation intersected to date. Drilling is a high priority for Caprice and will involve infilling between the existing intercepts, as well targeting extensions to the east and south with a view to generating targets for deeper RC drilling. This program is scheduled for the June quarter, with timing dependent on drill rig availability and PoW approval. This announcement has been authorised by the Board of Caprice. #### For further information please contact: #### **Andrew Muir** Managing Director amuir@capriceresources.com #### **About Caprice Resources** Caprice Resources Limited (ASX: CRS) holds a 100% interest in the Island Gold Project, located in the Lake Austin gold mining centre in the Cue Goldfield. Caprice acquired the Project in October 2020. Caprice has an 80% interest in the Cuddingwarra and Big Bell South Projects, located to the west and southwest of Cue in the Cue Goldfield. Caprice acquired the Projects in July 2021. The Company also holds a 100% interest in the Northampton Project, a polymetallic brownfields project surrounding historical lead-silver and copper mines that were operational between 1850 and 1973. Caprice also holds a 100% interest in the Wild Horse Hill Gold Project located within the Pine Creek province of Northern Territory. #### **Competent Person's Statement** The information in this report that relates to exploration results has been compiled by Mr Christopher Oorschot, a full time employee of Caprice Resources Ltd. Mr Oorschot is a Member of the Australian Institute of Geoscientists and has sufficient experience in the style of mineralisation and type of deposit under consideration and the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Minerals Resources and Ore Reserves ("JORC Code"). Mr Oorschot consents to the inclusion in the report of the matters based on the information in the form and context in which it appears. Table 1: Significant 1m resample intercepts from the Solis AC program – All intervals >0.5g/t Au*. | | | | <u> </u> | | y - | |------------|---------------|----------|----------|------------|------------| | Hole ID | EOH Depth (m) | From (m) | To (m) | Length (m) | g/t Au | | 21IGAC0001 | 59 | 13 | 14 | 1 | 0.7 | | 21IGAC0013 | 23 | 10 | 12 | 2 | 0.5 | | 21IGAC0045 | 58 | 19 | 20 | 1 | 0.6 | | 21IGAC0045 | 58 | 50 | 53 | 3 | 1.2 | | incl. | | 50 | 51 | 1 | 2.9 | | 21IGAC0046 | 64 | 25 | 29 | 4 | 1.3 | | 21IGAC0046 | 64 | 25 | 26 | 1 | 0.7 | | 21IGAC0046 | 64 | 28 | 29 | 1 | 3.9 | | 21IGAC0046 | 64 | 38 | 39 | 1 | 0.8 | | 21IGAC0047 | 54 | 30 | 31 | 1 | 1.2 | | 21IGAC0047 | 54 | 34 | 35 | 1 | 0.6 | | 21IGAC0051 | 81 | 38 | 39 | 1 | 1.2 | | 21IGAC0066 | 55 | 42 | 43 | 1 | 1.5 | ^{*} Significant intercepts are calculated using a 0.5g/t cut-off grade and include no more that 2m of internal dilution unless otherwise stated. All intercepts are reported as down hole length unless otherwise stated. Original 4m composite assays report to ASX on 16 March 2022 **Table 2: Solis Aircore Collar Details** | Hole ID | Туре | Easting | Northing | RL | Dip | Azimuth | EOH Depth (m) | |------------|------|---------|----------|-------|-----|---------|---------------| | 22IGAC0001 | AC | 588283 | 6940703 | 412.0 | -60 | 112 | 59 | | 22IGAC0002 | AC | 588214 | 6940728 | 412.0 | -60 | 112 | 23 | | 22IGAC0003 | AC | 588128 | 6940761 | 412.0 | -60 | 112 | 19 | | 22IGAC0004 | AC | 588033 | 6940799 | 412.0 | -60 | 112 | 12 | | 22IGAC0005 | AC | 587944 | 6940834 | 411.8 | -60 | 112 | 13 | | 22IGAC0006 | AC | 587852 | 6940871 | 412.2 | -60 | 112 | 12 | | 22IGAC0007 | AC | 587755 | 6940913 | 411.8 | -60 | 112 | 4 | | 22IGAC0008 | AC | 587665 | 6940944 | 412.1 | -60 | 112 | 25 | | 22IGAC0009 | AC | 588094 | 6940451 | 411.8 | -60 | 112 | 13 | | 22IGAC0010 | AC | 588020 | 6940486 | 411.8 | -60 | 112 | 19 | | 22IGAC0011 | AC | 587923 | 6940525 | 411.8 | -60 | 112 | 29 | | 22IGAC0012 | AC | 587828 | 6940563 | 411.8 | -60 | 112 | 16 | | 22IGAC0013 | AC | 587734 | 6940595 | 412.2 | -60 | 112 | 23 | | 22IGAC0014 | AC | 587646 | 6940629 | 412.0 | -60 | 112 | 43 | | 22IGAC0015 | AC | 587554 | 6940671 | 411.7 | -60 | 112 | 41 | | 22IGAC0016 | AC | 587460 | 6940713 | 411.0 | -60 | 112 | 52 | | 22IGAC0017 | AC | 587371 | 6940730 | 411.3 | -60 | 112 | 59 | | 22IGAC0018 | AC | 587303 | 6940330 | 412.5 | -60 | 112 | 24 | | 22IGAC0019 | AC | 587219 | 6940371 | 412.3 | -60 | 112 | 47 | | 22IGAC0020 | AC | 587123 | 6940409 | 412.0 | -60 | 112 | 48 | | 22IGAC0021 | AC | 587031 | 6940439 | 412.0 | -60 | 112 | 40 | | 22IGAC0022 | AC | 586945 | 6940479 | 411.4 | -60 | 112 | 15 | | 22IGAC0023 | AC | 586606 | 6940497 | 413.9 | -60 | 112 | 18 | | 22IGAC0024 | AC | 586539 | 6940528 | 412.7 | -60 | 112 | 40 | | الماملال | T- w- | Faction | Nouthin | DI - | Dia | A=: | FOU Ponth (m) | |------------|-------|---------|----------|-------|-----|---------|---------------| | Hole ID | Type | Easting | Northing | RL | Dip | Azimuth | EOH Depth (m) | | 22IGAC0025 | AC | 586452 | 6940554 | 411.3 | -60 | 112 | 33 | | 22IGAC0026 | AC | 586667 | 6940137 | 415.7 | -60 | 112 | 65 | | 22IGAC0027 | AC | 586600 | 6940150 | 413.9 | -60 | 112 | 20 | | 22IGAC0028 | AC | 586556 | 6940170 | 412.5 | -60 | 112 | 20 | | 22IGAC0029 | AC | 588757 | 6941801 | 412.0 | -60 | 112 | 42 | | 22IGAC0030 | AC | 588660 | 6941841 | 412.0 | -60 | 112 | 32 | | 22IGAC0031 | AC | 588568 | 6941880 | 412.0 | -60 | 112 | 34 | | 22IGAC0032 | AC | 588482 | 6941915 | 413.0 | -60 | 112 | 38 | | 22IGAC0033 | AC | 588613 | 6941432 | 412.0 | -60 | 112 | 59 | | 22IGAC0034 | AC | 588516 | 6941471 | 412.0 | -60 | 112 | 37 | | 22IGAC0035 | AC | 588426 | 6941508 | 412.0 | -60 | 112 | 33 | | 22IGAC0036 | AC | 588235 | 6941579 | 412.7 | -60 | 112 | 13 | | 22IGAC0037 | AC | 588148 | 6941613 | 413.4 | -60 | 112 | 15 | | 22IGAC0038 | AC | 588437 | 6941080 | 412.0 | -60 | 112 | 35 | | 22IGAC0039 | AC | 588371 | 6941103 | 412.0 | -60 | 112 | 18 | | 22IGAC0040 | AC | 588274 | 6941141 | 412.0 | -60 | 112 | 12 | | 22IGAC0041 | AC | 588188 | 6941174 | 412.0 | -60 | 112 | 31 | | 22IGAC0042 | AC | 588099 | 6941209 | 412.2 | -60 | 112 | 16 | | 22IGAC0043 | AC | 587997 | 6941254 | 412.6 | -60 | 112 | 20 | | 22IGAC0044 | AC | 587921 | 6941288 | 413.0 | -60 | 112 | 22 | | 22IGAC0045 | AC | 587680 | 6939645 | 412.5 | -60 | 112 | 58 | | 22IGAC0046 | AC | 587598 | 6939676 | 412.5 | -60 | 112 | 64 | | 22IGAC0047 | AC | 587506 | 6939719 | 412.5 | -60 | 112 | 54 | | 22IGAC0048 | AC | 587410 | 6939755 | 412.5 | -60 | 112 | 34 | | 22IGAC0049 | AC | 587324 | 6939792 | 412.5 | -60 | 112 | 12 | | 22IGAC0050 | AC | 587224 | 6939825 | 412.3 | -60 | 112 | 65 | | 22IGAC0051 | AC | 587083 | 6939456 | 412.4 | -60 | 112 | 81 | | 22IGAC0052 | AC | 586978 | 6939498 | 411.9 | -60 | 112 | 36 | | 22IGAC0053 | AC | 586885 | 6939534 | 411.7 | -60 | 112 | 52 | | 22IGAC0054 | AC | 586798 | 6939583 | 412.0 | -60 | 112 | 17 | | 22IGAC0055 | AC | 586700 | 6939616 | 415.9 | -60 | 112 | 21 | | 22IGAC0056 | AC | 586634 | 6939648 | 413.4 | -60 | 112 | 24 | | 22IGAC0057 | AC | 586571 | 6939670 | 413.2 | -60 | 112 | 14 | | 22IGAC0058 | AC | 588489 | 6939762 | 412.5 | -60 | 112 | 15 | | 22IGAC0059 | AC | 588398 | 6939794 | 412.5 | -60 | 112 | 23 | | 22IGAC0060 | AC | 588299 | 6939828 | 412.5 | -60 | 112 | 26 | | 22IGAC0061 | AC | 588204 | 6939866 | 412.5 | -60 | 112 | 10 | | 22IGAC0062 | AC | 588107 | 6939904 | 412.5 | -60 | 112 | 15 | | 22IGAC0063 | AC | 588019 | 6939939 | 412.5 | -60 | 112 | 38 | | 22IGAC0064 | AC | 587921 | 6939975 | 412.5 | -60 | 112 | 47 | | 22IGAC0065 | AC | 587831 | 6940013 | 412.5 | -60 | 112 | 30 | | 22IGAC0066 | AC | 587743 | 6940048 | 412.5 | -60 | 112 | 55 | | 22IGAC0067 | AC | 587642 | 6940090 | 412.5 | -60 | 112 | 15 | | | | | | | | | | | 22IGAC0068 | AC | 587547 | 6940134 | 412.3 | -60 | 112 | 38 | | Hole ID | Туре | Easting | Northing | RL | Dip | Azimuth | EOH Depth (m) | |------------|------|---------|----------|-------|-----|---------|---------------| | 22IGAC0070 | AC | 587366 | 6940201 | 411.7 | -60 | 112 | 62 | | 22IGAC0071 | AC | 587284 | 6940237 | 412.4 | -60 | 112 | 11 | | 22IGAC0072 | AC | 588698 | 6941398 | 412.0 | -60 | 112 | 33 | | 22IGAC0073 | AC | 588328 | 6941546 | 413.2 | -60 | 112 | 39 | | 22IGAC0074 | AC | 588726 | 6940096 | 412.0 | -60 | 112 | 12 | | 22IGAC0075 | AC | 588628 | 6940133 | 412.0 | -60 | 112 | 36 | | 22IGAC0076 | AC | 588542 | 6940169 | 412.0 | -60 | 112 | 18 | | 22IGAC0077 | AC | 588450 | 6940210 | 412.0 | -60 | 112 | 12 | | 22IGAC0078 | AC | 588358 | 6940243 | 412.0 | -60 | 112 | 8 | | 22IGAC0079 | AC | 588260 | 6940283 | 412.0 | -60 | 112 | 15 | | 22IGAC0080 | AC | 588179 | 6940315 | 412.0 | -60 | 112 | 25 | ### **APPENDIX I** ### JORC Code, 2012 Edition: ### **Section 1: Sampling Techniques and Data** (Criteria in this section apply to all succeeding sections.) | Criteria | JORC Code explanation | Commentary | |------------------------|---|---| | Sampling
techniques | Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information. | Caprice Resources Ltd (CRS) sampling is conducted using standard industry practices including the use of duplicates, blanks and standards at regular intervals. The performance of QAQC measures is monitored on a batch-by-batch basis. All sample submissions passed QAQC measures applied for the aircore drilling program. Aircore (AC) drilling was used to obtain 4m composites that were collected from one metre sample piles laid out in drill order adjacent to the drill collar. Samples were collected using an aluminium scoop, passed through each sample pile to collect material across a reasonable profile of the sample pile. Composite sample weights will varied between 0.5-3.5kg. Follow up 1m resampling was completed across all composite intervals with an Au value >0.1ppm. Samples were collected using an aluminium scoop, passed through each sample pile to collect material across a reasonable profile of the sample pile. The average weight 1m samples was 3.2kg. For all AC drilling, a 1m bottom of hole sample was also collected for analysis. The samples were collected using an aluminium scoop, passed through each sample pile to collect material across a reasonable profile of the sample pile to collect material across a reasonable profile of the sample pile. 1m samples weights will varied between 0.5-2.5kg. In addition to the 1m bottom of hole samples, unaltered, undeformed, and homogeneous rock chips (up to 100g in weight) were collected from the last metre for multi-element analysis. The condition of sampled materials was monitored by the supervising geologist and any variation was recorded with the sample data. Sample piles for each hole were photographed immediately after the completion of each hole. All composite and 1m samples have were submitted to Bureau Veritas Perth Laboratory for Au analysis. | | Drilling techniques | Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, facesampling bit or other type, whether core is oriented and if so, by what method, etc). | CRS AC drilling was completed by Strike Drilling. A 2018 Schramm T450 AC/RC capable rig with 3.5" 6m drill rods was contracted to CRS for the AC program. An air core bit was utilised across the entire program, with a hammer applied where narrow interval of harder material was encountered or at end of hole to attain sufficient sample recovery in the last metre. | | Drill sample recovery | Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. | For all CRS drilling, sample weights, dryness and recoveries are observed and recorded with sample data by the supervising geologists. For CRS drilling, samples are weighed at the laboratory to allow comparative analysis between submitted sample weight and grade. To date, there is no apparent relationship between sample recovery/weight and grade from the AC drilling results. No significant sample grade bias associated with sample recovery has been noted in previous drilling or in drilling conducted by CRS. | | Logging | Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. | For CRS AC drilling, the logging of lithology, structure, alteration, mineralisation, veining, weathering, colour, and any other observable features is undertaken at 1m intervals. For CRS drilling, a portion of each 1m interval of AC cuttings is sieved and cleaned then retained in chip trays as a visual reference for logging. Chip trays are labelled with the relevant hole ID, drill depths and individual intervals. Chips trays are catalogued and stored in Perth and readily available for review. CAPRICERESOURCES.COM.AU | | Criteria | JORC Code explanation | Commentary | |--|--|--| | | The total length and percentage of the relevant intersections logged. | All drill holes are logged in full. | | Sub-sampling techniques and sample preparation | If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise samples representivity Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. | For CRS AC sampling, standards are inserted into the sample stream at a rate of 1 standard for every 20 conventional samples (1:20); and blanks are inserted into the sample stream at a rate of 1 standard for every 50 conventional samples (1:50). Composite and 1m metre samples were taken from one metre sample piles laid out in drill order adjacent to the drill collar. Samples were collected using an aluminium scoop, passed through each sample pile so as to collect material across a reasonable profile of the sample pile. No field duplicates were collected across the AC program. For CRS samples, sample preparation and Au analysis was undertaken by a registered laboratory (Bureau Veritas Laboratories). Sample preparation by dry pulverisation to 85% passing 75 microns is monitored with pass rates recorded at regular intervals as part of the labs reporting process. Pass rates are monitored on a batch-by-batch basis as part of QAQC conventions. Sample sizes for CRS AC drilling are considered appropriate for grain size of the sampled material to give an accurate indication of gold mineralisation or anomalism. Samples are collected across the full width of the drilled interval to ensure it is representative. AC drilling and samples are considered appropriate for the delineation of near surface anomalism and mineralisation. Results will be used to delineate follow up targets and to complete a geochemical evaluation of the underlying stratigraphy. Results are not suitable for Mineral Resource estimation. | | Quality of assay
data and laboratory
tests | The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established. | For CRS AC sampling, samples were submitted to Bureau Veritas Laboratories (a registered laboratory), for 50g fire assay with MP-AES analysis. This method has a detection limit of 0.01ppm. This is a full digestion technique. Where a composite sample returns a value greater than 0.1ppm, the individual 1m samples for that interval were submitted for analysis For CRS samples, Internal certified laboratory QAQC is undertaken including repeats, blanks and internal standards. No external laboratory checks have been completed. Detection limits and techniques are appropriate for the detection of Au mineralisation in the materials analysed. | | Verification of
sampling and
assaying | The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. | CRS AC samples are verified by the supervising geologist before importing into the database. Significant intercepts are reviewed by CRS geologists including a visual review of AC chips and a spatial review of the results relative to adjacent drilling. For CRS drilling, primary data is collated using a standard set of templates. Geological logging of 1m intervals is undertaken for all AC drilling with lithology, colour, weathering, structure, alteration, veining and mineralisation recorded for each interval. Data is verified before loading into a database. Geological logging of all samples / intervals is undertaken in the field by a qualified and experienced supervising geologist. Assay data is reported without adjustments or calibrations. For all intercepts, the first received assay result is always reported. For AC drilling, 1m samples will override the 4m composite result as the primary result for the interval. | | Location of data points | Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. | The collar location of all AC holes in this announcement have been surveyed using a handheld GPS with a precision of +/- 2m for eastings and northings, and the RL is determined using a detailed digital terrain model derived from aerial surveys No JORC compliant Mineral Resources Estimates have been reported for the IGP. AC drilling data will not be used to inform any future Mineral Resource Estimates. All maps and locations are presented and referenced using MGA | | Criteria | JORC Code explanation | Commentary | |---|--|--| | | | UTM grid (GDA94 Z50). Surface heights are validated against a surface DTM generated from 5m by 40m spaced spot heights taken during airborne magnetic surveys. | | Data spacing and distribution | Data spacing for reporting of Exploration
Results. Whether the data spacing and
distribution is sufficient to establish the
degree of geological and grade continuity
appropriate for the Mineral Resource and
Ore Reserve estimation procedure(s)
and classifications applied. | For CRS AC drilling an approximate east west spacing of 80m was applied across 400m spaced north-south lines. No resource estimates have been reported. | | Orientation of data in relation to geological structure | Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. | CRS AC drilling orientations are designed to be orthogonal to stratigraphy based on regional mapping and geophysical interpretations. This is the first program of AC drilling to be conducted across the stratigraphy of Lake Austin within CRS tenure. Drilling to determine any orientation bias was not conducted due to the early stage nature of the project. | | Sample security | The measures taken to ensure sample security. | Chain of custody is managed by CRS staff or consultants. Samples were transported by a commercial courier direct from the Island Gold Project to the Laboratory. When samples arrive at the laboratory, all submitted materials are securely stored prior to being processed and tracked through sample preparation and analysis. | | Audits or reviews | The results of any audits or reviews of
sampling techniques and data. | No formal audits have been completed on sampling techniques and data due to the early-stage nature of the drilling. QA/QC data is regularly reviewed by CRS, and results provide a high-level of confidence in the assay data. Sampling techniques are informally reviewed on site periodically by the CRS Exploration Manager to ensure industry standard sampling methods are being maintained to a high standard. | # **Section 2: Reporting of Exploration Results** | Criteria | JORC Code explanation | Commentary | |---|---|--| | Mineral tenement
and land tenure
status | Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known | Located in the Murchison Greenstone Belt, 60km north of Mt Magnet and 20km south of Cue in the Murchison mining district in WA. The Island Gold Project includes Mining Tenements M 21/66 and M21/140 along with Exploration Tenements E 21/186. All granted tenements are held by Goldview Metals Pty Ltd a wholly owned (100%) subsidiary of Caprice Resources Ltd. All tenements are in good standing. | | Exploration done by other parties | impediments to obtaining a licence to operate in the area. Acknowledgment and appraisal of exploration by other parties. | For the Lake Austin South, now formally named the Solis prospect, no previous exploration work has been reported. | | Geology | Deposit type, geological setting and style of mineralisation. | The Island Gold Project (IGP) contains Archaean mesothermal orogenic Au mineralisation, hosted within deformed Banded Iron Formation (BIF) and to a lesser extend in bounding mafic lithologies and shales. Current interpretations indicate that mineralisation is controlled by large scale bounding regional structures and associated lower order structures linked to these bounding structures. Mineralisation styles vary across the IGP. Observations to date | | Criteria | JORC Code explanation | Commentary | |-----------------------------|--|--| | Drill hole
Information | A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: | suggests BIF hosted mineralisation is associated with: Meso scale (1-10m wide) folding, Large cross cutting exiensional veins, Fine cross cutting vein and fracture arrays, Sheared BIF contacts, NNW striking shearing or faulting, and, NE striking shearing or faulting, and, NE striking shearing or faulting. Across the IGP, an erosional or stripped weathering regime dominates at higher elevations. A deeper in-situ weathering profile develops with proximity to the surrounding Lake Austin. Shallow, locally derived transported sediments have accumulated around the fringe of the island, particularly in palaeo-drainage channels. No previous effective drilling has been completed across the Solis prospect. Geological logging indicates that a shallow veneer of transported sand, gypsum and calcrete up 12m deep overlies a relatively stripped regolith profile, with a majority of the upper saprolite eroded away. The IGP stratigraphic sequence (as defined by CRS) includes the: Lower Murrouli Formation, located to the east of the island and predominantly overlain by Lake Austin. The sequence is poorly defined and studied. The upper boundary of the formation is marked by an erosional unconformity that outcrops along the eastern edge of the IGP. The Solis prospect sits within the Lower Murrouli Formation. The Golconda Formation overlies the Lower Murrouli Formation and is marked by a distinctive monolithic, mafic clast conglomerate unit of unknown true width. The Golconda formation has an interpreted true width of 600-700m and includes up to seven distinct BIF/sedimentary packages separated by intermediate to mafic volcanic sequences. BIF packages of the Golconda Formation host gold mineralisation across the IGP project. Overlying the Golconda Formation is the Cabanintha Formation located on the western side of the IGP. The Cabanintha Formation accounted by CRS has been surveyed by hand held GPS with an accuracy of +/- 2m or better for all easting and northing data. RL data is accurate to within +/-2m. Down hole su | | | easting and northing of the drill hole collar elevation or RL (Reduced Level - elevation above sea level in metres) of the drill hole collar • dip and azimuth of the hole down hole length and interception | +/-5° relative to MGA UTM grid (GDA94 Z50) • For all drilling, down hole depth and end of hole length is accurate to with +/- 0.2m. | | | depth • hole length. • If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. | | | Data aggregation
methods | In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. | Intercepts for 1m re-sample intervals have been calculated using a 0.5 g/t Au cut-off grade, with up to 2m of internal waste. All intercepts greater than 0.5 g/t Au are reported using a length weighted average. For all intercepts, the first reported assay result is used for the calculation of grade. No top-cuts have been applied to reported intersections. CAPRICERESOURCES COM AU | **CAPRICERESOURCES.COM.AU** | Criteria | JORC Code explanation | Commentary | |---|---|--| | | Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. | Where reported intercepts contain a narrower internal of higher-
grade component, a sub-interval is reported and tabulated in the
text of the report. | | Relationship
between
mineralisation
widths and
intercept
lengths | These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known'). | The geometry of mineralisation or anomalism identified in AC drilling across the Solis prospect is unknown. All intercept lengths reported are derived from downhole depths. No true widths have been reported. | | Diagrams | Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. | Relevant plans and sections are included within the body of this report. All plans, sections are presented in a form that allows for the reasonable understanding and evaluation of exploration results. All data has been presented using appropriate scales and using industry standard compilation methods for the presentation of exploration data. Geological and mineralisation/anomalism interpretations are based on current knowledge of CRS geologists and associated consultants. Interpretations may change with further exploration. All figures that include an interpretation or projection away from know are denoted as such either within the legend or the caption of the figure. | | Balanced
reporting | Where comprehensive reporting of all
Exploration Results is not practicable,
representative reporting of both low and
high grades and/or widths should be
practiced to avoid misleading reporting
of Exploration Results. | All CRS drilling data has been reported. All AC collar locations are shown and tabulated within tables of this release. | | Other
substantive
exploration
data | Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. | All material results from geochemical, geophysical, geological mapping and drilling activities related to prospects across the Island Gold Project have been disclosed. | | Further work | The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. | Follow up AC drilling is being scheduled for June quarter of 2022. This will include a tighter hole spacing on existing and closer spaced drill lines. Bottom of hole multi-element samples will be submitted for analysis now that all AC results have been received. | (Criteria listed in the preceding section also apply to this section.)